WO2014010457A1 - ポリシリコンの製造方法 - Google Patents

ポリシリコンの製造方法 Download PDF

Info

Publication number
WO2014010457A1
WO2014010457A1 PCT/JP2013/068040 JP2013068040W WO2014010457A1 WO 2014010457 A1 WO2014010457 A1 WO 2014010457A1 JP 2013068040 W JP2013068040 W JP 2013068040W WO 2014010457 A1 WO2014010457 A1 WO 2014010457A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat recovery
gas
type heat
boiler
Prior art date
Application number
PCT/JP2013/068040
Other languages
English (en)
French (fr)
Inventor
学 崎田
若松 智
信昭 義松
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP13817417.2A priority Critical patent/EP2871155A4/en
Priority to KR20147036932A priority patent/KR20150035803A/ko
Priority to CN201380034608.XA priority patent/CN104395237A/zh
Priority to US14/412,220 priority patent/US20150175430A1/en
Priority to JP2014524746A priority patent/JPWO2014010457A1/ja
Publication of WO2014010457A1 publication Critical patent/WO2014010457A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method of manufacturing polysilicon, and more specifically, includes a step of efficiently recovering heat from a high temperature exhaust gas generated from a deposition step of polysilicon, and further, a step of recovering an unreacted source gas as needed. And a method of manufacturing polysilicon that can contribute to reduction of manufacturing cost.
  • Siemens method As a method of manufacturing polysilicon (also called polycrystalline silicon), Siemens method, VLD method, etc. are known.
  • a silicon core wire disposed inside a bell jar type reaction vessel is heated to a deposition temperature of silicon by energization, and here a gas of a silane compound such as trichlorosilane (SiHCl 3 ) or monosilane (SiH 4 ) and hydrogen are used.
  • SiHCl 3 trichlorosilane
  • SiH 4 monosilane
  • polycrystalline silicon is deposited on a silicon core by chemical vapor deposition to obtain a polycrystalline silicon rod of high purity.
  • VLD method a cylindrical reaction vessel made of isotropic graphite is heated by high frequency heating, chlorosilanes and hydrogen as raw materials are supplied to the inside of the cylindrical reaction vessel, and polysilicon is deposited on the inner wall surface of the reaction vessel. It is a system.
  • polysilicon is deposited by chemical vapor deposition as in the above-mentioned Siemens method.
  • unreacted raw material gases such as unreacted silane compounds and hydrogen
  • low polymers such as dimers and trimers of silane compounds (also referred to in the art as “polymers”)
  • silicon An exhaust gas containing fine powder is generated.
  • the polymer (Si X H Y Cl Z) is specifically a Si 2 HCl 5, Si 2 H 2 Cl 4, Si 2 Cl 6 , etc., SiCl 4 (silicon tetrachloride) further high boiling from It is a substance and exists as a highly viscous liquid at low temperatures, and condensed fine particles in mist form are called mists.
  • Such a polymer or mist may be deposited and adhered in the piping, which may inhibit the exhaust of the exhaust gas.
  • there is a risk that the polymer may ignite in the air when washing away the polymer adhering and remaining in the piping.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-150131
  • heat exchange is performed in order to suppress the generation of mist that causes a failure of the compressor. It is disclosed that the flow velocity of the exhaust gas flowing through the vessel is 4 m / s to 7 m / s.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-266127 maintains a reaction exhaust gas containing chlorosilanes at 700 ° C. to 1500 ° C. generated from a reduction reaction of chlorosilanes and hydrogen at a temperature of 700 ° C. or more for 2 seconds or more. After that, it is disclosed that generation of mist can be suppressed by cooling to 350 ° C. or less with a heat exchanger.
  • Patent Document 1 when cooling a high temperature exhaust gas with a heat exchanger, the polymer contained in the exhaust gas is surely condensed in the heat exchanger by limiting the flow velocity of the exhaust gas passing through the heat exchanger. To make it drop.
  • the mixing of the polymer into the compressor is prevented. That is, in this method, the polymer inevitably adheres to the inside of the heat exchanger, and when silicon dust is contained in the exhaust gas, it promotes adhesion and deposition of the polymer in the heat exchanger. Furthermore, in the horizontal heat exchanger, discharging the polymer becomes difficult, and the polymer tends to be deposited in the heat exchanger.
  • the heat exchanger needs to be cleaned frequently, which reduces the manufacturing efficiency. For this reason, before introduce
  • This device is generally a filter device, and it is also necessary to reduce the exhaust gas temperature before the device is introduced according to the heat resistant temperature of the filter device.
  • Patent Document 2 generation of mist is suppressed by maintaining the exhaust gas at a temperature of 700 ° C. or more for 2 seconds or more before supplying the exhaust gas to the heat exchanger, and cooling to 350 ° C. or less in the heat exchanger.
  • the exhaust gas due to a small amount of mist in the exhaust gas and silicon fines in the exhaust gas, there has been a problem that local operation such as liquid pooling and adhesion residue of the polymer may occur in the heat exchanger after long operation.
  • an object of the present invention is to efficiently recover heat from the high temperature exhaust gas generated from the deposition process of polysilicon.
  • the present invention reduces adhesion residue of silicon fine powder and polymer in piping and equipment, improves recovery efficiency of unreacted raw material gas and the like, reduces cleaning frequency, and enables continuous operation for a long time,
  • the purpose is to improve manufacturing efficiency.
  • the present invention for achieving the above object includes the following gist.
  • the gas temperature at the exhaust gas pipe outlet of the boiler type heat recovery apparatus is set to 200 ° C. or higher, and the flow velocity of the exhaust gas at the exhaust gas pipe outlet inside the boiler type heat recovery apparatus is adjusted to 10 m / sec or more.
  • Production method is described in accordance with a boiler type heat recovery apparatus.
  • a straight pipe type gas introduction pipe is installed before the boiler type heat recovery device, and the ratio of the length L and the inner diameter D of the gas introduction pipe (L: D) is 1: 1 to 5: 1, the method for producing polysilicon according to any one of (1) to (4).
  • the deposition step is a step of depositing polysilicon on the inner wall of the cylindrical reaction container with a source gas containing chlorosilanes in the cylindrical reaction container, and after the precipitation step, the temperature of the cylindrical reaction container Further includes a melting step of heating at least the silicon melting point, melting a part or all of the deposited silicon, dropping and recovering the silicon, and repeatedly performing the deposition step and the melting step (1
  • the method for producing polysilicon according to any one of (6) to (6).
  • a plurality of the boiler-type heat recovery devices having different gas channel cross-sectional areas are arranged in parallel, and exhaust gases discharged from the deposition step and the melting step are each supplied to different boiler-type heat recovery devices.
  • the gas temperature at the exhaust gas outlet in the boiler type heat recovery apparatus to 200 ° C. or higher, generation of mist is suppressed by converting the polymer into a gas state in the heat recovery apparatus. For this reason, the mist and the liquid pool are discharged together with the exhaust gas without remaining in the heat recovery apparatus, and continuous operation of the polysilicon manufacturing apparatus becomes possible.
  • the heat recovery device a boiler type heat recovery device
  • the surface temperature of the heat recovery device in contact with the exhaust gas becomes high, so that liquid accumulation in the heat recovery device is less likely to occur, and the recovered heat is It can be used as an industrial advantage.
  • the exhaust gas after passing through the boiler-type heat recovery apparatus contains mist containing silicon fine powder and polymer, but all of these are also recovered by the cooling step (quenching step). For this reason, failure factors, such as a compressor, are also eliminated, and a long continuous operation becomes possible.
  • FIG. 1 shows a schematic flow of the present invention.
  • a method of manufacturing polysilicon according to the present invention includes a deposition step of depositing polysilicon from a source gas containing chlorosilanes, and a heat recovery step of introducing exhaust gas from the deposition step into a boiler type heat recovery apparatus and recovering heat . Furthermore, after the heat recovery step, it is preferable to include an exhaust gas cooling step for collecting unreacted chlorosilanes, a polymer and silicon fine powder contained in the exhaust gas. Further, it is preferable to include a step of recovering the unreacted source gas from the exhaust gas after the exhaust gas cooling step, and it is preferable to include a step of supplying the recovered unreacted source gas to the precipitation step.
  • the deposition process for depositing polysilicon is not particularly limited, and is performed by the conventionally employed Siemens method, VLD method or the like.
  • the silicon core wire placed in the bell jar is heated to a temperature of 900 to 1250 ° C., and polysilicon is deposited on the silicon core wire by supplying a raw material gas containing chlorosilanes and hydrogen thereto. It is a method of obtaining a polysilicon rod.
  • a cylindrical cylindrical reaction vessel made of carbon suitably constituted of isotropic graphite is heated by high frequency heating to 1200 ° C. or higher, preferably about 1300 ° C.
  • FIG. 1 shows a simplified configuration of a polysilicon manufacturing apparatus according to the VLD method provided with a cylindrical reaction vessel 1.
  • the deposition and melting of silicon by the VLD method is carried out, for example, after the deposition step of depositing polysilicon at a temperature less than the melting point of silicon in a cylindrical reaction vessel made of carbon as shown in Japanese Patent No. 4064918. Step of heating the temperature of the reaction vessel above the melting point of silicon, melting a part or all of the deposited silicon, dropping and recovering the deposited silicon (hereinafter referred to as "melting step"), the deposition step A method of producing silicon is preferable by repeating and melting steps.
  • the temperature is approximately 1410 ° C. to 1430 ° C.
  • the temperature of the cylindrical reaction vessel in the melting step is 1430 ° C. to 1700 ° C.
  • the deposition step and the melting step of the VLD method are alternately performed, it is not necessary to deposit polysilicon in the melting step, so it is possible to reduce the supply amount of chlorosilanes and hydrogen. From the viewpoint of utilization, it is preferable to stop the supply of chlorosilane in the melting step, and to reduce hydrogen to 0 to 30%, more preferably 0 to 10% of the amount supplied in the deposition step. Is preferred. Furthermore, by separately flowing dilution gases such as hydrogen, nitrogen, argon, etc., the concentration of chlorosilanes in the cylindrical reaction vessel is rapidly reduced to 0.01% or less, thereby reducing the formation of polymer and silicon fine powder. Is preferred.
  • the chlorosilanes supplied to the reaction vessel are tetrachlorosilane, trichlorosilane, dichlorosilane, monochlorosilane and the like, and in general, trichlorosilane gas is preferably used.
  • trichlorosilane gas a high purity product having a purity of 99.99% or higher may be used, or as shown in FIG. 1, a gas obtained by separating and purifying hydrogen contained in the exhaust gas and recycling It may be described as gas).
  • the hydrogen concentration in the circulating gas is not particularly specified, but is usually 90 to 99 mol%.
  • reaction container may be plural, and in this case, the reaction container by Siemens method and the reaction container by VLD method may be mixed.
  • the exhaust gas from these reaction vessels is introduced into a boiler-type heat recovery apparatus described later.
  • the gas discharged from the deposition step includes unreacted raw material gases such as unreacted chlorosilanes and hydrogen, low polymers (polymers) such as dimers and trimers of silane compounds, and further fine powder of silicon.
  • unreacted raw material gases such as unreacted chlorosilanes and hydrogen
  • low polymers such as dimers and trimers of silane compounds
  • the polymer composition in the exhaust gas varies depending on the operating conditions such as temperature, the generation of mist due to the condensation of the polymer described later can be suppressed by reducing the amount of by-products as much as possible. Therefore, the polymer composition in the exhaust gas is usually 0.001 to 0.1 mol%, preferably 0.001 to 0.01 mol%.
  • silicon is precipitated at 1200 ° C. or higher, relatively large amounts of silicon fines are contained in the exhaust gas.
  • silicon fine powder refers to silicon particles having a particle size of about 0.01 to 1 ⁇ m.
  • the temperature of the exhaust gas is usually about 700 ° C. to 1200 ° C. in the case of the VLD method, and it exists as a gas other than silicon fine powder.
  • the polymer may be diluted by separately supplying and mixing hydrogen before the heat recovery step.
  • tetrachlorosilane is supplied as chlorosilanes, and silicon fine powder contained in the exhaust gas is reacted and reduced.
  • An object of the present invention is to efficiently recover heat and unreacted source gas from the exhaust gas.
  • the temperature of the generated exhaust gas is higher than that of the Siemens method. For this reason, recovery of the thermal energy from the exhaust gas in the VLD method is very important industrially, and it is particularly preferable that the present invention is applied to the exhaust gas generated by the VLD method.
  • the exhaust gas from the precipitation step and the melting step is introduced into the boiler-type heat recovery apparatus 10.
  • a cooling means such as providing a water cooling jacket.
  • the above-mentioned mist may be generated.
  • a structure and means for thermally isolating (insulation) may be used between the cooling means and the exhaust gas.
  • the heat insulation structure include a structure in which a carbon material is provided on the inner wall of a pipe.
  • the carbon material When the carbon material is provided on the inner wall, it is preferable to interpose a heat insulating material such as fibrous carbon, fibrous silica, etc. between the carbon material and the inner wall surface.
  • the exhaust gas temperature may be adjusted by a preliminary heating device (not shown) to maintain the exhaust gas at a predetermined temperature or higher, and then the exhaust gas may be introduced into the boiler-type heat recovery device.
  • the exhaust gas temperature is 100 ° C. or less, mist may be generated due to condensation of the polymer and may adhere to the inside of the pipe.
  • a straight pipe type gas introduction pipe 8 is preferably installed at the front stage of the boiler type heat recovery apparatus.
  • the installation of the straight pipe type gas introduction pipe 8 rectifies the flow of the gas to the boiler type heat recovery apparatus, and the gas is uniformly supplied to the exhaust gas pipe, which is more preferable.
  • the inner diameter of the gas introduction pipe 8 is not limited at all, but the length may be any as long as a rectifying effect is produced, and it is not preferable industrially to make the length longer than necessary. Accordingly, the ratio (L: D) of the length L and the inner diameter D of the gas inlet tube 8 is 1: 1 to 10: 1, more preferably 1: 1 to 5: 1, particularly preferably 1: 1 to 3: 1. It is.
  • the inner diameter of the lining corresponds to the inner diameter of the gas introducing pipe 8 in that case.
  • the material of the gas introduction pipe may be a heat resistant material resistant to chlorosilane contained in the exhaust gas, and for example, general materials such as stainless steel and carbon steel can be used. If necessary, the inside may have a jacket structure so that heating and cooling can be performed.
  • the boiler type heat recovery apparatus 10 is provided with an exhaust gas pipe 2 through which exhaust gas flows, and on the surface of the exhaust gas pipe 2 through which high temperature exhaust gas flows, a suitable refrigerant such as water or hot water. It is an apparatus which makes it contact and recovers energy as steam, and may only be called a "boiler.”
  • a temperature measuring device a flow meter and a pressure gauge at the inlet and the outlet of the boiler type heat recovery apparatus 10 so that the inlet temperature and the outlet temperature of the exhaust gas, the gas flow rate and the pressure can be monitored.
  • the boiler type heat recovery apparatus 10 has a refrigerant supply port 4 for supplying a refrigerant such as water or hot water, and a steam discharge port 6 for discharging the generated steam.
  • the refrigerant supplied from the refrigerant supply port 4 comes in contact with the exhaust gas pipe 2, is heated and becomes steam, and is discharged from the steam outlet 6.
  • the flow velocity of the exhaust gas at the outlet of the exhaust gas pipe 2 is 10 m / sec or more, it is effective in removing the mist containing the silicon fine powder and the polymer.
  • the flow velocity of the exhaust gas at the outlet of the exhaust gas pipe 2 is preferably 10 to 30 m / sec, more preferably 12 to 20 m. It is preferable to set so as to be 1 / second.
  • the exhaust gas flow rate at the outlet of the exhaust gas pipe 2 in the boiler type heat recovery apparatus is the amount of gas introduced from the deposition process and the melting process to the heat recovery process, the gas flow passage cross sectional area of the exhaust gas pipe 2 and the outlet gas temperature of the exhaust gas pipe 2 And the pressure of the gas at the outlet of the boiler type heat recovery apparatus.
  • the gas temperature at the outlet of each exhaust gas pipe is individually measured to be the average temperature of the obtained gas temperatures.
  • the gas temperature at the outlet of the boiler type heat recovery apparatus may be used.
  • the gas flow passage cross-sectional area of the exhaust gas piping 2 can be obtained by multiplying the cross-sectional area of the exhaust gas piping 2 in the boiler-type heat recovery apparatus by the number n of pipings.
  • the inner diameter of the exhaust gas pipe 2 is not limited at all, but the boiler type heat recovery apparatus can be designed with a general size by setting it in the range of 15 to 75 mm. Moreover, in the same boiler type
  • the outer diameter of the exhaust gas pipe 2 has mechanical strength required depending on the design temperature, the design pressure and the inner diameter, and thermal strength that can withstand temperature change and heat quantity change on the heat transfer surface of the exhaust gas pipe 2 is considered. Above, it is preferable to set the minimum thickness. Industrially, the range of 2 to 10 mm, more preferably 3 to 8 mm is preferable.
  • the gas flow passage cross-sectional area of the exhaust gas pipe 2 smaller than the gas flow passage cross-sectional area of the gas introduction pipe 8
  • unevenness in the amount of exhaust gas flowing through the exhaust gas pipe 2 is less likely to occur, which is preferable.
  • the heat transfer area of the boiler type heat recovery apparatus is reduced when the gas flow path cross sectional area is reduced, the gas flow path cross sectional area A of the exhaust gas pipe 2 in the boiler type heat recovery apparatus is determined.
  • the channel cross-sectional area is B
  • the area ratio of A: B is preferably 1: 1.5 to 1:10, more preferably 1: 2 to 1: 6, particularly preferably 1: 3 to 1: 5
  • the material of the exhaust gas pipe 2 may be a heat-resistant material having high thermal conductivity and resistance to chlorosilane contained in the exhaust gas, and for example, general materials such as stainless steel and carbon steel can be used.
  • the shape of the exhaust gas pipe 2 may be a straight pipe shape as shown in the drawing, and the inner diameter may expand, contract or bend in the length direction, but when the pipe is bent, the exhaust gas flow is biased It is preferable that it has a straight pipe shape because it causes the deposition of silicon fines.
  • the number of exhaust gas pipes 2 may be set by calculating a predetermined flow rate and a number by which a predetermined heat recovery amount described later can be obtained with the set inner diameter. Also, the total length per tube can be obtained by dividing the required heat transfer area [m 2 ] by the product of the logarithmic average perimeter L [m] obtained from the set inner diameter and outer diameter and the number n of pipes. it can.
  • the boiler type heat recovery apparatus needs to be in an aspect according to the use environment, but the heat recovery efficiency depends on the flow velocity of the exhaust gas in the exhaust gas pipe 2, the exhaust gas inlet temperature and the boiling point of the recovered steam.
  • the design of the boiler-type heat recovery system can be performed based on the following equation, as in a general heat exchanger.
  • Q is the amount of heat
  • U is the overall heat transfer coefficient
  • A is the heat transfer area
  • DT is the effective temperature difference
  • the heat quantity Q to be heat exchanged can be calculated from the enthalpy difference between the inlet and the outlet.
  • the effective temperature difference DT can be calculated by determining the logarithmic average temperature of the exhaust gas inlet gas temperature Tin [° C.], the outlet gas temperature Tout [° C.] and the boiling point Tboil [° C.] of the recovered steam.
  • the heat transfer area A required from Q, U, and DT determined above can be calculated by the calculation of Q / U / DT.
  • a boiler type heat recovery apparatus having a small gas passage cross-sectional area corresponding to such heat quantity is separately provided, and switching from the boiler type heat recovery apparatus used in the precipitation process It is preferred to use.
  • the heat of the exhaust gas can be recovered as steam energy.
  • the steam discharged from the steam discharge port 6 may be further subjected to a superheat treatment as needed, introduced into a turbine or the like and used for power generation, or may be used for a vaporizer using the steam as a heat source.
  • the gas temperature at the exhaust gas pipe outlet of the boiler-type heat recovery apparatus 10 may be 200 ° C. or higher, but it is preferable in consideration of the heat recovery amount and the material selection of the apparatus constituting the process downstream of the boiler-type heat recovery apparatus.
  • the temperature is set to about 250 to 450 ° C., more preferably about 300 to 350 ° C. Therefore, the temperature of the exhaust gas circulating in the boiler-type heat recovery apparatus is 200 ° C. or higher.
  • the temperature of the exhaust gas in the boiler type heat recovery apparatus By keeping the temperature of the exhaust gas in the boiler type heat recovery apparatus at a predetermined temperature or higher, the generation of mist or liquid pooling due to polymer condensation in the boiler type heat recovery apparatus is prevented. If the outlet gas temperature of the exhaust gas pipe 2 in the boiler-type heat recovery apparatus is less than 200 ° C., a liquid pool is generated in the boiler-type heat recovery apparatus, silicon fine powder is easily attached, and the apparatus is clogged. Cleaning is required. If the outlet gas temperature of the exhaust gas pipe 2 of the boiler type heat recovery apparatus is too high, effective recovery of heat is not performed. Therefore.
  • the outlet gas temperature of the exhaust gas pipe 2 of the boiler type heat recovery apparatus is monitored by a temperature measuring device, and if the outlet gas temperature becomes too low, the gas flow rate, the refrigerant supply amount and the refrigerant temperature are adjusted, and the gas temperature at the outlet Is controlled to be equal to or higher than a predetermined temperature.
  • a boiler-type heat recovery apparatus water or hot water is supplied as a refrigerant, and the refrigerant is brought into contact with the surface of a pipe through which high-temperature exhaust gas flows to recover it as steam.
  • the temperature of the refrigerant supplied to the boiler-type heat recovery apparatus be close to the saturation temperature of the steam to be recovered, since the heat amount of the sensible heat until the refrigerant is vaporized results in the loss of the recovered heat.
  • thermal energy is efficiently recovered by the above-described heat recovery step, and the mist containing silicon fine powder and polymer is exhausted out of the apparatus at the flow rate, so there is no residual liquid pool in the heat recovery device.
  • the frequency of cleaning of the device is reduced, enabling long-term continuous operation.
  • the boiler type heat recovery system has many exhaust gas pipes and is complicated in structure, so cleaning is difficult. However, by satisfying the above conditions, the frequency of cleaning the system is reduced, and the production efficiency of polysilicon is significantly increased. improves.
  • the liquid chlorosilane is tetrachlorosilane, trichlorosilane, dichlorosilane or the like, and may be a mixture thereof. Among these, tetrachlorosilane having a high boiling point is preferable.
  • liquid temperature of the liquid chlorosilane rises by continuing the cooling of the exhaust gas, it is preferable to hold the liquid chlorosilane 12 in a container equipped with a cooling means such as a cooling jacket.
  • the exhaust gas after the cooling step contains hydrogen used as a source gas
  • a known method may be used to recover hydrogen.
  • a hydrogen purifier 30 which cools the cooled exhaust gas and removes chlorosilanes contained in the exhaust gas is raised. It is preferable that hydrogen be supplied to the precipitation step and be used again as the source gas, after appropriately performing purification treatment and the like as necessary.
  • chlorosilanes recovered by liquid chlorosilane which is a refrigerant in the exhaust gas cooling step, is also supplied to the distillation apparatus 40 to remove impurities, and is then supplied to the deposition step, and is preferably used again as source gas.
  • pressurizing means 20 such as various pumps and compressors are used.
  • the raw material gas recovered through the above steps contains almost no silicon powder or polymer, and therefore does not impair the performance of the pump or the compressor.
  • a rotary compressor particularly a screw compressor, which is less susceptible to the adhesion of such silicon powder and polymer is used. Is preferred.
  • Example 1 Polysilicon was manufactured according to the steps shown in the flow of FIG.
  • the deposition process for depositing polysilicon was performed by the VLD method.
  • the temperature of the silicon deposition part of the cylindrical reaction vessel 1 was raised to 1300 ° C., the source gas was supplied, and silicon was deposited. Thereafter, by controlling heating of the cylindrical reaction container to 1600 ° C. in the melting step, silicon deposited in the cylindrical reaction container was melted and dropped and recovered. The deposition and melting steps were repeated to produce silicon.
  • the reaction was carried out by supplying trichlorosilane 1200 kg / h (about 200 Nm 3 / h) gas mixture (about 2200Nm 3 / h) as a hydrogen 2000 Nm 3 / h and chlorosilanes. It was 1050 degreeC when the temperature of the waste gas discharged
  • the pressure at the outlet of the boiler-type heat recovery apparatus during the precipitation step was adjusted to 50 kPaG. After tetrachlorosilane was supplied to the gas discharged from the deposition step at 100 Nm 3 / h, the exhaust gas was supplied to the boiler-type heat recovery apparatus.
  • the flow of trichlorosilane and hydrogen was stopped to flow hydrogen as a dilution gas at 10 Nm 3 / h. Further, the exhaust gas generated from the precipitation step and the exhaust gas generated from the melting step were supplied to the same boiler type heat recovery apparatus.
  • the ratio of the length L and the inner diameter D of the gas introduction pipe is approximately 2: 1, and the ratio of the gas flow path cross section in the boiler type heat recovery apparatus to the gas flow path cross section of the gas introduction pipe is approximately 1: 4. did.
  • the inner diameter of the exhaust gas pipe 2 in the boiler type heat recovery apparatus was 45 mm.
  • the exhaust gas temperature before and after the boiler type heat recovery system in the precipitation step was 950 ° C. and 250 ° C., and the initial pressure difference was about 8 kPa.
  • the overall heat transfer coefficient U was estimated to be 148 W ⁇ m ⁇ 2 ⁇ k ⁇ 1 .
  • the exhaust gas flow rate at the outlet of the exhaust gas pipe in the boiler type heat recovery apparatus in the precipitation step was 12 m / s.
  • the gas of about 250 ° C. discharged from the boiler type heat recovery apparatus was circulated so as to blow the gas into the liquid chlorosilane 12 of the exhaust gas cooling step 14 filled with the liquid chlorosilane containing tetrachlorosilane as a main component. .
  • the temperature of the gas discharged from the exhaust gas cooling step 14 was cooled to about 50.degree.
  • Example 2 In the deposition step, the same operation as in Example 1 was performed except that hydrogen was increased as a source gas.
  • the exhaust gas temperatures before and after the boiler type heat recovery system in the precipitation step were about 980 ° C. and 300 ° C., and the initial pressure difference was about 10 kPa.
  • the overall heat transfer coefficient U was estimated to be 206 W ⁇ m ⁇ 2 ⁇ K ⁇ 1 .
  • the exhaust gas flow rate at the outlet of the exhaust gas pipe in the boiler type heat recovery apparatus in the precipitation step was 19 m / s.
  • Example 3 The exhaust gas pipe 2 of the boiler type heat recovery apparatus has the same inner diameter and the same number as those of the first embodiment, but the one having a total length about one third of that of the first embodiment is used. The same operation was performed. As a result, the gas temperature at the outlet of the boiler-type heat recovery apparatus was about 450.degree. Further, the exhaust gas flow rate at the exhaust gas pipe outlet in the boiler type heat recovery apparatus in the precipitation step was 16 m / s.
  • Example 4 In the exhaust gas cooling step 14 of the first embodiment, other than using an exhaust gas cooling device filled with liquid chlorosilane, another device using a conventional shell and tube type heat exchanger to cool a gas using cooling water of about 30 ° C. Performed the same operation as in Example 1.
  • Example 1 In the deposition step, the same operation as in Example 1 was performed except that hydrogen was reduced as a source gas.
  • the exhaust gas temperatures before and after the boiler type heat recovery system in the precipitation step were about 880 ° C. and 150 ° C., and the initial pressure difference was 5 kPa.
  • the overall heat transfer coefficient U was estimated to be 93 W ⁇ m ⁇ 2 ⁇ K ⁇ 1 .
  • the exhaust gas flow rate at the outlet of the exhaust gas pipe in the boiler type heat recovery apparatus in the precipitation step was 5 m / s.
  • Example 2 In the heat recovery step, the same operation as in Example 1 was performed except that the inside diameter of the exhaust gas pipe of the boiler type heat recovery apparatus was expanded to expand the gas flow passage cross-sectional area.
  • the inner diameter of the exhaust gas pipe 2 is 45 mm to 70 mm.
  • the number of exhaust gas pipes was adjusted so as not to change the heat transfer area.
  • the exhaust gas temperature before and after the boiler type heat recovery system in the precipitation step was about 850 ° C. and 320 ° C., and the initial pressure difference was about 4 kPa.
  • the overall heat transfer coefficient U was estimated to be 115 W ⁇ m ⁇ 2 ⁇ K ⁇ 1 .
  • the exhaust gas flow rate at the outlet of the exhaust gas pipe in the boiler type heat recovery apparatus in the precipitation step was 7 m / s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Silicon Compounds (AREA)
  • Treating Waste Gases (AREA)

Abstract

【課題】 本発明は、ポリシリコンの析出工程から発生する高温の排ガスから効率良く熱を回収することを目的とする。また、本発明は、配管や装置におけるシリコン微粉やポリマーの付着残留を低減し、未反応原料ガス等の回収効率を上げ、洗浄頻度を低下させ、長時間の連続運転を可能にすることで、製造効率の向上を図ることを目的としている。 【解決手段】 本発明に係るポリシリコンの製造方法は、クロロシラン類を含む原料ガスによりポリシリコンを析出させる析出工程、および析出工程からの排ガスを、排ガス配管を備えたボイラー型熱回収装置に供給し熱回収する熱回収工程を備え、 前記ボイラー型熱回収装置内の排ガス配管の出口ガス温度を200℃以上とすると共に、ボイラー型熱回収装置内の排ガス配管出口における排ガス流速を10m/秒以上に調整することを特徴としている。

Description

ポリシリコンの製造方法
 本発明は、ポリシリコンの製造方法に関し、さらに詳しくはポリシリコンの析出工程から発生する高温の排ガスから効率良く熱を回収する工程を含み、さらに必要に応じ、未反応原料ガスを回収する工程を含み、製造コストの削減に寄与しうるポリシリコンの製造方法に関する。
 ポリシリコン(多結晶シリコンとも呼ばれる)を製造する方法としてシーメンス法、VLD法などが知られている。シーメンス法は、ベルジャー型の反応容器内部に配置されたシリコン芯線を通電によってシリコンの析出温度に加熱し、ここにトリクロロシラン(SiHCl)やモノシラン(SiH)等のシラン化合物のガスと水素を供給し、化学気相析出法によりシリコン芯線上に多結晶シリコンを析出させ、高純度の多結晶シリコンロッドを得る。また、VLD法とは等方性グラファイト製の円筒状反応容器を高周波加熱により加熱させ、円筒状反応容器内部に原料となるクロロシラン類及び水素を供給し、反応容器内壁面にポリシリコンを析出させる方式である。VLD法も上記シーメンス法と同様に化学気相析出法によってポリシリコンを析出させている。
 これらの製造方法では、未反応のシラン化合物や水素などの未反応原料ガスおよび、シラン化合物の二量体、三量体などの低重合物(本技術分野では「ポリマー」とも呼ばれる)及びシリコンの微粉が含まれる排ガスが発生する。
 ここで、ポリマー(SiCl)は、具体的にはSiHCl、SiCl、SiCl等であり、SiCl(四塩化珪素)より更に高沸点の物質であり、低温では高粘性の液体で存在し、凝結した霧状の微粒子はミストと呼ばれている。このようなポリマーあるいはミストは、配管内に析出、付着し、排ガスの排気を阻害することがある。また、配管内に付着残留したポリマーを洗浄除去する際に、空気中でポリマーが発火する危険もある。
 排ガスからの未反応原料ガスの回収や、排ガス処理を困難にするポリマーを含むミストの発生を低減する手法について、種々の提案が行われている。
 特許文献1(特開2010-150131号公報)には、ポリシリコン製造時の排ガスから、未反応原料ガスを回収するに際して、圧縮機の故障の原因となるミストの発生を抑制するため、熱交換器に流通させる排ガス流速を4m/秒~7m/秒とすることが開示されている。
 特許文献2(特開2008-266127号公報)には、クロロシラン類と水素との還元反応より生じた700℃~1500℃のクロロシラン類を含む反応排ガスを700℃以上の温度で2秒以上維持し、その後熱交換器で350℃以下に冷却することで、ミストの生成を抑制できることが開示されている。
特開2010-150131号公報 特開2008-266127号公報
 特許文献1では、高温の排ガスを熱交換器にて冷却する際に、熱交換器内を通過する排ガスの流速を制限することで、熱交換器内で排ガスに含まれるポリマーを確実に凝縮させて、液滴化させる。熱交換器内でポリマーを液化することで、圧縮機へのポリマーの混入を防止している。つまり、この方法では、熱交換器内に必然的にポリマーが付着することになり、排ガス中にシリコン微粉が含まれると、熱交換器中のポリマーの固着・堆積を促進する。更には横置き型の熱交換器では、ポリマーの排出が困難になり、ポリマーが熱交換器内に堆積されやすくなる。この結果、熱交換器の洗浄を頻繁に行う必要もあり、製造効率が低下する。このため、排ガスを熱交換器に導入する前に、シリコン微粉を分離する装置が別途必要となる。この装置は一般的にはフィルター装置であり、フィルター装置の耐熱温度に応じて装置導入前に排ガス温度を低下させる必要もある。
 特許文献2では、排ガスを熱交換器に供給する前に700℃以上の温度で2秒以上維持し、熱交換器内で350℃以下に冷却することでミストの生成を抑制している。しかしながら、排ガス中の微量のミスト及び排ガス中のシリコン微粉により、長時間運転を行うと熱交換器内に局部的な液溜まり及びポリマーの付着残留が生じてしまう問題があった。
 また、上記特許文献1および2のいずれにおいても、高温の排ガスからの熱回収については、何ら意図されていない。
 したがって、本発明は、ポリシリコンの析出工程から発生する高温の排ガスから効率良く熱を回収することを目的とする。また、本発明は、配管や装置におけるシリコン微粉やポリマーの付着残留を低減し、未反応原料ガス等の回収効率を上げ、洗浄頻度を低下させ、長時間の連続運転を可能にすることで、製造効率の向上を図ることを目的としている。
 上記目的を達成する本願発明は、下記の要旨を含む。
(1)クロロシラン類を含む原料ガスによりポリシリコンを析出させる析出工程、および析出工程からの排ガスを、排ガス配管を備えたボイラー型熱回収装置に供給し熱回収する熱回収工程を備え、
 前記ボイラー型熱回収装置の排ガス配管出口におけるガス温度を200℃以上とすると共に、ボイラー型熱回収装置内の排ガス配管出口における排ガス流速を10m/秒以上に調整することを特徴とするポリシリコンの製造方法。
(2)熱回収工程後の排ガスを、液状クロロシランとの接触により冷却する排ガス冷却工程を含む、(1)に記載のポリシリコンの製造方法。
(3)排ガス冷却工程後の排ガスから、未反応原料ガスを回収し、析出工程に供給する工程を含む、(1)または(2)に記載のポリシリコンの製造方法。
(4)排ガス冷却工程における液状クロロシランから、未反応原料ガスを回収し、析出工程に供給する工程を含む、(2)に記載のポリシリコンの製造方法。
(5)析出工程からの排ガスを熱回収工程へ導入する配管において、ボイラー型熱回収装置前に、直管型のガス導入管が設置され、該ガス導入管の長さL及び内径Dの比(L:D)が1:1~5:1であることを特徴とする(1)~(4)の何れかに記載のポリシリコンの製造方法。
(6)ボイラー型熱回収装置内の排ガス配管のガス流路断面積Aと、ボイラー型熱回収装置前のガス導入管のガス流路断面積Bの比(A:B)が1:1.5~1:10であることを特徴とする(1)~(5)に記載のポリシリコンの製造方法。
(7)前記析出工程が、円筒状反応容器中にて、クロロシラン類を含む原料ガスによりポリシリコンを該円筒状反応容器内壁に析出させる工程であり、析出工程の後、円筒状反応容器の温度をシリコン融点以上に加熱させ、析出させたシリコンの一部または全部を溶融させてシリコンを落下させ且つ回収する溶融工程をさらに含み、これら析出工程と溶融工程を繰り返し行うことを特徴とする(1)~(6)の何れかに記載のポリシリコンの製造方法。
(8)ガス流路断面積が異なる複数の該ボイラー型熱回収装置が並列され、析出工程及び溶融工程より排出される排ガスを其々別々のボイラー型熱回収装置に供給することを特徴とする、(7)に記載のポリシリコンの製造方法。
 本発明ではボイラー型熱回収装置における排ガス出口におけるガス温度を200℃以上とすることで、熱回収装置内でポリマーを気体状態として、ミストの発生を抑制している。このため、ミストや液溜まりが熱回収装置内に残留せずに、排ガスとともに排出され、ポリシリコン製造装置の連続運転が可能になる。
 また熱回収装置をボイラー型熱回収装置にすることで、排ガスと接触する熱回収装置表面温度が高くなることで、熱回収装置内での液溜まりが発生しにくくなり、かつ回収した熱をエネルギーとして利用することができ工業的に有利である。
 更に、ボイラー型熱回収装置内における排ガス配管出口における排ガス流速を10m/秒以上とすることで、たとえシリコン微粉やポリマーを含むミストが生成した場合であっても、流速により流されやすくなり、熱回収装置での残留はなく、更には熱回収効率も改善される。
 ボイラー型熱回収装置通過後の排ガスにはシリコン微粉やポリマーを含むミストが含まれるが、冷却工程(クエンチ工程)により、これらもすべて回収される。このため、圧縮機などの故障要因も除去され、長時間の連続運転が可能になる。
図1は本発明の概略フローを示す。
 本発明に係るポリシリコンの製造方法は、クロロシラン類を含む原料ガスからポリシリコンを析出させる析出工程、および析出工程からの排ガスをボイラー型熱回収装置に導入し、熱回収する熱回収工程を含む。さらに、熱回収工程後には、排ガスに含まれる未反応のクロロシラン類、ポリマーやシリコン微粉を回収するための排ガス冷却工程を備えることが好ましい。また、排ガス冷却工程後の排ガスから未反応原料ガスを回収する工程を含むことが好ましく、回収した未反応原料ガスを析出工程に供給する工程を含むことが好ましい。
(析出工程)
 ポリシリコンを析出させる析出工程は、特に限定はされず、従来から採用されてきたシーメンス法、VLD法などにより行われる。
 シーメンス法は、ベルジャー内に設置されたシリコン芯線を900~1250℃となるように加熱通電し、ここにクロロシラン類および水素を含む原料ガスを供給することにより、シリコン芯線にポリシリコンを析出させ、ポリシリコンロッドを得る方法である。また、VLD法は、等方性グラファイトにより好適に構成されるカーボン製の円筒状反応容器を高周波加熱により1200℃以上、好ましくは1300℃~1700℃程度に加熱し、ここにクロロシラン類および水素を含む原料ガスを供給することにより反応容器内壁面にポリシリコンを析出させ、その後、析出したポリシリコンを溶融して反応容器から落下して回収する方法である。図1には、円筒状反応容器1を備えたVLD法によるポリシリコン製造装置の簡略構成を示した。
 上記VLD法によるシリコンの析出・溶融は、例えば、特許第4064918号に示されるように、カーボン製の円筒状反応容器にシリコンの融点未満の温度でポリシリコンを析出させる析出工程の後、該円筒状反応容器の温度をシリコン融点以上に加熱させ、析出させたシリコンの一部または全部を溶融させて析出したシリコンを落下させ且つ回収する工程(以下「溶融工程」という)を含み、かかる析出工程と溶融工程とを繰り返し行うことにより、シリコンを製造する方法が好適である。
 なお、シリコンの融点については種々の見解があるが、概ね1410℃~1430℃であると理解され、また溶融工程における円筒状反応容器の温度は、1430℃~1700℃とされる。
 また、前記VLD法の析出工程と溶融工程とを交互に行う態様において、溶融工程の際には、ポリシリコンを析出させる必要が無い為、クロロシラン類と水素の供給量を低減させることが、エネルギー利用の面から好ましく、特に、溶融工程の際には、クロロシランの供給を停止すると共に、水素については析出工程時の供給量に対して0~30%、更に好ましくは0~10%に低減することが好ましい。更には、別途水素、窒素、アルゴン等の希釈ガスを流通させ、速やかに円筒状反応容器内中のクロロシラン類の濃度を0.01%以下にすることにより、ポリマーやシリコン微粉の生成を低減することが好ましい。
 反応容器に供給されるクロロシラン類は、テトラクロロシラン、トリクロロシラン、ジクロロシラン、モノクロロシランなどであり、一般的には、トリクロロシランガスが好適に使用される。また、水素ガスとしては、純度99.99%以上の高純度品を用いても良いし、図1に示されるように排ガス中に含まれる水素を分離・精製し、再利用したガス(以降循環ガスと記す)でも良い。循環ガス中の水素濃度は特に指定しないが、通常90~99モル%である。
 なお、反応容器は複数であってもよく、この場合には、シーメンス法による反応容器とVLD法による反応容器が混在してもよい。これら反応容器からの排ガスを後述するボイラー型熱回収装置に導入する。
 析出工程から排出されるガスは、未反応のクロロシラン類や水素などの未反応原料ガスおよび、シラン化合物の二量体、三量体などの低重合物(ポリマー)、さらにシリコンの微粉を含む。排ガス中のポリマー組成は、温度等の運転条件により異なるがその副生成量を可能な限り少なくすることにより、後述するポリマーの凝結によるミストの生成を抑制することができる。従って、排ガス中のポリマー組成は、通常0.001~0.1モル%、好ましくは0.001~0.01モル%である。またシリコンを1200℃以上で析出する場合、排ガス中にシリコン微粉が比較的多く含まれるようになる。ここでシリコン微粉とは粒径0.01~1μm程度のシリコン粒子を示す。また、排ガスの温度は、VLD法の場合には通常700℃~1200℃程度になり、シリコン微粉以外は気体で存在する。
 ここで、析出工程から排出される排ガス中のポリマーやシリコン微粉においては熱回収工程へ導入前に抑制することがより好ましい。
 具体的には熱回収工程前に別途水素を供給し混合させることでポリマーを希釈しても良い。また、シリコン微粉と反応する物質として塩化水素やクロロシラン類を供給し混合させシリコン微粉と反応させ低減することが好ましい。より好ましくはクロロシラン類としてテトラクロロシランを供給し、排ガス中に含まれるシリコン微粉を反応させ低減することが、より好ましい。
 本発明では、この排ガスから、効率良く熱および未反応原料ガスを回収することを目的とする。VLD法は、発生する排ガス温度がシーメンス法よりも高い。このため、VLD法での排ガスからの熱エネルギーの回収は、工業的に極めて重要であり、本発明はVLD法で生成する排ガスに適用されることが特に好ましい。
(熱回収工程)
 析出工程及び溶融工程からの排ガスは、ボイラー型熱回収装置10に導入される。ここで排ガスは高温である為、導入配管全体も高温になることから、例えば水冷ジャケットを設ける等、冷却手段を有することが一般的である。しかしながら冷却壁面によって排ガスが冷却されると前述したミストが生成することがある。これを防ぐ為に冷却手段と排ガスの間には熱的に隔離(断熱)する構造及び手段を用いてよい。断熱構造としては例えば配管内壁にカーボン材が設けられた構造等が挙げられる。内壁にカーボン材を設ける場合、カーボン材と内壁面との間に断熱材、例えば繊維状カーボン、繊維状シリカなどを介在させることが好ましい。また、排ガスを所定温度以上に保つため予備加熱装置(図示せず)により排ガス温度を調整した後に、ボイラー型熱回収装置に排ガスを導入してもよい。一般に排ガス温度が100℃以下になると、ポリマーの凝結によりミストが発生し、配管内に付着してしまうことがある。
 熱回収工程へ導入する配管において、ボイラー型熱回収装置前段には、直管型のガス導入管8が好ましくは設置される。直管型のガス導入管8の設置により、ボイラー型熱回収装置へのガスの流れが整流され、排ガス配管へ均一にガスが供給されるようになり、より好ましい。
 ここで、ガス導入管8の内径は何ら制限を受けないが、長さは、整流効果が生じれば良く、必要以上に長くすることは工業的に好ましくない。従って該ガス導入管8の長さL及び内径Dの比(L:D)は1:1~10:1、より好ましくは1:1~5:1、特に好ましくは1:1~3:1である。
 なお、ガス導入管の保護を目的に内部にカーボン等のライニングを設置してもよいが、その際はライニングの内径がガス導入管8の内径に相当する。また、ガス導入管の材質は排ガスに含まれるクロロシランに耐性のある耐熱性の材質であればよく、たとえばステンレス、炭素鋼等の一般的な材質を用いることができる。また必要に応じて、加熱及び冷却できるよう内部をジャケット構造としてもよい。
 ボイラー型熱回収装置10は、図1に概略を示すように、排ガスが流通する排ガス配管2が設置され、高温の排ガスが流通する排ガス配管2の表面に、水または温水などの適当な冷媒を接触させ、蒸気としてエネルギーを回収する装置であり、単に「ボイラー」と称されることもある。
 ボイラー型熱回収装置10の入口および出口には、温度測定機および流量計及び圧力計を設置し、排ガスの入口温度および出口温度、ガス流量、圧力がモニターできるように構成することが好ましい。
 なお、ボイラー型熱回収装置10前後の圧力差の傾向を確認することにより、排ガス配管内部のミスト及びシリコン微粉の堆積状況を把握することができる。
 さらに、ボイラー型熱回収装置10には、水や温水などの冷媒を供給するための冷媒供給口4および、生成した蒸気を排出する蒸気排出口6を有する。冷媒供給口4から供給された冷媒は、排ガス配管2に接触し、加熱され蒸気となり、蒸気排出口6から排出される。
 排ガス配管2内の排ガスは、排ガス配管2への伝熱により冷却される為、排ガス配管後半において、流速が低下する。そこで、排ガス配管2出口での排ガスの流速が10m/秒以上であれば,シリコン微粉およびポリマーを含むミストの除去に効果を奏する。
 また、著しく流速を速くすることはシリコン微粉による排ガス配管2のエロージョンを招く要因となりうることから、好ましくは排ガス配管2出口での排ガスの流速として、10~30m/秒、さらに好ましくは12~20m/秒となるように設定することが好ましい。
 排ガス配管2出口での排ガスの流速を上記のように、比較的高速に設定することで、析出工程時及び溶融工程時にシリコン微粉やポリマーを含むミストが発生したとしても、流速により流されやすくなり、熱回収装置での残留はなく、更には熱回収効率も改善される。
 ボイラー型熱回収装置内の排ガス配管2出口の排ガス流速は、析出工程及び溶融工程より熱回収工程へ導入するガス量と、排ガス配管2のガス流路断面積、及び排ガス配管2の出口ガス温度、及びボイラー型熱回収装置出口のガスの圧力により適宜決定される。
 ボイラー型熱回収装置の排ガス配管2の出口におけるガス温度において、排ガス配管が複数ある場合には、各排ガス配管出口のガス温度を個別に測定し得られたガス温度の平均温度とする。簡易的にはボイラー型熱回収装置出口のガス温度を用いても良い。
 また、排ガス配管2のガス流路断面積は、ボイラー型熱回収装置内の排ガス配管2の個々の断面積に、配管本数nを乗じて求められる。
 排ガス配管2の内径は、何ら制約を受けないが、15~75mmの範囲に設定することでボイラー型熱回収装置を一般的な大きさで設計出来る。また、同一のボイラー型熱回収装置において、上記範囲内であれば異なる内径の配管を組み合わせてもよい。
 排ガス配管2の外径は、設計温度、設計圧力ならびに内径に応じて必要となる機械的強度を持ち、排ガス配管2の伝熱面における温度変化及び熱量変化等に耐えうる熱的強度を考慮した上で、最低限の厚みを設定する方が好ましい。工業的には2~10mm、より好ましくは3~8mmの範囲が好ましい。
 更に、排ガス配管2のガス流路断面積を、ガス導入管8のガス流路断面積よりも小さくすることで、排ガス配管2に流れる排ガス量にムラが生じ難くなり好ましい。しかし、ガス流路断面積を小さくするとボイラー型熱回収装置の伝熱面積が低下するため、ボイラー型熱回収装置内の排ガス配管2のガス流路断面積Aとし、該ガス導入管8のガス流路断面積をBとした場合、A:Bの面積比は、好ましくは1:1.5~1:10、より好ましくは1:2~1:6、特に好ましくは1:3~1:5である。
 排ガス配管2の材質は、熱伝導率が高く、排ガスに含まれるクロロシランに耐性のある耐熱性の材質であればよく、たとえばステンレス、炭素鋼等の一般的な材質を用いることができる。
 排ガス配管2の形状は、図示したように直管形状であってもよく、長さ方向において内径が拡大したり縮小したり、または屈曲していてもよいが、配管が屈曲すると排ガス流れに偏りを生じ、シリコン微粉が堆積する要因となるため、直管形状であることが好ましい。
 排ガス配管2の本数は、設定した内径で所定の流速及び後述する所定の熱回収量が得られる本数を算出して設定すれば良い。また、一本当たりの全長は設定した内径,外径から求められる対数平均の周囲長L[m]と配管本数nとの積で必要伝熱面積[m]を除した値で求めることができる。
 ボイラー型熱回収装置は使用環境に応じた様態とする必要があるが、排ガス配管2内の排ガスの流速、排ガス入口温度ならびに回収蒸気の沸点に熱回収効率は依存する。ボイラー型熱回収装置の設計は一般的な熱交換器と同様に下記関係式に基づいて行うことができる。
Figure JPOXMLDOC01-appb-M000001

 ここで、Qは熱量、Uは総括伝熱係数、Aは伝熱面積、DTは有効温度差である。
 排ガスの組成、入口ガス温度、出口ガス温度を設定することで、熱交換する熱量Qを入口ならびに出口のエンタルピー差より算出することができる。
 総括伝熱係数Uは、排ガス配管内の排ガス流速に依存するが、総括伝熱係数は排ガス配管出口の排ガス流速が10m/sから30m/sの範囲で、今回の検討から得られた相関式U[W・m-2・K-1]=8.2×流速[m/s]+50で算出することができる。
 排ガスの入口ガス温度Tin[℃]、出口ガス温度Tout[℃]および回収蒸気の沸点Tboil[℃]の対数平均温度を求めることで有効温度差DTを算出することができる。前述までに求めたQ,U,DTより必要となる伝熱面積Aは、Q/U/DTの計算により算出できる。
 また、前記VLD法の溶融工程と析出工程とを交互に実施する態様において、溶融工程でクロロシラン類と水素の供給量を低減させる手段を採用する場合、析出工程を実施している状態と比較して排ガス中に含まれる熱量が著しく少なくなる。このため、析出工程と同じ該ボイラー型熱回収装置に流通した場合には、総括伝熱係数Uが小さくなり、熱回収効率が低下する。
 従って、溶融工程より排出される排ガスは、かかる熱量に対応した、例えば、ガス流路断面積が小さい、ボイラー型熱回収装置を別途併設し、析出工程時に使用するボイラー型熱回収装置から切替えて使用することが好ましい。
 上記のようなボイラー型熱回収装置10によれば、排ガスの熱を蒸気エネルギーとして回収できる。蒸気排出口6から排出された蒸気は、必要に応じさらに過熱処理が施され、タービンなどに導入され発電に使用してもよく、蒸気を熱源とする気化器等に利用してもよい。
 ボイラー型熱回収装置10の排ガス配管出口におけるガス温度は、200℃以上であれば良いが、熱回収量ならびにボイラー型熱回収装置より後段のプロセスを構成する装置の材質の選定を考慮すると好ましくは250~450℃、さらに好ましくは300~350℃程度となるように設定される。したがって、ボイラー型熱回収装置内を流通する排ガスの温度は200℃以上である。
 ボイラー型熱回収装置内での排ガス温度を所定温度以上に保つことで、ボイラー型熱回収装置内でのポリマー凝結によるミストや液溜まりの発生を防止している。ボイラー型熱回収装置内の排ガス配管2の出口ガス温度が200℃未満であると、ボイラー型熱回収装置内に液溜まりが発生し、シリコン微粉が付着しやすくなり、装置の閉塞を招来し、洗浄が必要になる。ボイラー型熱回収装置の排ガス配管2の出口ガス温度が高すぎる場合には、熱の有効な回収が行われていないことになる。従って。ボイラー型熱回収装置の排ガス配管2の出口ガス温度は、温度測定機によりモニターされ、出口ガス温度が低くなりすぎると、ガス流量、冷媒の供給量および冷媒温度を調整し、出口でのガス温度が所定温度以上になるように制御される。
 ボイラー型熱回収装置では、水または温水などを冷媒として供給し、高温の排ガスが流通する配管の表面に、冷媒を接触させて、蒸気として回収する。ここで、冷媒が気化するまでの顕熱分の熱量は、回収熱量のロスになるため、ボイラー型熱回収装置に供給される冷媒の温度は、回収する蒸気の飽和温度に近いことが望ましいが、液体として供給できる状態であれば特に制限は受けない。
 本発明では、上記の熱回収工程により、効率良く熱エネルギーを回収し、またシリコン微粉やポリマーを含むミストを流速により装置外に排気することで、熱回収装置での液溜まりの残留がなく、装置の洗浄頻度が低下し、長時間の連続運転が可能になる。ボイラー型熱回収装置では、排ガスの配管本数が多く、構造が複雑であるため、洗浄が難しいが、上記条件を満足することで、装置の洗浄頻度が低下し、ポリシリコンの生産効率が大幅に向上する。
(排ガス冷却工程)
 次いで、ボイラー型熱回収装置10から排出された排ガスを、液状クロロシラン12との接触により冷却する。液状クロロシランは、テトラクロロシラン、トリクロロシラン、ジクロロシランなどであり、これらの混合物であってもよい。これらの中でも沸点の高いテトラクロロシランが好ましい。
 液状クロロシランを排ガスと接触させることで、排ガス中に含まれる未反応のクロロシラン類を液状クロロシラン中に回収し、排気ガスを冷却する。また、この回収工程において、排ガス中に含まれるポリマーやシリコン微粉も液状クロロシラン中に回収できる。
 排ガスの冷却を続けることで、液状クロロシランの液温が上昇するため、液状クロロシラン12は冷却ジャケットなどの冷却手段を備えた容器中に保持することが好ましい。
(排ガスの再利用)
 冷却工程後の排ガスには、原料ガスとして用いた水素が含まれるため、水素を回収する為に公知の方法を用いてよい。たとえば冷却後の排ガスを冷却し排ガス中に含まれるクロロシラン類を除去する水素精製装置30などが上げられる。適宜、必要に応じ精製処理等を施した後、水素を析出工程に供給し、再度原料ガスとして使用することが好ましい。
 また、排ガス冷却工程における冷媒である液状クロロシランにより回収されたクロロシラン類についても、蒸留装置40に供給し、不純物を取り除いた後に、析出工程に供給し、再度原料ガスとして使用することが好ましい。
 また、排ガス冷却工程において回収した液状クロロシラン中にシリコン微粉やポリマーも分離回収し、必要に応じ精製等を施した後、原料として再利用することが好ましい。
 このような排ガスから回収された原料ガスを、析出工程に供給するには、各種のポンプやコンプレッサーなどの加圧手段20が使用される。上記工程を経て回収される原料ガスには、シリコン微粉やポリマーがほとんど含まれないため、ポンプやコンプレッサーの性能を損なうことはない。しかしながら、運転が長時間に及ぶと、シリコン微粉やポリマーが付着、蓄積されることがあるため、このようなシリコン微粉やポリマーの付着の影響を受け難い、回転式コンプレッサー、特にスクリューコンプレッサーを使用することが好ましい。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
(実施例1)
 図1のフローに示した工程に従って、ポリシリコンを製造した。ポリシリコンを析出させる析出工程はVLD法により実施した。
 円筒状反応容器1のシリコン析出部を1300℃に昇温せしめ、原料ガスを供給し、シリコンを析出させた。その後溶融工程において円筒状反応容器を1600℃に加熱制御することにより、円筒状反応容器に析出したシリコンを溶融落下させて回収した。析出工程及び溶融工程を繰り返し、シリコンを製造した。
 析出工程において、原料ガスとして、水素2000Nm/hおよびクロロシラン類としてトリクロロシラン1200kg/h(約200Nm/h)の混合ガス(約2200Nm/h)を供給して反応を行った。析出工程より排出された排ガスの温度を測定したところ、1050℃であった。なお、析出工程時のボイラー型熱回収装置出口圧力は50kPaGになるよう調整した。なお、析出工程より排出したガスにテトラクロロシランを100Nm/h供給させた後、排ガスをボイラー型熱回収装置へ供給した。
 なお、溶融工程においては、上記トリクロロシラン及び水素の流通を停止し、希釈ガスとして水素を10Nm/h流通した。また析出工程より生じる排ガス及び溶融工程より生じる排ガスは同じボイラー型熱回収装置へ供給した。
 ガス導入管の長さL及び内径Dの比は約2:1とし、ボイラー型熱回収装置内のガス流路断面積と、ガス導入管のガス流路断面積の比は約1:4とした。なお、ボイラー型熱回収装置における排ガス配管2の内径は45mmとした。
 析出工程におけるボイラー型熱回収装置前後の排ガス温度は950℃及び250℃、初期の圧力差は約8kPaであった。総括熱伝熱係数Uは148W・m-2・K-1と見積もられた。
 上記結果から、析出工程におけるボイラー型熱回収装置内の排ガス配管出口の排ガス流速は12m/sであった。
 また、ボイラー型熱回収装置から排出された約250℃のガスは、テトラクロロシランを主成分とする液状クロロシランを充填した排ガス冷却工程14の、液状クロロシラン12内にガスを吹き込むようにして流通させた。その結果、排ガス冷却工程14から排出されるガスの温度は、約50℃まで冷却されていた。
 上記運転を1ヶ月継続したが、ボイラー型熱回収装置前後の圧力差は変化せず、またその後ボイラー型熱回収装置内、ガス導入管内、排ガス冷却工程から水素精製処理装置に至るまでの排ガス処理系統において開放点検を実施したが、ミストの発生やシリコン微粉の付着が確認されず、装置や配管を安全に開放することができた。
(実施例2)
 析出工程において、原料ガスとして、水素を増加した以外は、実施例1と同様の操作を行った。
 具体的には析出工程において、原料ガスとして、水素3000Nm/hおよびクロロシラン類としてトリクロロシラン1200kg/h(約200Nm/h)の混合ガス(約3200Nm/h)を供給して反応を行った。なお、析出工程時のボイラー型熱回収装置出口圧力は50kPaGになるよう調整した。ボイラー型熱回収装置は、実施例1と同様の装置を用いた。
 析出工程より排出された排ガスの温度を測定したところ、1100℃であった。
 析出工程におけるボイラー型熱回収装置前後の排ガス温度は約980℃及び300℃、初期の圧力差は約10kPaであった。総括熱伝熱係数Uは206W・m-2・K-1と見積もられた。
 上記結果から、析出工程におけるボイラー型熱回収装置内の排ガス配管出口の排ガス流速は19m/sであった。
 上記運転を1ヶ月継続したが、ボイラー型熱回収装置前後の圧力差は変化せず、またその後ボイラー型熱回収装置内、ガス導入管内、排ガス冷却工程から水素精製処理装置に至るまでの排ガス処理系統において開放点検を実施したが、ミストの発生やシリコン微粉の付着が確認されず、装置や配管を安全に開放することができた。
(実施例3)
 ボイラー型熱回収装置の排ガス配管2について、内径と本数は実施例1のものと同じとしつつ、全長が実施例1のものよりも約1/3のものを使用したほかは、実施例1と同様の操作を行った。その結果、ボイラー型熱回収装置の出口でのガス温度が約450℃となった。また、析出工程におけるボイラー型熱回収装置内の排ガス配管出口の排ガス流速は16m/sであった。
 上記運転を1ヶ月継続したが、ボイラー型熱回収装置前後の圧力差は変化せず、またその後ボイラー型熱回収装置内、ガス導入管内、排ガス冷却工程から水素精製処理装置に至るまでの排ガス処理系統において開放点検を実施したが、ミストの発生やシリコン微粉の付着が確認されず、装置や配管を安全に開放することができた。
(実施例4)
 実施例1の排ガス冷却工程14において、液状クロロシランを充填した排ガス冷却装置にかえ、通常のシェルアンドチューブ型の熱交換器で約30℃の冷却水を用いてガスを冷却する装置を用いた他は、実施例1と同じ操作を行った。
 上記運転を1ヶ月継続したが、ボイラー型熱回収装置前後の圧力差は変化なかった。ただし、熱交換器において熱交換能力が経時的な低下による、当該熱交換器の出口ガス温度の若干の上昇が認められた。また、上記1ヶ月の運転の後、ボイラー型熱回収装置内、ガス導入管内、排ガス冷却工程から水素精製処理装置に至るまでの排ガス処理系統において開放点検を実施したが、ボイラー型熱回収装置内、ガス導入管内にはミストの発生やシリコン微粉の付着が確認されず、装置や配管を安全に開放することができた。他方、排ガス冷却工程から水素精製処理装置に至るまでの排ガス処理系統は、熱交換器の排ガスの流通する部分に、粘性の高い液状物やシリコン微粉の付着が認められた。
(比較例1)
 析出工程において、原料ガスとして水素を減少させた以外は、実施例1と同様の操作を行った。
 具体的には析出工程において、原料ガスとして、水素1000Nm/hおよびクロロシラン類としてトリクロロシラン1200kg/h(約200Nm/h)の混合ガス(約1200Nm/h)を供給して反応を行った。なお、析出工程時のボイラー型熱回収装置出口圧力は50kPaGになるよう調整した。
 析出工程におけるボイラー型熱回収装置前後の排ガス温度は約880℃及び150℃、初期の圧力差は5kPaであった。総括熱伝熱係数Uは93W・m-2・K-1と見積もられた。
 上記結果から、析出工程におけるボイラー型熱回収装置内の排ガス配管出口の排ガス流速は5m/sであった。
 上記運転を1週間継続したところ、ボイラー型熱回収装置前後の圧力差が増加し始め、5kPaから15kPaへ上昇傾向を示した、その後、装置内、ガス導入管内および排ガス処理系統において開放点検を実施したところ、ミストの発生やシリコン微粉の付着が確認され、洗浄作業が必要となった。
(比較例2)
 熱回収工程において、ボイラー型熱回収装置の排ガス配管の内径を拡大し、ガス流路断面積を拡大した以外は、実施例1と同じ操作を行った。
 具体的には、排ガス配管2の内径を45mmから70mmした。なお、伝熱面積は変えないよう、排ガス配管本数を調整した。
 その結果、析出工程におけるボイラー型熱回収装置前後の排ガス温度は約850℃及び320℃、初期の圧力差は約4kPaであった。総括熱伝熱係数Uは115W・m-2・K-1と見積もられた。
 上記結果から、析出工程におけるボイラー型熱回収装置内の排ガス配管出口の排ガス流速は7m/sであった。
 上記運転を1週間継続したところ、ボイラー型熱回収装置前後の圧力差が増加し始め、4kPaから8kPaへ上昇傾向を示した。その後、装置内、ガス導入管内および排ガス処理系統において開放点検を実施したところ、ミストの発生やシリコン微粉の付着が確認され、洗浄作業が必要となった。

Figure JPOXMLDOC01-appb-T000002

1…円筒状反応容器
2…排ガス配管
4…冷媒供給口
6…蒸気排出口
8…ガス導入管
10…ボイラー型熱回収装置
12…液状クロロシラン
14…排ガス冷却工程
20…加圧手段
30…水素精製処理装置
40…蒸留装置

Claims (8)

  1.  クロロシラン類を含む原料ガスによりポリシリコンを析出させる析出工程、および析出工程からの排ガスを、排ガス配管を備えたボイラー型熱回収装置に供給し熱回収する熱回収工程を備え、
     前記ボイラー型熱回収装置の排ガス配管出口におけるガス温度を200℃以上とすると共に、ボイラー型熱回収装置内の排ガス配管出口における排ガス流速を10m/秒以上に調整することを特徴とするポリシリコンの製造方法。
  2.  熱回収工程後の排ガスを、液状クロロシランとの接触により冷却する排ガス冷却工程を含む、請求項1に記載のポリシリコンの製造方法。
  3.  排ガス冷却工程後の排ガスから、未反応原料ガスを回収し、析出工程に供給する工程を含む、請求項1または2に記載のポリシリコンの製造方法。
  4.  排ガス冷却工程における液状クロロシランから、未反応原料ガスを回収し、析出工程に供給する工程を含む、請求項2に記載のポリシリコンの製造方法。
  5.  析出工程からの排ガスを熱回収工程へ導入する配管において、ボイラー型熱回収装置前に、直管型のガス導入管が設置され、該ガス導入管の長さL及び内径Dの比(L:D)が1:1~5:1であることを特徴とする請求項1~4の何れかに記載のポリシリコンの製造方法。
  6.  ボイラー型熱回収装置内の排ガス配管のガス流路断面積Aと、ボイラー型熱回収装置前のガス導入管のガス流路断面積Bの比(A:B)が1:1.5~1:10であることを特徴とする請求項1~5に記載のポリシリコンの製造方法。
  7.  前記析出工程が、円筒状反応容器中にて、クロロシラン類を含む原料ガスによりポリシリコンを該円筒状反応容器内壁に析出させる工程であり、析出工程の後、円筒状反応容器の温度をシリコン融点以上に加熱させ、析出させたシリコンの一部または全部を溶融させてシリコンを落下させ且つ回収する溶融工程をさらに含み、これら析出工程と溶融工程を繰り返し行うことを特徴とする請求項1~6の何れかに記載のポリシリコンの製造方法。
  8.  ガス流路断面積が異なる複数の該ボイラー型熱回収装置が並列され、析出工程及び溶融工程より排出される排ガスを其々別々のボイラー型熱回収装置に供給することを特徴とする、請求項7に記載のポリシリコンの製造方法。
PCT/JP2013/068040 2012-07-09 2013-07-01 ポリシリコンの製造方法 WO2014010457A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13817417.2A EP2871155A4 (en) 2012-07-09 2013-07-01 PROCESS FOR PRODUCING POLYSILICON
KR20147036932A KR20150035803A (ko) 2012-07-09 2013-07-01 폴리실리콘의 제조 방법
CN201380034608.XA CN104395237A (zh) 2012-07-09 2013-07-01 多晶硅的制造方法
US14/412,220 US20150175430A1 (en) 2012-07-09 2013-07-01 Method for Producing Polysilicon
JP2014524746A JPWO2014010457A1 (ja) 2012-07-09 2013-07-01 ポリシリコンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-153809 2012-07-09
JP2012153809 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010457A1 true WO2014010457A1 (ja) 2014-01-16

Family

ID=49915920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068040 WO2014010457A1 (ja) 2012-07-09 2013-07-01 ポリシリコンの製造方法

Country Status (7)

Country Link
US (1) US20150175430A1 (ja)
EP (1) EP2871155A4 (ja)
JP (1) JPWO2014010457A1 (ja)
KR (1) KR20150035803A (ja)
CN (1) CN104395237A (ja)
TW (1) TW201406654A (ja)
WO (1) WO2014010457A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230380A1 (ja) * 2017-06-16 2018-12-20 株式会社トクヤマ ポリシリコンの製造方法
CN114735706A (zh) * 2022-04-27 2022-07-12 新疆大全新能源股份有限公司 一种多晶硅的生产还原工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125221A1 (de) * 2017-10-27 2019-05-02 Nexwafe Gmbh Verfahren und Vorrichtung zur Entfernung von Verunreinigungen aus Chlorsilanen
CN108658082B (zh) * 2018-08-31 2020-09-01 内蒙古通威高纯晶硅有限公司 多晶硅生产中高沸物裂解工艺
CN111043870A (zh) * 2019-12-25 2020-04-21 罗智心 多晶硅还原炉热量回收利用系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008430A (ja) * 2003-06-16 2005-01-13 Tokuyama Corp シリコンの製造方法
JP4064918B2 (ja) 2001-06-06 2008-03-19 株式会社トクヤマ シリコンの製造方法
JP2008266127A (ja) 2007-03-22 2008-11-06 Tokuyama Corp クロロシラン類含有ガスの水素還元方法およびクロロシラン類の水素還元用装置
JP2010100455A (ja) * 2008-10-21 2010-05-06 Sumitomo Chemical Co Ltd シリコンの製造方法
JP2010150131A (ja) 2008-11-28 2010-07-08 Mitsubishi Materials Corp 多結晶シリコン製造方法及び製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805556A (en) * 1988-01-15 1989-02-21 Union Carbide Corporation Reactor system and method for forming uniformly large-diameter polycrystalline rods by the pyrolysis of silane
JP2009256143A (ja) * 2008-04-17 2009-11-05 Tokuyama Corp シリコンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064918B2 (ja) 2001-06-06 2008-03-19 株式会社トクヤマ シリコンの製造方法
JP2005008430A (ja) * 2003-06-16 2005-01-13 Tokuyama Corp シリコンの製造方法
JP2008266127A (ja) 2007-03-22 2008-11-06 Tokuyama Corp クロロシラン類含有ガスの水素還元方法およびクロロシラン類の水素還元用装置
JP2010100455A (ja) * 2008-10-21 2010-05-06 Sumitomo Chemical Co Ltd シリコンの製造方法
JP2010150131A (ja) 2008-11-28 2010-07-08 Mitsubishi Materials Corp 多結晶シリコン製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871155A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230380A1 (ja) * 2017-06-16 2018-12-20 株式会社トクヤマ ポリシリコンの製造方法
JPWO2018230380A1 (ja) * 2017-06-16 2020-04-23 株式会社トクヤマ ポリシリコンの製造方法
JP7023951B2 (ja) 2017-06-16 2022-02-22 株式会社トクヤマ ポリシリコンの製造方法
US11512001B2 (en) 2017-06-16 2022-11-29 Tokuyama Corporation Method for producing polysilicon
CN114735706A (zh) * 2022-04-27 2022-07-12 新疆大全新能源股份有限公司 一种多晶硅的生产还原工艺

Also Published As

Publication number Publication date
CN104395237A (zh) 2015-03-04
KR20150035803A (ko) 2015-04-07
TW201406654A (zh) 2014-02-16
EP2871155A1 (en) 2015-05-13
EP2871155A4 (en) 2016-03-30
US20150175430A1 (en) 2015-06-25
JPWO2014010457A1 (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
EP2088124B1 (en) Process for producing trichlorosilane
JP5219051B2 (ja) 流動層反応器を用いた多結晶シリコンの連続形成方法
US9994455B2 (en) Apparatus and method for manufacturing trichlorosilane and method for manufacturing polycrystalline silicon
WO2014010457A1 (ja) ポリシリコンの製造方法
TW201030192A (en) Process for producing polycrystalline silicon
JP2005008430A (ja) シリコンの製造方法
TWI753078B (zh) 多晶矽的製造方法
JP2015089859A (ja) テトラクロロシラン回収方法及び多結晶シリコン製造方法
CN105246827A (zh) 用于制造颗粒状多晶硅的方法
US8168152B2 (en) Method for producing trichlorosilane and method for utilizing trichlorosilane
JP2013112589A (ja) トリクロロシラン製造方法及び製造装置
JP5708332B2 (ja) トリクロロシラン製造装置
CN107074561A (zh) 使用高效混合式水平反应器的多晶硅制造装置和方法
JP5742622B2 (ja) トリクロロシラン製造方法及び製造装置
WO2009128501A1 (ja) シリコンの製造方法
CN111629997B (zh) 三氯硅烷的制造方法
JP6911219B1 (ja) トリクロロシランの製造方法
TWI843913B (zh) 三氯矽烷之製造方法
JP6283482B2 (ja) トリクロロシラン製造方法
EP3640204B1 (en) Method for producing polysilicon
WO2013101431A1 (en) Processes and systems for purifying silane
JP5436454B2 (ja) 発熱装置
CN117205854A (zh) 一种高沸点氯硅烷的连续塔式醇解系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524746

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036932

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013817417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013817417

Country of ref document: EP