WO2014006778A1 - 蒸気タービン設備 - Google Patents

蒸気タービン設備 Download PDF

Info

Publication number
WO2014006778A1
WO2014006778A1 PCT/JP2012/082846 JP2012082846W WO2014006778A1 WO 2014006778 A1 WO2014006778 A1 WO 2014006778A1 JP 2012082846 W JP2012082846 W JP 2012082846W WO 2014006778 A1 WO2014006778 A1 WO 2014006778A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
metal gasket
annular
line contact
seal surface
Prior art date
Application number
PCT/JP2012/082846
Other languages
English (en)
French (fr)
Inventor
西本 慎
雄久 ▲濱▼田
田中 良典
篠原 種宏
哲郎 赤松
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49776718&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014006778(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to IN2639MUN2014 priority Critical patent/IN2014MN02639A/en
Priority to EP12880532.2A priority patent/EP2889454B1/en
Priority to CN201280074268.9A priority patent/CN104471196B/zh
Priority to KR1020147035983A priority patent/KR101651768B1/ko
Publication of WO2014006778A1 publication Critical patent/WO2014006778A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a steam turbine facility in which steam at 650 ° C. or higher is used.
  • steam is guided from a boiler to a turbine casing through a pipe, and the turbine is driven by the steam.
  • the steam pipe for supplying steam to the turbine casing is provided with a steam valve (stop valve and control valve) to shut off the steam introduced into the turbine casing and adjust the amount of steam. It is supposed to be.
  • graphite-based spiral gaskets have been mainly used for pipe flange connections and seals such as steam valves.
  • the graphite-based spiral gasket here is a semi-metal gasket in which metal hoops and fillers of graphite-based material are alternately wound in a spiral shape.
  • Patent Document 1 describes a spiral gasket in which an expanded graphite tape containing an inorganic oxidation inhibitor is used as a filler material and the use limit in an oxygen atmosphere is increased to about 500 to 600 ° C.
  • Patent Document 2 discloses a self-sealing gasket that can be used even in steam turbine equipment with severe steam temperature conditions (see paragraph 0015 of Patent Document 2).
  • This self-sealing gasket has a cross-sectional shape in which an annular ring is cut out, is sandwiched between a casing and a bonnet of a steam valve, and seals between the casing and the bonnet by making line contact with them.
  • the self-sealing gasket is used, the steam passes through the notch, the steam is introduced into the gasket, and the internal pressure due to the steam is applied to the gasket.
  • the tightening pressure of the casing and the bonnet is small, it is possible to realize excellent sealing performance against high temperature and high pressure steam.
  • a base material of each part may be configured using a casting material such as a Ni-based alloy having excellent high-temperature strength.
  • casting materials such as Ni-based alloys are generally suitable materials as a base material for each part of steam turbine equipment exposed to high-temperature steam because they are not only high-temperature strength but also excellent in weldability and low cost. Can do.
  • casting materials such as Ni-based alloys have a property that yield stress is low.
  • At least one embodiment of the present invention is a steam turbine capable of appropriately sealing between members made of a cast material such as a Ni-based alloy even under a steam temperature condition of 650 ° C. or higher.
  • the purpose is to provide equipment.
  • a steam turbine facility is a steam turbine facility in which steam at 650 ° C. or higher is used, each of which is a casting material made of at least one of Ni-based alloy, austenitic steel, and high chromium steel.
  • a first member and a second member that form a space through which the steam flows, and the first member and the second member, and a plurality of the first member and the second member are provided.
  • a metal gasket that is in line contact at a location, and each of the first member and the second member has a first high hardness layer that is harder than the base material at least in a portion that is in line contact with the metal gasket. It is provided.
  • the first high hardness layer may be a high hardness film formed on the base material of the first member and the second member by any method such as thermal spraying, plating, build-up welding, etc. And a high-hardness member formed separately from the base material of the second member and attached to the base material, or the first member cured by any technique such as nitriding or carburizing and quenching, and It may be the surface layer of the base material of the second member.
  • the first high-hardness layer has a hardness that can withstand the stress caused by the line contact with the metal gasket.
  • Examples of the material for the first high hardness layer include, for example, a Co-based alloy represented by Stellite and Trivalloy (both are registered trademarks), a high-hardness Ni-based alloy represented by Inconel 625 and Inconel 617 (both are registered trademarks), and chromium. Carbide, tungsten carbide, ceramics, cermet and the like can be used.
  • a metal gasket is provided between the first member and the second member in place of the graphite-based spiral gasket, so that high sealing performance can be realized even under severe steam temperature conditions of 650 ° C. or higher.
  • the first high hardness layer having a higher hardness than the base material a cast material such as a Ni-based alloy
  • the base material a cast material such as a Ni-based alloy
  • an annular convex portion provided in the first member and an annular concave portion provided in the second member are fitted, and the metal gasket is It is sandwiched between the convex seal surface formed on the annular convex portion and the concave seal surface formed on the annular concave portion, and is in line contact with each of the convex seal surface and the concave seal surface, and the outer periphery of the metal gasket is
  • the first high hardness layer is provided on the convex seal surface, the concave seal surface, and the wall surface, in line contact with the wall surface of the second member forming the outer peripheral edge of the annular recess.
  • a total of three metal gaskets with respect to the first member and the second member (the wall surface forming the outer peripheral edge of the convex seal surface of the first member, the concave seal surface of the second member, and the annular recess of the second member) ) makes it possible to effectively suppress steam leakage.
  • the first high hardness layer at the three line contact portions with the metal gasket of the first member and the second member the first member due to the high surface pressure at the line contact portion with the metal gasket, and The deformation of the second member can be suppressed.
  • the metal gasket has a cross-sectional shape having a notch, the metal gasket is disposed so that the notch faces the space side, and portions other than the notch are the convex seal surface and the concave The seal surface and the wall surface may be in line contact.
  • steam is introduced into the internal space of the metal gasket through the notch.
  • the steam causes the metal gasket to be pressed against the line contact portion between the first member and the second member with a high surface pressure.
  • the metal gasket configured as described above can achieve high sealing performance by a self-sealing function (self-sealing function) using steam pressure.
  • the self-sealing function of the metal gasket is to be expressed by utilizing the steam pressure, a higher surface pressure acts on the line contact portion between the first member and the second member with the metal gasket, and the first member and the second member. Becomes easier to deform.
  • the first high hardness layer is provided at the line contact portion between the first member and the metal gasket of the second member as described above, the deformation of the first member and the second member can be effectively suppressed.
  • the first member is in contact with the second member in an annular area on an outer peripheral side from a fitting position of the annular convex portion and the annular concave portion, and further than the annular area.
  • the second member is fastened to the second member, and a portion of the annular area where the first member and the second member abut is higher in hardness than the base material.
  • a high hardness layer is provided.
  • the distance between the convex seal surface of the first member and the concave seal surface of the second member is appropriately adjusted, and the desired seal by the metal gasket is achieved.
  • the second high hardness layer at the portion where the first member and the second member in the annular area abut even if the tightening force in the fastening area acts on the annular area, the first member and the second member in the annular area The deformation of the two members can be suppressed.
  • the second high hardness layer may be the same material as the first high hardness layer, or may be a different material from the first high hardness layer. In at least one embodiment, the second high hardness layer has a hardness that can withstand stress caused by contact between the first member and the second member in the annular area.
  • the second high-hardness layer is, for example, a Co-base alloy typified by Stellite or Trivalloy (all are registered trademarks), a high-hardness Ni-base alloy typified by Inconel 625 or Inconel 617 (all are registered trademarks), or chrome carbide. , Tungsten carbide, ceramics, cermet and the like can be used.
  • one of the first member and the second member is a valve casing of a steam valve, and the other of the first member and the second member is a bonnet of the steam valve attached to the valve casing. There may be.
  • the first member and the second member may form a flange connection portion between a pair of pipes through which the steam flows.
  • one of the first member and the second member is an upper half of a turbine casing (outer casing or inner casing), and the other of the first member and the second member is the turbine. It may be the lower half of the passenger compartment.
  • the turbine casing is generally made by metal-touching the upper half and the lower half on the horizontal dividing plane without providing a sealing mechanism such as a gasket.
  • a sealing mechanism such as a gasket.
  • the above-mentioned metal gasket is easy to be formed in a large size compared with the graphite-based spiral gasket, the above-mentioned metal gasket is provided between the upper half portion and the lower half portion of the turbine casing so as to seal the turbine casing. Can be improved.
  • a metal gasket is provided between the first member and the second member in place of the graphite-based spiral gasket, so that it is high even under severe steam temperature conditions of 650 ° C. or higher. Sealing performance can be realized.
  • the first high hardness layer having a higher hardness than the base material a cast material such as a Ni-based alloy
  • the base material a cast material such as a Ni-based alloy
  • FIG. 3 is an enlarged view of a region A in FIG. 2. It is a figure which shows a mode that the metal gasket of the shape example different from FIG. 3 was provided between the 1st member and the 2nd member.
  • Drawing 1 is a figure showing the whole steam turbine equipment composition concerning one embodiment.
  • the steam turbine equipment 1 includes a turbine group including an ultrahigh pressure turbine 2, a high pressure turbine 4, an intermediate pressure turbine 6, and a low pressure turbine 8, a generator 9 driven by the turbine group, and the turbine group. And a boiler 10 for generating supplied steam.
  • the shafts of the ultrahigh pressure turbine 2, the high pressure turbine 4, the intermediate pressure turbine 6, and the low pressure turbine 8 may be connected to each other on the same shaft, and may also be connected to the shaft of the generator 9.
  • the main steam generated by the superheater 12 installed in the boiler 10 is supplied to the ultrahigh pressure turbine 2 through the main steam pipe 13.
  • the main steam that has flowed into the ultrahigh pressure turbine 2 is discharged from the ultrahigh pressure turbine 2 after performing expansion work, and flows into the first reheater 14 installed in the boiler 10.
  • the steam reheated by the first reheater 14 flows into the high-pressure turbine 4 through the first reheat steam pipe 15.
  • the reheated steam that has flowed into the high pressure turbine 4 is discharged from the high pressure turbine 4 after performing expansion work, and flows into the second reheater 16 installed in the boiler 10.
  • the reheat steam reheated by the second reheater 16 flows into the intermediate pressure turbine 6 through the second reheat steam pipe 17.
  • the reheated steam flowing into the intermediate pressure turbine 6 is discharged from the intermediate pressure turbine 6 after performing expansion work, and flows into the low pressure turbine 8 through the crossover pipe 18.
  • the steam flowing into the low-pressure turbine 8 is discharged from the low-pressure turbine 8 after performing expansion work, condensed in the condenser 20, and returned to the boiler 10 by the boiler feed pump 22.
  • main steam supplied to the ultrahigh pressure turbine 2 via the main steam pipe 13 reheat steam supplied to the high pressure turbine 4 via the first reheat steam pipe 15,
  • the reheat steam supplied to the intermediate pressure turbine 6 through the second reheat steam pipe 17 is 650 ° C. or higher (for example, about 700 ° C.).
  • the main steam pressure is set to 30 MPa or more, for example, 35 MPa.
  • the main steam pipe 13, the first reheat steam pipe 15, and the second reheat steam pipe 17 are provided with steam valves such as stop valves and control valves.
  • FIG. 2 is a cross-sectional view showing a configuration example of the steam valve of the steam turbine equipment 1.
  • FIG. 3 is an enlarged view of region A in FIG.
  • the steam valve 30 has a configuration in which a valve body 38 is housed in a valve chamber 36 formed by a bonnet 32 and a valve casing 34.
  • the bonnet 32 and the valve casing 34 are cast materials made of at least one of Ni-based alloy, austenitic steel, and high chromium steel (Cr content 9 to 12%) (hereinafter referred to as “cast material such as Ni-based alloy”). Consists of.
  • the bonnet 32 is fastened to the valve casing 34 by a fastening member 33.
  • the valve body 38 includes a main valve 38A and a sub valve 38B included in the main valve 38A.
  • the main valve 38 ⁇ / b> A is provided to face the valve seat 35 of the valve casing 34.
  • a valve stem 40 is attached to the auxiliary valve 38B, and a driving force of an actuator (not shown) is transmitted through the valve stem 40.
  • the valve stem 40 slides in a guide bush 41 provided on the bonnet 32.
  • the sub-valve 38B attached to the valve stem 40 advances and retreats independently up to a predetermined lift amount, but advances and retreats together with the main valve 38A when the predetermined lift amount is reached.
  • a cylindrical strainer 42 for removing foreign substances contained in the steam is provided on the outer periphery of the valve body 38.
  • the bonnet 32 is generalized as a “first member 32” and the valve casing 34 is generalized as a “second member 34”.
  • the steam valve 30 to which the peripheral configuration of the gasket described below can be applied, in the steam pipe such as the main steam pipe 13, the first reheat steam pipe 15, and the second reheat steam pipe 17 in the steam turbine equipment 1.
  • a flange connection part is mentioned.
  • the first member 32 is a flange portion (first flange portion) of one pipe
  • the second member 34 is a flange portion (second flange portion) of the other pipe connected to the first flange portion. is there.
  • the first flange portion and the second flange portion are joined together at the flange joint surface and fastened together to form a space in which steam at 650 ° C. or higher flows.
  • the peripheral configuration of the gasket described below is applied to a turbine casing (outer casing or inner casing) of the super high pressure turbine 2, the high pressure turbine 4, the intermediate pressure turbine 6 and the like in the steam turbine facility 1. May be.
  • one of the first member 32 and the second member 34 is the upper half of the turbine casing, and the other of the first member 32 and the second member 34 is the lower half of the turbine casing.
  • the upper half part and lower half part of a turbine casing are joined in a horizontal division surface, and are mutually fastened, and form the space where 650 degreeC or more steam distribute
  • annular convex portion 50 provided in the first member 32 and the annular concave portion 52 provided in the second member 34 are fitted.
  • the convex sealing surface 51 of the annular convex portion 50 of the first member 32 faces the concave sealing surface 53 of the annular concave portion 52 of the second member 34.
  • a metal gasket 60 is provided between the convex seal surface 51 and the concave seal surface 53.
  • the metal gasket 60 has an annular shape that is continuous in the circumferential direction along the annular convex portion 50 and the annular concave portion 52, and has a substantially C-shaped cross-sectional shape provided with a notch 61.
  • the notch 61 is provided on the inner peripheral side of the metal gasket 60 and faces the space formed by the first member 32 and the second member 34 (for example, the valve chamber 36 in the steam valve 30). Therefore, high-pressure steam is introduced from the side of the space (for example, the valve chamber 36) into the internal space 62 of the metal gasket 60, and the metal gasket 60 swells due to the internal pressure.
  • the metal gasket 60 is pressed against the second member 34 and the first member 32 by the steam introduced into the internal space 62 through the notch 61. Therefore, the metal gasket 60 can realize high sealing performance by a self-sealing function (self-sealing function) using steam pressure.
  • the material of the metal gasket 60 is not particularly limited as long as it can withstand even under a steam condition of 650 ° C.
  • a high hardness Ni-based alloy may be selected as the material of the metal gasket 60.
  • the metal gasket 60 is typically formed of a material having a hardness higher than that of the base material (a cast material such as a Ni-based alloy) of the first member 32 and the second member 34.
  • the metal gasket 60 configured as described above is clamped between the convex seal surface 51 and the concave seal surface 53 by tightening the fastening member 33 in a state of being disposed between the convex seal surface 51 and the concave seal surface 53. Compressed in the vertical direction (vertical direction in FIG. 3). As a result, the metal gasket 60 expands in the lateral direction. At this time, the outer periphery of the metal gasket 60 contacts the wall surface 55 of the second member 34 that forms the outer peripheral edge of the annular recess 52. Therefore, the metal gasket 60 is in line contact with the first member 32 or the second member 34 at a total of three line contact portions 64, 66, 68.
  • the upper part of the metal gasket 60 is in line contact with the convex seal surface 51 on the first member 32 side in the line contact part 64, and the lower part of the metal gasket 60 is in the concave seal on the second member 34 side in the line contact part 66.
  • the outer periphery of the metal gasket 60 is in line contact with the wall surface 55 of the second member 34 that forms the outer peripheral edge of the annular recess 52 at the line contact portion 68.
  • the metal gasket 60 is brought into line contact with the first member 32 and the second member 34 at the three line contact portions 64, 66, and 68 in total, so that the metal gasket 60 is brought into contact with the first member 32 and the second member 34.
  • the two members 34 can be brought into close contact with each other and steam leakage can be effectively suppressed.
  • the first member 32 and the second member 34 are each provided with a first high hardness layer 56 at least at the line contact portions (64, 66, 68) with the metal gasket 60.
  • transformation of the 1st member 32 and the 2nd member 34 resulting from the high surface pressure in the line contact parts 64, 66, and 68 with the metal gasket 60 can be suppressed, and a steam leak can be prevented.
  • the first high hardness layer 56 includes line contact portions 64 and 66 over the entire convex seal surface 51 on the first member 32 side and the concave seal surface 53 on the second member 34 side. It may be provided in a wide range including.
  • the 1st high hardness layer 56 provided in each line contact part 64,66,68 may be comprised from the same kind material, and may be comprised from a different material.
  • the first high hardness layer 56 is made of a material having a higher hardness than the base material (a cast material such as a Ni-based alloy) of the first member 32 and the second member 34.
  • the material of the first high hardness layer 56 include, for example, a Co base alloy typified by stellite and trivalloy (all are registered trademarks), a high hardness Ni base alloy typified by Inconel 625 and Inconel 617 (all are registered trademarks), Chrome carbide, tungsten carbide, ceramics, cermet and the like can be used.
  • the first high hardness layer 56 may be a high hardness film formed on the base material of the first member 32 and the second member 34 by any method such as thermal spraying, plating, build-up welding, etc.
  • the first member 32 and the second member 34 may be formed as a separate member from the base material and may be a high-hardness member attached to the base material, or may be cured by any method such as nitriding or carburizing and quenching.
  • the surface layer of the base material of the first member 32 and the second member 34 may be used.
  • the 1st member 32 is the 2nd member 34 in the annular area 70 in the outer peripheral side rather than the fitting position of the annular convex part 50 and the annular recessed part 52. They are in contact with each other and are fastened to the second member 34 by the fastening member 33 in the fastening area 72 located further on the outer peripheral side than the annular area 70.
  • the first member 32 is brought into contact with the second member 34 in the annular area 70 provided on the outer peripheral side with respect to the fitting position between the annular convex portion 50 and the annular concave portion 52, thereby A distance between the convex seal surface 51 and the concave seal surface 53 located on the side is defined.
  • the interval between the convex seal surface 51 of the first member 32 and the concave seal surface 53 of the second member 34 is appropriately adjusted, The desired sealing performance by the metal gasket 60 is obtained. Further, it is possible to prevent the generation of excessive surface pressure at the line contact portions (64, 66, 68) of the second member 34 and the first member 32 with the metal gasket 60.
  • a second high hardness layer 71 may be provided in each of the portions where the first member 32 and the second member 34 abut in the annular area 70.
  • the second high hardness layer 71 is made of a material having higher hardness than the base material (a cast material such as a Ni-based alloy) of the second member 34 and the first member 32.
  • the base material a cast material such as a Ni-based alloy
  • the fastening force of the fastening member 33 in the fastening area 72 acts on the annular area 70.
  • the deformation of the first member 32 and the second member 34 in the annular area 70 can be suppressed.
  • Examples of the material of the second high hardness layer 71 include, for example, a Co-based alloy typified by Stellite and Trivalloy (all are registered trademarks), a high-hardness Ni-based alloy typified by Inconel 625,617 (all are registered trademarks), and chromium. Carbide, tungsten carbide, ceramics, cermet and the like can be used.
  • the second high hardness layer 71 may be a high hardness film formed on the base material of the first member 32 and the second member 34 by any method such as thermal spraying, plating, build-up welding,
  • the first member 32 and the second member 34 may be formed as a separate member from the base material and may be a high-hardness member attached to the base material, or may be cured by any method such as nitriding or carburizing and quenching.
  • the surface layer of the base material of the first member 32 and the second member 34 may be used.
  • a stepped portion 74 may be formed in the first member 32 or the second member 34, and a gap 75 may be provided between the first member 32 and the second member 34.
  • the metal gasket 60 is provided between the first member 32 and the second member 34 instead of the graphite-based spiral gasket.
  • High sealing performance can be realized even under the condition of steam temperature.
  • annular protrusion 50 is provided in the first member 32 and the annular recess 52 is provided in the second member 34 has been described.
  • annular recess 52 is provided in the first member 32
  • An annular protrusion 50 may be provided on the second member 34.
  • the example in which the metal gasket 60 having the cross-sectional shape provided with the notch 61 is used has been described.
  • the metal gasket provided between the first member 32 and the second member 34 may be used.
  • the shape is not limited to this example, and various types of metal gaskets can be used.
  • FIG. 4 is a diagram illustrating a state in which a metal gasket of another shape example is provided between the first member 32 and the second member 34. Since the configuration around the metal gasket shown in FIG. 4 is the same as that of the above-described embodiment, portions common to the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted here.
  • the metal gasket 80 is a hollow O-ring having a hollow portion 82 that is annularly continuous in the circumferential direction along the annular convex portion 50 and the annular concave portion 52.
  • the metal gasket 80 is clamped between the convex seal surface 51 and the concave seal surface 53 by tightening the fastening member 33 in a state where the metal gasket 80 is disposed between the convex seal surface 51 and the concave seal surface 53. Compressed in the vertical direction in FIG. As a result, the metal gasket 80 expands in the lateral direction. At this time, the outer periphery of the metal gasket 80 contacts the wall surface 55 of the second member 34 that forms the outer peripheral edge of the annular recess 52. Therefore, the metal gasket 80 is in line contact with the first member 32 or the second member 34 at a total of three line contact portions 84, 86, 88.
  • the upper portion of the metal gasket 80 is in line contact with the convex seal surface 51 on the first member 32 side in the line contact portion 84, and the lower portion of the metal gasket 80 is in the concave seal on the second member 34 side in the line contact portion 86.
  • the outer periphery of the metal gasket 80 is in line contact with the wall surface 55 of the second member 34 that forms the outer peripheral edge of the annular recess 52.
  • the material of the metal gasket 80 is not particularly limited as long as it can withstand steam conditions at 650 ° C.
  • a high hardness Ni-based alloy may be selected as the material of the metal gasket 80.
  • the metal gasket 80 is typically formed of a material having a hardness higher than that of the base material (a cast material such as a Ni-based alloy) of the first member 32 and the second member 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasket Seals (AREA)
  • Valve Housings (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 650℃以上の蒸気温度条件下においても、Ni基合金の鋳造材で構成された部材間を適切にシールすることができる蒸気タービン設備を提供することを目的とし、蒸気タービン設備1において、第1部材32及び第2部材34は、それぞれNi基合金、オーステナイト鋼、高クロム鋼の少なくとも一つからなる鋳造材で母材が構成され、650℃以上の蒸気が流通する空間を形成する。第1部材32と第2部材34との間にはメタルガスケット60,80が設けられる。メタルガスケット60,80は、第1部材32および第2部材34に複数箇所で線接触する。第1部材32及び第2部材34には、それぞれ、少なくともメタルガスケット60,80と線接触する部分に母材よりも高硬度である第1高硬度層56が設けられている。

Description

蒸気タービン設備
 本発明は、650℃以上の蒸気が用いられる蒸気タービン設備に関する。
 蒸気タービン設備では、ボイラから配管を介してタービン車室に蒸気を導いて、該蒸気によってタービンを駆動するようになっている。また、タービン車室に蒸気を供給するための蒸気管には蒸気弁(止め弁や加減弁)が設けられており、タービン車室に導入される蒸気を遮断したり、蒸気量を調節したりするようになっている。
 従来の蒸気タービン設備において、配管のフランジ接続部や蒸気弁などのシール部には、主として黒鉛系渦巻きガスケットが用いられていた。ここでいう黒鉛系渦巻きガスケットとは、金属製フープと黒鉛系材料のフィラーを交互に渦巻き状に巻いたセミメタルガスケットである。
 例えば、特許文献1には、無機質系の酸化抑制剤を配合した膨張黒鉛テープをフィラー材として用い、酸素雰囲気中での使用限界を500~600℃程度に高めた渦巻きガスケットが記載されている。
 ところが、蒸気タービン設備の性能向上の観点から蒸気の高温化が進められており、蒸気温度が650℃以上である蒸気タービン設備も普及しつつある。このような蒸気温度の条件が過酷な蒸気タービン設備の場合、特許文献1記載の黒鉛系渦巻きガスケットでは、黒鉛の酸化消失に起因したシール性の劣化が懸念される。
 そこで、特許文献2には、蒸気温度条件が過酷な蒸気タービン設備においても使用しうる自封式ガスケットが開示されている(特許文献2の段落0015参照)。この自封式ガスケットは、円環が切り欠かれた断面形状を有し、蒸気弁のケーシング及びボンネットに挟持され、これらに線接触することでケーシングとボンネット間のシールを行う。自封式ガスケットの使用時において、蒸気が切欠きを通って蒸気がガスケット内部に導入され、蒸気による内圧がガスケットに加わる。その結果、ケーシング及びボンネットの締め付け圧力が小さくても、高温高圧蒸気に対する優れたシール性を実現することができる。
特開平9-317894号公報 特開2010-43590号公報
 ところで、蒸気温度が650℃以上である蒸気タービン設備では、高温強度に優れたNi基合金等の鋳造材を用いて各部の母材を構成することがある。ここで、Ni基合金等の鋳造材は、一般に、高温強度だけでなく溶接性に優れ、低コストであるから、高温蒸気に曝される蒸気タービン設備の各部の母材として適切な材料ということができる。ところが、Ni基合金等の鋳造材は、降伏応力が低いという性質がある。
 したがって、特許文献1に記載の自封式ガスケットをNi基合金等の鋳造材を用いて各部の母材を構成した蒸気タービン設備に適用すると、ガスケットとの線接触部における高い面圧によって母材(Ni基合金等の鋳造材)が変形し、シール性が低下して蒸気漏れが生じるおそれがある。
 本発明の少なくとも一実施形態は、上述の事情に鑑みて、650℃以上の蒸気温度条件下においても、Ni基合金等の鋳造材で構成された部材間を適切にシールすることができる蒸気タービン設備を提供することを目的とする。
 本発明の少なくとも一実施形態に係る蒸気タービン設備は、650℃以上の蒸気が用いられる蒸気タービン設備であって、それぞれNi基合金、オーステナイト鋼、高クロム鋼の少なくとも一つからなる鋳造材で母材が構成され、前記蒸気が流通する空間を形成する第1部材及び第2部材と、前記第1部材と前記第2部材との間に設けられ、前記第1部材および前記第2部材に複数箇所で線接触するメタルガスケットとを備え、前記第1部材及び前記第2部材には、それぞれ、少なくとも前記メタルガスケットと線接触する部分に前記母材よりも高硬度である第1高硬度層が設けられていることを特徴とする。
 なお、第1高硬度層は、溶射、めっき、肉盛り溶接等の任意の手法で第1部材及び第2部材の母材上に形成された高硬度皮膜であってもよいし、第1部材及び第2部材の母材とは別体として形成されて前記母材に取り付けられた高硬度部材であってもよいし、窒化処理や浸炭焼入れ等の任意の手法によって硬化された第1部材及び第2部材の母材の表面層であってもよい。
 少なくとも一実施形態において、第1高硬度層は、メタルガスケットとの線接触により生じる応力に耐えられる程度の硬度を有する。第1高硬度層の材料として、例えば、ステライトやトリバロイ(いずれも登録商標)に代表されるCo基合金、インコネル625やインコネル617(いずれも登録商標)に代表される高硬度Ni基合金、クロムカーバイト、タングステンカーバイト、セラミックス、サーメット等を用いることができる。
 この蒸気タービン設備では、黒鉛系渦巻きガスケットに替えてメタルガスケットを第1部材と第2部材との間に設けるようにしたので、650℃以上という過酷な蒸気温度条件下でも高いシール性を実現できる。また、少なくとも第1部材及び第2部材のメタルガスケットとの線接触部に母材(Ni基合金等の鋳造材)よりも高硬度である第1高硬度層を設けたので、メタルガスケットとの線接触部における高い面圧に起因する第1部材及び第2部材の変形を抑制し、シール性の低下を抑制できる。
 したがって、650℃以上の蒸気温度条件下においても、Ni基合金等の鋳造材で構成された第1部材及び第2部材間を適切にシールすることができる。
 少なくとも一実施形態において、前記メタルガスケットの外周側において、前記第1部材に設けられた環状凸部と前記第2部材に設けられた環状凹部とが嵌合しており、前記メタルガスケットは、前記環状凸部に形成された凸シール面と前記環状凹部に形成された凹シール面とに挟まれて、前記凸シール面及び前記凹シール面にそれぞれ線接触しており、前記メタルガスケットの外周は、前記環状凹部の外周縁を形成する前記第2部材の壁面に線接触しており、前記第1高硬度層は、前記凸シール面、前記凹シール面及び前記壁面に設けられる。
 このように、第1部材及び第2部材に対してメタルガスケットを合計3箇所(第1部材の凸シール面、第2部材の凹シール面、第2部材の環状凹部の外周縁を形成する壁面)で線接触させることで、蒸気漏れを効果的に抑制することができる。また、第1部材及び第2部材のメタルガスケットとの上記3箇所の線接触部に第1高硬度層を設けることで、メタルガスケットとの線接触部における高い面圧に起因する第1部材及び第2部材の変形を抑制できる。
 また、前記メタルガスケットは、切欠きを有する断面形状であり、前記メタルガスケットは、前記切欠きが前記空間側に面するように配置され、前記切欠き以外の部分が前記凸シール面、前記凹シール面及び前記壁面に線接触していてもよい。
 このように、メタルガスケットを、その切欠きが前記空間(650℃以上の蒸気が流通する空間)側に面するように配置することで、切欠きを介してメタルガスケットの内部空間に蒸気が導入され、この蒸気によってメタルガスケットが高い面圧で第1部材及び第2部材との線接触部に押し付けられる。すなわち、上述のように構成したメタルガスケットは、蒸気の圧力を利用した自封機能(セルフシール機能)によって高いシール性を実現できる。
 一方、蒸気圧力を利用してメタルガスケットの自封機能を発現しようとすると、第1部材及び第2部材のメタルガスケットとの線接触部により一層高い面圧が作用して第1部材及び第2部材が変形しやすくなる。しかし、上述のように第1部材及び第2部材のメタルガスケットとの線接触部に第1高硬度層を設けておけば、第1部材及び第2部材の変形を効果的に抑制できる。
 また、少なくとも一実施形態において、前記第1部材は、前記環状凸部及び前記環状凹部の嵌合位置よりも外周側における環状エリアにおいて前記第2部材に当接しており、前記環状エリアよりもさらに外周側に位置する締結エリアにおいて前記第2部材に締結されており、前記環状エリアにおいて前記第1部材と前記第2部材とが当接する部分には、前記母材よりも高硬度である第2高硬度層が設けられている。
 このように、環状凸部と環状凹部との嵌合位置よりも外周側に設けられる環状エリアにおいて第1部材を第2部材に当接させることで、第1部材の凸シール面と第2部材の凹シール面との間隔が規定される。よって、締結エリアにて第1部材を第2部材に締結するだけで、第1部材の凸シール面と第2部材の凹シール面との間隔が適切に調節され、メタルガスケットによる所期のシール性が得られるとともに、メタルガスケットとの第1部材及び第2部材の線接触部における過度な面圧発生を防止できる。また、環状エリアにおける第1部材と第2部材とが当接する部分に第2高硬度層を設けることで、締結エリアにおける締め付け力が環状エリアに作用しても、環状エリアにおける第1部材及び第2部材の変形を抑制できる。
 なお、第2高硬度層は、第1高硬度層と同種の材料であってもよいし、第1高硬度層とは異なる材料であってもよい。少なくとも一実施形態において、第2高硬度層は、環状エリアにおける第1部材と第2部材との接触により生じる応力に耐えられる程度の硬度を有する。第2高硬度層は、例えば、ステライトやトリバロイ(いずれも登録商標)に代表されるCo基合金、インコネル625やインコネル617(いずれも登録商標)に代表される高硬度Ni基合金、クロムカーバイト、タングステンカーバイト、セラミックス、サーメット等を用いることができる。
 一実施形態において、前記第1部材及び前記第2部材の一方が蒸気弁の弁ケーシングであり、前記第1部材及び前記第2部材の他方が前記弁ケーシングに装着される前記蒸気弁のボンネットであってもよい。
 一実施形態において、前記第1部材及び前記第2部材が、前記蒸気が流通する一対の配管同士のフランジ接続部を形成してもよい。
 また一実施形態において、前記第1部材および前記第2部材の一方がタービン車室(外車室又は内車室)の上半部であり、前記第1部材および前記第2部材の他方が前記タービン車室の下半部であってもよい。
 タービン車室は、ガスケット等のシール機構を設けることなく、上半部と下半部とを水平分割面においてメタルタッチさせたものが一般的である。その理由の一つは、従来から蒸気弁のシール機構として用いられてきた黒鉛系渦巻きガスケットは、体格が蒸気弁に比べて大きいタービン車室をシールできるようなサイズのものを製造することが困難な点にある。上述のメタルガスケットは、黒鉛系渦巻きガスケットに比べて大型に形成しやすいから、上述のメタルガスケットをタービン車室の上半部と下半部との間に設けることで、タービン車室のシール性を改善することができる。
 本発明の少なくとも一実施形態によれば、黒鉛系渦巻きガスケットに替えてメタルガスケットを第1部材と第2部材との間に設けるようにしたので、650℃以上という過酷な蒸気温度条件下でも高いシール性を実現できる。また、少なくとも第1部材及び第2部材のメタルガスケットとの線接触部に母材(Ni基合金等の鋳造材)よりも高硬度である第1高硬度層を設けたので、メタルガスケットとの線接触部における高い面圧に起因する第1部材及び第2部材の変形を抑制し、シール性の低下を抑制できる。
 したがって、650℃以上の蒸気温度条件下においても、Ni基合金等の鋳造材で構成された第1部材及び第2部材間を適切にシールすることができる。
一実施形態に係る蒸気タービン設備の全体構成を示す図である。 蒸気タービン設備の蒸気弁の構成例を示す断面図である。 図2における領域Aの拡大図である。 図3とは異なる形状例のメタルガスケットを第1部材と第2部材との間に設けた様子を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態に係る蒸気タービン設備の全体構成を示す図である。
 一実施形態において、蒸気タービン設備1は、超高圧タービン2、高圧タービン4、中圧タービン6及び低圧タービン8からなるタービン群と、該タービン群によって駆動される発電機9と、該タービン群に供給される蒸気を生成するためのボイラ10とを備える。
 なお、超高圧タービン2、高圧タービン4、中圧タービン6及び低圧タービン8の各軸は、同一軸上にて互いに連結され、さらに発電機9の軸にも連結されていてもよい。
 超高圧タービン2には、ボイラ10に設置された過熱器12で生成された主蒸気が主蒸気管13を介して供給される。超高圧タービン2に流入した主蒸気は、膨張仕事を行った後に超高圧タービン2から排出され、ボイラ10に設置された第1再熱器14に流入する。第1再熱器14にて再熱された蒸気は、第1再熱蒸気管15を介して高圧タービン4に流入する。高圧タービン4に流入した再熱蒸気は、膨張仕事を行った後に高圧タービン4から排出され、ボイラ10に設置された第2再熱器16に流入する。第2再熱器16にて再熱された再熱蒸気は、第2再熱蒸気管17を介して中圧タービン6に流入する。中圧タービン6に流入した再熱蒸気は、膨張仕事を行った後に中圧タービン6から排出され、クロスオーバ管18を介して低圧タービン8に流入する。低圧タービン8に流入した蒸気は、膨張仕事を行った後に低圧タービン8から排出され、復水器20で復水され、ボイラ給水ポンプ22によりボイラ10に還流される。
 上記構成の蒸気タービン設備1では、主蒸気管13を介して超高圧タービン2に供給される主蒸気と、第1再熱蒸気管15を介して高圧タービン4に供給される再熱蒸気と、第2再熱蒸気管17を介して中圧タービン6に供給される再熱蒸気とは、650℃以上(例えば700℃程度)である。なお、主蒸気圧力は、30MPa以上、例えば35MPaに設定される。
 蒸気タービン設備1では、主蒸気管13、第1再熱蒸気管15及び第2再熱蒸気管17には、それぞれ、止め弁や加減弁等の蒸気弁が設けられる。
 図2は、蒸気タービン設備1の蒸気弁の構成例を示す断面図である。図3は、図2における領域Aの拡大図である。
 図2に示すように、蒸気弁30は、ボンネット32と弁ケーシング34とで形成された弁室36に弁体38が収納された構成を有する。ボンネット32及び弁ケーシング34は、Ni基合金、オーステナイト鋼、高クロム鋼(Cr含有率9~12%)の少なくとも一つからなる鋳造材(以下、“Ni基合金等の鋳造材”という。)で構成される。ボンネット32は、締結部材33によって弁ケーシング34に締結されている。
 弁体38は、主弁38Aおよび該主弁38Aに内包された副弁38Bにより構成される。主弁38Aは、弁ケーシング34の弁座35に対向して設けられる。副弁38Bには、弁棒40が取り付けられており、弁棒40を介して不図示のアクチュエータの駆動力が伝わるようになっている。弁棒40は、ボンネット32に設けられたガイドブシュ41内を摺動する。弁棒40に取り付けられた副弁38Bは、所定のリフト量までは単独で進退するが、所定のリフト量に達すると主弁38Aとともに進退するようになっている。なお、弁体38の外周には、蒸気に含まれる異物を除去するための円筒状のストレーナ42が設けられている。
 次に、図3を用いて、蒸気タービン設備1の各部において650℃以上の蒸気をシールするためのガスケットの構成について説明する。
 ここで、蒸気タービン設備1においては、650℃以上の蒸気が流通する部分をシールするためのガスケット周辺の構成は共通している。そのため、以下では、図3を参照してガスケット周辺の構成を説明する際、ボンネット32を「第1部材32」と一般化し、弁ケーシング34を「第2部材34」と一般化して説明する。
 以下で説明するガスケットの周辺構成が適用可能な蒸気弁30以外の例として、蒸気タービン設備1における主蒸気管13、第1再熱蒸気管15、第2再熱蒸気管17等の蒸気管におけるフランジ接続部が挙げられる。この場合、第1部材32が一方の配管のフランジ部(第1フランジ部)であり、第2部材34が前記第1フランジ部に接続される他方の配管のフランジ部(第2フランジ部)である。なお、第1フランジ部と第2フランジ部は、フランジ接合面において合されて互いに締結され、内部に650℃以上の蒸気が流通する空間を形成する。
 さらに別の例として、蒸気タービン設備1における超高圧タービン2,高圧タービン4,中圧タービン6等のタービン車室(外車室又は内車室)に、以下で説明するガスケットの周辺構成を適用してもよい。この場合、第1部材32及び第2部材34の一方がタービン車室の上半部であり、第1部材32及び第2部材34の他方がタービン車室の下半部である。なお、タービン車室の上半部と下半部は、水平分割面において合されて互いに締結され、内部に650℃以上の蒸気が流通する空間を形成する。
 図3に示すように、第1部材32に設けられた環状凸部50と第2部材34に設けられた環状凹部52とが嵌合している。第1部材32の環状凸部50の凸シール面51は、第2部材34の環状凹部52の凹シール面53に対向している。そして、凸シール面51と凹シール面53との間には、メタルガスケット60が設けられている。
 メタルガスケット60は、環状凸部50及び環状凹部52に沿って周方向に連続した環状であり、切欠き61が設けられた略C字形状の断面形状を有する。切欠き61は、メタルガスケット60の内周側に設けられており、第1部材32と第2部材34とで形成される空間(例えば蒸気弁30における弁室36)側に面している。そのため、前記空間(例えば弁室36)側から高圧の蒸気がメタルガスケット60の内部空間62に導入され、メタルガスケット60は内圧を受けて膨らむ。このように、切欠き61を介して内部空間62に導入された蒸気によって、メタルガスケット60は第2部材34及び第1部材32に押し付けられる。したがって、メタルガスケット60は、蒸気の圧力を利用した自封機能(セルフシール機能)によって高いシール性を実現できる。
 なお、メタルガスケット60の材料は、650℃の蒸気条件下でも耐え得るものであれば特に限定されないが、例えば、高硬度Ni基合金をメタルガスケット60の材料として選択してもよい。メタルガスケット60は、典型的には、第1部材32及び第2部材34の母材(Ni基合金等の鋳造材)よりも高硬度の材料で形成される。
 上記構成のメタルガスケット60は、凸シール面51と凹シール面53との間に配置された状態で締結部材33を締め付けることで、凸シール面51と凹シール面53とによって挟圧されて高さ方向(図3の上下方向)に圧縮される。その結果、メタルガスケット60は横方向に膨張する。このとき、メタルガスケット60の外周は、環状凹部52の外周縁を形成する第2部材34の壁面55に当接する。
 したがって、メタルガスケット60は、合計3箇所の線接触部64,66,68において、第1部材32又は第2部材34に線接触する。具体的には、線接触部64においてメタルガスケット60の上部が第1部材32側の凸シール面51に線接触し、線接触部66においてメタルガスケット60の下部が第2部材34側の凹シール面53に線接触し、線接触部68においてメタルガスケット60の外周が環状凹部52の外周縁を形成する第2部材34の壁面55に線接触している。
 このように、第1部材32及び第2部材34に対してメタルガスケット60を合計3箇所の線接触部64,66,68にて線接触させることで、メタルガスケット60を第1部材32及び第2部材34に確実に密着させ、蒸気漏れを効果的に抑制することができる。
 また、第1部材32及び第2部材34には、それぞれ、少なくともメタルガスケット60との線接触部(64,66,68)に第1高硬度層56が設けられている。これにより、メタルガスケット60との線接触部64,66,68における高い面圧に起因する第1部材32及び第2部材34の変形を抑制し、蒸気漏れを防止できる。
 なお、第1高硬度層56は、図3に示すように、第1部材32側の凸シール面51および第2部材34側の凹シール面53の全体に亘って線接触部64,66を含む広い範囲で設けられていてもよい。また、各線接触部64,66,68に設けられる第1高硬度層56は、同種材料から構成されていてもよいし、異種材料から構成されていてもよい。
 第1高硬度層56は、第1部材32及び第2部材34の母材(Ni基合金等の鋳造材)よりも高硬度である材料で構成される。第1高硬度層56の材料として、例えば、ステライトやトリバロイ(いずれも登録商標)に代表されるCo基合金、インコネル625やインコネル617(いずれも登録商標)に代表される高硬度Ni基合金、クロムカーバイト、タングステンカーバイト、セラミックス、サーメット等を用いることができる。
 なお、第1高硬度層56は、溶射、めっき、肉盛り溶接等の任意の手法で第1部材32及び第2部材34の母材上に形成された高硬度皮膜であってもよいし、第1部材32及び第2部材34の母材とは別体として形成されて前記母材に取り付けられた高硬度部材であってもよいし、窒化処理や浸炭焼入れ等の任意の手法によって硬化された第1部材32及び第2部材34の母材の表面層であってもよい。
 また、幾つかの一実施形態において、第1部材32は、図3に示すように、環状凸部50と環状凹部52との嵌合位置よりも外周側における環状エリア70において第2部材34と当接しており、環状エリア70よりもさらに外周側に位置する締結エリア72において締結部材33によって第2部材34に締結されている。
 このように、環状凸部50と環状凹部52との嵌合位置よりも外周側に設けられる環状エリア70において第1部材32を第2部材34に当接させることで、環状エリア70の内周側に位置する凸シール面51と凹シール面53との間隔が規定される。よって、締結エリア72にて第1部材32を第2部材34に締結するだけで、第1部材32の凸シール面51と第2部材34の凹シール面53との間隔が適切に調節され、メタルガスケット60による所期のシール性が得られる。また、メタルガスケット60との第2部材34及び第1部材32の線接触部(64,66,68)における過度な面圧発生を防止できる。
 また、環状エリア70において第1部材32と第2部材34とが当接する部分には、それぞれ、第2高硬度層71を設けてもよい。第2高硬度層71は、第2部材34及び第1部材32の母材(Ni基合金等の鋳造材)よりも高硬度である材料で構成される。このように環状エリア70における第1部材32と第2部材34とが当接する部分に第2高硬度層71を設けることで、締結エリア72における締結部材33の締め付け力が環状エリア70に作用しても、環状エリア70における第1部材32と第2部材34の変形を抑制できる。
 第2高硬度層71の材料として、例えば、ステライトやトリバロイ(いずれも登録商標)に代表されるCo基合金、インコネル625,617(いずれも登録商標)に代表される高硬度Ni基合金、クロムカーバイト、タングステンカーバイト、セラミックス、サーメット等を用いることができる。
 なお、第2高硬度層71は、溶射、めっき、肉盛り溶接等の任意の手法で第1部材32及び第2部材34の母材上に形成された高硬度皮膜であってもよいし、第1部材32及び第2部材34の母材とは別体として形成されて前記母材に取り付けられた高硬度部材であってもよいし、窒化処理や浸炭焼入れ等の任意の手法によって硬化された第1部材32及び第2部材34の母材の表面層であってもよい。
 なお、締結エリア72周辺において、第1部材32又は第2部材34に段差部74を形成し、第1部材32と第2部材34との間に隙間75を設けてもよい。
 このように、締結エリア72周辺に隙間75を設けることで、締結部材33の締め付け時にメタルガスケット60に大きな圧縮力が加わり、メタルガスケット60の線接触部64,66,68における第1部材32又は第2部材34への密着性が向上する。よって、メタルガスケット60のシール性を向上させることができる。
 以上説明したように、本発明の少なくとも一実施形態では、黒鉛系渦巻きガスケットに替えてメタルガスケット60を第1部材32と第2部材34との間に設けるようにしたので、650℃以上という過酷な蒸気温度条件下でも高いシール性を実現できる。また、少なくとも第1部材32及び第2部材34のメタルガスケット60との線接触部64,66,68に母材(Ni基合金等の鋳造材)よりも高硬度である第1高硬度層56を設けたので、メタルガスケット60との線接触部64,66,68における高い面圧に起因する第1部材32と第2部材34の変形を抑制し、シール性の低下を抑制できる。よって、蒸気漏れを防止して蒸気タービン設備1の信頼性向上を図るとともに、蒸気タービン設備1の長寿命化を図ることができる。
 したがって、650℃以上の蒸気温度条件下においても、Ni基合金等の鋳造材で母材が構成された第1部材32及び第2部材34間を適切にシールすることができる。
 以上、本発明の幾つかの実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、上述の幾つかの実施形態では、第1部材32に環状凸部50を設け、第2部材34に環状凹部52を設ける例について説明したが、第1部材32に環状凹部52を設け、第2部材34に環状凸部50を設けてもよい。
 また上述の幾つかの実施形態では、切欠き61が設けられた断面形状を有するメタルガスケット60を用いる例について説明したが、第1部材32と第2部材34との間に設けられるメタルガスケットの形状についてはこの例に限定されず、種々の形状のメタルガスケットを用いることができる。
 図4は、他の形状例のメタルガスケットを第1部材32と第2部材34との間に設けた様子を示す図である。なお、図4に示すメタルガスケット周辺の構成は上述の実施形態と同様であるから、上述の実施形態と共通する箇所は同一の符号を付して、ここではその説明を省略する。
 図4に示すように、メタルガスケット80は、環状凸部50及び環状凹部52に沿って周方向に連続した環状であり、中空部82を有する中空Oリングである。メタルガスケット80は、凸シール面51と凹シール面53との間に配置された状態で締結部材33を締め付けることで、凸シール面51と凹シール面53とによって挟圧されて高さ方向(図4の上下方向)に圧縮される。その結果、メタルガスケット80は横方向に膨張する。このとき、メタルガスケット80の外周は、環状凹部52の外周縁を形成する第2部材34の壁面55に当接する。したがって、メタルガスケット80は、合計3箇所の線接触部84,86,88において、第1部材32又は第2部材34に線接触する。具体的には、線接触部84においてメタルガスケット80の上部が第1部材32側の凸シール面51に線接触し、線接触部86においてメタルガスケット80の下部が第2部材34側の凹シール面53に線接触し、線接触部88においてメタルガスケット80の外周が環状凹部52の外周縁を形成する第2部材34の壁面55に線接触している。
 なお、メタルガスケット80の材料は、650℃の蒸気条件下でも耐え得るものであれば特に限定されないが、例えば、高硬度Ni基合金をメタルガスケット80の材料として選択してもよい。メタルガスケット80は、典型的には、第1部材32及び第2部材34の母材(Ni基合金等の鋳造材)よりも高硬度の材料で形成される。

Claims (8)

  1.  650℃以上の蒸気が用いられる蒸気タービン設備であって、
     それぞれNi基合金、オーステナイト鋼、高クロム鋼の少なくとも一つからなる鋳造材で母材が構成され、前記蒸気が流通する空間を形成する第1部材及び第2部材と、
     前記第1部材と前記第2部材との間に設けられ、前記第1部材および前記第2部材に複数箇所で線接触するメタルガスケットとを備え、
     前記第1部材及び前記第2部材には、それぞれ、少なくとも前記メタルガスケットと線接触する部分に前記母材よりも高硬度である第1高硬度層が設けられていることを特徴とする蒸気タービン設備。
  2.  前記メタルガスケットの外周側において、前記第1部材に設けられた環状凸部と前記第2部材に設けられた環状凹部とが嵌合しており、
     前記メタルガスケットは、前記環状凸部に形成された凸シール面と前記環状凹部に形成された凹シール面とに挟まれて、前記凸シール面及び前記凹シール面にそれぞれ線接触しており、
     前記メタルガスケットの外周は、前記環状凹部の外周縁を形成する前記第2部材の壁面に線接触しており、
     前記第1高硬度層は、前記凸シール面、前記凹シール面及び前記壁面に設けられていることを特徴とする請求項1に記載の蒸気タービン設備。
  3.  前記メタルガスケットは、切欠きを有する断面形状であり、
     前記メタルガスケットは、前記切欠きが前記空間側に面するように配置され、前記切欠き以外の部分が前記凸シール面、前記凹シール面及び前記壁面に線接触していることを特徴とする請求項2に記載の蒸気タービン設備。
  4.  前記第1部材は、前記環状凸部及び前記環状凹部の嵌合位置よりも外周側における環状エリアにおいて前記第2部材に当接しており、前記環状エリアよりもさらに外周側に位置する締結エリアにおいて前記第2部材に締結されており、
     前記環状エリアにおいて前記第1部材と前記第2部材とが当接する部分には、前記母材よりも高硬度である第2高硬度層が設けられていることを特徴とする請求項2又は3に記載の蒸気タービン設備。
  5.  前記第1高硬度層はCo基合金で形成されたことを特徴とする請求項1乃至4のいずれか一項に記載の蒸気タービン設備。
  6.  前記第1部材及び前記第2部材の一方が蒸気弁の弁ケーシングであり、
     前記第1部材及び前記第2部材の他方が前記弁ケーシングに装着される前記蒸気弁のボンネットであることを特徴とする請求項1乃至5のいずれか一項に記載の蒸気タービン設備。
  7.  前記第1部材及び前記第2部材が、前記蒸気が流通する一対の配管同士のフランジ接続部を形成することを特徴とする請求項1乃至5のいずれか一項に記載の蒸気タービン設備。
  8.  前記第1部材および前記第2部材の一方がタービン車室の上半部であり、
     前記第1部材および前記第2部材の他方が前記タービン車室の下半部であることを特徴とする請求項1乃至5のいずれか一項に記載の蒸気タービン設備。
PCT/JP2012/082846 2012-07-02 2012-12-18 蒸気タービン設備 WO2014006778A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN2639MUN2014 IN2014MN02639A (ja) 2012-07-02 2012-12-18
EP12880532.2A EP2889454B1 (en) 2012-07-02 2012-12-18 Steam turbine facility
CN201280074268.9A CN104471196B (zh) 2012-07-02 2012-12-18 蒸汽轮机设备
KR1020147035983A KR101651768B1 (ko) 2012-07-02 2012-12-18 증기 터빈 설비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148725A JP6037684B2 (ja) 2012-07-02 2012-07-02 蒸気タービン設備
JP2012-148725 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014006778A1 true WO2014006778A1 (ja) 2014-01-09

Family

ID=49776718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082846 WO2014006778A1 (ja) 2012-07-02 2012-12-18 蒸気タービン設備

Country Status (7)

Country Link
US (1) US8844288B2 (ja)
EP (1) EP2889454B1 (ja)
JP (1) JP6037684B2 (ja)
KR (1) KR101651768B1 (ja)
CN (1) CN104471196B (ja)
IN (1) IN2014MN02639A (ja)
WO (1) WO2014006778A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067463A1 (ja) * 2014-10-31 2016-05-06 三菱電機株式会社 流体制御バルブ
JP6654497B2 (ja) * 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
JP6718306B2 (ja) * 2016-05-20 2020-07-08 三菱日立パワーシステムズ株式会社 バルブ及び蒸気タービン設備
JP2021014791A (ja) * 2017-11-16 2021-02-12 日立オートモティブシステムズ株式会社 高圧燃料ポンプ
CN108757053A (zh) * 2018-05-29 2018-11-06 黄文中 一种高压、中压进汽管密装置
JP7199248B2 (ja) * 2019-02-22 2023-01-05 三菱重工業株式会社 車室、及び蒸気タービン
US11181004B2 (en) * 2020-02-07 2021-11-23 Raytheon Technologies Corporation Confinement of a rope seal about a passage using a backing plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203205A (ja) * 1990-11-29 1992-07-23 Mitsubishi Heavy Ind Ltd 蒸気タービン用主弁の耐摩耗力向上方法
JPH09317894A (ja) 1996-05-29 1997-12-12 Mitsubishi Heavy Ind Ltd 渦巻形ガスケット
JP2003120327A (ja) * 2001-10-04 2003-04-23 Mitsubishi Heavy Ind Ltd ガスタービンおよびこれに用いるチューブシール
JP2005291496A (ja) * 2004-03-31 2005-10-20 General Electric Co <Ge> ハイブリッドシール及びこれを組み込むシステム及び方法
JP2010043590A (ja) 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd 蒸気タービン用蒸気弁
JP2010144707A (ja) * 2008-12-22 2010-07-01 Mitsubishi Heavy Ind Ltd 蒸気タービンを含む熱機関の流体シール構造及びその製作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732020A (en) * 1952-08-07 1955-06-15 Maschf Augsburg Nuernberg Ag Improvements in gas-sealed joints between cylinder heads and cylinder blocks
FR1434435A (fr) * 1965-03-08 1966-04-08 Fleur Corp Ensemble de turbomachines
JPS58165505A (ja) * 1982-03-26 1983-09-30 Toshiba Corp 蒸気弁の蒸気漏洩防止装置
US4646782A (en) * 1984-10-22 1987-03-03 Westinghouse Electric Corp. Surge suppressing check valve
JPH068378A (ja) 1992-06-23 1994-01-18 Okura Ind Co Ltd 人造石積層板及びその製造方法
US5749227A (en) * 1995-06-07 1998-05-12 Electric Boat Corporation Steam seal air removal system
JPH09324272A (ja) 1996-03-31 1997-12-16 Furontetsuku:Kk シール装置
JP4577813B2 (ja) * 2003-08-20 2010-11-10 イーグル・エンジニアリング・エアロスペース株式会社 シール装置
US20050151107A1 (en) 2003-12-29 2005-07-14 Jianchao Shu Fluid control system and stem joint
US7021632B2 (en) * 2004-03-04 2006-04-04 Flowserve Management Company Self-energized gasket and manufacturing method therefor
US8518483B2 (en) 2007-01-29 2013-08-27 Praxair Technology, Inc. Diptube apparatus and method for delivering vapor phase reagent to a deposition chamber
CH699066A1 (de) * 2008-07-01 2010-01-15 Alstom Technology Ltd Dichtung und Dichtungsanordnung zum Eindämmen von Leckströmungen zwischen benachbarten Bauteilen von Strömungsmaschinen, insbesondere Gasturbinen.
JP5364561B2 (ja) * 2009-12-22 2013-12-11 株式会社東芝 フランジ締結部及びフランジ締結部の冷却システム
CA2779721C (en) * 2011-06-08 2019-12-17 Quantum Supply Ltd. Gate valve
JP5743100B2 (ja) * 2012-04-27 2015-07-01 三菱日立パワーシステムズ株式会社 回転機械及び回転機械の大気放出機構の取付方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203205A (ja) * 1990-11-29 1992-07-23 Mitsubishi Heavy Ind Ltd 蒸気タービン用主弁の耐摩耗力向上方法
JPH09317894A (ja) 1996-05-29 1997-12-12 Mitsubishi Heavy Ind Ltd 渦巻形ガスケット
JP2003120327A (ja) * 2001-10-04 2003-04-23 Mitsubishi Heavy Ind Ltd ガスタービンおよびこれに用いるチューブシール
JP2005291496A (ja) * 2004-03-31 2005-10-20 General Electric Co <Ge> ハイブリッドシール及びこれを組み込むシステム及び方法
JP2010043590A (ja) 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd 蒸気タービン用蒸気弁
JP2010144707A (ja) * 2008-12-22 2010-07-01 Mitsubishi Heavy Ind Ltd 蒸気タービンを含む熱機関の流体シール構造及びその製作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2889454A4

Also Published As

Publication number Publication date
EP2889454A4 (en) 2016-02-24
IN2014MN02639A (ja) 2015-10-16
EP2889454A1 (en) 2015-07-01
US8844288B2 (en) 2014-09-30
KR101651768B1 (ko) 2016-08-26
US20140000258A1 (en) 2014-01-02
CN104471196A (zh) 2015-03-25
KR20150014511A (ko) 2015-02-06
JP2014009662A (ja) 2014-01-20
CN104471196B (zh) 2016-10-12
JP6037684B2 (ja) 2016-12-07
EP2889454B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6037684B2 (ja) 蒸気タービン設備
US9587747B2 (en) Flexible seals for process control valves
US7810816B1 (en) Seal
US10047622B2 (en) Flexible layered seal for turbomachinery
JP6240307B2 (ja) 板金タービンハウジング
US20110266797A1 (en) Seal Ring And Joint
JP6000071B2 (ja) 蒸気タービン
JP5931853B2 (ja) 2部品の封止ガスケットを有するバルブ
US20170314715A1 (en) Dissimilar piping joint at high temperature, high pressure transient and under cyclic loading
JP5047096B2 (ja) 蒸気弁装置
EP2339215B1 (en) Flange fastening section and cooling system of flange fastening section
US11644108B2 (en) Flow control valve having a sealing gasket with a secondary sealing surface
JP6846872B2 (ja) バタフライ弁用シートリングの固定構造と偏心型バタフライ弁
US20140366543A1 (en) Combustion equipment for use in a gas turbine engine
JP3200662U (ja) 金属ガスケット
JP5072767B2 (ja) 蒸気タービン用蒸気弁
GB2281607A (en) Gate valve seat with integral seal
US11319879B2 (en) Manufacturing method of turbine casing
JP2002206408A (ja) 蒸気タービン
JP2023518656A (ja) 融着被覆されたボール弁トリム
JP2013057282A (ja) バイメタルシール部品及びバイメタルシール部品を用いたタービンのシール構造
CN208719430U (zh) 可调节阀座补偿机构
JP2008215467A (ja) 金属ガスケット
JP2002286013A (ja) 高温高圧機器構成部品
JP2010112275A (ja) タービンロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035983

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012880532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012880532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE