WO2014006824A1 - 鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造 - Google Patents

鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造 Download PDF

Info

Publication number
WO2014006824A1
WO2014006824A1 PCT/JP2013/003742 JP2013003742W WO2014006824A1 WO 2014006824 A1 WO2014006824 A1 WO 2014006824A1 JP 2013003742 W JP2013003742 W JP 2013003742W WO 2014006824 A1 WO2014006824 A1 WO 2014006824A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
steel
plate portion
flange
joined
Prior art date
Application number
PCT/JP2013/003742
Other languages
English (en)
French (fr)
Inventor
匠 石井
智裕 木下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to SG11201408217QA priority Critical patent/SG11201408217QA/en
Priority to KR1020157002791A priority patent/KR101647711B1/ko
Publication of WO2014006824A1 publication Critical patent/WO2014006824A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2466Details of the elongated load-supporting parts

Definitions

  • the present invention relates to a joint structure in which a steel reinforced concrete column and a steel beam are joined.
  • Non-Patent Document 1 discloses a beam-to-column connection structure of an SRC column (Steel Reinforced Concrete column).
  • the disclosed structure is a column-to-column connection structure.
  • Stiffeners are provided at the beam-column joint to prevent deformation of the cross-sectional shape of the steel column.
  • FIG. 14 is a perspective view showing a joint structure of a beam-to-column connection having a horizontal stiffener.
  • the steel column 1 has a substantially cruciform section.
  • a steel beam 2 is attached to the steel column 1 in four directions.
  • the steel column 1 has four column webs 1a-1, 1a-2, 1a-3, 1a-4 combined in a cross shape, and the respective column webs 1a-1, 1a-2, 1a-3.
  • 1a-4 has column flanges 1b-1, 1b-2, 1b-3, 1b-4 joined to the tip of 1a-4.
  • Horizontal stiffeners 4 are arranged at the four corners of the steel column 1.
  • the horizontal stiffener 4 is an L-shaped steel plate.
  • the plane of the horizontal stiffener 4 is arranged perpendicular to the direction in which the steel column 1 extends.
  • the horizontal stiffener 4 has two column webs 1a-1 to 1a-4 adjacent in the horizontal direction of the steel column 1 and two column flanges 1b-1 to 1b- adjacent in the horizontal direction. 4 is joined.
  • the horizontal stiffener 4 is joined to the adjacent column webs 1a-3, 1a-4 and the column flanges 1b-3, 1b-4.
  • the stress of the beam flange 2a is transmitted into the column by the column webs 1a-1 to 1a-4 and the L-shaped horizontal stiffener 4.
  • the horizontal stiffener 4 is joined to the two adjacent column webs 1a-1 to 1a-4 of the steel column 1 and the two adjacent column flanges 1b-1 to 1b-4. The way of communicating is clear. For this reason, the horizontal stiffener format is widely used.
  • the horizontal stiffener type has a problem that the bottom surface of the horizontal stiffener 4 is difficult to be filled with concrete.
  • FIG. 15 is a perspective view showing a joint structure of a column beam joint having a vertical stiffener.
  • a vertical stiffener in the vertical stiffener format, similarly, plate-like vertical stiffeners 3 are arranged at the four corners of the steel column 1.
  • the surface of the vertical stiffener 3 is arranged in parallel to the direction in which the steel column 1 extends.
  • the vertical stiffener 3 is joined to two adjacent column flanges 1b-1 to 1b-4.
  • the vertical stiffener 3 When the vertical stiffener 3 is applied to a steel column having a substantially T-shaped cross-section (T-shaped) to which the steel beam 2 is connected in three directions, it is installed in the same manner as the steel column having a substantially cross-section in FIG. . Specifically, the side surface in the short direction of the vertical stiffener is attached so as to connect adjacent column flanges in the same manner as a steel column having a substantially cross-shaped cross section.
  • non-patent document 2 and non-patent document 3 evaluated the strength of joints through experimental research. According to this, a strength evaluation method of a vertical stiffener type is also proposed, and the vertical stiffener type is said to have a structure having a practical strength.
  • the present invention has been made to solve such a problem, and provides a joint structure that can more efficiently transmit the stress of the beam flange into the column without impairing the filling property of the concrete. For the purpose.
  • the vertical stiffener includes a steel reinforced concrete column and a steel beam attached to a position including at least a part of a height position to which beam flanges of a steel beam joined to the steel column are connected. Joint structure with (steel beams).
  • the vertical stiffener has an L-shape including a first plate portion and the second plate portion orthogonal to the first plate portion in a horizontal section. Joint structure of steel reinforced concrete columns and steel beams.
  • the first plate portion is joined to the tip end of the one column flange, and the second plate portion is joined to the tip end of the other column flange [1] or [2] ] Steel-framed reinforced concrete column and steel beam joint structure.
  • the vertical stiffener is any one of [1] to [3], wherein the first plate portion is orthogonal to the one column flange, and the second plate portion is orthogonal to the other column flange. Structure of steel reinforced concrete columns and steel beams described in 1.
  • FIG. 1A is a vertical sectional view showing a joint structure according to Embodiment 1 of the present invention
  • FIG. 1B is a horizontal sectional view of the joint structure
  • FIG. 2 is a partially enlarged view of the horizontal sectional view of the joint structure according to Embodiment 1 of the present invention
  • FIG. 3A is a vertical cross-sectional view showing a joint structure according to Embodiment 2 of the present invention
  • FIG. 3B is a horizontal cross-sectional view of the joint structure.
  • FIG. 4 is a partially enlarged view of a horizontal sectional view of the joint structure according to Embodiment 2 of the present invention.
  • FIG. 5A is a horizontal sectional view of a specimen A of a steel reinforced concrete column having a substantially cross-shaped steel frame
  • FIG. 5B is a vertical sectional view of the specimen A.
  • FIG. 6 is a diagram showing the relationship between the tensile load P [kN] and the local deformation ⁇ [mm] for the test body A and the test body B.
  • FIG. 7A is a horizontal cross-sectional view of a test body C of a steel reinforced concrete column having a substantially T-shaped steel frame
  • FIG. 7B is a vertical cross-sectional view of the test body C.
  • FIG. 8 is a diagram showing the relationship between the tensile load P [kN] and the local deformation ⁇ [mm] for the test body C and the test body D.
  • FIG. 9 is a diagram showing the relationship between the tensile load P [kN] and the rotational deformation ⁇ [rad.] In the joint structure of the test body C and the test body D.
  • FIG. 10 is a cross-sectional plan view showing a joint structure according to Modification 1 of the present invention.
  • FIG. 11 is a cross-sectional plan view showing a joint structure according to Modification 2 of the present invention.
  • FIG. 12 is a cross-sectional plan view showing a joint structure according to Modification 3 of the present invention.
  • FIG. 13 is a cross-sectional plan view showing a joint structure according to Modification 4 of the present invention.
  • FIG. 14 is a perspective view showing a joining structure having a conventional horizontal stiffener.
  • FIG. 15 is a perspective view showing a joining structure having a conventional vertical stiffener.
  • FIG. 16 is a horizontal cross-sectional view of a joint structure of substantially cross-shaped steel cross-section columns having a conventional vertical stiffener.
  • FIG. 17 is a horizontal cross-sectional view of a joint structure of a substantially T-shaped steel cross-section column having a conventional vertical stiffener.
  • FIG. 18 is a horizontal sectional view of another joining structure of a substantially cross-shaped steel section column having a conventional vertical stiffener.
  • FIG. 1A is a vertical cross-sectional view showing a connection structure according to Embodiment 1 of the present invention
  • FIG. 1B is a horizontal cross-sectional view of this connection structure.
  • steel beam 2 is attached from each side of steel reinforced concrete columns 10 respectively.
  • the steel beam 2 is joined to the steel reinforced concrete column 10 using welding or bolts.
  • the steel reinforced concrete column 10 has a steel column 1.
  • the steel column 1 is composed of four column webs 1a-1, 1a-2, 1a-3, 1a-4 extending in different directions, and column flanges 1b-1 perpendicular to the respective tips. 1b-2, 1b-3, 1b-4.
  • the horizontal cross section of the steel column 1 has a substantially cruciform section.
  • the four pillar webs 1a-1 to 1a-4 have the same shape.
  • the four column flanges 1b-1 to 1b-4 have the same shape.
  • the adjacent column webs 1a-1 to 1a-4 are formed at an angle of 90 °. Therefore, the angle between adjacent column flanges 1b-1 to 1b-4 of the steel column 1 is 90 °.
  • the steel-framed reinforced concrete column 10 is configured by assembling reinforcing bars (main bar 6 and hoop 7) on the outer periphery of the steel column 1 configured in this manner, and placing concrete 5 therethrough.
  • the steel reinforced concrete column 10 is provided with vertical stiffeners 3 at the four corners of the steel column 1. As shown in FIG. 1B, the vertical stiffener 3 is installed between two adjacent column flanges 1b-1 to 1b-4.
  • the vertical stiffener 3 is formed by bending a steel plate and has a surface parallel to the direction in which the steel column 1 extends.
  • the vertical stiffener 3 disposed between the column flanges 1b-1 and 1b-2 will be described as an example.
  • the vertical stiffener 3 has a first plate portion 3a and a second plate portion 3b.
  • the first plate portion 3a is joined to the column flange 1b-1.
  • the second plate portion 3b is non-parallel to the first plate portion 3a and is joined to the column flange 1b-2 adjacent to the column flange 1b-1.
  • the vertical stiffener 3 is configured to have an L shape in a horizontal section. That is, in the first embodiment, the first plate portion 3a and the second plate portion 3b are configured to be orthogonal to each other.
  • the first plate portion 3a is joined to the tip of one column flange 1b-1, and the second plate portion 3b is joined to the tip of the other column flange 1b-2.
  • the first plate portion 3a of the vertical stiffener 3 is orthogonal to the adjacent one of the column flanges 1b-1.
  • the second plate portion 3b is orthogonal to the other column flange 1b-2.
  • the 1st board part 3a and the 2nd board part 3b are comprised by the same length.
  • the thickness of the vertical stiffener 3 is configured to be approximately the same as the thickness of the column flanges 1b-1 and 1b-2 to be joined.
  • the vertical stiffener 3 is a surface on the column center side of the column flanges 1b-1 and 1b-2 so that the stress received by the column flanges 1b-1 and 1b-2 from the beam flange 2a can be received from the side opposite to the direction in which the stress is applied. It is preferable to be joined. However, the vertical stiffener 3 may be joined to any surface of the column flanges 1b-1 and 1b-2.
  • the vertical stiffener 3 may be directly joined to the column flanges 1b-1, 1b-2, or may be joined to the column flanges 1b-1, 1b-2 via some member.
  • the vertical stiffener 3 is attached in a range including a height position where the beam flange 2a of the steel beam 2 is connected to the steel column 1.
  • the vertical stiffener 3 is provided between the upper and lower beam flanges 2 a of the steel beam 2 and the steel column 1.
  • the vertical stiffener 3 is installed in a range including all of the height positions where the beam flange 2 a is connected to the steel column 1.
  • the vertical stiffener 3 should just be installed so that the beam flange 2a may overlap with at least a part of the height position where it is connected to the steel column 1.
  • FIG. 2 is a partially enlarged view of the horizontal sectional view of the joint structure according to Embodiment 1 of the present invention.
  • FIG. 2 only one steel beam 2 connected to the steel column 1 is shown for explanation, and the remaining three are omitted.
  • a stress toward the right side in FIG. 2 is generated in the steel beam 2
  • a stress (beam flange stress) toward the right side in the same manner is also generated in the beam flange 2a of the steel beam 2.
  • the steel column 1 is joined to the steel beam 2. Therefore, a cross-sectional force in the left direction of the column web 1a-2 acts on the steel column 1 as a reaction force.
  • the second plate portions 3b of the two vertical stiffeners 3 are joined to the column flange 1b-2 integrated with the column web 1a-2. Therefore, a cross-sectional force acts in the left direction of the drawing from the two vertical stiffeners 3 provided on both sides of the steel beam 2.
  • the concrete beam 5 is cast on the steel beam 2. Therefore, a bearing pressure of the concrete 5 is generated as a reaction force of the beam flange stress, and this bearing pressure acts on the first plate portion 3 a of the vertical stiffener 3.
  • FIG. 2 the case where stress is applied to the steel column 1 from the steel beam 2 to the right side of the paper is described as an example.
  • a stress acts on the steel column 1 from the steel beam 2 to the left side of the drawing, a force opposite to the above is generated.
  • the vertical stiffener 3 having an L shape in the horizontal section is installed on the adjacent column flanges 1b-1 and 1b-2 of the steel column 1.
  • the stress is applied to the column flange 1 b-2 joined to the steel beam 2.
  • the stress applied to the column flange 1b-2 is transmitted to the column web 1a-2 joined to the column flange 1b-2 and the second plate portion 3b of the vertical stiffener 3 orthogonal to the column flange 1b-2.
  • the surface of the second plate portion 3 b of the vertical stiffener 3 is arranged in parallel with the stress received from the steel beam 2. Therefore, the stress generated in the steel beam 2 can be effectively transmitted to the steel-framed reinforced concrete column 10 by the second plate portion 3b of the vertical stiffener 3 on both sides (up and down in the drawing) of the column flange 1b-2.
  • the first plate portion 3a and the second plate portion 3b have a predetermined angle, when stress is received from the beam flange 2a, the first plate portion 3a It deform
  • the vertical stiffener 3 is disposed at a height including a portion to which the beam flange of the steel beam 2 is connected.
  • the steel beam 2 is provided with beam flanges 2a above and below the beam web 2b. Therefore, the vertical stiffener 3 is disposed at a height position in the steel column 1 where the beam flange 2a that is susceptible to a large stress or bending moment when being bent is joined. Thereby, the stress and bending moment of the steel beam 2 can be efficiently transmitted into the column.
  • one column and the other column are configured to have the same length.
  • the present invention can be applied even to a steel column in which the length of one column is different from the length of the other column.
  • the lengths of the first plate portion 3a and the second plate portion 3b of the vertical stiffener 3 are arbitrarily adjusted so as to fit between the flanges of the adjacent steel pillars 1, and the first plate portion What is necessary is just to join 3a and the 2nd board part 3b to a column flange, respectively.
  • FIG. 3A is a vertical cross-sectional view showing a joint structure according to Embodiment 2 of the present invention
  • FIG. 3B is a horizontal cross-sectional view of this joint structure.
  • the vertical stiffener 3 is a joint structure when applied to a T-shaped steel cross section column.
  • the steel column 11 has a T-shape in a horizontal section.
  • the steel column 11 includes three column webs 11a-1, 11a-2, 11a-3 and column flanges 11b-1, 11b- joined to the respective column webs 11a-1, 11a-2, 11a-3. 2, 11b-3.
  • the vertical stiffener 3 between the column flange 11b-1 of the long column web 11a-1 and the column flange 11b-2 of the short column web 11a-2 will be described as an example.
  • the vertical stiffener 3 has an L-shape composed of a first plate portion 3a and a second plate portion 3b, as in the first embodiment.
  • the vertical stiffener 3 is arranged such that the convex side of the L-shape faces the inner side of the column and the concave side faces the outer side of the column.
  • the vertical stiffener 3 in Embodiment 2 is configured such that the length of the first plate portion 3a is different from the length of the second plate portion 3b. Specifically, the first plate portion 3a is longer than the second plate portion 3b.
  • the tip of the first plate portion 3a is joined to the tip of the column flange 11b-1, and the tip of the second plate portion 3b is joined to the tip of the column flange 11b-2. Except for the ratio of the lengths of the first plate portion 3a and the second plate portion 3b, the second embodiment is substantially the same as the first embodiment.
  • a plate-shaped vertical stiffener 31 having a straight cross-sectional shape is installed between the column flanges 11b-2 and 11b-3 provided at the ends of the short column webs 11a-2 and 11a-3.
  • the ratio of the L-shaped first plate portion 3a and the second plate portion 3b of the vertical stiffener 3 is arbitrarily set according to the shape of the steel column 11 on which the vertical stiffener 3 is installed. can do.
  • the L-shaped vertical stiffener 3 is provided to each of the column flanges 11b-1 to 11b-3. Since they are joined at a right angle, a reaction force can be generated from the opposite side with respect to the direction of the stress applied from the beam flange 2a.
  • FIG. 4 is a partially enlarged view of the horizontal sectional view of the joint structure according to Embodiment 2 of the present invention.
  • FIG. 4 shows an example in which only one steel beam 2 is connected to the steel column 11 for explanation.
  • a stress to the right side of the drawing is applied to the steel beam 2
  • a cross-sectional force is generated in the column web 11a-2 to which the stressed steel beam 2 is joined.
  • the vertical stiffener 3 is joined to the column flange 11b-2. Therefore, a cross-sectional force is also generated in the vertical stiffener 3.
  • the concrete beam 5 is also cast on the steel beam 2. Therefore, the support pressure of the concrete 5 generated as a reaction force of the beam flange stress acts on the long side (first plate portion 3 a) of the vertical stiffener 3.
  • the rigidity of a junction part can be improved by arranging the L-shaped vertical stiffener 3.
  • FIG. 4 the case where stress is applied to the steel column 11 from the steel beam 2 to the right side of the paper surface is described as an example.
  • a stress acts on the steel column 11 from the steel beam 2 to the left side of the drawing, a force opposite to the above is generated and the same effect is produced.
  • rotational deformation occurs in the direction of the arrow at the joint between the steel column 11 and the steel beam 2.
  • the vertical stiffener 3 can also prevent this rotational deformation by increasing the rigidity of the joint.
  • the present invention can be applied to a steel reinforced concrete column having a substantially T-shaped steel frame to increase the rigidity of the joint.
  • FIG. 10 is a horizontal cross-sectional view showing a joint structure according to Modification 1 of the present invention.
  • the first plate portion 3a of the vertical stiffener 3 is joined to the tip of one column flange 1b-1, and the second plate portion 3b is joined to the other column flange 1b-2.
  • the 1st board part 3a is joined to the center side of one pillar flange, and the 2nd board part 3b is joined to the center side of the other pillar flange.
  • the vertical stiffener 3 is joined to the adjacent column flange, it may be joined to any position of the column flange.
  • FIG. 11 is a cross-sectional plan view showing a joint structure according to Modification 2 of the present invention.
  • the first plate portion 3a and the second plate portion 3b of the vertical stiffener 3 are configured in an L shape so as to be orthogonal to each other.
  • the first plate portion 3a and the second plate portion 3b may be arranged at any angle as long as they are non-parallel.
  • the angle formed by the first plate portion 3a and the second plate portion 3b can be greater than 90 °.
  • the angle formed by the first plate portion 3a and the second plate portion 3b can be less than 90 ° (not shown).
  • FIG. 12 is a cross-sectional plan view showing a joint structure according to Modification 3 of the present invention.
  • it is comprised by the L-shape which consists of the 1st board part 3a of the vertical stiffener 3, and the 2nd board part 3b.
  • the vertical stiffener 3 may have any shape as long as it has the first plate portion 3a and the second plate portion 3b which are not parallel. For example, you may have the 3rd edge
  • FIG. 13 is a cross-sectional plan view showing a joint structure according to Modification 4 of the present invention.
  • the L-shaped peak side composed of the first plate portion 3a and the second plate portion 3b is configured to face the column center side, and the valley side faces the outer surface side.
  • the vertical stiffener 3 may be installed so that the L-shaped concave side is the column center side and the convex side faces the outer surface side.
  • the vertical stiffener according to the present invention can be configured in an arbitrary shape.
  • the vertical stiffener according to the present invention can also be applied to a steel column having a shape as shown in FIG.
  • FIG. 5A is a horizontal sectional view of a specimen A of a steel reinforced concrete column having a substantially cross-shaped steel frame
  • FIG. 5B is a vertical sectional view of the specimen A.
  • the specimen A is an example of the present invention to which the joining structure according to the first embodiment of the present invention is applied.
  • the skeletal element of the column of test body A is an H-section steel (H-400 ⁇ 200 ⁇ 9 ⁇ 12) and a CT section steel (CT-196 ⁇ 200 ⁇ 9 ⁇ 12) that are assembled by welding.
  • the beam flange is a steel plate having a width of 200 mm and a thickness of 16 mm.
  • the vertical stiffener used was a bent steel plate having a width of 80 mm and a thickness of 9 mm.
  • Specimen B (not shown) as a comparative example was constructed by combining a conventional vertical stiffener with a frame skeleton element of the specimen A.
  • FIG. 6 is a diagram showing the relationship between the tensile load P and the local deformation ⁇ for the test body A and the test body B.
  • FIG. The circles of specimens A and B in FIG. 6 indicate the full plastic strength.
  • the local deformation amount delta is defined as the mean value of the deformation amount delta L of the deformation amount delta U and the plane bottom of paper upper. It was confirmed that the specimen A to which the present invention was applied had increased rigidity compared to the conventional specimen B. It was also confirmed that full plastic strength increased by about 30% and maximum strength increased by about 20%. That is, it was found that by applying the present invention, the proof stress of the joint portion of the steel reinforced concrete portion could be improved.
  • FIG. 7A is a horizontal sectional view of a specimen C of a steel reinforced concrete column having a substantially cross-shaped steel frame
  • FIG. 7B is a vertical sectional view of the specimen C.
  • the specimen C is an example of the present invention to which the joining structure according to the second embodiment of the present invention is applied.
  • the skeleton element of the column of test body C is an H-section steel (H-400 ⁇ 200 ⁇ 9 ⁇ 12) and a CT section steel (CT-296 ⁇ 200 ⁇ 9 ⁇ 12) that are assembled by welding.
  • the beam flange is a steel plate having a width of 200 mm and a thickness of 19 mm.
  • Specimen D which is a comparative example, uses a conventional vertical stiffener.
  • a bent steel plate having a width of 120 mm and a thickness of 12 mm was used.
  • FIG. 8 is a diagram showing the relationship between the tensile load P and the local deformation amount ⁇ for the test body C and the test body D.
  • the circles of the test bodies C and D in FIG. 8 indicate the full plastic strength.
  • the local deformation amount delta is defined by the following equation using a deformation amount delta L of the deformation amount delta U and the plane bottom of paper upper (1).
  • ⁇ L + ( ⁇ U ⁇ L ) W 1 / W (1)
  • W is the plane vertical length of the column of the test body C
  • W 1 is the length of up to the junction of the three sides of the column web from the paper top end of the column of the test body C Yes.
  • the specimen C to which the present invention was applied was confirmed to have increased rigidity compared to the conventional specimen D. It was confirmed that the total plastic yield strength increased by about 25% and the maximum yield strength increased by about 20%. That is, by applying the present invention, it was possible to improve the rigidity (yield strength) of the joint structure.
  • FIG. 9 is a diagram showing the relationship between the tensile load P and the rotational deformation angle ⁇ in the joint structure of the test body C and the test body D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

コンクリートの充填性を損なわないまま、梁フランジの応力を十分に柱内に伝達することができる接合構造を提供する。本発明に係る接合構造は、鉄骨鉄筋コンクリート柱の鉄骨柱に鉄骨梁を接合した柱梁接合構造であって、異なる方向に伸びる複数の柱ウェブと、柱ウェブの先端のそれぞれに直交する柱フランジを備えた鉄骨柱に設けられ、鉄骨柱の隣接する一方の柱フランジに接合される第1の板部と、第1の板部と非平行であり、隣接する他方の柱フランジに接合される第2の板部を有する鉛直スチフナを有する。鉛直スチフナは、鉄骨柱に接合される鉄骨梁の梁フランジが接続される高さ位置の少なくとも一部を含む位置に取り付けられる。

Description

鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造
 本発明は、鉄骨鉄筋コンクリート柱と鉄骨梁を接合した接合構造に関する。
 従来より、鉄骨鉄筋コンクリート柱と鉄骨梁を接合した接合構造が一般的に知られている。
 非特許文献1には、SRC柱(Steel Reinforced Concrete column)の柱梁接合構造(beam-to-column connection)が開示されている。開示された構造は、柱貫通形式(through column type)の柱梁の接合構造である。柱梁接合部には、鉄骨柱の断面形状の変形を防止するために、スチフナ(stiffeners)が設けられている。スチフナの設置形式としては、水平形式と垂直形式がある。
 図14は、水平形式のスチフナを有する柱梁接合部(beam-to-column connection)の接合構造を示す斜視図である。図14に示すように、鉄骨柱(steel column)1は、略十字断面(cruciform section)を有している。鉄骨柱1には、4方向に鉄骨梁2が取り付けられる。鉄骨柱1は、十字に組み合わされた4つの柱ウェブ(column webs)1a-1、1a-2、1a-3、1a-4と、それぞれの柱ウェブ1a-1、1a-2、1a-3、1a-4の先端に接合された柱フランジ(column flanges)1b-1、1b-2、1b-3、1b-4を有している。
 水平スチフナ(horizontal stiffeners)4は、鉄骨柱1の四隅に配置されている。水平スチフナ4は、L字形状(L-shaped)の鋼板である。水平スチフナ4の平面は、鉄骨柱1の延在する方向に対して垂直に配される。水平スチフナ4は、鋼板の凸側の側面が、鉄骨柱1の水平方向において隣接する2つの柱ウェブ1a-1乃至1a-4と、水平方向において隣接する2つの柱フランジ1b-1乃至1b-4に接合されている。例えば、紙面正面の水平スチフナ4を例とすれば、この水平スチフナ4は、隣接する柱ウェブ1a-3、1a-4と、柱フランジ1b-3、1b-4に接合されている。
 水平スチフナ形式では、梁フランジ2aの応力が、柱ウェブ1a-1乃至1a-4と、L字型の水平スチフナ4によって、柱内に伝達される。水平スチフナ形式では、水平スチフナ4が、鉄骨柱1の隣接する2つの柱ウェブ1a-1乃至1a-4と、隣接する2つの柱フランジ1b-1乃至1b-4に接合されているため、応力の伝わり方が明確である。そのため、水平スチフナ形式は、広く用いられている。しかしながら、水平スチフナ形式では、水平スチフナ4の下面にコンクリートが充填されにくいという問題がある。
 図15は、鉛直形式のスチフナを有する柱梁接合部の接合構造を示す斜視図である。図15に示すように、鉛直スチフナ形式では、同様に板状の鉛直スチフナ(vertical stiffeners)3が鉄骨柱1の四隅に配置されている。鉛直スチフナ3の面は、鉄骨柱1の延在する方向に対して平行に配される。鉛直スチフナ3は、隣り合う2つの柱フランジ1b-1乃至1b-4に接合される。
 鉛直スチフナ3が、3方向に鉄骨梁2が接続される略T字断面(T-shaped)の鉄骨柱に適用される場合には、図15の略十字断面の鉄骨柱と同様に設置される。具体的には、略十字型断面の鉄骨柱と同様に、鉛直スチフナの短手方向の側面を、隣り合う柱フランジを接続するように取り付ける。
 鉛直スチフナ形式では、コンクリートの充填性は良好だが、応力の伝達が不明確であるとの指摘がなされていた。
 このような懸念に対し、非特許文献2及び非特許文献3において、実験的研究により、接合部の耐力の評価がなされた。これによれば、鉛直スチフナ形式の耐力評価法も提案され、鉛直スチフナ形式は、実用に値する耐力を有する構造であるとされている。
「鉄骨鉄筋コンクリート構造計算規準・同解説」、日本建築学会、第5版、2001年1月 森田、他3名、「鉛直スチフナ形式・SRC柱-Sはり接合部の力学的挙動に関する研究」、日本建築学会構造系論文報告集、No.413、1990年7月、p.53-64 森田、他3名、「鉛直スチフナ形式・SRC柱-Sはり接合部の力学的挙動に関する研究」、No.423、1991年5月、p.69-78
 近年では、地震対策への関心の高まりから、図15に示すような、柱ウェブ1a-1乃至1a-4の長さが全て等しく形成された、整形(standard section)の鉄骨柱の接合構造において、より接合構造の剛性を高めることが求められている。しかしながら、従来の鉛直スチフナ形式は、梁フランジ2aから応力を受ける方向に対し、鉛直スチフナ3が角度を有して設置されているため、応力を効率的に柱内に伝達することができない。
 鉛直スチフナ形式では、図16に示すように、柱ウェブ1a-1乃至1a-4の長さが異なる不整形(irregular section)の鉄骨柱1の場合にさらなる問題がある。具体的には、図16に示すように、略十字断面を有する鉄骨柱1の接合部では、一方の柱せい(column width)Hが、他方の柱せいより大きくなると、鉛直スチフナ3と、短い柱ウェブ1a-2とのなす角度αが大きくなり、その角度αが45度を超える。そのため、短い柱ウェブ1a-2に加わる矢印方向の梁フランジの応力を、十分に柱内(他方の柱フランジ1b-1)に伝達することができない。
 図17に示すように、鉄骨断面が略T字型の柱に対しては、角度αが大きくなり、柱の短手方向(矢印方向)に梁フランジ応力が作用すると、接合部の回転変形(rotational deformation)が大きくなるといった問題もある。図18に示すように、略十字断面を有する鉄骨柱の1つの辺を切断した鉄骨断面を有する鉄骨柱と鉄骨梁との接合構造についても同様の問題が生じる。
 本発明は、このような問題を解決するためになされたものであり、コンクリートの充填性を損なわないまま、さらに効率的に梁フランジの応力を柱内に伝達することができる接合構造を提供することを目的とする。
 上記課題を解決するため、本発明は、以下のような特徴を有する。
[1]鉄骨鉄筋コンクリート柱(steel reinforced concrete columns)の鉄骨柱(steel column)に鉄骨梁(steel beams)を接合した接合構造(connection)であって、
 異なる方向に伸びる複数の柱ウェブ(column webs)と、前記柱ウェブの先端のそれぞれに直交する柱フランジ(column flanges)を備えた前記鉄骨柱に、
 前記鉄骨柱の隣接する一方の柱フランジに接合される第1の板部と、前記第1の板部と非平行であり、前記隣接する他方の柱フランジに接合される第2の板部を有する鉛直スチフナを設け、
 前記鉛直スチフナは、前記鉄骨柱に接合される鉄骨梁の梁フランジ(beam flanges)が接続される高さ位置の少なくとも一部を含む位置に取り付けられる鉄骨鉄筋コンクリート柱(steel reinforced concrete columns)と鉄骨梁(steel beams)との接合構造。
[2]前記鉛直スチフナは、水平断面において第1の板部と、前記第1の板部に直交する前記第2の板部を備えたL字形状を有している[1]に記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
[3]前記鉛直スチフナは、前記第1の板部が前記一方の柱フランジの先端に接合され、前記第2の板部が前記他方の柱フランジの先端に接合される[1]または[2]の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
[4]前記鉛直スチフナは、前記第1の板部が前記一方の柱フランジと直交し、前記第2の板部が前記他方の柱フランジと直交する[1]ないし[3]のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
[5]前記第1の板部および前記第2の板部は、前記柱フランジの柱内側の面に接合される[1]ないし[4]のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
[6]前記鉄骨鉄筋コンクリート柱は、略十字形鉄骨断面柱または略T字形鉄骨断面柱である[1]ないし[5]のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
 本発明によれば、コンクリートの充填性を損なわないまま、梁フランジの応力を十分に柱内に伝達することができる接合構造を提供することができる。
図1(a)は、本発明の実施の形態1に係る接合構造を示す垂直断面図であり、図1(b)は、その接合構造の水平断面図である。 図2は、本発明の実施の形態1に係る接合構造の水平断面図を一部拡大した図である。 図3(a)は、本発明の実施の形態2に係る接合構造を示す垂直断面図であり、図3(b)は、同接合構造の水平断面図である。 図4は、本発明の実施の形態2に係る接合構造の水平断面図を一部拡大した図である。 図5(a)は、略十字型鉄骨の鉄骨鉄筋コンクリート柱の試験体Aの水平断面図であり、図5(b)は、試験体Aの垂直断面図である。 図6は、試験体A及び試験体Bについての、引張荷重P[kN]と局部変形Δ[mm]の関係を示す図である。 図7(a)は、略T字型鉄骨の鉄骨鉄筋コンクリート柱の試験体Cの水平断面図であり、図7(b)はこの試験体Cの垂直断面図である。 図8は、試験体C及び試験体Dについての、引張荷重P[kN]と局部変形Δ[mm]の関係を示す図である。 図9は、試験体C及び試験体Dの接合構造における、引張加重P[kN]と回転変形θ[rad.]の関係を示す図である。 図10は、本発明の変形例1に係る接合構造を示す平面断面図である。 図11は、本発明の変形例2に係る接合構造を示す平面断面図である。 図12は、本発明の変形例3に係る接合構造を示す平面断面図である。 図13は、本発明の変形例4に係る接合構造を示す平面断面図である。 図14は、従来の水平形式のスチフナを有する接合構造を示す斜視図である。 図15は、従来の鉛直形式のスチフナを有する接合構造を示す斜視図である。 図16は、従来の鉛直形式のスチフナを有する略十字形鉄骨断面柱の接合構造の水平断面図である。 図17は、従来の鉛直形式のスチフナを有する略T字形鉄骨断面柱の接合構造の水平断面図である。 図18は、従来の鉛直形式のスチフナを有する略十字形鉄骨断面柱の他の接合構造の水平断面図である。
 以下、添付の図面を参照し、本発明の実施の形態について説明を行う。
 [実施の形態1]
 図1(a)は、本発明の実施の形態1に係る接合構造(connection)を示す垂直断面図であり、図1(b)は、この接合構造の水平断面図である。図1(a)及び(b)に示すように、鉄骨鉄筋コンクリート柱(steel reinforced concrete columns)10の四方から、それぞれ鉄骨梁(steel beam)2が取り付けられている。鉄骨梁2は、溶接やボルトを用いて鉄骨鉄筋コンクリート柱10に接合される。
 鉄骨鉄筋コンクリート柱10は、鉄骨柱(steel column)1を有している。鉄骨柱1は、異なる方向に伸びる4つの柱ウェブ(column webs)1a-1、1a-2、1a-3、1a-4と、この先端のそれぞれに直交する柱フランジ(column flanges)1b-1、1b-2、1b-3、1b-4を有している。実施の形態1では、鉄骨柱1の水平断面が略十字断面(cruciform section)を有している。
 4つの柱ウェブ1a-1乃至1a-4は同一形状である。また、4つの柱フランジ1b-1乃至1b-4は同一形状である。図1(b)に示すように、隣接する柱ウェブ1a-1乃至1a-4は、なす角度が90°に形成されている。そのため、鉄骨柱1の隣接する柱フランジ1b-1乃至1b-4同士も、なす角が90°となっている。
 鉄骨鉄筋コンクリート柱10は、このように構成された鉄骨柱1の外周に、鉄筋(主筋(main bars)6、帯筋(hoops)7)を組み、コンクリート5を打設して構成される。鉄骨鉄筋コンクリート柱10には、鉄骨柱1の四隅に鉛直スチフナ(vertical stiffeners)3が設けられている。鉛直スチフナ3は、図1(b)に示すように、隣接する2つの柱フランジ1b-1乃至1b-4の間に設置されている。鉛直スチフナ3は、鋼板を折り曲げて構成されており、鉄骨柱1が延びる方向に平行な面を有している。以下では、説明のため、柱フランジ1b-1と1b-2の間に配される鉛直スチフナ3を例にして説明を行う。
 鉛直スチフナ3は、第1の板部3aと第2の板部3bを有している。第1の板部3aは、柱フランジ1b-1に接合されている。第2の板部3bは、第1の板部3aと非平行であり、柱フランジ1b-1と隣接する柱フランジ1b-2に接合されている。実施の形態1では、鉛直スチフナ3は、水平断面においてL字形状を有するように構成されている。すなわち、実施の形態1では、第1の板部3aと第2の板部3bが直交するように構成されている。
 第1の板部3aは、一方の柱フランジ1b-1の先端に接合され、第2の板部3bは、他方の柱フランジ1b-2の先端に接合されている。実施の形態1では、第1の板部3aと第2の板部3bのL字の凸側が柱の中央側に対向し、凹側が柱の外側を向くように配される。鉛直スチフナ3の第1の板部3aは、隣接する一方の柱フランジ1b-1と直交する。第2の板部3bは、他方の柱フランジ1b-2と直交する。
 実施の形態1では、第1の板部3aと第2の板部3bが同じ長さに構成されている。また、鉛直スチフナ3の厚みは、接合される柱フランジ1b-1、1b-2の厚みと同程度の厚みを有するように構成されている。鉛直スチフナ3は、梁フランジ2aから柱フランジ1b-1、1b-2が受ける応力を、応力が加わる方向の反対側から受けられるよう、柱フランジ1b-1、1b-2の柱中央側の面に接合されることが好ましい。ただし、鉛直スチフナ3は、柱フランジ1b-1、1b-2のどの面に接合されていてもよい。鉛直スチフナ3は、直接柱フランジ1b-1、1b-2に接合されていてもよく、何らかの部材を介して柱フランジ1b-1、1b-2に接合されていてもよい。
 図1(a)に示すように、鉛直スチフナ3は、鉄骨梁2の梁フランジ2aが鉄骨柱1に接続されている高さ位置を含む範囲に取り付けられている。鉛直スチフナ3は、鉄骨梁2の上下の梁フランジ2aと、鉄骨柱1との間にそれぞれ設けられている。図1(a)では、鉛直スチフナ3が、梁フランジ2aが鉄骨柱1に接続されている高さ位置のすべてを含む範囲に設置されている。しかしながら、鉛直スチフナ3は、梁フランジ2aが鉄骨柱1に接続されている高さ位置の少なくとも一部と重複するように設置されていればよい。
 図2は、本発明の実施の形態1に係る接合構造の水平断面図を一部拡大した図である。図2では、説明のため、鉄骨柱1に接続した鉄骨梁2を1本だけ示し、残りの3本を省略して示している。鉄骨梁2に、図2の紙面右側に向かう応力が発生すると、鉄骨梁2の梁フランジ2aにも、同様に紙面右側に向かう応力(梁フランジ応力)が発生する。鉄骨柱1は、鉄骨梁2に接合されている。そのため、鉄骨柱1には、柱ウェブ1a-2の紙面左方向への断面力(cross-sectional force)が反力として働く。ここで、柱ウェブ1a-2と一体である柱フランジ1b-2には、2つの鉛直スチフナ3の第2の板部3bが接合されている。そのため、鉄骨梁2の両側に設けられた2つの鉛直スチフナ3から紙面左方向に断面力が働く。
 鉄骨梁2には、コンクリート5が打設されている。そのため、梁フランジ応力の反力としてコンクリート5の支圧力(bearing force)が発生し、この支圧力が鉛直スチフナ3の第1の板部3aに作用する。図2では、鉄骨柱1に対し、鉄骨梁2から紙面右側へ応力が働いた場合を例として説明を行った。鉄骨柱1に対して、鉄骨梁2から紙面左側へ応力が働いた場合には、上記と逆の力が発生する。
 このように、本発明の実施の形態1に係る接合構造では、水平断面においてL字形状を有する鉛直スチフナ3を、鉄骨柱1の隣接する柱フランジ1b-1、1b-2に設置する。ここで、図2に示すように、鉄骨梁2に応力が発生した場合には、鉄骨梁2に接合された柱フランジ1b-2に応力が加わる。柱フランジ1b-2に加わった応力は、柱フランジ1b-2に接合された柱ウェブ1a-2と、柱フランジ1b-2に直交する鉛直スチフナ3の第2の板部3bに伝達される。具体的には、実施の形態1では、鉛直スチフナ3の第2の板部3bの面が、鉄骨梁2から受ける応力と平行に配されている。そのため、鉄骨梁2に発生した応力を、柱フランジ1b-2の両側(紙面上下)の鉛直スチフナ3の第2の板部3bで、効果的に鉄骨鉄筋コンクリート柱10に伝達することができる。
 実施の形態1に係る接合構造では、第1の板部3aと第2の板部3bが所定の角度を有しているため、梁フランジ2aから応力を受けると、第1の板部3aと第2の板部3bの間で折れ曲がるように変形する。この変形により、梁フランジ2aから応力の一部を吸収することができる。
 実施の形態1では、鉛直スチフナ3を、鉄骨梁2の梁フランジが接続される部分を含む高さに配置する。鉄骨梁2は、梁ウェブ2bの上下に梁フランジ2aが設けられている。そこで、鉄骨柱1のうち、曲げがかかったときに大きな応力や曲げモーメントを受けやすい梁フランジ2aが接合される高さ位置に、鉛直スチフナ3を配する。これによって、効率的に、鉄骨梁2の応力や曲げモーメントを柱内に伝達することができる。
 図1及び2に示すように、実施の形態1に係る接合構造の鉄骨柱1は、一方の柱せいと他方の柱せいが同じ長さに構成されている。一方の柱せいと他方の柱せいの長さが異なる鉄骨柱であっても、本発明を適用することができる。具体的には、隣接する鉄骨柱1のフランジ間に適合するように、鉛直スチフナ3の第1の板部3a及び第2の板部3bの長さを任意に調整し、第1の板部3aと第2の板部3bをそれぞれ柱フランジに接合すればよい。これにより、一方の柱せい(column width)が他方の柱せいよりも大きいような略十字断面を有する鉄骨柱であっても、効果的に、鉄骨梁2から加わる応力による変形を防止することができる。
 [実施の形態2]
 次に、本発明の実施の形態2に係る接合構造について説明する。図3(a)は、本発明の実施の形態2に係る接合構造を示す垂直断面図であり、図3(b)は、この接合構造の水平断面図である。実施の形態2では、鉛直スチフナ3を、T字形(T-shaped)鉄骨断面柱に適用した場合の接合構造である。
 図3(b)に示すように、鉄骨柱11は、水平断面において、T字形状を有している。鉄骨柱11には、3つの柱ウェブ11a-1、11a-2、11a-3と、それぞれの柱ウェブ11a-1、11a-2、11a-3に接合された柱フランジ11b-1、11b-2、11b-3を有している。ここでは、説明のために、長い柱ウェブ11a-1の柱フランジ11b-1と短い柱ウェブ11a-2の柱フランジ11b-2の間の鉛直スチフナ3を例にとって説明を行う。
 鉄骨柱11には、3本の鉄骨梁2が接合される。図3(b)に示すように、隣接する柱ウェブ11a-1と11a-2は、なす角度が90°に形成されている。そのため、それぞれに直交する柱フランジ11b-1と柱フランジ11b-2もなす角が90°となっている。
 鉛直スチフナ3は、実施の形態1と同様に、第1の板部3aと第2の板部3bからなるL字形状を有している。鉛直スチフナ3は、L字の凸側が柱内側と対向し、凹側が柱外側を向くように配されている。実施の形態2における鉛直スチフナ3は、第1の板部3aの長さと第2の板部3bの長さが異なるように構成されている。具体的には、第1の板部3aが第2の板部3bよりも長い。
 第1の板部3aの先端は、柱フランジ11b-1の先端に接合され、第2の板部3bの先端は、柱フランジ11b-2の先端に接合されている。第1の板部3aと第2の板部3bの長さの比以外は、実施の形態1とほぼ同様である。短い柱ウェブ11a-2、11a-3の先端に設けられた柱フランジ11b-2と11b-3の間には、直線の断面形状を有する板状の鉛直スチフナ31が設置されている。
 このように、本発明は、鉛直スチフナ3を設置する鉄骨柱11の形状に応じて、鉛直スチフナ3のL字形状の第1の板部3aと第2の板部3bの比を任意に設定することができる。実施の形態2では、柱ウェブ11a-1乃至11a-3の長さが異なる鉄骨柱11であっても、L字形状の鉛直スチフナ3がそれぞれの柱フランジ11b-1乃至11b-3に対して直角に接合されているため、梁フランジ2aからの加わる応力の方向に対して、反対側から反力を発生させることができる。
 図4は、本発明の実施の形態2に係る接合構造の水平断面図を一部拡大した図である。図4では、説明のため、鉄骨梁2を1本だけ鉄骨柱11に接続した例を示している。実施の形態2でも実施の形態1と同様に、鉄骨梁2に紙面右側への応力が加わると、応力が加わった鉄骨梁2が接合された柱ウェブ11a-2に断面力が発生する。柱フランジ11b-2には、鉛直スチフナ3が接合されている。そのため、鉛直スチフナ3にも断面力が発生する。
 鉄骨梁2には、コンクリート5も打設されている。そのため、梁フランジ応力の反力として発生したコンクリート5の支圧力は、鉛直スチフナ3の長い辺(第1の板部3a)に作用する。このように、実施の形態2においても、L字形状の鉛直スチフナ3を配することで、接合部の剛性を高めることができる。図4では、鉄骨柱11に対し、鉄骨梁2から紙面右側へ応力が働いた場合を例として説明を行った。鉄骨柱11に対して、鉄骨梁2から紙面左側へ応力が働いた場合には、上記と逆の力が発生し、同様の効果が生じる。また、鉄骨柱11と鉄骨梁2との接合部には、矢印方向に回転変形が生じる。鉛直スチフナ3は、接合部の剛性を高めることにより、この回転変形も防ぐことができる。
 このように、本発明は、略T字型鉄骨の鉄骨鉄筋コンクリート柱にも適用し、接合部の剛性を高めることができる。
 [変形例1]
 次に、本発明の変形例について説明する。以下の説明では、変形例を略十字形鉄骨に適用した例を説明する。以下のすべての変形例は、略T字形鉄骨断面を有する鉄骨柱にも同じように適用することができる。以下の変形例は、実施の形態1の図1(b)に対応する断面図である。以下の変形例では、説明を簡便化するため、鉄骨柱と鉛直スチフナのみを図示し、他の構成要素については省略している。
 図10は、本発明の変形例1に係る接合構造を示す水平断面図である。実施の形態1では、鉛直スチフナ3の第1の板部3aは一方の柱フランジ1b-1の先端に接合され、第2の板部3bは他方の柱フランジ1b-2に接合されている。変形例1では、第1の板部3aが一方の柱フランジの中心側に接合され、第2の板部3bが他方の柱フランジの中心側に接合されている。このように、鉛直スチフナ3は、隣接する柱フランジに接合していれば、柱フランジのどのような位置に接合してもよい。
 [変形例2]
 図11は、本発明の変形例2に係る接合構造を示す平面断面図である。実施の形態1では、鉛直スチフナ3の第1の板部3aと第2の板部3bが直交するようなL字形状に構成されている。変形例2では、第1の板部3aと第2の板部3bは、非平行であれば、どのような角度に配置されていてもよい。たとえば、図11に示すように、第1の板部3aと第2の板部3bのなす角を、90°超とすることができる。また、同様に、第1の板部3aと第2の板部3bのなす角を、90°未満とすることもできる(図示せず)。
 [変形例3]
 図12は、本発明の変形例3に係る接合構造を示す平面断面図である。実施の形態1では、鉛直スチフナ3の第1の板部3aと第2の板部3bからなるL字形状によって構成されている。変形例3では、鉛直スチフナ3は、平行でない第1の板部3aと第2の板部3bを有していれば、どのような形状を有していてもよい。たとえば、第1の板部3aと第2の板部3bとの間に、第1の板部3aと第2の板部3bの間に第3の辺3cを有していてもよい。
 [変形例4]
 図13は、本発明の変形例4に係る接合構造を示す平面断面図である。実施の形態1では、第1の板部3aと第2の板部3bからなるL字形状の山側が柱中心側を向き、谷側が外表面側を向くように構成されている。変形例4では、図13のように、L字形状の凹側を柱中心側とし、凸側を外表面側に向くように鉛直スチフナ3を設置してもよい。
 このように、本発明に係る鉛直スチフナは、任意の形状に構成することができる。また、本発明に係る鉛直スチフナは、従来技術の図18に示すような形状の鉄骨柱にも適用することができる。
 次に、試験体を用いた接合構造の部分モデル実験について説明する。図5(a)は、略十字型鉄骨の鉄骨鉄筋コンクリート柱の試験体Aの水平断面図であり、図5(b)はこの試験体Aの垂直断面図である。試験体Aは、本発明の実施の形態1に係る接合構造を適用した本発明例である。試験体Aの柱の骨格要素は、H形鋼(H-400×200×9×12)とCT形鋼(CT-196×200×9×12)を溶接組立てしたものである。梁フランジは、幅200mm、厚さ16mmの鋼板である。鉛直スチフナは、幅80mm、厚さ9mmの鋼板を折り曲げたものを使用した。
 比較例とした試験体B(図示せず)は、試験体Aの柱の骨格要素(frame element)に、従来の鉛直スチフナを組み合わせて構成した。
 図6は、試験体A及び試験体Bについての、引張荷重(tensile load)Pと局部変形量(local deformation)Δの関係を示す図である。図6における試験体A及びBの丸印は、全塑性耐力(full plastic strength)を示している。局部変形量Δは、紙面上端の変形量Δと紙面下端の変形量Δの平均値として定義している。本発明を適用した試験体Aは、従来の試験体Bに比べ、剛性が増加したことが確認された。また、全塑性耐力(full plastic strength)が約30%、最大耐力(maximum strength)が約20%増加したことが確認された。すなわち、本発明を適用することにより、鉄骨鉄筋コンクリート部分の接合部の耐力を向上させることができたことが分かった。
 同様に、本発明の実施の形態2に係る接合構造についてのモデル実験を説明する。図7(a)は、略十字型鉄骨の鉄骨鉄筋コンクリート柱の試験体Cの水平断面図であり、図7(b)はこの試験体Cの垂直断面図である。試験体Cは、本発明の実施の形態2に係る接合構造を適用した本発明例である。試験体Cの柱の骨格要素は、H形鋼(H-400×200×9×12)とCT形鋼(CT-296×200×9×12)を溶接組立てしたものである。梁フランジは、幅200mm、厚さ19mmの鋼板である。
 比較例である試験体Dは、従来の鉛直スチフナを適用したものである。試験体Cの鉛直スチフナは、幅120mm、厚さ12mmの鋼板を折り曲げたものを使用した。
 図8は、試験体C及び試験体Dについての、引張荷重Pと局部変形量Δの関係を示す図である。図8における試験体C及びDの丸印は、全塑性耐力(full plastic strength)を示している。局部変形量Δは、紙面上端の変形量Δと紙面下端の変形量Δを用いて以下の式(1)によって定義している。
Δ=ΔL+(ΔU-ΔL)W1/W    (1)
 ここで、Wは、試験体Cの柱の紙面縦方向の長さであり、W1は、試験体Cの柱の紙面上端から柱ウェブの3つの辺の接合点までの長さを示している。
 本発明を適用した試験体Cは、従来の試験体Dに比べ、剛性が増加したことが確認された。全塑性耐力が約25%、最大耐力が約20%増加したことが確認された。すなわち、本発明を適用することにより、接合構造の剛性(耐力)を向上させることができた。
 図9は、試験体Cと試験体Dの接合構造における、引張荷重Pと回転変形角θとの関係を示す図である。なお、回転変形角θは、下式(2)によって定義するものとする。
θ=0.5・(ΔU-ΔL)/W     (2)
 このように、本発明を適用した試験体Cは、従来の接合構造を有する試験体Dに比べて、回転変形角θが減少したことが分かった。
 なお、本発明は上記実施の形態に限られたものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。
 1、11 鉄骨柱
 1a-1~1a-4、11a-1~11a-4 柱ウェブ
 1b-1~1b-4、11b-1~11b-3 柱フランジ
2 鉄骨梁
  2a 梁フランジ
  2b 梁ウェブ
3、31 鉛直スチフナ
4 水平スチフナ
5 コンクリート
 6 主筋
 7 帯筋
10 鉄骨鉄筋コンクリート柱

Claims (6)

  1. 鉄骨鉄筋コンクリート柱(steel reinforced concrete columns)の鉄骨柱(steel columns)に鉄骨梁(steel beams)を接合した接合構造(connection)であって、
     異なる方向に伸びる複数の柱ウェブ(column webs)と、前記柱ウェブの先端のそれぞれに直交する柱フランジ(column flanges)を備えた前記鉄骨柱に設けられ、
    前記鉄骨柱の隣接する一方の柱フランジに接合される第1の板部と、前記第1の板部と非平行であり、前記隣接する他方の柱フランジに接合される第2の板部を有する鉛直スチフナ(vertical stiffeners)を有し、
     前記鉛直スチフナは、前記鉄骨柱に接合される鉄骨梁の梁フランジが接続される高さ位置の少なくとも一部を含む位置に取り付けられる鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
  2. 前記鉛直スチフナは、水平断面において第1の板部と、前記第1の板部に直交する前記第2の板部を備えたL字形状を有している請求項1に記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
  3. 前記鉛直スチフナは、前記第1の板部が前記一方の柱フランジの先端に接合され、前記第2の板部が前記他方の柱フランジの先端に接合される請求項1または2に記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
  4. 前記鉛直スチフナは、前記第1の板部が前記一方の柱フランジと直交し、前記第2の板部が前記他方の柱フランジと直交する請求項1ないし3のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
  5. 前記第1の板部および前記第2の板部は、前記柱フランジの柱内側の面に接合される請求項1ないし4のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
  6. 前記鉄骨鉄筋コンクリート柱は、略十字形鉄骨断面柱または略T字形鉄骨断面柱である請求項1ないし5のうちいずれかに記載の鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造。
PCT/JP2013/003742 2012-07-03 2013-06-14 鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造 WO2014006824A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201408217QA SG11201408217QA (en) 2012-07-03 2013-06-14 Connection structure for steel reinforced concrete columns and steel beams
KR1020157002791A KR101647711B1 (ko) 2012-07-03 2013-06-14 철골 철근 콘크리트 기둥과 철골 들보의 접합 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148999A JP5423848B2 (ja) 2012-07-03 2012-07-03 鉄骨鉄筋コンクリート柱と鉄骨梁との接合構造
JP2012-148999 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014006824A1 true WO2014006824A1 (ja) 2014-01-09

Family

ID=49881600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003742 WO2014006824A1 (ja) 2012-07-03 2013-06-14 鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造

Country Status (5)

Country Link
JP (1) JP5423848B2 (ja)
KR (1) KR101647711B1 (ja)
SG (1) SG11201408217QA (ja)
TW (1) TWI495776B (ja)
WO (1) WO2014006824A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541435A (zh) * 2013-09-22 2014-01-29 沈阳建筑大学 带钢板混凝土悬挑梁的全装配式十字型节点
US11661742B2 (en) * 2016-10-14 2023-05-30 Arcelormittal Steel reinforced concrete column

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863257A (zh) * 2015-05-29 2015-08-26 中冶天工上海十三冶建设有限公司 十字钢柱节点穿筋结构
CN104963416A (zh) * 2015-06-18 2015-10-07 长安大学 一种圆钢管约束型钢混凝土柱与钢筋混凝土梁节点结构
CN105464458A (zh) * 2015-10-14 2016-04-06 中铁五局集团路桥工程有限责任公司 一种城市轨道交通高架车站及其型钢混凝土组合柱
JP6633362B2 (ja) * 2015-11-25 2020-01-22 株式会社安藤・間 鉄骨コンクリート架構の補強構造
JP6681277B2 (ja) * 2016-05-31 2020-04-15 日本製鉄株式会社 柱梁接合構造の接合部耐力評価方法、柱梁接合構造の設計方法、及び柱梁接合構造
CN108755962A (zh) * 2018-06-12 2018-11-06 西安建筑科技大学 一种部分预制装配空腹型钢混凝土空心柱及施工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972043B2 (ja) * 1993-01-13 1999-11-08 佐藤工業株式会社 異種構造部材の接合方法及び柱・梁接合構造部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193687A1 (en) * 2005-01-21 2006-08-31 Avik Ghosh Moment resisting frame bearing connector
CN101100888B (zh) * 2007-06-06 2010-05-19 广州大学 一种矩形钢管柱的钢框架梁柱节点连接结构

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972043B2 (ja) * 1993-01-13 1999-11-08 佐藤工業株式会社 異種構造部材の接合方法及び柱・梁接合構造部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541435A (zh) * 2013-09-22 2014-01-29 沈阳建筑大学 带钢板混凝土悬挑梁的全装配式十字型节点
CN103541435B (zh) * 2013-09-22 2015-10-21 沈阳建筑大学 带钢板混凝土悬挑梁的全装配式十字型节点
US11661742B2 (en) * 2016-10-14 2023-05-30 Arcelormittal Steel reinforced concrete column

Also Published As

Publication number Publication date
TW201407022A (zh) 2014-02-16
JP2014009563A (ja) 2014-01-20
TWI495776B (zh) 2015-08-11
JP5423848B2 (ja) 2014-02-19
KR101647711B1 (ko) 2016-08-11
SG11201408217QA (en) 2015-02-27
KR20150027297A (ko) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014006824A1 (ja) 鉄骨鉄筋コンクリート柱と鉄骨梁の接合構造
JP6861425B2 (ja) H形鋼の接合構造
TWI789366B (zh) 接合金屬材及板材的接合方法
JP4710067B2 (ja) 柱梁接合構造
JP6353697B2 (ja) 木質耐震壁構造
JP6769549B2 (ja) 小梁接合方法、小梁接合構造、及び、支持部材
JP5491962B2 (ja) 構造壁
JP6265676B2 (ja) 鋼製耐震壁
JP6013028B2 (ja) 外殻構造
JP6246464B2 (ja) 座屈拘束ブレースおよびこれを用いた耐震補強構造
JP2021085316A (ja) 架構式構造
JP2017075485A (ja) 鋼管柱の補強構造
JP5724655B2 (ja) 連結金具及びこれを備えたフレーム並びにこのフレームを用いた建築物
JP5421236B2 (ja) 建物壁部の制振構造構築方法
JP6979283B2 (ja) 鋼管柱とh形鋼製梁との鋼製柱梁架構
JP6339150B2 (ja) 木製建築部材の補強方法
JP6763602B2 (ja) 既存建造物の補強構造
JP6675204B2 (ja) 柱主筋の定着構造
JP2020143502A (ja) 耐力壁
JP2014214497A (ja) 木質梁接合構造及び木質梁接合方法
JP5185183B2 (ja) 梁構造
JP7018263B2 (ja) 建物
JP6240420B2 (ja) 耐震補強構造
JP5836100B2 (ja) ユニット建物の補強構造
JP2018145646A (ja) 柱の補強構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157002791

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13812682

Country of ref document: EP

Kind code of ref document: A1