WO2013189299A1 - 一种氮化镓基发光二极管 - Google Patents

一种氮化镓基发光二极管 Download PDF

Info

Publication number
WO2013189299A1
WO2013189299A1 PCT/CN2013/077609 CN2013077609W WO2013189299A1 WO 2013189299 A1 WO2013189299 A1 WO 2013189299A1 CN 2013077609 W CN2013077609 W CN 2013077609W WO 2013189299 A1 WO2013189299 A1 WO 2013189299A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
reflective layer
emitting diode
electrode
Prior art date
Application number
PCT/CN2013/077609
Other languages
English (en)
French (fr)
Inventor
郑建森
林素慧
彭康伟
洪灵愿
尹灵峰
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2013189299A1 publication Critical patent/WO2013189299A1/zh
Priority to US14/536,713 priority Critical patent/US9356190B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Definitions

  • the present invention relates to a gallium nitride based light emitting diode, and more particularly to a gallium nitride based high brightness light emitting diode having a reflective layer.
  • LED is a semiconductor light-emitting device fabricated using the principle of semiconductor P-N junction electroluminescence. LED has the advantages of no pollution, high brightness, low power consumption, long life, low operating voltage, and easy miniaturization. Since the 20th century Since the development of gallium nitride (GaN)-based LEDs in the 1990s, with the continuous development of research, the brightness of their luminescence has also been continuously improved, and the application fields are becoming wider and wider. With power type GaN-based LED Increased efficiency with GaN-based LEDs The replacement of existing illumination sources by semiconductor lamps will be an unstoppable trend. However, semiconductor lighting has to enter thousands of households, and there are still many problems to be solved. The most important one is production cost and luminous efficiency.
  • GaN gallium nitride
  • the P-GaN layer of the GaN-based LED epitaxial wafer has a small hole concentration, and the P-type layer has a small thickness, and most of the light is emitted from the P-type layer, but the P-type layer inevitably absorbs light, resulting in LED
  • the off-chip quantum efficiency is not high, which greatly reduces the luminous efficiency of the LED.
  • the transmittance of the ITO layer as the current spreading layer is high, but leads to LED The voltage is higher and the life is affected. In addition, under the applied voltage, due to the uneven current diffusion, the current density in some areas is large, which affects the LED lifetime.
  • the research on luminous efficiency is active.
  • the main techniques are the use of graphic substrate technology, distributed current blocking layer (also called current blocking layer), and distributed Bragg reflection layer (English is Distributed Bragg). Reflector, referred to as DBR) structure, transparent substrate, surface roughening, photonic crystal technology.
  • a substrate 100 is included, and an N-type layer is stacked from bottom to top. 101, the light-emitting region 102, the P-type layer 103, the current spreading layer 104, the P electrode 106, and the N electrode disposed on the exposed surface of the N-type layer 107 And a reflective layer 108 on the back of the substrate 100.
  • the light emitted by the luminescent layer, such as 1a, can exit from the front of the chip, while the light 1b Due to total reflection, it cannot be emitted from the front of the chip and can only be emitted from the side; the light 1c is directly emitted from the side; the light 1d and 1e, due to the back plating layer 108 Reflecting light, it is reflected by the back-plated reflective layer 108 and exits from the front of the chip.
  • a substrate 100 stacked from bottom to top N
  • the N electrode 107 on the exposed surface and the back surface of the substrate 100 are plated with a reflective layer 108.
  • the light emitted by the luminescent layer, such as 1a, can exit from the front of the chip, while the light 1b Due to total reflection, it cannot be emitted from the front of the chip and can only be emitted from the side; the light 1c is directly emitted from the side; the light 1d and 1e, due to the back plating layer 108 Reflecting light, it is reflected from the front surface of the chip after being reflected by the back-plated reflective layer 108; light 1f, due to the metal reflective layer 105 (usually Al or Ag material) and the back-plated reflective layer 108 (usually Al or Ag material or DBR The double-layer reflection of the material) finally emerges from the front side of the chip.
  • the metal reflective layer 105 usually Al or Ag material
  • the back-plated reflective layer 108 usually Al or Ag material or DBR
  • the light emitted from the light-emitting layer of the two known conventional light-emitting diode structures is mostly emitted from the front surface of the chip, and the light emitted from the side of the chip is relatively small, so that it is often generated.
  • the LED light distribution is uneven, the front axial light is too strong, the heat dissipation is not uniform, and the light angle is small.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a GaN-based high-brightness LED having a reflective layer. And its production method.
  • the invention passes through the epitaxial layer of the LED with P
  • a first reflective layer distributed in a strip shape is added between the electrodes (ie, an edge region of the epitaxial layer), and a second reflective layer is formed on the back surface of the substrate, and may further include a third reflective layer formed on the current spreading layer With P
  • this structure can effectively remove the light emitted by the luminescent layer and reduce P
  • the light absorption phenomenon of the electrode increases the light extraction efficiency.
  • the stripe-distributed first reflective layer distributed in the edge region of the surface of the epitaxial layer can adjust a part of the originally outgoing light to be emitted from the side, thereby enhancing the probability of light-collecting the side of the light-emitting diode, that is, controlling the light emitted by the light-emitting layer upward.
  • the proportion of the side exits, thereby adjusting the uniformity of the light distribution of the chip and improving the uneven heat dissipation.
  • the technical solution adopted by the present invention is to first form an epitaxial layer on the front surface of the substrate, then form a stripe-shaped first reflective layer on the epitaxial layer, and then fabricate a current diffusion layer.
  • the invention mainly comprises the following manufacturing process steps:
  • a second reflective layer is formed on the back side of the substrate.
  • step 2) causes the edge of the first reflective layer distributed in a strip shape to coincide with the edge of the surface of the epitaxial layer; step 4 ) such that the third reflective layer is located directly below the P electrode.
  • the above GaN-based high-brightness LED with a reflective layer comprises: a substrate having two sides on the front side and the back side; an epitaxial layer formed on the front surface of the substrate, comprising a P-type layer, a light-emitting area and an N-type layer from top to bottom; a current spreading layer formed in the Above the P-type layer; P An electrode is formed on the current spreading layer; a first reflective layer is located between the current spreading layer and the epitaxial layer, and is distributed in a strip shape in an edge region of the epitaxial layer; and a second reflective layer is located on the substrate The back.
  • the GaN-based high-brightness LED having the reflective layer may further include a third reflective layer formed on the current spreading layer Between the P electrodes, which is located directly below the P electrode.
  • the first reflective layer is distributed over the edge region of the epitaxial layer to form a closed loop.
  • the P electrode is located at an edge region of the current spreading layer, and the first reflective layer is located at the far side P The edge region of the epitaxial layer of the electrode.
  • the strip width of the first reflective layer is 5 to 30 ⁇ m.
  • the area of the first reflective layer accounts for 5% to 30% of the light-emitting area of the epitaxial layer.
  • the third reflective layer has a diameter of 50 to 200 ⁇ m.
  • the first reflective layer may be a distributed Bragg reflection layer, a metal reflection layer or an omnidirectional reflection layer.
  • the second reflective layer may be a distributed Bragg reflection layer, a metal reflective layer or an omnidirectional reflection layer.
  • the third reflective layer may be a distributed Bragg reflection layer, a metal reflective layer or an omnidirectional reflection layer.
  • the first and second reflective layers may be composed of alternating layers of high refractive index and low refractive index materials.
  • the high refractive index layer material is selected from TiO, TiO 2 , Ti 3 O 5 , Ti 2 O 3 , Ta 2 O 5 , ZrO 2 Or one of any combination of the foregoing;
  • the low refractive index layer material is selected from the group consisting of SiO 2 SiN x , Al 2 O 3 Or one of any combination of the foregoing.
  • the first, second, and third reflective layers may be aluminum (Al) or silver (Ag) or nickel (Ni). Or one of any combination of the foregoing.
  • the above substrate material is made of sapphire (Al 2 O 3 ) or silicon carbide (SiC).
  • the current spreading layer material is selected from nickel/gold alloy (Ni/Au) or nickel/indium tin oxide alloy (Ni/ITO). Or one or a combination of indium tin oxide (ITO) or zinc oxide (ZnO) or In doped ZnO or Al doped ZnO or Ga doped ZnO.
  • the beneficial effects of the invention are: the invention passes through the LED
  • the surface of the epitaxial layer is provided with a strip-shaped first reflective layer, which can adjust a part of the light originally emitted to the front surface of the chip to be emitted from the side, that is, the probability of lightening the side of the light emitting diode, thereby improving the uniformity of the light distribution of the chip.
  • Figure 1 is a schematic view showing the structure of a known formal light emitting diode.
  • FIG. 2 is a schematic view showing the structure of a known modified light-emitting diode.
  • FIG. 3 is a schematic cross-sectional view of a gallium nitride based high brightness light emitting diode disclosed in Embodiment 1 of the present invention.
  • Embodiment 4 is a top plan view of a gallium nitride based high brightness light emitting diode disclosed in Embodiment 1 of the present invention.
  • Figure 5 is a cross-sectional view showing a gallium nitride based high brightness light emitting diode disclosed in Embodiment 2 of the present invention.
  • FIG. 6 is a top plan view of a gallium nitride based high brightness light emitting diode disclosed in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a gallium nitride based high brightness light emitting diode disclosed in Embodiment 3 of the present invention.
  • Embodiment 8 is a top plan view of a gallium nitride based high brightness light emitting diode disclosed in Embodiment 3 of the present invention.
  • the present invention proposes The LED structure will be modified according to the application field and the needs of the process process, and some of its structure and size will be modified within a certain range, and the material selection will be modified.
  • GaN-based high-brightness LED with reflective layer disclosed in the following embodiments Including: substrate, epitaxial layer, current spreading layer, reflective structure and P, N electrodes.
  • the substrate can be selected from sapphire ( Al 2 O 3 ) either silicon carbide (SiC) or silicon wafer (Si).
  • sapphire Al 2 O 3
  • SiC silicon carbide
  • Si silicon wafer
  • the epitaxial layer may be formed on the surface of the substrate by epitaxial growth, and the bottom layer includes at least an N-type layer, a light-emitting layer and a P
  • the layer may further include a buffer layer, an electron blocking layer, etc., and the material may be a gallium nitride based semiconductor material.
  • the current spreading layer is located on the P-type layer and can be selected from nickel/gold alloy (Ni/Au) or nickel/indium tin oxide alloy ( Ni/ITO) or indium tin oxide (ITO) or zinc oxide (ZnO) or In doped ZnO or Al doped ZnO or Ga doped ZnO One or a combination thereof.
  • Ni/Au nickel/gold alloy
  • Ni/ITO nickel/indium tin oxide alloy
  • ITO indium tin oxide
  • ZnO zinc oxide
  • In doped ZnO or Al doped ZnO or Ga doped ZnO One or a combination thereof.
  • a P electrode is formed on the electrode extension layer for providing current injection to the luminescent layer.
  • the device can etch a portion of the P-type layer and the light-emitting layer to expose the N-type layer, and the N-electrode is formed on the surface of the exposed N-type layer.
  • N The electrodes are fabricated on the back side of the conductive substrate.
  • the reflective structure includes a first reflective layer and a second reflective layer.
  • the first reflective layer is located between the current spreading layer and the epitaxial layer, and is distributed in a strip shape in an edge region of the epitaxial layer, and may form a closed ring shape or may be located at the far side.
  • the edge region of the P electrode is non-closed.
  • the first reflective layer is formed on the p-type layer at p Between the type layer and the current spreading layer, it may be contained in the current spreading layer or in the epitaxial layer, and a distributed Bragg reflection layer, a metal reflective layer or an omnidirectional reflection layer may be selected.
  • the various parameters regarding the size and position of the first reflective layer structure can be adjusted according to the size of the chip size and the specific optical path.
  • the strip width of the first reflective layer is 5 ⁇ 30 microns, the area of which can account for 5% ⁇ 30% of the light-emitting area of the epitaxial layer.
  • the second reflective layer is located on the back side of the substrate, and a Bragg reflection layer, a metal reflection layer or an omnidirectional reflection layer may be selected. Still available A third reflective layer is disposed directly below the electrode, and is located between the current spreading layer and the P electrode, and has a diameter of 50-200. Micron.
  • the third reflective layer may be a distributed Bragg reflection layer, a metal reflection layer or an omnidirectional reflection layer.
  • Each of the reflective layers in the reflective structure may be composed of a layer of a high refractive index and a low refractive index material, and the high refractive index layer material may be selected from the group consisting of TiO, TiO 2 , Ti 3 O 5 , Ti 2 O 3 , Ta 2 O 5 , ZrO 2 Or one of any combination of the foregoing, the low refractive index layer material may be selected from SiO 2 SiN x Al 2 O 3 Or one of any combination of the foregoing.
  • the reflective layer in the reflective structure may also be a pure metal reflective layer such as aluminum (Al), silver (Ag) or nickel (Ni).
  • the bottom layer of the above light emitting diode structure is a sapphire substrate 200; an N-type layer 201 Formed on the sapphire substrate 200; the light-emitting region 202 is formed on the N-type layer 201; the P-type layer 203 is formed on the light-emitting region 202; the first reflective layer 204 A distributed Bragg reflection layer is formed on the P-type layer 203 and distributed on the edge region of the P-type layer 203 away from the P electrode, and the strip-shaped width is 15 ⁇ m, and the area occupies the light-emitting area of the epitaxial layer.
  • an ITO current spreading layer 205 is formed on the surface of the first reflective layer 204 and the exposed P-type layer 203; a P electrode 207 is formed on the current spreading layer 205; The N electrode 208 is formed on the exposed N-type layer 201; the second reflective layer 209 is formed on the back surface of the sapphire substrate 200 by using an omnidirectional reflection layer; wherein the Bragg reflection layer 204 is distributed. Alternating high refractive index TiO 2 Material and low refractive index SiO 2 Material composition.
  • the beneficial effect of this embodiment is that the present invention passes through the epitaxial layer P-type layer 203 of the LED.
  • the surface edge region is provided with a non-closed annular distributed Bragg reflection layer 204, except that the light rays 2a and 2e are emitted from the front side of the chip, and the light rays 2b and 2c From the side of the chip, it is also possible to adjust a part of the light originally emitted to the front of the chip to be emitted from the side, such as light 2d As shown, the probability of light emission from the side of the light-emitting diode is enhanced, thereby improving the uniformity of the light distribution of the chip, and providing a high-brightness and uniform light-emitting source.
  • a gallium nitride based high brightness light emitting diode as shown in FIG. 5 and FIG. 6 includes: sapphire substrate 200, N type layer 201 a light-emitting region 202, a p-type layer 203, a closed annular first reflective layer 204, a current spreading layer 205, a third reflective layer 206, a P electrode 207, and an N electrode 208 And a second reflective layer 209.
  • the bottom layer of the above light emitting diode structure is a sapphire substrate 200; an N-type layer 201 It is formed on the sapphire substrate 200; the light-emitting region 202 is formed on the N-type layer 201; and the P-type layer 203 is formed on the light-emitting region 202.
  • First reflective layer 204 A distributed Bragg reflection layer is selected and formed on the P-type layer 203 and distributed on the surface edge region of the P-type layer 203.
  • the strip width of the first reflective layer is 20 micrometers, and the area accounts for about the light-emitting area of the epitaxial layer. 25%.
  • An ITO current spreading layer 205 is formed on the surface of the closed-distributed Bragg reflection layer 204 and the exposed P-type layer 203.
  • the third reflective layer 206 is selected from Al a metal reflective layer formed on the surface layer of the ITO current spreading layer 205, the third reflective layer having a diameter larger than the diameter of the P electrode and having a value of about 90 ⁇ m; and the P electrode 207 being formed on the third reflective layer 206; the N electrode 208 is formed on the exposed N-type layer 201; the second reflective layer 209 is selected from the Al metal reflective layer and formed on the sapphire substrate 200.
  • the back. Distributed Bragg reflector layer 204 consists of alternating high refractive index TiO 2 Material and low refractive index SiO 2 Material composition.
  • the beneficial effect of this embodiment is that the present invention passes through the epitaxial layer P-type layer 203 of the LED.
  • the surface edge region is provided with a closed annular distributed Bragg reflection layer 204, except that the light rays 2a and 2e are emitted from the front side of the chip, and the light rays 2b and 2c From the side of the chip, it is also possible to adjust a part of the light originally emitted to the front of the chip to emit from the side, such as light 2d and 2f. As shown, the probability of light emission from the side of the light-emitting diode is enhanced, thereby improving the uniformity of the light distribution of the chip, and providing a high-brightness and uniform light-emitting source.
  • the third reflective layer 206 in the above structure It can be contained within the current spreading layer or above the current spreading layer.
  • this embodiment discloses a vertical structure of a gallium nitride based high brightness light emitting diode having a reflective layer structure.
  • Si is used as the substrate 200
  • the N electrode 208 is formed on the back surface of the substrate to constitute a vertically structured LED device structure.
  • the third reflective layer is an omnidirectional reflective layer with a diameter of 70
  • the micrometer and the third reflective layer 206 have a diameter smaller than the diameter of the P electrode, facilitating the contact conduction of the P electrode with the current spreading layer 205.
  • the main design spirit of the reflective layer structure of the present invention lies in: (1
  • the first reflective layer may be in a closed loop or in a non-closed loop; (2)
  • the edge region of the (ring)-like reflective layer coincides with the edge region of the surface of the epitaxial layer.

Abstract

一种氮化镓基发光二极管,包括:一具正、背两面的衬底(200);外延层,形成于所述衬底的正面上,自上而下依次包含P型层(203)、发光区(202)和N型层(201);电流扩展层(205),形成于所述P型层之上;P电极(207),形成所述电流扩展层之上;其特征在于:还包括第一反射层(204),位于所述电流扩展层与外延层之间,其呈带状分布在外延层的边缘区域;第二反射层(209),位于所述衬底的背面。本发明通过在LED外延层的表面边缘区域设置带状或环状的第一反射层,可以增强发光二极管的侧面取光的几率,即控制发光层发出的光线向上和侧面出射的比例,从而调整芯片的出光分布均匀性,改善散热不均匀现象。

Description

一种氮化镓基发光二极管
本申请主张如下优先权:中国发明专利申请号201210206024.3 ,题为 ' 一种氮化镓基发光二极管 ' ,于 2012 年 6 月 21日 提交。 上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种氮化镓基发光二极管,尤其是涉及一种具有反射层的氮化镓基高亮度发光二极管。
背景技术
发光二极管(英文为 Light Emitting Diode ,简称 LED )是利用半导体的 P-N 结电致发光原理制成的一种半导体发光器件。 LED 具有无污染、亮度高、功耗小、寿命长、工作电压低、易小型化等优点。自 20 世纪 90 年代氮化镓( GaN )基 LED 开发成功以来,随着研究的不断进展,其发光亮度也不断提高,应用领域也越来越广。随着功率型 GaN 基 LED 的效率不断提升,用 GaN 基 LED 半导体灯替代现有的照明光源将成为势不可挡的趋势。然而半导体照明要进入千家万户,还有许多问题需要解决,其中最核心的就是生产成本和发光效率。
目前,适合商用的蓝绿光 LED 都是基于 GaN 的 III-V 族化合物半导体材料;由于 GaN 基 LED 外延片的 P-GaN 层空穴浓度小,且 P 型层厚度小,绝大部分发光从 P 型层透出,但是 P 型层不可避免地对光有吸收作用,导致 LED 芯片外量子效率不高,大大降低了 LED 的发光效率。采用 ITO 层作为电流扩展层的透射率较高,但导致 LED 电压要高一些,寿命也受到影响。另外,在外加电压下,由于存在电流扩散不均匀,一些区域电流密度很大,影响 LED 寿命。总之,在外部量子效率方面,现有的 GaN 基 LED 还是显得不足,一方面与电流非均匀分布有关,另一方面则是与当光发射至电极会被电极本身所吸收有关。
为此,改善 LED 发光效率的研究较为活跃,主要技术有采用图形衬底技术、分布电流阻隔层(也称电流阻挡层)、分布布拉格反射层(英文为 Distributed Bragg Reflector ,简称 DBR )结构、透明衬底、表面粗化、光子晶体技术等。
参见图 1 ,在已知的一种正装发光二极管结构中,包括衬底 100 ,由下往上堆叠的 N 型层 101 、发光区 102 、 P 型层 103 、电流扩展层 104 、 P 电极 106 、设置在 N 型层 101 裸露表面上的 N 电极 107 以及衬底 100 下背镀反射层 108 。发光层发出的光线,如 1a ,可以从芯片的正面出射,而光线 1b 由于全反射作用,无法从芯片的正面出射,只能从侧面出射;光线 1c 则从侧面直接出射;光线 1d 和 1e ,由于背镀反射层 108 对光有反射作用,则经过背镀反射层 108 反射后从芯片的正面出射。
参见图 2 ,在另外一种已知的改进正装发光二极管结构中,包括衬底 100 ,由下往上堆叠的 N 型层 101 、发光区 102 、 P 型层 103 、电流扩展层 104 、金属反射层 105 、 P 电极 106 、设置在 N 型层 101 裸露表面上的 N 电极 107 以及衬底 100 下背镀反射层 108 。发光层发出的光线,如 1a ,可以从芯片的正面出射,而光线 1b 由于全反射作用,无法从芯片的正面出射,只能从侧面出射;光线 1c 则从侧面直接出射;光线 1d 和 1e ,由于背镀反射层 108 对光有反射作用,则经过背镀反射层 108 反射后从芯片的正面出射;光线 1f ,由于金属反射层 105 (通常为 Al 或 Ag 材料)和背镀反射层 108 (通常为 Al 或 Ag 材料或 DBR 材料)的双层反射作用,最后也从芯片的正面出射。由此可见,上述两种已知的正装发光二极管结构从发光层发出的光线多数由芯片的正面出射,而从芯片的侧面出射光线则相对较少,因此往往会产生 LED 出光分布不均匀、正面轴向出光过强、散热不够均匀、发光角度偏小的现象。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种具有反射层的 GaN 基高亮度 LED 及其制作方法。本发明通过在 LED 的外延层与 P 电极之间(即外延层的边缘区域)增设呈带状分布的第一反射层,以及在衬底的背面形成第二反射层,还可以包括一第三反射层,形成于所述电流扩展层与 P 电极之间,其位于所述 P 电极的正下方,这种结构可以有效地取出发光层发出的光线,减少 P 电极的吸光现象,从而增加出光效率。分布于外延层表面边缘区域的呈带状分布的第一反射层可以将一部分原本向上出射的光线调整为从侧面出射,增强发光二极管的侧面取光的几率,即控制发光层发出的光线向上和侧面出射的比例,从而调整芯片的出光分布均匀性,改善散热不均匀现象。
为达到上述目的,本发明所采用的技术方案是先在衬底正面上长外延层,然后在外延层上形成带状分布的第一反射层,再制作电流扩散层,制作 P 、 N 电极,最后在衬底的背面形成第二反射层,还可以包括制作 P 、 N 电极步骤之前,在所述电流扩展层与 P 电极之间形成第三反射层,使其位于所述 P 电极的正下方。
本发明主要包括以下制作工艺步骤:
1 )先在衬底正面上长外延层;
2 )在外延层表面的边缘区域上形成呈带状分布的第一反射层;
3 )在呈带状分布的第一反射层及裸露的外延层表面上形成电流扩展层;
4 )在电流扩展层的表层上镀第三反射层;
5 )分别在第三反射层上和裸露的 N 型层上制作 P 电极和 N 电极;
6 )最后在衬底的背面形成第二反射层。
其中,步骤 2 )使得在呈带状分布的第一反射层的边缘与外延层表面的边缘重合;步骤 4 )使得第三反射层位于 P 电极的正下方。
上述具有反射层的 GaN 基高亮度 LED ,包括:一具正、背两面的衬底;外延层,形成于所述衬底的正面上,自上而下依次包含 P 型层、发光区和 N 型层;电流扩展层,形成于所述 P 型层之上; P 电极,形成所述电流扩展层之上;第一反射层,位于所述电流扩展层与外延层之间,其呈带状分布在外延层的边缘区域;第二反射层,位于所述衬底的背面。
上述具有反射层的 GaN 基高亮度 LED 还可以包括一第三反射层,形成于所述电流扩展层与 P 电极之间,其位于所述 P 电极的正下方。
上述第一反射层分布在外延层的边缘区域,形成一个闭合的环形。
上述 P 电极位于电流扩展层的一个边缘区域,所述第一反射层位于所述远离 P 电极的外延层的边缘区域。
上述第一反射层的带状宽度为 5~30 微米。
上述第一反射层的面积占所述外延层发光面积的 5%~30% 。
上述第三反射层的直径为 50~200 微米。
上述第一反射层可为分布布拉格反射层、金属反射层或全方位反射层。
上述第二反射层可为分布布拉格反射层、金属反射层或全方位反射层。
上述第三反射层可为分布布拉格反射层、金属反射层或全方位反射层。
上述第一、第二反射层可以由交替的高折射率和低折射率材料层组成。其中,高折射率层材料选自 TiO 、 TiO2 、 Ti3O5 、 Ti2O3 、 Ta2O5 、 ZrO2 或前述的任意组合之一;低折射率层材料选自 SiO2 、 SiNx 、 Al2O3 或前述的任意组合之一。
上述第一、第二、第三反射层可以选用铝( Al )或者是银( Ag )或者是镍( Ni )或前述的任意组合之一。
上述衬底材料选用蓝宝石( Al2O3 )或者是碳化硅( SiC )。
上述电流扩展层材料选用镍 / 金合金( Ni/Au )或镍 / 氧化铟锡合金( Ni/ITO )或氧化铟锡( ITO )或氧化锌( ZnO )或 In 掺杂 ZnO 或 Al 掺杂 ZnO 或 Ga 掺杂 ZnO 中的一种或其组合。
与现有技术相比,本发明的有益效果是:本发明通过在 LED 的外延层的表面边缘区域设置带状的第一反射层,可以将一部分原本向芯片正面出射的光线调整为从侧面出射,即增强发光二极管的侧面出光的几率,从而改善芯片的出光分布均匀性,提供高亮度且均匀的发光源。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 是已知的正装发光二极管结构示意图。
图 2 是已知改进的正装发光二极管结构示意图。
图 3 是本发明实施例 1 公开的氮化镓基高亮度发光二极管的剖面示意图。
图 4 是本发明实施例 1 公开的氮化镓基高亮度发光二极管的俯视示意图。
图 5 是本发明实施例 2 公开的氮化镓基高亮度发光二极管的剖面示意图。
图 6 是本发明实施例 2 公开的氮化镓基高亮度发光二极管的俯视示意图。
图 7 是本发明实施例 3 公开的氮化镓基高亮度发光二极管的剖面示意图。
图 8 是本发明实施例 3 公开的氮化镓基高亮度发光二极管的俯视示意图。
图中部件符号说明:
100 :衬底
101 : N 型层
102 :发光区
103 : P 型层
104 :电流扩展层
105 :金属反射层
106 : P 电极
107 : N 电极
108 :反射层
200 :衬底
201 : N 型层
202 :发光区
203 : P 型层
204 :第一反射层
205 :电流扩展层
206 :第三反射层
207 : P 电极
208 : N 电极
209 :第二反射层。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。在具体的器件设计和制造中,本发明提出的 LED 结构将根据应用领域和工艺制程实施的需要,对其部分结构和尺寸在一定范围内作出修改,对材料的选取进行变通。
下列各实施例公开的一种具有反射层的 GaN 基高亮度 LED ,包括:衬底,外延层,电流扩展层,反射结构及 P 、 N 电极。
具体来说,衬底可选用材料可选用蓝宝石( Al2O3 )或者是碳化硅( SiC )或者是硅片( Si )等。对于水平结构的 LED 器件,选用绝缘性材料;而对于垂直结构的 LED 器件,则选用导电性材料。
外延层可通过外延生长形成于衬底的表面上,至下而上至少包括 N 型层,发光层和 P 型层,还可包括缓冲层、电子阻挡层等,材料可为氮化镓基半导体材料。
电流扩展层位于 P 型层上,可选用镍 / 金合金( Ni/Au )或镍 / 氧化铟锡合金( Ni/ITO )或氧化铟锡( ITO )或氧化锌( ZnO )或 In 掺杂 ZnO 或 Al 掺杂 ZnO 或 Ga 掺杂 ZnO 中的一种或其组合。
P 电极形成于电极扩展层上,用于为发光层提供电流注入。对于水平结构的 LED 器件,可蚀刻部分的 P 型层及发光层,露出 N 型层, N 电极形成于裸露的 N 型层表面上。对于垂直结构的 LED 器件, N 电极则制作在导电衬底的背面。
反射结构包括第一反射层和第二反射层。其中,第一反射层位于所述电流扩展层与外延层之间,其呈带状分布在外延层的边缘区域,可以形成一个闭合的环形,也可以是位于所述远离 P 电极的边缘区域,即呈非闭合状。更具体地,第一反射层形成于 p 型层上,位于 p 型层与电流扩展层之间,可含在电流扩展层,也可植入外延层中,可选用分布布拉格反射层、金属反射层或全方位反射层。关于第一反射层结构尺寸和位置的各个参数,可依据芯片尺寸的大小和具体光学路径进行调整设计。在某些实施例中,第一反射层的带状宽度为 5~30 微米,其面积可占所述外延层发光面积的 5%~30% 。第二反射层位于衬底的背面,可选用分布布拉格反射层、金属反射层或全方位反射层。还在可 P 电极的正下方设置一第三反射层,其位于电流扩展层与 P 电极之间,直径为 50~200 微米。第三反射层可选用分布布拉格反射层、金属反射层或全方位反射层。反射结构中的各反射层可采用高折射率和低折射率材料层组成,高折射率层材料可选自 TiO 、 TiO2 、 Ti3O5 、 Ti2O3 、 Ta2O5 、 ZrO2 或前述的任意组合之一,低折射率层材料可选自 SiO2 、 SiNx 、 Al2O3 或前述的任意组合之一。反射结构中的各反射层也可以采用纯金属反射层,如铝( Al )、银( Ag )或者镍( Ni )等。
下面结合实施例 1 、 2 、 3 及附图 3~8 对本发明具体实施的更多细节作说明。
实施例 1
如图 3 和图 4 所示的一种氮化镓基高亮度发光二极管,包括:蓝宝石衬底 200 、 N 型层 201 、发光区 202 、 P 型层 203 、非闭合环状的第一反射层 204 、电流扩展层 205 、 P 电极 207 、 N 电极 208 和第二反射层 209 。
具体来说,上述发光二极管结构中最底层为蓝宝石衬底 200 ; N 型层 201 形成于蓝宝石衬底 200 上;发光区 202 形成于 N 型层 201 上; P 型层 203 形成于发光区 202 上;第一反射层 204 选用分布布拉格反射层,形成于 P 型层 203 上且分布在远离 P 电极的 P 型层 203 边缘区域上,带状宽度为 15 微米,面积占所述外延层发光面积的 20% 左右; ITO 电流扩展层 205 形成于第一反射层 204 及裸露的 P 型层 203 表面上; P 电极 207 形成于电流扩展层 205 上; N 电极 208 形成于裸露的 N 型层 201 上;第二反射层 209 选用全方位反射层,形成于蓝宝石衬底 200 的背面;其中分布布拉格反射层 204 由交替的高折射率 TiO2 材料和低折射率的 SiO2 材料组成。
本实施例的有益效果是:本发明通过在 LED 的外延层 P 型层 203 的表面边缘区域设置非闭合环状的分布布拉格反射层 204 ,除了使得光线 2a 和 2e 从芯片正面出射,光线 2b 和 2c 从芯片的侧面出射,还可以将一部分原本向芯片正面出射的光线调整为从侧面出射,如光线 2d 所示,即增强发光二极管的侧面出光的几率,从而改善芯片的出光分布均匀性,提供高亮度且均匀的发光源。
实施例 2
如图 5 和图 6 所示的一种氮化镓基高亮度发光二极管,包括:蓝宝石衬底 200 、 N 型层 201 、发光区 202 、 P 型层 203 、闭合环状的第一反射层 204 、电流扩展层 205 、第三反射层 206 、 P 电极 207 、 N 电极 208 和第二反射层 209 。
具体来说,上述发光二极管结构中最底层为蓝宝石衬底 200 ; N 型层 201 形成于蓝宝石衬底 200 上;发光区 202 形成于 N 型层 201 上; P 型层 203 形成于发光区 202 上。第一反射层 204 选用分布布拉格反射层,形成于 P 型层 203 上且分布于 P 型层 203 表面边缘区域。第一反射层的带状宽度为 20 微米,面积约占所述外延层发光面积的 25% 。 ITO 电流扩展层 205 形成于闭合分布布拉格反射层 204 及裸露的 P 型层 203 表面上。第三反射层 206 选用 Al 金属反射层,形成于 ITO 电流扩展层 205 的表层上,第三反射层的直径大于 P 电极的直径,其值约为 90 微米; P 电极 207 形成于第三反射层 206 上; N 电极 208 形成于裸露的 N 型层 201 上;第二反射层 209 选用 Al 金属反射层,形成于蓝宝石衬底 200 的背面。分布布拉格反射层 204 由交替的高折射率 TiO2 材料和低折射率的 SiO2 材料组成。
本实施例的有益效果是:本发明通过在 LED 的外延层 P 型层 203 的表面边缘区域设置闭合环状的分布布拉格反射层 204 ,除了使得光线 2a 和 2e 从芯片正面出射,光线 2b 和 2c 从芯片的侧面出射,还可以将一部分原本向芯片正面出射的光线调整为从侧面出射,如光线 2d 和 2f 所示,即增强发光二极管的侧面出光的几率,从而改善芯片的出光分布均匀性,提供高亮度且均匀的发光源。
实际上,需要说明的是,上述结构中第三反射层 206 可含在电流扩展层之内,也可在电流扩展层上面。
实施例 3
与实施例 2 相比,本实施例公开了一种垂直结构的具有反射层结构的氮化镓基高亮度发光二极管。在本实施例,采用 Si 作为衬底 200 , N 电极 208 形成于衬底的背面,构成了垂直结构的 LED 器件结构。第三反射层选用全方位反射层,直径为 70 微米,且第三反射层 206 的直径小于 P 电极的直径,便于 P 电极与电流扩展层 205 接触传导。
综上所述,本发明反射层结构的主要设计精神在于:( 1 )第一反射层可以呈闭合环状,也可以是呈非闭合的环状;( 2 )带(环)状反射层的边缘区域与外延层表面的边缘区域重合。通过带(环)状反射层的合理设计和分布,可以使得一部分由 LED 芯片正面出射的光线调整为从侧面出射,从而改善 LED 芯片的出光分布均匀性。

Claims (10)

  1. 一种氮化镓基发光二极管,包括:一具正、背两面的衬底;外延层,形成于所述衬底的正面上,自上而下依次包含 P 型层、发光区和 N 型层;电流扩展层,形成于所述 P 型层之上; P 电极,形成所述电流扩展层之上;其特征在于:还包括
    第一反射层,位于所述电流扩展层与外延层之间,其呈带状分布在外延层的边缘区域;第二反射层,位于所述衬底的背面。
  2. 根据权利要求 1 所述一种氮化镓基发光二极管,其特征在于:还包括一第三反射层,形成于所述电流扩展层与 P 电极之间,其位于所述 P 电极的正下方。
  3. 根据权利 1 所述的一种氮化镓基发光二极管,其特征在于:所述第一反射层分布在外延层的边缘区域,形成一个闭合的环形。
  4. 根据权利要求 1 所述的一种氮化镓基发光二极管,其特征在于:所述 P 电极位于电流扩展层的一个边缘区域,所述第一反射层位于所述远离 P 电极的外延层的边缘区域。
  5. 根据权利要求 1 所述的一种氮化镓基发光二极管,其特征在于:所述第一反射层的带状宽度为 5~30 微米。
  6. 根据权利要求 1 所述的一种氮化镓基发光二极管,其特征在于:所述第一反射层的面积占所述外延层发光面积的 5%~30% 。
  7. 根据权利要求 2 所述的一种氮化镓基发光二极管,其特征在于:所述第三反射层的直径为 50~200 微米。
  8. 根据权利要求 1 所述的一种氮化镓基发光二极管,其特征在于:所述第一反射层为分布布拉格反射层、金属反射层或全方位反射层。
  9. 根据权利要求 1 所述的一种氮化镓基发光二极管,其特征在于:所述第二反射层为分布布拉格反射层、金属反射层或全方位反射层。
  10. 根据权利要求 2 所述的一种氮化镓基发光二极管,其特征在于:所述第三反射层为分布布拉格反射层、金属反射层或全方位反射层。
PCT/CN2013/077609 2012-06-21 2013-06-21 一种氮化镓基发光二极管 WO2013189299A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/536,713 US9356190B2 (en) 2012-06-21 2014-11-10 GaN-based LED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210206024.3A CN102709420B (zh) 2012-06-21 2012-06-21 一种氮化镓基发光二极管
CN201210206024.3 2012-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/536,713 Continuation US9356190B2 (en) 2012-06-21 2014-11-10 GaN-based LED

Publications (1)

Publication Number Publication Date
WO2013189299A1 true WO2013189299A1 (zh) 2013-12-27

Family

ID=46902063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077609 WO2013189299A1 (zh) 2012-06-21 2013-06-21 一种氮化镓基发光二极管

Country Status (3)

Country Link
US (1) US9356190B2 (zh)
CN (1) CN102709420B (zh)
WO (1) WO2013189299A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709420B (zh) * 2012-06-21 2014-07-30 安徽三安光电有限公司 一种氮化镓基发光二极管
CN102983233B (zh) * 2012-11-05 2015-09-23 江苏威纳德照明科技有限公司 氮化镓基发光二极管的制造方法
CN102983231B (zh) * 2012-11-05 2015-12-09 江苏威纳德照明科技有限公司 具有四方环状结构反射层的发光二极管的制造方法
CN102983238B (zh) * 2012-11-05 2015-07-15 江苏威纳德照明科技有限公司 具有环形反射层的发光器件的制造方法
CN102983232B (zh) * 2012-11-05 2016-04-13 江苏威纳德照明科技有限公司 垂直型发光二极管的制造方法
CN103078023A (zh) * 2013-01-31 2013-05-01 武汉迪源光电科技有限公司 一种双反射发光二极管
CN103400921A (zh) * 2013-08-16 2013-11-20 苏州茂立光电科技有限公司 覆晶式发光二极管及其背光模块
CN104465895B (zh) * 2013-09-18 2017-09-12 上海蓝光科技有限公司 Led芯片及其制作方法
CN104851950A (zh) * 2015-03-31 2015-08-19 山西南烨立碁光电有限公司 高出光率的led芯片结构
CN104900772B (zh) * 2015-06-19 2017-06-16 天津三安光电有限公司 发光二极管的制备方法
JP6834424B2 (ja) * 2016-12-02 2021-02-24 日亜化学工業株式会社 半導体素子及びその製造方法
US10115711B2 (en) 2017-01-25 2018-10-30 International Business Machines Corporation Vertical light emitting diode with magnetic back contact
TWI677116B (zh) * 2017-03-29 2019-11-11 宏齊科技股份有限公司 半導體發光模組及其半導體發光二極體晶片
US10483430B1 (en) 2018-05-01 2019-11-19 Facebook Technologies, Llc Micron-sized light emitting diode designs
CN108933189A (zh) * 2018-07-10 2018-12-04 江西新正耀光学研究院有限公司 一种单面出光的led芯片及其制备方法
JP7130130B2 (ja) * 2019-12-31 2022-09-02 チョンチン コンカ フォトエレクトリック テクノロジー リサーチ インスティテュート カンパニー リミテッド マイクロ発光ダイオードチップおよびその製造方法、並びに表示装置
CN114730821A (zh) * 2021-11-10 2022-07-08 厦门三安光电有限公司 发光二极管及发光装置
CN116344692B (zh) * 2023-05-26 2023-08-01 中诚华隆计算机技术有限公司 一种led外延结构、led芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072968A1 (en) * 2003-10-06 2005-04-07 Tzong-Liang Tsai Light-emitting device
JP2005116794A (ja) * 2003-10-08 2005-04-28 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
KR20060014608A (ko) * 2004-08-11 2006-02-16 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
CN101840974A (zh) * 2009-03-16 2010-09-22 联胜光电股份有限公司 提高光淬取效率的发光二极管结构
CN102709420A (zh) * 2012-06-21 2012-10-03 安徽三安光电有限公司 一种氮化镓基发光二极管
CN102881796A (zh) * 2012-09-20 2013-01-16 江苏威纳德照明科技有限公司 具有环形反射层的发光器件

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512248B1 (en) * 1999-10-19 2003-01-28 Showa Denko K.K. Semiconductor light-emitting device, electrode for the device, method for fabricating the electrode, LED lamp using the device, and light source using the LED lamp
US6984851B2 (en) * 2000-06-21 2006-01-10 Showa Denko Kabushiki Kaisha Group-III nitride semiconductor light-emitting diode, light-emitting diode lamp, light source, electrode for group-III nitride semiconductor light-emitting diode, and method for producing the electrode
JP4084620B2 (ja) * 2001-09-27 2008-04-30 信越半導体株式会社 発光素子及び発光素子の製造方法
US6949395B2 (en) * 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7041529B2 (en) * 2002-10-23 2006-05-09 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method of fabricating the same
US7528417B2 (en) * 2003-02-10 2009-05-05 Showa Denko K.K. Light-emitting diode device and production method thereof
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
KR101127314B1 (ko) * 2003-11-19 2012-03-29 니치아 카가쿠 고교 가부시키가이샤 반도체소자
US8097897B2 (en) * 2005-06-21 2012-01-17 Epistar Corporation High-efficiency light-emitting device and manufacturing method thereof
JP4839478B2 (ja) * 2005-10-03 2011-12-21 Dowaエレクトロニクス株式会社 垂直共振器型発光ダイオード及びその製造方法
US8405106B2 (en) * 2006-10-17 2013-03-26 Epistar Corporation Light-emitting device
KR100730072B1 (ko) * 2005-12-06 2007-06-20 삼성전기주식회사 수직구조 질화갈륨계 발광 다이오드 소자 및 그 제조방법
US8941141B2 (en) * 2006-10-17 2015-01-27 Epistar Corporation Light-emitting device
TWI452716B (zh) * 2007-06-08 2014-09-11 Formosa Epitaxy Inc Gallium nitride based light emitting diode and manufacturing method thereof
KR101393353B1 (ko) * 2007-10-29 2014-05-13 서울바이오시스 주식회사 발광다이오드
TWI495141B (zh) * 2008-08-01 2015-08-01 Epistar Corp 晶圓發光結構之形成方法及光源產生裝置
CN101740677A (zh) * 2008-11-20 2010-06-16 深圳世纪晶源华芯有限公司 图形化衬底的GaN基LED外延片及该外延片的制备方法
TW201027811A (en) * 2009-01-12 2010-07-16 Ubilux Optoelectronics Corp LED and its manufacturing method
TWI380481B (en) * 2009-01-13 2012-12-21 Huga Optotech Inc Light-emitting diode with high light-emitting efficiency
TW201101537A (en) * 2009-06-19 2011-01-01 Ubilux Optoelectronics Corp Light emitting diode with passivation layer and its manufacturing method
KR101666442B1 (ko) * 2010-03-25 2016-10-17 엘지이노텍 주식회사 발광 다이오드 및 이를 포함하는 발광 소자 패키지
KR20120042500A (ko) * 2010-10-25 2012-05-03 삼성엘이디 주식회사 반도체 발광 소자 및 그 제조방법
CN102185073B (zh) * 2011-04-01 2012-09-19 厦门市三安光电科技有限公司 一种倒装发光二极管及其制作方法
CN102709421B (zh) * 2012-06-21 2014-11-05 安徽三安光电有限公司 一种具有双反射层的氮化镓基发光二极管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072968A1 (en) * 2003-10-06 2005-04-07 Tzong-Liang Tsai Light-emitting device
JP2005116794A (ja) * 2003-10-08 2005-04-28 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
KR20060014608A (ko) * 2004-08-11 2006-02-16 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
CN101840974A (zh) * 2009-03-16 2010-09-22 联胜光电股份有限公司 提高光淬取效率的发光二极管结构
CN102709420A (zh) * 2012-06-21 2012-10-03 安徽三安光电有限公司 一种氮化镓基发光二极管
CN102881796A (zh) * 2012-09-20 2013-01-16 江苏威纳德照明科技有限公司 具有环形反射层的发光器件

Also Published As

Publication number Publication date
US20150060880A1 (en) 2015-03-05
CN102709420B (zh) 2014-07-30
CN102709420A (zh) 2012-10-03
US9356190B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2013189299A1 (zh) 一种氮化镓基发光二极管
WO2013189298A1 (zh) 一种具有双反射层的氮化镓基发光二极管
KR100969100B1 (ko) 발광소자, 발광소자의 제조방법 및 발광소자 패키지
WO2014026529A1 (zh) 一种紫外半导体发光器件及其制造方法
US8198640B2 (en) Semiconductor light emitting device and method of fabricating the same
TWI479693B (zh) 發光裝置及其製造方法
US9425361B2 (en) Light-emitting device
US9825203B2 (en) Light emitting diode chip and fabrication method
WO2016064134A2 (en) Light emitting device and method of fabricating the same
KR101667815B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20110062128A (ko) 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
WO2011079645A1 (en) Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same
WO2019085538A1 (zh) 提升电流扩展均匀性的led倒装芯片及其制作方法
US7868348B2 (en) Light emitting device having vertical structure and method for manufacturing the same
WO2020143274A1 (zh) 垂直结构蓝光发光二极管及其制备方法
KR101198764B1 (ko) 수직형 발광 소자 및 그 제조방법
KR20140145742A (ko) 발광소자 및 조명시스템
WO2016080671A1 (ko) 발광소자 및 조명시스템
JP2941743B2 (ja) 化合物半導体発光素子及びその製造方法
KR100648444B1 (ko) 고휘도 발광소자 및 그 제작 방법
Lee et al. High-brightness InGaN–GaN flip-chip light-emitting diodes with triple-light scattering layers
WO2014067378A1 (zh) 具有反射电极的发光装置
KR101728545B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR101835312B1 (ko) 발광소자 및 그 제조방법
KR20150017918A (ko) 발광소자 및 조명시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807746

Country of ref document: EP

Kind code of ref document: A1