WO2014000246A1 - 一种石墨烯薄膜及其制备方法和用途 - Google Patents

一种石墨烯薄膜及其制备方法和用途 Download PDF

Info

Publication number
WO2014000246A1
WO2014000246A1 PCT/CN2012/077843 CN2012077843W WO2014000246A1 WO 2014000246 A1 WO2014000246 A1 WO 2014000246A1 CN 2012077843 W CN2012077843 W CN 2012077843W WO 2014000246 A1 WO2014000246 A1 WO 2014000246A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene film
substrate
suspension
film according
Prior art date
Application number
PCT/CN2012/077843
Other languages
English (en)
French (fr)
Inventor
周明杰
吴凤
王要兵
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2012/077843 priority Critical patent/WO2014000246A1/zh
Priority to US14/400,788 priority patent/US20150125758A1/en
Priority to CN201280072979.2A priority patent/CN104271500B/zh
Priority to EP12879617.4A priority patent/EP2868627A4/en
Priority to JP2015518762A priority patent/JP5951896B2/ja
Publication of WO2014000246A1 publication Critical patent/WO2014000246A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of new material synthesis, in particular to a graphene film and a preparation method and use thereof.
  • the current collector is a structure or component that collects current. Its main function is to collect the current generated by the active material of the battery, provide an electron channel, accelerate the charge transfer, improve the coulombic efficiency of the charge and discharge, and satisfy the high conductivity and mechanical properties as a current collector. Good, light weight, small internal resistance and so on.
  • Graphene is a two-dimensional carbon atom crystal discovered by Andre K. Geim of the University of Manchester in 2004. Due to its unique structure and optoelectronic properties, it has become a research hotspot in the fields of carbon materials, nanotechnology, condensed matter physics and functional materials, attracting many scientific and technological workers.
  • Single-layer graphene has excellent electrical and thermal conductivity and low coefficient of thermal expansion, and its theoretical specific surface area is as high as 2630 m 2 /g (A Peigney, Ch Laurent, et al. Carbon, 2001, 39, 507 ), which can be used for effect transistors. , electrode materials, composite materials, liquid crystal display materials, sensors, etc.
  • Graphene can be prepared into a graphene film by a certain method. Since the specific surface area of graphene is large and its density is low, the graphene film is light in weight, and has high mechanical properties and high electrical conductivity. Basic performance metrics for energy harvesting applications.
  • the preparation method of the graphene film is mainly a filtration method and a spin coating method, wherein the filtration method takes a long time and has low efficiency, and the graphene film prepared by the spin coating method is generally thin and not uniform.
  • the present invention aims to provide a graphene film and a preparation method and use thereof, which are highly conductive and light in weight, and can be applied as a current collector in a supercapacitor and a lithium ion battery, thereby reducing
  • the weight of the current collector solves the problem of low energy density existing in the existing energy storage device, and greatly increases the energy density of the supercapacitor and the lithium ion battery, and the preparation method thereof is simple.
  • the present invention provides a method for preparing a graphene film, comprising the steps of:
  • the graphene and the cationic surfactant are ultrasonically dispersed in a solvent to obtain a graphene suspension having a positive charge on the surface;
  • the material of the substrate is polypropylene (PP), polymethyl methacrylate (PMMA), polycarbonate (PC) , polyethylene (PE), polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
  • PP polypropylene
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PE polyethylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the substrate decomposes at a high temperature of 500 to 1000 ° C, is easily removed, and is detached from the graphene film.
  • the cut substrate is sequentially placed in acetone, ethanol, and secondary water for 20 minutes. After the treatment is clean, rinse with a large amount of secondary water and blow dry with nitrogen.
  • the surface positive charge treatment is performed by immersing the substrate in a 1 to 5 g/L aqueous solution of polyethyleneimine for 10 to 30 minutes. Wash out after taking out and blow dry with nitrogen.
  • the strong acid mixture is a concentrated sulfuric acid and concentrated nitric acid mixture having a volume ratio of 1 to 3:1.
  • the drying is carried out under vacuum at 50 to 80 ° C for 12 to 24 hours.
  • the surface of the negatively charged graphene suspension has a concentration of 0.1 to 5 mg/mL.
  • the ultrasonic dispersion time is from 1 to 5 hours.
  • the concentration of the positively charged graphene suspension on the surface is 0.1 to 5 mg/mL.
  • the solvent is distilled water, ethanol, methanol or isopropanol.
  • the cationic surfactant is an ethanolammonium salt or a quaternary ammonium salt.
  • the cationic surfactant is a quaternary ammonium salt.
  • the ethanolic ammonium salt is diethanolamine or triethanolamine.
  • the quaternary ammonium salt is dodecyltrimethylammonium chloride.
  • the substrate with a positive charge on the surface after treatment is immersed in a negatively charged graphene suspension on the surface, and the negatively charged graphene is attached to the substrate by electrostatic attraction, and the surface of the substrate is excessively negatively charged. After being dried, it is immersed in the graphene suspension with positive charge on the surface, and further, the positively charged graphene on the surface is attached to the substrate by electrostatic attraction, washed, and dried to obtain a single layer. Structure of graphene film precursor.
