WO2013189298A1 - 一种具有双反射层的氮化镓基发光二极管 - Google Patents

一种具有双反射层的氮化镓基发光二极管 Download PDF

Info

Publication number
WO2013189298A1
WO2013189298A1 PCT/CN2013/077608 CN2013077608W WO2013189298A1 WO 2013189298 A1 WO2013189298 A1 WO 2013189298A1 CN 2013077608 W CN2013077608 W CN 2013077608W WO 2013189298 A1 WO2013189298 A1 WO 2013189298A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
annular
reflective layer
electrode
gallium nitride
Prior art date
Application number
PCT/CN2013/077608
Other languages
English (en)
French (fr)
Inventor
郑建森
林素慧
彭康伟
洪灵愿
何安和
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2013189298A1 publication Critical patent/WO2013189298A1/zh
Priority to US14/536,324 priority Critical patent/US9190395B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a gallium nitride based light emitting diode, and more particularly to a gallium nitride based high brightness light emitting diode having a double reflective layer.
  • blue-green LEDs use GaN-based III-V compound semiconductor materials; due to GaN
  • the P-GaN layer of the base LED epitaxial wafer has a small hole concentration, and the thickness of the P-type layer is very thin, and most of the light is emitted from the P-type layer, and the P-type layer inevitably absorbs light, resulting in LED
  • the off-chip quantum efficiency is not high, which greatly reduces the luminous efficiency of the LED.
  • Using an ITO layer as a current spreading layer increases transmittance but leads to LED The voltage is higher and the life is affected.
  • the current density in some areas is large, which affects the LED lifetime.
  • the research on luminous efficiency is active.
  • the main techniques are the use of graphic substrate technology, distributed current blocking layer (also called current blocking layer), and distributed Bragg reflection layer (English is Distributed Bragg). Reflector, referred to as DBR) structure, transparent substrate, surface roughening, photonic crystal technology.
  • a substrate 100 is included, and an N-type layer is stacked from bottom to top. 101, a light-emitting region 102, a p-type layer 103, a metal reflective layer 104, a current spreading layer 105, a P electrode 106, and a bare surface disposed on the N-type layer 101 N electrode 107. Since the metal reflective layer 104 (usually Al or Ag material) reflects light, the light emitted by the luminescent layer is emitted and emitted from the side, such as light 1a.
  • the metal reflective layer 104 usually Al or Ag material
  • the invention provides a GaN-based high-brightness LED with a double reflection layer, which passes through an epitaxial layer of the LED and P An annular reflective layer and a metal reflective layer are added between the electrodes to form a double-reflective layer structure, which can effectively take out the light emitted by the light-emitting layer, reduce the light absorption phenomenon of the P electrode, and thereby increase the light-emitting efficiency.
  • GaN-based high-brightness LED with double-layer reflective layer disclosed in the present invention And comprising: a substrate; an epitaxial layer formed on the substrate, wherein the epitaxial layer comprises a P-type layer, a light-emitting region and an N-type layer; and a current spreading layer is formed on the P-type layer; An electrode formed on the current spreading layer; wherein a reflective structure is formed between the P electrode and the epitaxial layer, and is composed of an annular reflective layer and a metal reflective layer, and a geometric center thereof is in a vertical direction With P Corresponding to the electrode, wherein the annular reflective layer is formed between the current spreading layer and the P-type layer; the metal reflective layer is formed on the current spreading layer and P Between the electrodes; a predetermined distance is provided between the annular reflective layer and the metal reflective layer.
  • the annular reflective layer is located on a portion of the P-type layer and is composed of at least one annular structure having a shape and a P
  • the shapes of the electrodes are the same.
  • the annular reflection layer has a loop width of 5 to 50 ⁇ m.
  • the annular reflection layer has an inner ring diameter of 30 to 200 ⁇ m.
  • the annular reflection layer has an outer ring diameter of 50 to 300 ⁇ m.
  • the metal reflective layer has a diameter of 50 to 200 ⁇ m.
  • the predetermined distance between the annular reflective layer and the metal reflective layer is 2 to 10 ⁇ m.
  • the annular reflective layer has a thickness of 0.5 to 5 ⁇ m.
  • the above annular reflective layer is a distributed Bragg reflection layer or an omnidirectional reflection layer.
  • the annular reflective layer is composed of alternating layers of high refractive index and low refractive index materials, and the high refractive index layer material is selected from the group consisting of TiO, TiO 2 , Ti 3 O 5 , Ti 2 O 3 , Ta 2 O 5 , ZrO 2 Or one of any combination of the foregoing, the low refractive index layer material is selected from SiO 2 SiN x Al 2 O 3 Or one of any combination of the foregoing.
  • the metal reflective layer material may be selected from aluminum (Al) or silver (Ag) or nickel (Ni).
  • the above substrate material can be selected from sapphire (Al 2 O 3 ) either silicon carbide (SiC) or silicon wafer (Si).
  • the above current expansion layer material may be selected from nickel/gold alloy (Ni/Au) or nickel/indium tin oxide alloy ( Ni/ITO) or indium tin oxide (ITO) or zinc oxide (ZnO) or In doped ZnO or Al doped ZnO or Ga doped ZnO One or a combination thereof.
  • the invention passes through the epitaxial layer of the LED with P
  • An annular reflective layer and a metal reflective layer are added between the electrodes to form a double-reflective layer structure, so that a part of the light emitted by the light-emitting layer is emitted from the side through the primary reflection of the annular reflective layer, and another part may be originally directed to P.
  • the light of the electrode is reflected by the double layer of the double reflection layer and then emitted upward, thereby improving the light extraction efficiency of the chip;
  • the annular reflective layer also has the function of current blocking, reducing the current accumulation under the chip electrode, and further improving the luminous efficiency of the chip;
  • the size of the electrode area is adapted to adjust the ratio of the light emitted from the luminescent layer to the side and the side, thereby improving the uniformity of the light distribution of the chip.
  • Figure 1 is a schematic view showing the structure of a known formal light emitting diode.
  • Figure 2 is an embodiment 1 of the present invention A schematic cross-sectional view of a disclosed gallium nitride based high brightness light emitting diode having a dual reflective layer.
  • Figure 3 is an embodiment 1 of the present invention A schematic top view of a disclosed gallium nitride based high brightness light emitting diode having a dual reflective layer.
  • Figure 4 is a second embodiment of the present invention A schematic cross-sectional view of a disclosed gallium nitride based high brightness light emitting diode having a dual reflective layer.
  • Figure 5 is a second embodiment of the present invention A schematic top view of a disclosed gallium nitride based high brightness light emitting diode having a dual reflective layer.
  • Figure 6 is a third embodiment of the present invention A schematic top view of a disclosed gallium nitride based high brightness light emitting diode having a dual reflective layer.
  • the present invention proposes The LED structure will be modified according to the application field and the needs of the process process, and some of its structure and size will be modified within a certain range, and the material selection will be modified.
  • GaN-based high-brightness LED with double-layer reflective layer disclosed in the following embodiments Including: substrate, epitaxial layer, current spreading layer, reflective structure and P, N electrodes.
  • the substrate can be selected from sapphire ( Al 2 O 3 ) either silicon carbide (SiC) or silicon wafer (Si).
  • sapphire Al 2 O 3
  • SiC silicon carbide
  • Si silicon wafer
  • the epitaxial layer may be formed on the surface of the substrate by epitaxial growth, and the bottom layer includes at least an N-type layer, a light-emitting layer and a P
  • the layer may further include a buffer layer, an electron blocking layer, etc., and the material may be a gallium nitride based semiconductor material.
  • the current spreading layer is located on the P-type layer and can be selected from nickel/gold alloy (Ni/Au) or nickel/indium tin oxide alloy ( Ni/ITO) or indium tin oxide (ITO) or zinc oxide (ZnO) or In doped ZnO or Al doped ZnO or Ga doped ZnO One or a combination thereof.
  • Ni/Au nickel/gold alloy
  • Ni/ITO nickel/indium tin oxide alloy
  • ITO indium tin oxide
  • ZnO zinc oxide
  • In doped ZnO or Al doped ZnO or Ga doped ZnO One or a combination thereof.
  • a P electrode is formed on the electrode extension layer for providing current injection to the luminescent layer.
  • the device can etch a portion of the P-type layer and the light-emitting layer to expose the N-type layer, and the N-electrode is formed on the surface of the exposed N-type layer.
  • N The electrodes are fabricated on the back side of the conductive substrate.
  • the reflective structure is located between the P electrode and the P type layer, and is composed of an annular reflective layer and a metal reflective layer, according to P
  • the shape and position of the electrode are set to the position and size of the reflective structure, and the geometric center thereof corresponds to the center of the P electrode in the vertical direction.
  • An annular reflective layer is formed on the current spreading layer and P
  • the bottom layer of the current spreading layer or the top surface layer of the epitaxial layer may be composed of at least one annular structure, and the shape may be a circle, a square, a triangle, a regular polygon or the like.
  • the various parameters of the annular structure of the annular reflective layer can be adjusted according to the small size of the chip and the specific optical path.
  • the loop width of the annular reflective layer can be 5 ⁇ 50 microns, inner ring diameter 30 ⁇ 200 microns, outer ring diameter 50 ⁇ 300 microns, thickness 0.5 ⁇ 5 microns.
  • a distributed Bragg reflector (DBR) is selected ) or omnidirectional reflective layer (ODR)
  • DBR distributed Bragg reflector
  • ODR omnidirectional reflective layer
  • a metal reflective layer is formed on the current spreading layer at the current spreading layer and P
  • the electrodes may be contained between the current spreading layer and the current spreading layer, and the vertical distance between the electrodes and the annular reflective layer is 2-10 micrometers.
  • the material may be aluminum (Al) or silver (Ag) or Nickel (Ni )Wait.
  • the bottom layer of the above light emitting diode structure is a sapphire substrate 200; an N-type layer 201 Formed on the sapphire substrate 200; the light-emitting region 202 is formed on the N-type layer 201; the P-type layer 203 is formed on the light-emitting region 202; and the annular distributed Bragg reflector layer 204 is formed on the P-type layer 203; an ITO current spreading layer 205 is formed on the surface of the annular distributed Bragg reflection layer 204 and the P-type layer 203; A metal reflective layer 206 is formed on the surface layer of the ITO current spreading layer 205; a P electrode 207 is formed on the Al metal reflective layer 206; N electrode 208 Formed on the exposed N-type layer 201; wherein the Bragg reflection layer 204 is distributed by alternating high refractive index TiO 2 Material and low refractive index SiO 2
  • the material composition, the annular distribution Bragg reflection layer 204 has an inner ring diameter of 80 ⁇ m, and the annular
  • the reflective structure in this embodiment has the following characteristics: (1) The metal reflective layer corresponds to the toroidal center of the annular distributed Bragg reflection layer in the vertical direction; (2) the annular distribution Bragg reflection layer 204 has an inner ring diameter smaller than the metal reflective layer 206 The outer ring diameter of the diameter and annular distributed Bragg reflection layer 204 is larger than the diameter of the metal reflective layer 206; (3) the diameter of the metal reflective layer 206 is equivalent to the diameter of the P electrode 207.
  • An annular distributed Bragg reflection layer 204 and an Al metal reflection layer 206 are added between the P-type layer 203 and the P electrode 207 of the LED.
  • the above gallium nitride based light emitting diode having a double reflection layer structure comprises the steps of:
  • First step epitaxially growing a gallium nitride based epitaxial layer on the sapphire substrate 200, including: an N-type layer 201, a light-emitting region 202, P - type layer 203 ;
  • the second step forming a circular distributed Bragg reflection layer 204 on the P-type layer 203 by evaporation;
  • the third step forming on the surface of the annular distributed Bragg reflection layer 204 and the P-type layer 203 by evaporation
  • ITO current expansion layer 205
  • the fourth step forming an Al metal reflective layer 206 on the ITO current spreading layer 205 by sputtering;
  • Step 5 through the mask and stripping process, respectively, directly above the Al metal reflective layer 206 and the exposed N-type layer 201
  • a P electrode 207 and an N electrode 208 are fabricated.
  • the second step of the above manufacturing method causes the Al metal reflective layer 206 to vertically and annularly distribute the Bragg reflection layer.
  • the center of the 204 corresponds;
  • the fifth step causes the metal reflective layer to be directly under the P electrode 207, and the diameter of the Al metal reflective layer 206 is equal to the diameter of the P electrode 207.
  • this embodiment discloses a vertical structure of a gallium nitride-based high-brightness light emitting diode having a double reflection layer.
  • Si is used as the substrate 200
  • the N electrode 208 is formed on the back surface of the substrate to constitute a vertically structured LED device structure.
  • the electrode structure of the gallium nitride-based LED device disclosed in this embodiment further includes an extension electrode 209 having a width of 10 as compared with the embodiment 1.
  • a metal reflective layer and an annular reflective layer can be disposed directly under the extension electrode 209 to further improve light extraction efficiency.
  • the metal reflective layer can be larger than the extension electrode, and the annular reflective layer is composed of the P electrode 207.
  • the lower annular structure 204 and the elongated annular structure 210 below the extended electrode 209 are formed.
  • the annular structure 204 is different from the embodiment 1 in that an annular distributed Bragg reflection layer 204
  • the inner ring has a diameter of 80 microns, which is equivalent to the diameter of the P electrode 207.
  • the inner ring of the elongated ring structure 210 has a diameter of 10 microns and an outer ring diameter of 20 microns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

一种具有双反射层的氮化镓基发光二极管,包括:衬底(200);外延层,形成于衬底(200)上,其中外延层包含P型层(203)、发光区(202)和N型层(201);电流扩展层(205),形成于P型层(203)之上,P电极(207),形成于电流扩展层(205)之上;一反射结构形成于P电极(207)与外延层之间,由环状反射层(204)和金属反射层(206)构成,其几何中心在垂直方向上与P电极(207)对应,环状反射层(204)形成于电流扩展层(205)与P型层(203)之间;金属反射层(206)形成于电流扩展层(205)与P电极(207)之间;环状反射层(204)与金属反射层(206)之间设有一预定距离。

Description

一种具有双反射层的氮化镓基发光二极管
本申请主张如下优先权:中国发明专利申请号 201210206025.8 ,题为 ' 一种具有双反射层的氮化镓基发光二极管 ' ,于 2012 年 6 月 21日 提交。 上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种氮化镓基发光二极管,尤其是涉及一种具有双反射层的氮化镓基高亮度发光二极管。
背景技术
目前,蓝绿光 LED 使用的都是基于 GaN 的 III-V 族化合物半导体材料;由于 GaN 基 LED 外延片的 P-GaN 层空穴浓度小,且 P 型层厚度很薄,绝大部分发光从 P 型层透出,而 P 型层不可避免地对光有吸收作用,导致 LED 芯片外量子效率不高,大大降低了 LED 的发光效率。采用 ITO 层作为电流扩展层虽可提高透射率,但导致 LED 电压要高一些,寿命也受到影响。另外,在外加电压下,由于存在电流扩散不均匀,一些区域电流密度很大,影响 LED 寿命。总之,在外部量子效率方面,现有的 GaN 基 LED 还是显得不足,一方面与电流非均匀分布有关,另一方面则是与当光发射至电极会被电极本身所吸收有关。
为此,改善 LED 发光效率的研究较为活跃,主要技术有采用图形衬底技术、分布电流阻隔层(也称电流阻挡层)、分布布拉格反射层(英文为 Distributed Bragg Reflector ,简称 DBR )结构、透明衬底、表面粗化、光子晶体技术等。
参见图 1 ,在已知的正装发光二极管结构中,包括衬底 100 ,由下往上堆叠的 N 型层 101 、发光区 102 、 P 型层 103 、金属反射层 104 、电流扩展层 105 、 P 电极 106 以及设置在 N 型层 101 裸露表面上的 N 电极 107 。由于金属反射层 104 (通常为 Al 或 Ag 材料)对光有反射作用,使得发光层发出的光线发射出来,并从侧面出光,如光线 1a 所示;但是仍然有部分光线无法或很难从侧面或上面出射,如光线 1b 所示,因而造成光损失,无法使得发光层发出的光线有效取出,影响了芯片的发光效率。
发明内容
本发明提供了一种具有双反射层的 GaN 基高亮度 LED ,其通过在 LED 的外延层与 P 电极之间增设环状反射层和金属反射层,形成双反射层结构,可以有效地取出发光层发出的光线,减少 P 电极的吸光现象,从而增加出光效率。
本发明公开的一种具有双层反射层的 GaN 基高亮度 LED ,包括:衬底;外延层,形成于该衬底上,其中外延层包含 P 型层、发光区和 N 型层;电流扩展层,形成于所述 P 型层之上; P 电极,形成所述电流扩展层之上;其特征在于:一反射结构形成于所述 P 电极与所述外延层之间,由环状反射层和金属反射层构成,其几何中心在垂直方向上与 P 电极对应,其中所述环状反射层形成于电流扩展层与 P 型层之间;所述金属反射层形成于电流扩展层与 P 电极之间;所述环状反射层与金属反射层之间设有一预定距离。
上述环状反射层位于部分 P 型层之上,由至少一个环状结构组成,其形状与 P 电极的形状一致。
上述环状反射层的环宽为 5~50 微米。
上述环状反射层的内环直径为 30~200 微米。
上述环状反射层的外环直径为 50~300 微米。
上述金属反射层的直径为 50~200 微米。
上述环状反射层与金属反射层之间的预定距离为 2~10 微米。
上述环状反射层的厚度为 0.5~5 微米。
上述环状反射层为分布布拉格反射层或全方位反射层。
上述环状反射层由交替的高折射率和低折射率材料层组成,高折射率层材料选自 TiO 、 TiO2 、 Ti3O5 、 Ti2O3 、 Ta2O5 、 ZrO2 或前述的任意组合之一,低折射率层材料选自 SiO2 、 SiNx 、 Al2O3 或前述的任意组合之一。
上述金属反射层材料可选用铝( Al )或者是银( Ag )或者是镍( Ni )等。
上述衬底材料可选用蓝宝石( Al2O3 )或者是碳化硅( SiC )或者是硅片( Si )等。
上述电流扩展层材料可选用镍 / 金合金( Ni/Au )或镍 / 氧化铟锡合金( Ni/ITO )或氧化铟锡( ITO )或氧化锌( ZnO )或 In 掺杂 ZnO 或 Al 掺杂 ZnO 或 Ga 掺杂 ZnO 中的一种或其组合。
与现有技术相比,本发明的有益效果是:
( 1 )本发明通过在 LED 的外延层与 P 电极之间增设环状反射层和金属反射层,形成双反射层结构,使得发光层发出的一部分的光线经过环状反射层的一次反射便从侧面出射,还可以使得另一部分原本要射向 P 电极的光线经过双反射层的双层反射后向上出射,进而提升芯片的光取出效率;
( 2 )环状反射层又兼具电流阻挡的作用,减少芯片电极下方的电流积聚,进一步提高了芯片的发光效率;
( 3 )视芯片的尺寸大小和电极分布情况,通过控制环状反射层的截面积大小,使其与 P 电极面积大小相适应,可以调整发光层发出的光线向上和侧面出射的比例,从而改善芯片的发光分布均匀性。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
虽然在下文中将结合一些示例性实施及使用方法来描述本发明,但本领域技术人员应当理解,并不旨在将本发明限制于这些实施例。反之,旨在覆盖包含在所附的权利要求书所定义的本发明的精神与范围内的所有替代品、修正及等效物。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 是已知的正装发光二极管结构示意图。
图 2 是本发明实施例 1 公开的具有双反射层的氮化镓基高亮度发光二极管的剖面示意图。
图 3 是本发明实施例 1 公开的具有双反射层的氮化镓基高亮度发光二极管的俯视示意图。
图 4 是本发明实施例 2 公开的具有双反射层的氮化镓基高亮度发光二极管的剖面示意图。
图 5 是本发明实施例 2 公开的具有双反射层的氮化镓基高亮度发光二极管的俯视示意图。
图 6 是本发明实施例 3 公开的具有双反射层的氮化镓基高亮度发光二极管的俯视示意图。
图中部件符号说明:
100 :衬底
101 : N 型层
102 :发光区
103 : P 型层
104 :金属反射层
105 :电流扩展层
106 : P 电极
107 : N 电极
200 :衬底
201 : N 型层
202 :发光区
203 : P 型层
204 :环状反射层
205 :电流扩展层
206 :金属反射层
207 : P 电极
208 : N 电极
209 : P 扩展电极
210 :长条状环形结构。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。在具体的器件设计和制造中,本发明提出的 LED 结构将根据应用领域和工艺制程实施的需要,对其部分结构和尺寸在一定范围内作出修改,对材料的选取进行变通。
下列各实施例公开的一种具有双层反射层的 GaN 基高亮度 LED ,包括:衬底,外延层,电流扩展层,反射结构及 P 、 N 电极。
具体来说,衬底可选用材料可选用蓝宝石( Al2O3 )或者是碳化硅( SiC )或者是硅片( Si )等。对于水平结构的 LED 器件,选用绝缘性材料;而对于垂直结构的 LED 器件,则选用导电性材料。
外延层可通过外延生长形成于衬底的表面上,至下而上至少包括 N 型层,发光层和 P 型层,还可包括缓冲层、电子阻挡层等,材料可为氮化镓基半导体材料。
电流扩展层位于 P 型层上,可选用镍 / 金合金( Ni/Au )或镍 / 氧化铟锡合金( Ni/ITO )或氧化铟锡( ITO )或氧化锌( ZnO )或 In 掺杂 ZnO 或 Al 掺杂 ZnO 或 Ga 掺杂 ZnO 中的一种或其组合。
P 电极形成于电极扩展层上,用于为发光层提供电流注入。对于水平结构的 LED 器件,可蚀刻部分的 P 型层及发光层,露出 N 型层, N 电极形成于裸露的 N 型层表面上。对于垂直结构的 LED 器件, N 电极则制作在导电衬底的背面。
反射结构位于 P 电极与 P 型层之间,由环状反射层和金属反射层构成,根据 P 电极的形状和位置设置反射结构的位置及大小,其几何中心在垂直方向上与 P 电极的中心对应。环状反射层形成于电流扩展层与 P 型层之间,可位于电流扩展层底层层内或外延层的顶部表层,至少一个环状结构组成,形状可为圆形、方形、三角形、正多边形等。关于环状反射层的环状结构的各个参数,可依据芯片尺寸的小以及具体光学路径进行调整设计。在某些实施例中,环状反射层的环宽可为 5~50 微米,内环直径为 30~200 微米,外环直径为 50~300 微米,厚度为 0.5~5 微米。在一些优选实施例中,选用分布布拉格反射层( DBR )或全方位反射层( ODR )作为环状反射层,其兼具电流阻挡的作用,减少芯片电极下方的电流积聚,进一步提高了芯片的发光效率。金属反射层形成于电流扩展层上,位于电流扩展层与 P 电极之间,可含在电流扩展层,也可在电流扩展层上面,与环状反射层之间的垂直距离为 2~10 微米,材料可选用铝( Al )或者是银( Ag )或者是镍( Ni )等。
下面结合实施例 1 、 2 、 3 及附图 2~6 对本发明具体实施的更多细节作说明。
实施例 1
如图 2 和图 3 所示的一种具有双反射层的氮化镓基高亮度发光二极管,包括:蓝宝石衬底 200 、 N 型层 201 、发光区 202 、 P 型层 203 、圆环状的分布布拉格反射层 204 、电流扩展层 205 、金属反射层 206 、 P 电极 207 和 N 电极 208 。
具体来说,上述发光二极管结构中最底层为蓝宝石衬底 200 ; N 型层 201 ,形成于蓝宝石衬底 200 上;发光区 202 ,形成于 N 型层 201 上; P 型层 203 ,形成于发光区 202 上;圆环状的分布布拉格反射层 204 ,形成于 P 型层 203 上; ITO 电流扩展层 205 ,形成于圆环状的分布布拉格反射层 204 及 P 型层 203 表面上; Al 金属反射层 206 ,形成于 ITO 电流扩展层 205 的表层上; P 电极 207 ,形成于 Al 金属反射层 206 上; N 电极 208 ,形成于裸露的 N 型层 201 上;其中分布布拉格反射层 204 由交替的高折射率 TiO2 材料和低折射率的 SiO2 材料组成,圆环状的分布布拉格反射层 204 的内环直径为 80 微米,圆环状的分布布拉格反射层 204 的外环直径为 130 微米;金属反射层 206 的直径为 85 微米。
在本实施例中的反射结构具有以下特点:( 1 )金属反射层在垂直方向上与圆环状的分布布拉格反射层的环心对应;( 2 )圆环状的分布布拉格反射层 204 的内环直径小于金属反射层 206 的直径且圆环状的分布布拉格反射层 204 的外环直径大于金属反射层 206 的直径;( 3 )金属反射层 206 的直径等同于 P 电极 207 直径。通过在 LED 的 P 型层 203 与 P 电极 207 之间增设圆环状的分布布拉格反射层 204 和 Al 金属反射层 206 ,形成双反射层结构,使得发光层发出的一部分的光线,如光线 2a 路径所示,经过圆环状的分布布拉格反射层 204 的一次反射便从侧面直接出射;还可以使得另一部分原本要射向 P 电极 207 的光线经过双反射层的双层反射后向上出射,如光线 2b 路径所示,进而提升芯片的光取出效率。
上述具有双反射层结构的氮化镓基发光二极管,其制作方法包括步骤:
第一步:在蓝宝石衬底 200 上外延生长氮化镓基发光外延层,包括; N 型层 201 、发光区 202 、 P 型层 203 ;
第二步:在 P 型层 203 上,通过蒸镀方式,形成圆环状的分布布拉格反射层 204 ;
第三步:在圆环状的分布布拉格反射层 204 及 P 型层 203 表面上,通过蒸镀方式,形成
ITO 电流扩展层 205 ;
第四步:在 ITO 电流扩展层 205 上,通过溅镀方式,形成 Al 金属反射层 206 ;
第五步:通过光罩、剥离工艺,分别在 Al 金属反射层 206 正上方和裸露的 N 型层 201
上制作 P 电极 207 和 N 电极 208 。
上述制作方法的第二步使得 Al 金属反射层 206 在垂直方向上与圆环状的分布布拉格反射层 204 的环心对应;第五步使得金属反射层位于 P 电极 207 的正下方, Al 金属反射层 206 的直径等同于 P 电极 207 直径。
实施例 2
与实施例 1 相比,本实施例公开了一种垂直结构的具有双反射层的氮化镓基高亮度发光二极管。在本实施例,采用 Si 作为衬底 200 , N 电极 208 形成于衬底的背面,构成了垂直结构的 LED 器件结构。
实施例 3
与实施例 1 相比,本实施例公开的氮化镓基 LED 器件的电极结构还包括扩展电极 209 ,其宽度为 10 微米,可在扩展电极 209 正下方设置金属反射层和环状反射层,进一步地提高出光效率。金属反射层可与扩展电极等大,环状反射层由 P 电极 207 下方的圆环形结构 204 和扩展电极 209 下方的长条状环形结构 210 构成。圆环形结构 204 与实施例 1 不同的是:圆环状的分布布拉格反射层 204 的内环直径为 80 微米,等同于 P 电极 207 直径,长条状环形结构 210 的内环直径为 10 微米,外环直径为 20 微米。

Claims (11)

  1. 一种具有双反射层的氮化镓基发光二极管,包括:衬底;外延层,形成于该衬底之上,包含 P 型层、发光区和 N 型层;电流扩展层,形成于所述 P 型层之上; P 电极,形成所述电流扩展层之上;其特征在于:一反射结构形成于所述 P 电极与所述外延层之间,由环状反射层和金属反射层构成,其几何中心在垂直方向上与 P 电极对应,其中
    所述环状反射层形成于电流扩展层与 P 型层之间;
    所述金属反射层形成于电流扩展层与 P 电极之间;
    所述环状反射层与金属反射层之间设有一预定距离。
  2. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述反射结构位于 P 电极的正下方。
  3. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层位于部分 P 型层之上,由至少一个环状结构组成,其形状与 P 电极的形状一致。
  4. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层为分布布拉格反射层或全方位反射层。
  5. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层位于所述金属反射层的正下方,其内环直径小于或者等于金属反射层的直径,外环直径大于金属反射层的直径。
  6. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层的环宽为 5~50 微米。
  7. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层的内环直径为 30~200 微米。
  8. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层的外环直径为 50~300 微米。
  9. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述金属反射层的直径为 50~200 微米。
  10. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层与金属反射层之间的预定距离为 2~10 微米。
  11. 根据权利 1 所述的一种具有双反射层的氮化镓基发光二极管,其特征在于:所述环状反射层的厚度为 0.5~5 微米。
PCT/CN2013/077608 2012-06-21 2013-06-21 一种具有双反射层的氮化镓基发光二极管 WO2013189298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/536,324 US9190395B2 (en) 2012-06-21 2014-11-07 GaN-based LED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210206025.8A CN102709421B (zh) 2012-06-21 2012-06-21 一种具有双反射层的氮化镓基发光二极管
CN201210206025.8 2012-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/536,324 Continuation US9190395B2 (en) 2012-06-21 2014-11-07 GaN-based LED

Publications (1)

Publication Number Publication Date
WO2013189298A1 true WO2013189298A1 (zh) 2013-12-27

Family

ID=46902064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077608 WO2013189298A1 (zh) 2012-06-21 2013-06-21 一种具有双反射层的氮化镓基发光二极管

Country Status (3)

Country Link
US (1) US9190395B2 (zh)
CN (1) CN102709421B (zh)
WO (1) WO2013189298A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709420B (zh) * 2012-06-21 2014-07-30 安徽三安光电有限公司 一种氮化镓基发光二极管
CN104064633A (zh) * 2013-03-22 2014-09-24 上海蓝光科技有限公司 一种发光二极管的制造方法
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子
JP6299540B2 (ja) * 2014-09-16 2018-03-28 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
KR102443694B1 (ko) 2016-03-11 2022-09-15 삼성전자주식회사 전류 확산 특성 및 광 추출 효율을 향상시킬 수 있는 발광 소자
CN109638131B (zh) * 2018-11-30 2020-05-19 广东德力光电有限公司 一种dbr倒装芯片的制作方法
KR102518125B1 (ko) * 2019-12-31 2023-04-04 충칭 콘카 포토일렉트릭 테크놀로지 리서치 인스티튜트 컴퍼니 리미티드 마이크로 발광다이오드 칩 및 이의 제조 방법, 표시 장치
CN111668355A (zh) * 2020-05-29 2020-09-15 山西中科潞安紫外光电科技有限公司 一种垂直近紫外发光二极管及其制备方法
CN111697114B (zh) * 2020-07-29 2021-01-12 东南大学苏州研究院 一种垂直结构led芯片及其制备方法
CN113555485A (zh) * 2021-06-15 2021-10-26 江西乾照光电有限公司 一种led芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158558A (ja) * 2002-11-05 2004-06-03 Shurai Kagi Kofun Yugenkoshi AlGaInP発光ダイオード装置
US20090242913A1 (en) * 2004-12-08 2009-10-01 Electronics And Telecommunications Research Institute Silicon based light emitting diode
CN101711432A (zh) * 2007-06-12 2010-05-19 旭明光电股份有限公司 具有电流引导结构的立式发光二极管
CN101777607A (zh) * 2009-01-09 2010-07-14 晶元光电股份有限公司 发光半导体装置
US20100276715A1 (en) * 2009-05-04 2010-11-04 Sung Min Hwang Light emitting device, light emitting device package and lighting system including the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204026A (ja) * 2000-12-28 2002-07-19 Daido Steel Co Ltd 面発光デバイス
JP4084620B2 (ja) * 2001-09-27 2008-04-30 信越半導体株式会社 発光素子及び発光素子の製造方法
WO2005050748A1 (ja) * 2003-11-19 2005-06-02 Nichia Corporation 半導体素子及びその製造方法
KR100576870B1 (ko) * 2004-08-11 2006-05-10 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
JP4839478B2 (ja) * 2005-10-03 2011-12-21 Dowaエレクトロニクス株式会社 垂直共振器型発光ダイオード及びその製造方法
CN102779918B (zh) * 2007-02-01 2015-09-02 日亚化学工业株式会社 半导体发光元件
KR101393353B1 (ko) * 2007-10-29 2014-05-13 서울바이오시스 주식회사 발광다이오드
US7915629B2 (en) * 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
CN101740677A (zh) * 2008-11-20 2010-06-16 深圳世纪晶源华芯有限公司 图形化衬底的GaN基LED外延片及该外延片的制备方法
TW201027811A (en) * 2009-01-12 2010-07-16 Ubilux Optoelectronics Corp LED and its manufacturing method
TWI380481B (en) * 2009-01-13 2012-12-21 Huga Optotech Inc Light-emitting diode with high light-emitting efficiency
TW201101537A (en) * 2009-06-19 2011-01-01 Ubilux Optoelectronics Corp Light emitting diode with passivation layer and its manufacturing method
KR20110055110A (ko) * 2009-11-19 2011-05-25 엘지디스플레이 주식회사 반도체 발광소자 및 그 제조방법
JP5381822B2 (ja) * 2010-03-10 2014-01-08 豊田合成株式会社 半導体発光素子及びその製造方法
KR101666442B1 (ko) * 2010-03-25 2016-10-17 엘지이노텍 주식회사 발광 다이오드 및 이를 포함하는 발광 소자 패키지
KR101054984B1 (ko) * 2010-03-26 2011-08-05 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
CN101859860B (zh) * 2010-05-04 2013-04-10 厦门市三安光电科技有限公司 具有双反射层的铝镓铟磷系发光二极管的制备方法
KR20120042500A (ko) * 2010-10-25 2012-05-03 삼성엘이디 주식회사 반도체 발광 소자 및 그 제조방법
US9608145B2 (en) * 2012-03-14 2017-03-28 Robbie J. Jorgenson Materials, structures, and methods for optical and electrical III-nitride semiconductor devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158558A (ja) * 2002-11-05 2004-06-03 Shurai Kagi Kofun Yugenkoshi AlGaInP発光ダイオード装置
US20090242913A1 (en) * 2004-12-08 2009-10-01 Electronics And Telecommunications Research Institute Silicon based light emitting diode
CN101711432A (zh) * 2007-06-12 2010-05-19 旭明光电股份有限公司 具有电流引导结构的立式发光二极管
CN101777607A (zh) * 2009-01-09 2010-07-14 晶元光电股份有限公司 发光半导体装置
US20100276715A1 (en) * 2009-05-04 2010-11-04 Sung Min Hwang Light emitting device, light emitting device package and lighting system including the same

Also Published As

Publication number Publication date
CN102709421B (zh) 2014-11-05
US9190395B2 (en) 2015-11-17
US20150060879A1 (en) 2015-03-05
CN102709421A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2013189298A1 (zh) 一种具有双反射层的氮化镓基发光二极管
WO2013189299A1 (zh) 一种氮化镓基发光二极管
JP4516749B2 (ja) 反射層を有するダイオードの製造方法
TWI422075B (zh) 覆晶式半導體光電元件之結構及其製造方法
WO2014026529A1 (zh) 一种紫外半导体发光器件及其制造方法
KR101667815B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US20100187559A1 (en) Semiconductor light emitting device and method of fabricating the same
TW200837997A (en) High light extraction efficiency sphere LED
US8901599B2 (en) Semiconductor light emitting device
US20100207147A1 (en) Semiconductor light emitting device and method of manufacturing the same
US7868348B2 (en) Light emitting device having vertical structure and method for manufacturing the same
KR20130139107A (ko) 질화갈륨계 반도체 소자 및 그 제조방법
TW201442277A (zh) 半導體發光組件及其製造方法
KR101081129B1 (ko) 발광소자 및 그 제조방법
KR100735488B1 (ko) 질화갈륨계 발광다이오드 소자의 제조방법
CN109087981B (zh) 一种防漏电led芯片及其制作方法
KR101198764B1 (ko) 수직형 발광 소자 및 그 제조방법
KR101091048B1 (ko) 반도체 발광 소자
US20140159083A1 (en) Semiconductor light emitting device and fabrication method thereof
JP2941743B2 (ja) 化合物半導体発光素子及びその製造方法
TWI721340B (zh) 發光二極體及其製作方法
KR101745996B1 (ko) 발광소자
KR101728545B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
CN111276595A (zh) 发光二极管及其制作方法
US8785963B2 (en) Method of manufacturing semiconductor light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806689

Country of ref document: EP

Kind code of ref document: A1