  • the graphene film prepared by electrostatic attraction has a more uniform thickness, a more regular arrangement, and a higher electrical conductivity.
  • the operation of immersing the above-described negatively charged graphene suspension on the surface and the operation of immersing in the surface-charged graphene suspension are alternately repeated a plurality of times to obtain a graphene film precursor having a multilayer structure. Therefore, effective control of the thickness of the graphene film can be achieved.
  • the surface of the prepared graphene film precursor is excessively positively charged, so that it needs to be reduced at a high temperature to obtain a graphene film.
  • the substrate decomposes under high temperature heating and is detached from the product graphene film.
  • the specific operation of the graphene film precursor reduction is as follows: the graphene film precursor is placed in a tube furnace, an inert gas is introduced, and the flow rate of the inert gas is controlled to be 50 to 70 mL/min to 5 to 10 ° C / Min The temperature is raised to 500 ⁇ 1000 °C, and a mixed gas of inert gas and hydrogen is introduced, and the mixture is reduced for 0.5 to 2 hours, cooled to room temperature, and washed with water to obtain a graphene film.
  • the inert gas is one or more of nitrogen, argon or helium.
  • the volume fraction of hydrogen in the mixed gas of the inert gas and the hydrogen gas is 5 to 10%.
  • the present invention provides a graphene film which is prepared by the above method.
  • the thickness of the graphene film is 0.2 ⁇ 1 ⁇ m.
  • the present invention also provides the use of a graphene film as a current collector in a supercapacitor and a lithium ion battery.
  • the graphene film can be used as a positive or negative current collector for supercapacitors and lithium ion batteries. Can greatly improve the energy density of supercapacitors and lithium-ion batteries.
  • Fig. 1 is a SEM image showing a cross section of a graphene film obtained in Example 1 of the present invention.
  • a method for preparing a graphene film comprising the following steps:
  • the cut PP will be The substrate was sonicated in acetone, ethanol and secondary water for 20 min. After being cleaned, rinsed with a large amount of secondary water, dried with nitrogen, and then immersed in a 1 g / L polyethyleneimine (PEI) aqueous solution. The surface was subjected to surface charge treatment for 30 minutes, taken out, rinsed with secondary water and blown dry with nitrogen to obtain a PP substrate having a positively charged surface.
  • PEI polyethyleneimine
  • the obtained graphene film precursor is placed in a tube furnace, argon gas is introduced to drive off the air in the furnace, and then the flow rate of the argon gas is controlled to 50 mL/min, and the temperature is gradually increased at a temperature rising rate of 5 ° C /min to 500 At this time, a mixed gas of argon gas and hydrogen gas (hydrogen volume content 5%) was introduced, and the mixture was reduced at this temperature for 0.5 h to decompose the PP substrate, and the temperature was lowered to room temperature, and the surface was washed with water to obtain a graphene film.
  • argon gas is introduced to drive off the air in the furnace, and then the flow rate of the argon gas is controlled to 50 mL/min, and the temperature is gradually increased at a temperature rising rate of 5 ° C /min to 500
  • a mixed gas of argon gas and hydrogen gas hydrogen volume content 5%
  • the graphene film obtained in this example had a thickness of 1 ⁇ m.
  • FIG. 1 is a SEM image showing a cross section of a graphene film obtained in Example 1 of the present invention. From Figure 1 It can be seen that the graphene film has been successfully prepared, and the cross-sectional arrangement of the graphene film is relatively regular, indicating that the graphene film is relatively uniform.
  • a method for preparing a graphene film comprising the following steps:
  • the cut PC will be The substrate was sonicated in acetone, ethanol and secondary water for 20 min. After being cleaned, rinsed with a large amount of secondary water, dried with nitrogen, and then immersed in a 1 g / L polyethyleneimine (PEI) aqueous solution. The surface was subjected to surface charge treatment for 30 minutes, taken out, rinsed with secondary water and blown dry with nitrogen to obtain a PC substrate having a positively charged surface.
  • PEI polyethyleneimine
  • the obtained graphene film precursor is placed in a tube furnace, nitrogen is introduced to remove the air in the furnace, and then the flow rate of the nitrogen gas is controlled to be 50 mL/min, and the temperature is gradually raised to 500 at a heating rate of 5 ° C /min.
  • a mixed gas of nitrogen and hydrogen hydrogen volume 5% was introduced, and the mixture was reduced at this temperature for 0.5 h to decompose the PC substrate, and the temperature was lowered to room temperature, and the surface was washed with water to obtain a graphene film.
  • the graphene film obtained in this example had a thickness of 0.6 ⁇ m.
  • a method for preparing a graphene film comprising the following steps:
  • the cut PMMA will be The substrate was sequentially sonicated in acetone, ethanol and secondary water for 20 min. After being cleaned, it was rinsed with a large amount of secondary water, dried with nitrogen, and then immersed in a 3 g / L polyethyleneimine (PEI) aqueous solution. The surface was subjected to surface charge treatment at 20 min, taken out, rinsed with secondary water and blown dry with nitrogen to obtain a PMMA substrate having a positively charged surface.
  • PEI polyethyleneimine
  • the obtained graphene film precursor is placed in a tube furnace, and the helium gas is introduced to remove the air in the furnace, and then the flow rate of the helium gas is controlled to be 60 mL/min, and the temperature is gradually increased at a heating rate of 5 ° C /min to 800 °C, at this time, a mixture of helium and hydrogen (10% hydrogen volume) is introduced, and the mixture is reduced at this temperature for 1 hour, the PMMA substrate is decomposed, the temperature is lowered to room temperature, and the surface is washed with water to obtain a graphene film.
  • the graphene film obtained in this example had a thickness of 0.4 ⁇ m.
  • a method for preparing a graphene film comprising the following steps:
  • the cut PET will be The substrate was sequentially sonicated in acetone, ethanol and secondary water for 20 min. After being cleaned, it was rinsed with a large amount of secondary water, dried with nitrogen, and then immersed in a 5 g / L polyethyleneimine (PEI) aqueous solution. After 10 min of surface charge treatment, it was taken out, rinsed with secondary water and blown dry with nitrogen to obtain a PET substrate having a positively charged surface.
  • PEI polyethyleneimine
  • the obtained graphene film precursor is placed in a tube furnace, argon gas is introduced to drive off the air in the furnace, and then the flow rate of the argon gas is controlled to be 70 mL/min, and the temperature is gradually raised at a heating rate of 5 ° C /min to At 1000 °C, a mixture of argon and hydrogen (hydrogen volume 8%) is introduced at this temperature for 2 h to decompose PET.
  • the substrate was cooled to room temperature, and the surface was washed with water to obtain a graphene film.
  • the graphene film obtained in this example had a thickness of 0.2 ⁇ m.
  • Example 1 2 3 4 Conductivity 10 4 S/m 1.54 1.46 1.28 1.13
  • the graphene film prepared by the preparation method of the invention has good mechanical properties, uniform thickness, strong electrical conductivity, light weight, easy thickness control, high stability and corrosion resistance, and can be used as a current collector of lithium ion batteries and super capacitors to reduce storage.
  • the quality of the device can greatly increase the energy density of the energy storage device while increasing its service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明提供了一种石墨烯薄膜的制备方法,包括以下步骤:提供洁净基底,进行表面正电荷化处理;分别制备表面带负电荷的石墨烯悬浮液和表面带有正电荷的石墨烯悬浮液;将经过表面处理后的基底浸入到表面带负电荷的石墨烯悬浮液中5~20min取出,洗净,吹干,再浸入到表面带正电荷的石墨烯悬浮液中5~20min取出,洗净,吹干,如此交替重复10~50次,得到石墨烯薄膜前驱体,在500~1000℃温度下还原,得到石墨烯薄膜。本发明提供的石墨烯薄膜的制备方法,制备工艺简单,薄膜厚度易控制;本发明提供的石墨烯薄膜质量轻,导电性强,可作为超级电容器和锂离子电池的集流体。

Description

一种石墨烯薄膜及其制备方法和用途 技术领域
本发明涉及新材料合成领域,特别是涉及一种石墨烯薄膜及其制备方法和用途。
背景技术
集流体是一种汇集电流的结构或零件,主要功能是将电池活性物质产生的电流汇集起来,提供电子通道,加快电荷转移,提高充放电库伦效率,作为集流体需要满足电导率高、机械性能好、质量轻、内阻小等特点。
石墨烯是 2004 年英国曼彻斯特大学的安德烈 ·K· 海姆 (Andre K. Geim) 等 发现的一种二维碳原子晶体。由于其独特的结构和光电性质使其成为碳材料、纳米技术、凝聚态物理和功能材料等领域的研究热点,吸引了诸多科技工作者。单层石墨烯拥有优良的导电、导热性能和低的热膨胀系数,并且其理论比表面积高达 2630m2 /g ( A Peigney, Ch Laurent, et al. Carbon, 2001, 39, 507 ),可用于效应晶体管、电极材料、复合材料、液晶显示材料、传感器等。石墨烯可通过一定的方法制备成石墨烯薄膜,由于石墨烯的比表面积较大,其密度较低,则石墨烯薄膜的质量较轻,同时具有高的机械性能和高电导率也能满足 储能器件集流体应用的基本性能指标。
目前石墨烯薄膜的制备方法主要为过滤法,旋涂法,其中过滤法所耗费的时间较长,效率低,旋涂法制备出的石墨烯薄膜一般比较薄,不够均匀。
发明内容
为解决上述问题,本发明旨在提供一种石墨烯薄膜及其制备方法和用途,该石墨烯薄膜导电性强,质量轻,可应用于超级电容器和锂离子电池中作为集流体,从而通过降低集流体的重量来解决现有储能器件存在的能量密度低的问题,大大提高超级电容器和锂离子电池的能量密度,其制备方法工艺简单。
第一方面,本发明提供一种石墨烯薄膜的制备方法,包括以下步骤:
提供洁净基底,进行表面正电荷化处理;
取石墨烯,加入到强酸混合液中, 60~80℃ 加热回流 10~24h ,干燥,得到表面带负电荷的石墨烯,将所述表面带负电荷的石墨烯超声分散于溶剂中,得到表面带负电荷的石墨烯悬浮液;
取石墨烯和阳离子表面活性剂超声分散于溶剂中,得到表面带有正电荷的石墨烯悬浮液;
将经过表面处理后的所述基底浸入到所述表面带负电荷的石墨烯悬浮液中 5~20min 取出,洗净,吹干,再浸入到所述表面带正电荷的石墨烯悬浮液中 5~20min 取出,洗净,吹干,如此交替重复 10~50 次,得到 石墨烯薄膜前驱体, 在 500~1000℃ 温度下还原,得到 石墨烯薄膜。
优选地,基底的材质为聚丙烯( PP )、聚甲基丙烯酸甲酯( PMMA )、 聚碳酸酯( PC ) 、聚乙烯( PE )、 聚对苯二甲酸乙二醇酯( PET )或聚萘二甲酸乙二醇酯( PEN )。
基底在 500~1000℃ 高温下会分解,易于除去,与产物石墨烯薄膜相脱离。
基底的清洁操作:将剪裁好的基底依次置于丙酮、乙醇、二次水中超声处理 20min ,处理干净后,用大量二次水冲洗,氮气吹干。
优选地,表面正电荷化处理的操作为:将基底浸入 1~5g/L 的聚乙烯亚胺水溶液中 10~30min ,取出后洗净,氮气吹干。
优选地,强酸混合液为体积比为 1~3 : 1 的浓 硫酸和浓硝酸混合液。
优选地,干燥为在 50~80℃ 下真空干燥 12~24h 。
优选地,表面带负电荷的石墨烯悬浮液的浓度为 0.1~5mg/mL 。
优选地,超声分散的时间为 1~5h 。
优选地,表面带正电荷的石墨烯悬浮液的浓度为 0.1~5mg/mL 。
优选地,溶剂为蒸馏水、乙醇、甲醇或异丙醇。
优选地,阳离子表面活性剂为乙醇铵盐或季铵盐。
更优选地,阳离子表面活性剂为季铵盐。
优选地,乙醇铵盐为二乙醇胺或三乙醇胺。
优选地,季铵盐为十二烷基三甲基氯化铵。
将经过处理后表面带正电荷的基底浸入到表面带负电荷的石墨烯悬浮液中,通过静电引力的作用使表面带负电荷的石墨烯附着于基底上,此时基底表面负电荷过剩,洗净,吹干后,再浸入到表面带正电荷的石墨烯悬浮液中,进一步通过静电引力的作用使表面带正电荷的石墨烯附着于基底上,洗净,吹干,即得到具有单层结构的石墨烯薄膜前驱体。
这样,通过静电引力制备得到的石墨烯薄膜厚度更加均匀,排列更加规整,电导率更高。
将上述浸入到表面带负电荷的石墨烯悬浮液的操作和浸入到表面带正电荷的石墨烯悬浮液的操作交替重复多次,即可得到具有多层结构的石墨烯薄膜前驱体。因此可实现对石墨烯薄膜厚度的有效控制。
制备得到的石墨烯薄膜前驱体表面由于正电荷过剩,因此需经高温还原,得到石墨烯薄膜。在高温还原的过程中,基底在高温加热下分解,与产物石墨烯薄膜相脱离。
优选地,石墨烯薄膜前驱体还原的具体操作为:将石墨烯薄膜前驱体放入管式炉中,通入惰性气体,控制惰性气体的流速为 50~70mL/min ,以 5~10℃/min 的速率升温至 500~1000℃,通入 惰性气体与氢气的混合气体,还原 0.5~2h ,降温到室温,用水洗净,得到石墨烯薄膜。
优选地,惰性气体为氮气、氩气或氦气中的一种或几种 。
优选地,惰性气体与氢气的混合气体中,氢气的体积分数为 5~10% 。
第二方面,本发明提供一种石墨烯薄膜,该石墨烯薄膜由上述方法制备得到。该石墨烯薄膜的厚度为 0.2~1μm 。
第三方面,本发明还提供了石墨烯薄膜作为集流体在超级电容器和锂离子电池中的应用。该石墨烯薄膜可作为超级电容器和锂离子电池的正极或负极集流体, 能大大提高超级电容器和锂离子电池的能量密度。
附图说明
图 1 为本发明 实施例一所制得的石墨烯薄膜截面的 SEM 图。
本发明的实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
实施例一
一种石墨烯薄膜的制备方法,包括以下步骤:
( 1 )提供洁净基底,进行表面正电荷化处理:将剪裁好的 PP 基底依次置于丙酮、乙醇、二次水中超声处理 20min ,处理干净后,用大量二次水冲洗,氮气吹干,再将基底浸入到 1g /L 的聚乙烯亚胺 (PEI) 水溶液中 30min 进行表面电荷化处理,取出后用二次水冲洗并用氮气吹干,得到表面带正电荷的 PP 基底。
( 2 )取石墨烯,加入到体积比为 1 : 1 的 浓硫酸与浓硝酸的混合溶液中, 60 ℃ 加热回流 24h , 在 50℃ 真空干燥 24h ,得到表面带负电荷的石墨烯,将该表面带负电荷的石墨烯超声分散于蒸馏水中,得到 浓度为 0.1mg/mL 的 表面带负电荷的石墨烯悬浮液;
( 3 )取石墨烯和二乙醇胺超声分散于蒸馏水中,得到 浓度为 0.1mg/mL 的 表面带有正电荷的石墨烯悬浮液;
( 4 )将经( 1 )表面处理后的 表面带正电荷的 PP 基底浸入到表面带负电荷的石墨烯悬浮液中 5min 取出,洗净,吹干,再浸入到所述表面带正电荷的石墨烯悬浮液中 5min 取出,洗净,吹干, 如此交替重复 50 次,得到石墨烯薄膜前驱体;
( 5 )将( 4 )所得的石墨烯薄膜前驱体,放入管式炉中,通入氩气赶走炉内的空气,然后控制氩气的流速为 50mL/min ,以 5 ℃ /min 的升温速率,缓慢升温至 500 ℃ ,此时通入氩气与氢气(氢气体积含量 5% )的混合气体,在此温度下还原 0.5h ,分解 PP 基底,降温到室温,用水冲洗表面,得到石墨烯薄膜。
本实施例所得石墨烯薄膜的厚度为 1μm 。
图 1 为本发明 实施例一所制得的石墨烯薄膜截面的 SEM 图。从图 1 中可以看出,石墨烯薄膜已经成功制备,石墨烯薄膜的截面排 列较为规整,说明石墨烯薄膜较为均匀。
实施例二
一种石墨烯薄膜的制备方法,包括以下步骤:
( 1 )提供洁净基底,进行表面正电荷化处理:将剪裁好的 PC 基底依次置于丙酮、乙醇、二次水中超声处理 20min ,处理干净后,用大量二次水冲洗,氮气吹干,再将基底浸入到 1g /L 的聚乙烯亚胺 (PEI) 水溶液中 30min 进行表面电荷化处理,取出后用二次水冲洗并用氮气吹干,得到表面带正电荷的 PC 基底。
( 2 )取石墨烯,加入到体积比为 1 : 1 的 浓硫酸与浓硝酸的混合溶液中, 60 ℃ 加热回流 24h , 在 50℃ 真空干燥 24h ,得到表面带负电荷的石墨烯,将该表面带负电荷的石墨烯超声分散于蒸馏水中,得到 浓度为 0.1mg/mL 的 表面带负电荷的石墨烯悬浮液;
( 3 )取石墨烯和二乙醇胺超声分散于蒸馏水中,得到 浓度为 0.1mg/mL 的 表面带有正电荷的石墨烯悬浮液;
( 4 )将经( 1 )表面处理后的 表面带正电荷的 PC 基底浸入到表面带负电荷的石墨烯悬浮液中 5min 取出,洗净,吹干,再浸入到所述表面带正电荷的石墨烯悬浮液中 5min 取出,洗净,吹干, 如此交替重复 30 次,得到石墨烯薄膜前驱体;
( 5 )将( 4 )所得的石墨烯薄膜前驱体,放入管式炉中,通入氮气赶走炉内的空气,然后控制氮气的流速为 50mL/min ,以 5 ℃ /min 的升温速率,缓慢升温至 500 ℃ ,此时通入氮气与氢气(氢气体积含量 5% )的混合气体,在此温度下还原 0.5h ,分解 PC 基底,降温到室温,用水冲洗表面,得到石墨烯薄膜。
本实施例所得石墨烯薄膜的厚度为 0.6μm 。
实施例三
一种石墨烯薄膜的制备方法,包括以下步骤:
( 1 )提供洁净基底,进行表面正电荷化处理:将剪裁好的 PMMA 基底依次置于丙酮、乙醇、二次水中超声处理 20min ,处理干净后,用大量二次水冲洗,氮气吹干,再将基底浸入到 3g /L 的聚乙烯亚胺 (PEI) 水溶液中 20min 进行表面电荷化处理,取出后用二次水冲洗并用氮气吹干,得到表面带正电荷的 PMMA 基底。
( 2 )取石墨烯,加入到体积比为 2 : 1 的 浓硫酸与浓硝酸的混合溶液中, 70 ℃ 加热回流 18h , 在 60℃ 真空干燥 18h ,得到表面带负电荷的石墨烯,将该表面带负电荷的石墨烯超声分散于蒸馏水中,得到 浓度为 2mg/mL 的 表面带负电荷的石墨烯悬浮液;
( 3 )取石墨烯和二乙醇胺超声分散于蒸馏水中,得到 浓度为 2mg/mL 的 表面带有正电荷的石墨烯悬浮液;
( 4 )将经( 1 )表面处理后的 表面带正电荷的 PMMA 基底浸入到表面带负电荷的石墨烯悬浮液中 10min 取出,洗净,吹干,再浸入到所述表面带正电荷的石墨烯悬浮液中 10min 取出,洗净,吹干, 如此交替重复 20 次,得到石墨烯薄膜前驱体;
( 5 )将( 4 )所得的石墨烯薄膜前驱体,放入管式炉中,通入氦气赶走炉内的空气,然后控制氦气的流速为 60mL/min ,以 5 ℃ /min 的升温速率,缓慢升温至 800 ℃ ,此时通入氦气与氢气(氢气体积含量 10% )的混合气体,在此温度下还原 1h ,分解 PMMA 基底,降温到室温,用水冲洗表面,得到石墨烯薄膜。
本实施例所得石墨烯薄膜的厚度为 0.4μm 。
实施例四
一种石墨烯薄膜的制备方法,包括以下步骤:
( 1 )提供洁净基底,进行表面正电荷化处理:将剪裁好的 PET 基底依次置于丙酮、乙醇、二次水中超声处理 20min ,处理干净后,用大量二次水冲洗,氮气吹干,再将基底浸入到 5g /L 的聚乙烯亚胺 (PEI) 水溶液中 10min 进行表面电荷化处理,取出后用二次水冲洗并用氮气吹干,得到表面带正电荷的 PET 基底。
( 2 )取石墨烯,加入到体积比为 3 : 1 的 浓硫酸与浓硝酸的混合溶液中, 80 ℃ 加热回流 10h , 在 80℃ 真空干燥 12h ,得到表面带负电荷的石墨烯,将该表面带负电荷的石墨烯超声分散于蒸馏水中,得到 浓度为 5mg/mL 的 表面带负电荷的石墨烯悬浮液;
( 3 )取石墨烯和二乙醇胺超声分散于蒸馏水中,得到 浓度为 5mg/mL 的 表面带有正电荷的石墨烯悬浮液;
( 4 )将经( 1 )表面处理后的 表面带正电荷的 PET 基底浸入到表面带负电荷的石墨烯悬浮液中 20min 取出,洗净,吹干,再浸入到所述表面带正电荷的石墨烯悬浮液中 20min 取出,洗净,吹干, 如此交替重复 10 次,得到石墨烯薄膜前驱体;
( 5 )将( 4 )所得的石墨烯薄膜前驱体,放入管式炉中,通入氩气赶走炉内的空气,然后控制氩气的流速为 70mL/min ,以 5 ℃ /min 的升温速率,缓慢升温至 1000 ℃ ,此时通入氩气与氢气(氢气体积含量 8% )的混合气体,在此温度下还原 2h ,分解 PET 基底,降温到室温,用水冲洗表面,得到石墨烯薄膜。
本实施例所得石墨烯薄膜的厚度为 0.2μm 。
采用四探针电阻测试仪测试实施例 1 ~ 4 制备的石墨烯薄膜的电导率,其测试结果如表 1 所示:
表 1 实施例 1 ~ 4 制备的石墨烯薄膜的电导率
实施例 1 2 3 4
电导率 104S/m 1.54 1.46 1.28 1.13
通过本发明制备方法制得的石墨烯薄膜机械性能好,厚度均匀,导电性强,质量轻,厚度易控制,稳定性高,不易腐蚀,可作为锂离子电池和超级电容器的集流体,减轻储能器件的质量,大大提高储能器件的能量密度,同时提高其使用寿命。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1、一种石墨烯薄膜的制备方法,其特征在于,包括以下步骤:
提供洁净基底,进行表面正电荷化处理;
取石墨烯,加入到强酸混合液中,60~80℃加热回流10~24h,干燥,得到表面带负电荷的石墨烯,将所述表面带负电荷的石墨烯超声分散于溶剂中,得到表面带负电荷的石墨烯悬浮液;
取石墨烯和阳离子表面活性剂超声分散于溶剂中,得到表面带有正电荷的石墨烯悬浮液;
2、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述基底的材质为聚丙烯、聚甲基丙烯酸甲酯、 聚碳酸酯 、聚乙烯、 聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯。
3、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述表面正电荷化处理的操作为:将所述基底浸入1~5g/L的聚乙烯亚胺水溶液中10~30min,取出后洗净,氮气吹干。
4、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述强酸混合液为体积比为1~3:1的浓硫酸和浓硝酸混合液。
5、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述表面带负电荷的石墨烯悬浮液的浓度为0.1~5mg/mL,所述表面带正电荷的石墨烯悬浮液的浓度为0.1~5mg/mL。
6、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述溶剂为蒸馏水、乙醇、甲醇或异丙醇,所述阳离子表面活性剂为乙醇铵盐或季铵盐。
7、如权利要求1所述的石墨烯薄膜的制备方法,其特征在于,所述在500~1000℃温度下还原的具体操作为将所述石墨烯薄膜前驱体放入管式炉中,通入惰性气体,控制惰性气体的流速为50~70mL/min,以5~10℃/min的速率升温至500~1000℃,通入惰性气体与氢气的混合气体,还原0.5~2h,降温到室温,用水洗净,得到所述石墨烯薄膜。
8、如权利要求7所述的石墨烯薄膜的制备方法,其特征在于,所述惰性气体为氮气、氩气或氦气中的一种或几种。
9、根据权利要求1~8择一所述方法制备得到的石墨烯薄膜,其特征在于,所述石墨烯薄膜的厚度为0.2~1μm。
10、如权利要求9所述的石墨烯薄膜作为集流体在超级电容器和锂离子电池中的应用。
PCT/CN2012/077843 2012-06-29 2012-06-29 一种石墨烯薄膜及其制备方法和用途 WO2014000246A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/077843 WO2014000246A1 (zh) 2012-06-29 2012-06-29 一种石墨烯薄膜及其制备方法和用途
US14/400,788 US20150125758A1 (en) 2012-06-29 2012-06-29 Graphene film, preparation method and application thereof
CN201280072979.2A CN104271500B (zh) 2012-06-29 2012-06-29 一种石墨烯薄膜及其制备方法和用途
EP12879617.4A EP2868627A4 (en) 2012-06-29 2012-06-29 GRAPHIC FILM, MANUFACTURING METHOD APPLYING THEREOF
JP2015518762A JP5951896B2 (ja) 2012-06-29 2012-06-29 グラフェンフィルム、並びにその製造方法及び使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077843 WO2014000246A1 (zh) 2012-06-29 2012-06-29 一种石墨烯薄膜及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014000246A1 true WO2014000246A1 (zh) 2014-01-03

Family

ID=49782094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077843 WO2014000246A1 (zh) 2012-06-29 2012-06-29 一种石墨烯薄膜及其制备方法和用途

Country Status (5)

Country Link
US (1) US20150125758A1 (zh)
EP (1) EP2868627A4 (zh)
JP (1) JP5951896B2 (zh)
CN (1) CN104271500B (zh)
WO (1) WO2014000246A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050240B2 (en) 2015-11-17 2018-08-14 Samsung Electronics Co., Ltd. Electrochemical cell
CN109830675A (zh) * 2019-04-04 2019-05-31 兰州理工大学 用于锂离子电池负极的MXene/MoS2复合材料制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244296B2 (ja) * 2014-12-15 2017-12-06 オリンパス株式会社 付着物の塗布方法
CN105006362B (zh) * 2015-07-28 2018-06-19 桂林电子科技大学 一种可剥离衬底的薄膜电容器制备方法
CN108178148B (zh) * 2015-08-07 2020-04-28 常州富烯科技股份有限公司 一种石墨烯薄膜的制备方法及石墨烯薄膜
WO2017048711A1 (en) * 2015-09-16 2017-03-23 Dow Global Technologies Llc Heat transfer fluid comprising functionalized carbon nanomaterial and method of making it
CN106129376A (zh) * 2016-08-30 2016-11-16 上海大学 锂离子电池用石墨烯空心球负载二硫化锡复合材料的负极极片
CN106710888A (zh) * 2017-02-14 2017-05-24 安聪聪 一种硒化钴/石墨烯复合纳米材料及其制备和一种超级电容器
CN106928480B (zh) * 2017-03-29 2019-10-01 重庆大学 一种基于分子模板原理的pedot:pss溶液及薄膜的制备方法
CN107482152B (zh) * 2017-07-31 2019-08-06 北京理工大学 一种锂硫电池用有机高分子增强石墨烯插层材料
CN109301157B (zh) * 2018-09-30 2021-12-14 东莞山锂电池科技有限公司 一种基于石墨烯薄膜的锂离子电池
CN110559881B (zh) * 2019-09-21 2023-09-08 盐城增材科技有限公司 一种用于水处理的氧化石墨烯/聚苯胺复合膜及制备方法
KR102373704B1 (ko) * 2019-12-05 2022-03-14 주식회사 포스코 그래핀 코팅 강판 및 이의 제조방법
CN115110100B (zh) * 2022-08-12 2024-01-19 陕西科技大学 石墨烯负载Co/CoCx异质结复合泡沫铜电催化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070284557A1 (en) * 2006-06-13 2007-12-13 Unidym, Inc. Graphene film as transparent and electrically conducting material
CN101559944A (zh) * 2009-05-27 2009-10-21 天津大学 导电石墨烯膜及其自组装制备方法
CN102021633A (zh) * 2009-09-09 2011-04-20 中国科学院金属研究所 一种石墨烯薄膜场发射材料的制备方法
CN102509634A (zh) * 2011-10-31 2012-06-20 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯基柔性多层复合膜及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2307591T3 (es) * 2000-02-25 2008-12-01 Hydro-Quebec Purificacion de la superficie del grafito natural y efecto de las impurezas sobre la trituracion y la distribucion granulometrica.
JP2003205568A (ja) * 2002-01-11 2003-07-22 Dainippon Printing Co Ltd ナノ粒子層積層体
US7951426B2 (en) * 2006-12-13 2011-05-31 Guardian Industries Corp. Hydrophilic coating and method of making same
US9105403B2 (en) * 2008-01-14 2015-08-11 The Regents Of The University Of California High-throughput solution processing of large scale graphene and device applications
JP4973569B2 (ja) * 2008-03-28 2012-07-11 株式会社豊田中央研究所 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
US8535553B2 (en) * 2008-04-14 2013-09-17 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
US8614466B2 (en) * 2008-11-18 2013-12-24 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Semiconductor for measuring biological interactions
WO2010069797A1 (en) * 2008-12-18 2010-06-24 Basf Se Electrochromic films prepared by supramolecular self-assembly
US20100239871A1 (en) * 2008-12-19 2010-09-23 Vorbeck Materials Corp. One-part polysiloxane inks and coatings and method of adhering the same to a substrate
CN101474898A (zh) * 2009-01-16 2009-07-08 南开大学 基于石墨烯的导电碳膜及制备方法和应用
CN101702345B (zh) * 2009-11-27 2011-08-03 南京邮电大学 一种叠层石墨烯导电薄膜的制备方法
US8920682B2 (en) * 2010-03-19 2014-12-30 Eastern Michigan University Nanoparticle dispersions with ionic liquid-based stabilizers
KR101244058B1 (ko) * 2010-04-15 2013-03-18 국립대학법인 울산과학기술대학교 산학협력단 층상 자기조립법을 이용한 그래핀 투명 박막의 제조방법
EP2569249B1 (de) * 2010-05-14 2017-07-12 Basf Se Verfahren zur einkapselung von metalloxiden mit graphen und die verwendung dieser materialien
JP5499980B2 (ja) * 2010-08-02 2014-05-21 富士電機株式会社 グラフェン薄膜の製造方法
EP2439779B1 (en) * 2010-10-05 2014-05-07 Samsung Electronics Co., Ltd. Transparent Electrode Comprising Doped Graphene, Process of Preparing the Same, and Display Device and Solar Cell Comprising the Electrode
CN102180439B (zh) * 2011-03-31 2013-05-22 华中科技大学 一种表面集成石墨烯的碳微结构及其制备方法
KR101978726B1 (ko) * 2011-06-03 2019-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
US9385397B2 (en) * 2011-08-19 2016-07-05 Nanotek Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
US9070932B2 (en) * 2011-10-11 2015-06-30 Massachusetts Institute Of Technology Carbon electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070284557A1 (en) * 2006-06-13 2007-12-13 Unidym, Inc. Graphene film as transparent and electrically conducting material
CN101559944A (zh) * 2009-05-27 2009-10-21 天津大学 导电石墨烯膜及其自组装制备方法
CN102021633A (zh) * 2009-09-09 2011-04-20 中国科学院金属研究所 一种石墨烯薄膜场发射材料的制备方法
CN102509634A (zh) * 2011-10-31 2012-06-20 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯基柔性多层复合膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CH LAURENT ET AL., CARBON, vol. 39, 2001, pages 507
See also references of EP2868627A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050240B2 (en) 2015-11-17 2018-08-14 Samsung Electronics Co., Ltd. Electrochemical cell
CN109830675A (zh) * 2019-04-04 2019-05-31 兰州理工大学 用于锂离子电池负极的MXene/MoS2复合材料制备方法
CN109830675B (zh) * 2019-04-04 2021-10-08 兰州理工大学 用于锂离子电池负极的MXene/MoS2复合材料制备方法

Also Published As

Publication number Publication date
US20150125758A1 (en) 2015-05-07
JP5951896B2 (ja) 2016-07-13
EP2868627A1 (en) 2015-05-06
JP2015527961A (ja) 2015-09-24
CN104271500B (zh) 2016-10-26
CN104271500A (zh) 2015-01-07
EP2868627A4 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014000246A1 (zh) 一种石墨烯薄膜及其制备方法和用途
WO2012088705A1 (zh) 一种碳包覆氧化石墨烯复合材料及其制备方法与应用
WO2012055095A1 (zh) 复合电极材料及其制备方法和应用
Sun et al. Metal-free SWNT/carbon/MnO2 hybrid electrode for high performance coplanar micro-supercapacitors
Sun et al. Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material
US7553341B2 (en) High power density supercapacitors with carbon nanotube electrodes
CN108117065B (zh) 一种采用交替电流剥离制备石墨烯的方法
TWI501455B (zh) 高功率密度液流電池用之電極製造方法
WO2018126818A1 (zh) 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法
CN110611092B (zh) 一种纳米二氧化硅/多孔碳锂离子电池负极材料的制备方法
US10954136B2 (en) Preparation method and application of tetragonal NaV2O5⋅H2O nanosheet-like powder
CN104201006B (zh) 一种碳纳米管/二氧化锰杂化超级电容器电极材料的制备方法及用途
CN102064322A (zh) 锂离子电池负极用的硅/石墨烯层状复合材料及其制备方法
Ghanashyam et al. Synthesis of nitrogen-doped plasma treated graphite for supercapacitor applications
CN107732186A (zh) 一种锂电池正极复合材料的制备方法
CN106683891A (zh) 一种高导电柔性石墨烯/介孔石墨化碳复合膜电极的制备方法
CN106450231A (zh) 一种氧化锡粒子/石墨烯纳米复合负极材料的制备方法
CN110867562B (zh) 一种锂电池硅碳复合薄膜负极的制备方法
CN113772732A (zh) 一种利用deet剥离制备二维材料纳米片的方法
Wang et al. Regulating the chemical bond of carbon cloth for growing uniform Sb2O5 as high-performance sodium ion batteries anode
CN111224074A (zh) 一种硅/石墨烯基自支撑薄膜的制备方法
JP6757017B2 (ja) カーボンナノ材料薄膜、カーボンナノ材料薄膜の製造方法及び電池用電極
CN114420928B (zh) 一种具有高性能的锂离子电池用硅碳负极材料及其制备方法、锂离子电池
CN118324134B (zh) 一种石墨烯锂电池复合材料及其制备方法
Hosseini et al. An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400788

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012879617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012879617

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015518762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE