WO2013187482A1 - タンデム型有機光電変換素子およびこれを用いた太陽電池 - Google Patents

タンデム型有機光電変換素子およびこれを用いた太陽電池 Download PDF

Info

Publication number
WO2013187482A1
WO2013187482A1 PCT/JP2013/066376 JP2013066376W WO2013187482A1 WO 2013187482 A1 WO2013187482 A1 WO 2013187482A1 JP 2013066376 W JP2013066376 W JP 2013066376W WO 2013187482 A1 WO2013187482 A1 WO 2013187482A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
substituted
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2013/066376
Other languages
English (en)
French (fr)
Inventor
伊東 宏明
大久保 康
晃矢子 和地
宏 石代
和央 吉田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014521406A priority Critical patent/JP6135668B2/ja
Publication of WO2013187482A1 publication Critical patent/WO2013187482A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a tandem organic photoelectric conversion element and a solar cell using the same, and more specifically, to a composition of a tandem intermediate electrode layer, an intermediate electrode layer having higher transmittance and low resistance, and a solar cell using the same. About.
  • a photoelectric conversion element In solar power generation, light energy is directly converted into electric power using a photoelectric conversion element utilizing the photovoltaic effect.
  • a photoelectric conversion element has a structure in which a photoelectric conversion layer (light absorption layer) is sandwiched between a pair of electrodes, and light energy is converted into electric energy in the photoelectric conversion layer.
  • the photoelectric conversion element is a silicon-based photoelectric conversion element using single-crystal / polycrystalline / amorphous Si, GaAs, CIGS (copper (Cu), indium (In), depending on the material used for the photoelectric conversion layer and the form of the element.
  • Compound-based photoelectric conversion elements using a compound semiconductor such as gallium (Ga) and selenium (Se)), dye-sensitized photoelectric conversion elements (Gretzel cells), and the like have been proposed and put to practical use.
  • Non-Patent Document 1 As a technique for reducing power generation costs in solar power generation, a mixture of an electron-donating organic compound (p-type organic semiconductor) and an electron-accepting organic compound (n-type organic semiconductor) between a transparent electrode and a counter electrode A bulk heterojunction type photoelectric conversion element is proposed (see, for example, Non-Patent Document 1).
  • Bulk heterojunction organic photoelectric conversion elements are lightweight and flexible, and are expected to be applied to various products.
  • the structure is relatively simple and a photoelectric conversion layer can be formed by applying a p-type organic semiconductor and an n-type organic semiconductor, it is suitable for mass production and contributes to the early diffusion of solar cells due to cost reduction. It is thought to do.
  • a metal layer or a metal oxide layer constituting electrodes can be formed by a vapor deposition method, but other layers are coated. It can be formed using a process.
  • the production of the bulk heterojunction photoelectric conversion element can be performed at high speed and at low cost, and it is considered that there is a possibility that the above-described problem of power generation cost can be solved.
  • the bulk heterojunction photoelectric conversion element can be performed at high speed and at low cost, and it is considered that there is a possibility that the above-described problem of power generation cost can be solved.
  • it does not necessarily involve a high-temperature manufacturing process, so it is an inexpensive and lightweight plastic substrate. It is expected that continuous formation on the top is possible.
  • organic photoelectric conversion elements still have insufficient photoelectric conversion efficiency, and when sealed with a barrier film or the like in order to take advantage of flexibility, there are few However, it is said that the heat and humidity durability is lowered due to the influence of moisture and oxygen that permeate the barrier film.
  • Patent Document 1 proposes a so-called tandem element structure in which two or more subcells are stacked as one of photoelectric conversion efficiency improving techniques.
  • Patent Document 2 and Non-Patent Document 2 as a structure capable of obtaining a higher short-circuit current density (Jsc), a light-transmitting intermediate electrode layer mainly made of a metal electrode is used between each subcell.
  • Jsc short-circuit current density
  • a tandem structure that efficiently draws current by pinching has been introduced.
  • the conventional parallel tandem organic photoelectric conversion element described above has low transmittance of the intermediate electrode layer made of metal and insufficient compatibility with low resistance, so that the short circuit current density (Jsc) due to light absorption is low. Moreover, the fill factor (FF) due to the high resistance is a factor, and the superiority of the tandem structure is impaired. Further, as a result of intensive studies by the present inventors, in the method described in the prior art, when a metal electrode is used for the intermediate electrode layer, the interface with an organic layer or an inorganic layer such as a charge transport layer sandwiched between upper and lower layers It has been found that the adhesiveness is weak and there is a problem that film peeling occurs due to stress such as durability against heat and humidity, resulting in deterioration of the device life.
  • the present invention is a technique for solving the above-mentioned problems, and exhibits sufficient photoelectric conversion efficiency by satisfying both sufficient transmittance and low resistance necessary for the intermediate electrode layer of the tandem structure, and at the same time,
  • An object of the present invention is to provide a tandem organic photoelectric conversion element having excellent durability in a thermal humidity deterioration test even in an organic photoelectric conversion element sealed with a barrier film or the like.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result, the technology shown below demonstrates sufficient photoelectric conversion efficiency, and at the same time, excellent durability can be obtained in a thermal humidity degradation test. As a result, the present invention has been completed.
  • the present invention is sandwiched between the second electrode layer and the first electrode layer formed on the substrate, and is formed by sequentially laminating the charge transport layer, the photoelectric conversion layer, and the hole transport layer.
  • a tandem organic photoelectric conversion element in which at least two subcells are stacked via an intermediate electrode layer, wherein the intermediate electrode layer is made of gold, silver, copper, or an alloy containing these as a main component, and the intermediate electrode layer.
  • FIG. 1 is a schematic cross-sectional view schematically showing a series tandem organic photoelectric conversion element according to an embodiment of the invention. It is the cross-sectional schematic which represented typically the parallel tandem-type organic photoelectric conversion element based on embodiment of invention. It is a graph which shows the sheet resistance evaluation result in an Example. It is a graph which shows the measurement result of the transmittance
  • At least two subcells are sandwiched between the second electrode layer and the first electrode layer formed on the substrate, and the charge transport layer and the photoelectric conversion layer are sequentially laminated.
  • a tandem organic photoelectric conversion element laminated through two intermediate electrode layers The intermediate electrode layer is made of gold, silver, copper, or an alloy mainly containing these,
  • a tandem organic photoelectric conversion element comprising a nitrogen-containing compound in the hole transport layer or the charge transport layer on the substrate side adjacent to the intermediate electrode layer.
  • the organic photoelectric conversion element laminated up to the intermediate electrode layer excluding the subcells on the back surface can be used, for example, as a window film for power generation, for industrial applications utilizing its transmittance.
  • the intermediate electrode layer between the subcells Before forming the intermediate electrode layer between the subcells, it is formed into a thin film by containing the nitrogen-containing compound in the substrate side layer (underlayer) adjacent to the intermediate electrode layer, particularly the charge transport layer. It was found that the intermediate electrode layer exhibited high transmittance and low resistance, and as a result, exhibited sufficient photoelectric conversion efficiency, and at the same time, excellent durability was obtained in the thermal and humidity deterioration test.
  • the mechanism for obtaining such high transmittance and low resistance is not clear, but the substrate side layer (underlayer) adjacent to the intermediate electrode layer is not clear.
  • the metal or metal cluster scattered from the deposition source is on the underlying layer. This is presumed to be a result of suppressing the movement in the lateral direction of the substrate and the subsequent aggregate formation.
  • on the substrate is not only in direct contact with the surface of the substrate, but also in a concept including the case where the substrate is not in direct contact with the substrate and exists on the upper side of the substrate. “On the layer” and the like are interpreted similarly.
  • tandem organic photoelectric conversion element of the present invention will be specifically described with reference to the accompanying drawings.
  • the technical scope of the present invention should be determined by the description of the claims.
  • the present invention is not limited to the following forms.
  • the scale ratio in the illustrated drawings is exaggerated for convenience of explanation, and may be different from the actual ratio, and is not limited to this.
  • organic photoelectric conversion elements tandem (also called multi-junction) organic photoelectric conversion elements (hereinafter referred to as “organic photoelectric conversion elements”, “organic thin-film solar cells” or “organic solar cells” according to embodiments of the present invention.
  • Tandem organic photoelectric conversion in which two or more commonly used single-type organic photoelectric conversion elements (subcells) are stacked and stacked for the purpose of improving sunlight utilization (photoelectric conversion efficiency). It is the cross-sectional schematic which represented the element (tandem type organic solar cell) typically.
  • a cell located on the transparent electrode side of the tandem organic photoelectric conversion element or on the substrate side having the electrode is referred to as a first subcell (also referred to as “first subcell”), the reflective electrode side or the opposite side of the substrate.
  • the cell located at is called the second subcell (also referred to as “second subcell”).
  • the subcell means a minimum structural unit of a photoelectric conversion element that essentially includes a photoelectric conversion layer, and further includes at least one of an electron transport layer and a hole transport layer as a charge transport layer.
  • the tandem organic photoelectric conversion element of the present invention has an intermediate electrode layer between the first subcell and the second subcell, and the first subcell and the second subcell are electrically connected in series.
  • a series tandem type for example, the structure of FIG. 1
  • a parallel tandem type for example, the structure of FIG. 2.
  • serial and parallel types Including both serial and parallel types.
  • components are numbered sequentially from the substrate side for convenience. Therefore, the charge transport layer and photoelectric conversion layer included in the first subcell formed on the most substrate side are first, and the charge transport layer and photoelectric conversion layer included in the nth subcell from the substrate side are first. n.
  • the charge transport layer in this specification is a superordinate concept including both an electron transport layer and a hole transport layer.
  • the intermediate electrode layer is made of gold, silver, copper, or an alloy containing these as a main component, and in the first subcell, the hole transport layer in contact with the intermediate electrode layer or It is characterized in that the electron transport layer contains a nitrogen-containing compound.
  • FIG. 1 is a schematic cross-sectional view schematically showing one embodiment of the configuration of a series-connected tandem organic photoelectric conversion element.
  • the series tandem organic photoelectric conversion element 10 of FIG. 1 includes a substrate 11 on which a first electrode layer 12 is formed, a first photoelectric conversion layer 13 formed on the first electrode layer 12, and a first A first subcell in which one charge transport layer 14 is sequentially stacked, an intermediate electrode layer 15 made of gold, silver, copper, or an alloy containing these as a main component, and the intermediate electrode layer 15 are formed.
  • the second photoelectric conversion layer 16, and the second charge transport layer 17 are sequentially stacked, and the second subcell and the second electrode layer 18 are included.
  • a so-called normal layer configuration in which the electrode 12 is a cathode (anode) and the electrode 18 is an anode (cathode) may be employed, or the so-called anode and cathode function reversely depending on the order of lamination.
  • the reverse layer configuration can also be used in the present application.
  • the first charge transport layer 14 formed on the first photoelectric conversion layer 13 and the second charge transport layer 17 formed on the second photoelectric conversion layer 16 are both electron transport layers.
  • the electrode 12 serves as a cathode and the electrode 18 serves as an anode
  • the point A is a cathode electrode and the point B is an anode electrode and is connected to an external circuit.
  • the first charge transport layer 14 formed on the first photoelectric conversion layer 13 and the second charge transport layer 17 formed on the second photoelectric conversion layer 16 are both hole transport layers.
  • the electrode 12 is an anode and the electrode 18 is a cathode, this is referred to as a reverse layer configuration in the present invention, and the point A is an anode and the point B is a cathode and is connected to an external circuit.
  • a charge transport layer having a polarity opposite to that of the charge transport layer 14 may be provided.
  • the charge transport layer 14 is a hole transport layer, it is more preferable to provide an electron transport layer between the first electrode 12 and the first photoelectric conversion layer 13, and similarly, the intermediate electrode 15 and the second photoelectric conversion are provided. It is more preferable to provide an electron transport layer between the layer 16. This means that when the first charge transport layer is an electron transport layer, charge transport layers having opposite polarities are formed between the electrode and the photoelectric conversion layer.
  • the charge transport layer 14 when the charge transport layer 14 is a hole transport layer, a first electron transport layer is further provided between the first electrode 12 and the first photoelectric conversion layer 13, and the intermediate electrode 15 and the second transport layer 14 are provided. A configuration in which a second electron transport layer is provided between the photoelectric conversion layer 16 is preferable.
  • the charge transport layer 14 is an electron transport layer
  • the first electrode 12 and the first photoelectric conversion layer 13 may be A configuration in which one hole transport layer is further provided and a second hole transport layer is provided between the intermediate electrode 15 and the second photoelectric conversion layer 16 is preferable. Therefore, in other words, the preferable configuration of the tandem organic photoelectric conversion element according to the present invention includes a first electrode layer formed on a substrate and the first electrode layer.
  • the first positive electrode adjacent to the intermediate electrode layer It is preferred that the transport layer or the first electron-transport layer containing a nitrogen-containing compound.
  • FIG. 2 is a schematic cross-sectional view schematically showing one embodiment of the configuration of a parallel-connected tandem organic photoelectric conversion element.
  • the parallel tandem organic photoelectric conversion element 20 in FIG. 2 includes a substrate 11 on which the first electrode layer 12 is formed, and a first photoelectric conversion layer 13 on the substrate 11 on which the first electrode layer 12 is formed. And a first subcell in which the first charge transport layer 14 is sequentially laminated, an intermediate electrode layer 15 made of gold, silver, copper, or an alloy containing these as a main component, and the intermediate electrode layer, A second subcell in which a second photoelectric conversion layer 16 and a second charge transport layer 17 are sequentially stacked, and a second electrode layer 18 are included.
  • the first electrode layer 12 and the second electrode layer 18 are connected to form one pole, and the other electrode is connected from the intermediate electrode 15. It becomes the composition to take out.
  • the second charge transport layer 17 in the second subcell is stacked in the reverse order to that of the second subcell in FIG.
  • the intermediate electrode 15 serves as a cathode electrode because it serves as an electrode for collecting holes, and at the same time, the second charge transport layer 17 serves as an electron.
  • the second electrode 18 becomes an anode and is connected to the first electrode 12, and the point A becomes an anode and the point B becomes a cathode and is connected to an external circuit.
  • the intermediate electrode 15 serves as an electrode that collects electrons, so that the second charge transport layer is a hole transport layer contrary to the previous case.
  • a point becomes a cathode pole and B point becomes an anode pole and is connected to an external circuit.
  • a charge transport layer having a polarity opposite to that of the charge transport layer 14 may be provided.
  • the charge transport layer 14 is a hole transport layer, it is more preferable to provide an electron transport layer between the first electrode 12 and the first photoelectric conversion layer 13, and further, the intermediate electrode 15 and the second photoelectric conversion. It is preferable to provide an electron transport layer also between the layers 16. This means that when the first charge transport layer is an electron transport layer, charge transport layers having opposite polarities are formed between the electrode and the photoelectric conversion layer.
  • the intermediate electrode 15 and the first charge transport layer in the first subcell are in direct contact.
  • the absorption spectrum of the first photoelectric conversion layer 13 and the absorption spectrum of the second photoelectric conversion layer 16 may be layers that absorb the same spectrum, or different spectra. Although it may be a layer that absorbs light, it is possible to efficiently convert light in a wider wavelength range within the sunlight spectrum into electricity, so a layer that absorbs different spectra is arranged in each subcell. It is preferable.
  • the tandem organic photoelectric conversion element 10 shown in FIG. 1 it is assumed that sunlight is irradiated from the lower side of the figure, from the substrate 11 side.
  • at least the first electrode layer 12 and the intermediate electrode layer 15 have a transparent electrode material or structure so that the irradiated light reaches the photoelectric conversion layer 13 or 16.
  • FIG. 1 light incident from the first electrode layer 12 through the substrate 11 is absorbed by the electron acceptor or the electron donor in the first photoelectric conversion layer 13 of the first subcell, and the electron from the electron donor. Electrons move to the acceptor, and a hole-electron pair (charge separation state) is formed. The generated charges move due to the internal electric field created by the potential difference (energy difference) between the charge transport layer or the cathode and the anode, or the distribution of charge density in the photoelectric conversion layer 13, and the electrons pass between the electron acceptors and are positive. The holes pass between the electron donors and are carried to different charge transport layers or electrodes.
  • the charge transport layer 14 when the charge transport layer 14 is an electron transport layer, the charge transport layer 14 is formed of a material having a high electron mobility or a material that functions as a blocking ability with respect to holes, and is generated at a pn junction interface in the photoelectric conversion layer 13. It is responsible for efficiently transporting electrons to the electrode.
  • the charge transport layer 14 when the charge transport layer 14 is a hole transport layer, the charge transport layer 14 is formed of a material having a high hole mobility or a material acting as a blocking ability for electrons, and is generated at the pn junction interface of the photoelectric conversion layer 14. It has a function of efficiently transporting holes to the intermediate electrode layer 15.
  • the light transmitted through the first subcell passes through the intermediate electrode layer 15 and reaches the second subcell.
  • the basic power generation mechanism is the same as that in the first subcell, and electrons generated in the second subcell are efficiently transported to the intermediate electrode layer 15, and at the same time, on the upper part of the second subcell.
  • the holes generated in the second subcell are efficiently transported to the formed electrode 18.
  • the holes generated in the first subcell and the electrons generated in the second subcell are recombined in the intermediate electrode layer 15 so that an electrical series connection is established between the first subcell and the second subcell.
  • the formed external circuit is driven.
  • the output open-circuit voltage (Voc) is a sum of the voltage of the first subcell and the voltage of the second subcell.
  • the anode 12 and the intermediate electrode layer 15 have a transparent electrode material or structure so that at least the irradiated light reaches the photoelectric conversion layer 13 or 16 as in the serial type.
  • the operation mechanism of the first subcell is driven in the same manner as the above-described series organic photoelectric conversion element.
  • the first charge transport layer 14 is an electron transport layer
  • the first subcell is generated in the first subcell.
  • the generated electrons are efficiently transported to the intermediate electrode layer 15 and the holes generated in the first subcell are efficiently transported to the electrode 12.
  • the light transmitted through the first subcell passes through the intermediate electrode layer 15 and reaches the second subcell.
  • the basic power generation mechanism is the same as that of the first subcell, but the second subcell has a charge transport layer different from the series type shown in FIG.
  • the holes generated in the second subcell are efficiently transported to the second electrode layer 18 formed on the upper part of the subcell, and at the same time, the electrons generated in the second subcell are efficiently transported to the intermediate electrode layer 15. It becomes the composition to be done.
  • Electrons generated in the first subcell and electrons generated in the second subcell are each output from the intermediate electrode layer 15 and simultaneously generated in the first subcell and in the second subcell.
  • an electrical parallel connection is formed between the first subcell and the second subcell, and an external circuit is driven by connecting as shown in the drawing.
  • the output short-circuit current density (Jsc) is a total value obtained by adding the current density of the first subcell and the current density of the second subcell. (However, since the light transmitted through the first subcell is attenuated by the absorption of the first subcell, the filter effect generally has a lower value than the current density of the subcell alone.)
  • Intermediate electrode layer charge recombination layer
  • an intermediate electrode layer is disposed between series-type and parallel-type photoelectric conversion layers.
  • a tandem organic photoelectric conversion element in which at least two or more subcells are stacked via an intermediate electrode layer, the first electrode layer formed on the substrate, and the second electrode A layer and one or more intermediate electrode layers, each subcell has a photoelectric conversion layer, the intermediate electrode layer is a continuous layer made of gold, silver, copper, or an alloy based on these,
  • the subcell on the substrate side has a charge transport layer containing a nitrogen atom-containing compound, and the intermediate electrode layer is an electrode layer provided with the charge transport layer as a base layer.
  • the intermediate electrode layer according to the present invention is composed of gold, silver, copper, or an alloy containing these as a main component, preferably silver, copper, and silver as a main component, manganese, magnesium, aluminum, Consists of silver composed of tin, zinc, bismuth, etc.
  • the main component contains at least 50% of gold, silver and copper.
  • the main component is preferably 60% or more and 95% or less, more preferably 70% or more and 90% or less.
  • a preferred composition can be selected within the above-mentioned range depending on the purpose such as conductivity and corrosion resistance.
  • a method for forming such an intermediate electrode layer a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. Examples include a method using a dry process. Of these, the vapor deposition method is preferably applied.
  • the intermediate electrode layer is formed on an underlayer described later, so that the conductive layer is sufficiently conductive even without high-temperature annealing after film formation. Accordingly, high-temperature annealing treatment or the like after film formation may be performed.
  • the intermediate electrode layer of the present invention is characterized in that it is formed on an underlayer described later in order to achieve both high conductivity and transparency.
  • the formed intermediate electrode layer is preferably a substantially continuous uniform layer with few grain boundaries. “Substantially continuous” means that, for example, in the intermediate electrode layer formed on the base layer observed from an electron microscope image, the area ratio occupied by the metal occupies at least 90%, more preferably 93% or more, and still more preferably 95%. It is more preferable that the above area is occupied by the metal thin film.
  • the intermediate electrode layer is preferably a very thin film, and the film thickness is about 4 nm to 18 nm, more preferably 3 nm to 15 nm, and still more preferably 5 nm to 12 nm.
  • the ultra-thin metal film is a continuous film, high conductivity is obtained, and at the same time, the increase in transmittance, which is estimated to be the effect of reducing plasmon absorption due to the decrease in grain boundaries, is observed. With such characteristics, particularly preferable characteristics are obtained in the intermediate electrode of the tandem organic thin film solar cell.
  • the organic photoelectric conversion device has a plurality of subcells, and at least an intermediate electrode layer is formed on a charge transport layer as a base layer between the subcells.
  • the charge transport layer has a function of transporting electrons or holes and has a property of extremely small ability to transport charges of opposite polarity.
  • the electron transport layer is provided between the photoelectric conversion layer and the cathode and prevents the recombination of electrons and holes by blocking the movement of holes while transporting electrons to the cathode. it can.
  • the hole transport layer is provided between the photoelectric conversion layer and the anode, and prevents the electrons and holes from recombining by blocking the movement of electrons while transporting the holes to the positive electrode. prevent. Therefore, in this specification, a charge injection layer, a charge block layer, an exciton block layer, and the like are included in the concept of the charge transport layer.
  • the charge transport layer in the first subcell provided on the substrate side is sequentially stacked as the first charge transport layer, and the charge transport layer in the second subcell is stacked as the second charge transport layer.
  • the first charge transport layer adjacent to the intermediate electrode layer is required to contain a nitrogen-containing compound, and the first charge transport layer contains the nitrogen-containing compound.
  • the nitrogen-containing compound itself may act as a transport material having a function of transporting charges
  • the first charge transport layer of the present invention contains a nitrogen-containing compound and other charge transport materials. You may contain.
  • the second charge transport layer of the present invention is not particularly limited as long as it includes a charge transport material having a function of transporting charges, and if it has a function of transporting charges, the molecular structure or There are no particular restrictions on the composition.
  • the first charge transport layer according to the present invention when the intermediate electrode layer and the first charge transport layer are adjacent to each other and contact with each other, the first charge transport layer according to the present invention includes a nitrogen-containing compound. If necessary, it is more preferable that other organic materials or metal oxides are used in combination as a charge transport material.
  • the embodiment having two subcells is illustrated, but the organic photoelectric conversion element having n subcells (n is an integer of 2 or more and 5 or less) Also good.
  • n is an integer of 2 or more and 5 or less
  • the charge transport layer electron transport layer or hole transport layer directly adjacent to the n-1 intermediate electrode layers and disposed on the substrate side is the most.
  • the charge transport layer (electron transport layer or hole transport layer) on the substrate side is numbered as the first charge transport layer (or first electron transport layer or first hole transport layer), n ⁇ 1 Assuming that the charge transport layer (or the (n ⁇ 1) th electron transport layer or the (n ⁇ 1) th hole transport layer) is formed, the first charge transport layer to the n ⁇ th ⁇ A maximum of n ⁇ 1 layers of one charge transport layer (or first electron transport layer or first hole transport layer to n ⁇ 1 th electron transport layer or n ⁇ 1 th hole transport layer) It is sufficient that at least one of the layers contains the nitrogen-containing compound according to the present invention. It may contain a containing compounds.
  • the electrode formed in the uppermost layer also has an intermediate electrode as described above.
  • it can be obtained by laminating a structure having a charge transport layer disposed underneath as a base layer. At this time, if a large refractive index difference is formed between the uppermost metal layer and air or the adhesive at the time of sealing, reflection at the interface may occur and the transmittance may decrease.
  • a functional layer for adjusting the refractive index may be newly provided on the electrode of the metal thin film formed in the uppermost layer.
  • the amount of the ultrathin film obtained by the present invention is not limited to the above-described addition amount.
  • the intermediate electrode layer can be formed, which is one of the preferred embodiments in the present invention.
  • the charge transport layer containing the containing compound preferably has the same composition ratio as the first charge transport layer, and the other charge transport layers preferably have the same composition ratio as the second charge transport layer.
  • the compound that can be used in the charge transport layer of the present invention is selected from polymer materials, low molecular materials, and the like containing nitrogen atoms.
  • an organic substance in which nitrogen atoms are bonded as primary to quaternary amines or aromatic nitrogen is more preferable from the viewpoint of freedom of design.
  • secondary amines and unsubstituted nitrogen atom-containing aromatics are most preferable because they strongly interact with the metal of the intermediate electrode layer.
  • polypyridine J. Am. Chem. Soc. 1994, 116, 4832
  • polyaniline polycarbazole
  • polypyrrole Polym. Prepr. 2000, 41, etc.
  • polymer type organic semiconductors 1770
  • polyazoles, polyimidazoles, and polymers having a condensed ring structure including pyridyl, bipyridyl, pyrrole, pyrazyl, and imidazolyl structures can also be preferably used.
  • it is not necessary to limit to these organic semiconductors and any material that exhibits charge transportability can be preferably used.
  • Examples of the material exhibiting the charge transporting property include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. It is done.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the charge transport layer according to the present invention preferably further contains a metal oxide in order to improve the charge transport property, and the first charge transport layer adjacent to the intermediate electrode layer according to the present invention further includes a metal oxide. It is more preferable that a product is included. In the present invention, it is more preferable to add an n-type conductive inorganic oxide (titanium oxide, zinc oxide, etc.) in addition to the above-described nitrogen atom-containing material.
  • n-type conductive inorganic oxide titanium oxide, zinc oxide, etc.
  • the metal charge when the first charge transport layer contains a metal oxide, is preferably 1% by mass with respect to 100% by mass of the solid content of the charge transport layer. When it is contained in an amount of ⁇ 50% by mass, and more preferably in an amount of 5% by mass to 40% by mass, a higher charge transport property is obtained.
  • Metal oxides added to the charge transport layer include molybdenum, vanadium, tungsten, chromium, niobium, tantalum, titanium, zirconium, hafnium, scandium, yttrium, thorium, manganese, iron , Ruthenium, osmium, cobalt, nickel, copper, zinc, cadmium, aluminum, gallium, indium, silicon, germanium, tin, lead, antimony, bismuth, or oxides of so-called rare earth elements from lanthanum to lutetium.
  • metal oxides such as zinc oxide (ZnO), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ).
  • Zinc oxide and titanium oxide are particularly preferred.
  • These inorganic oxides may be used alone or in combination of two or more.
  • a material type that forms an interface dipole by bonding a dipole material to the electrode and improves charge extraction such as 3- (2-aminoethyl) aminopropyltrimethoxysilane (AEAP) described in WO2008 / 134492 -TMOS).
  • AEAP 3- (2-aminoethyl) aminopropyltrimethoxysilane
  • n-type charge transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • TPD N, N′-bis (3-methylphenyl)-(1,1′-b
  • Triazole derivatives Triazole derivatives, oki Use of dizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be preferably used.
  • the thickness of the charge transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further improving the leak prevention effect, the thickness is preferably 5 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 1000 nm or less, and more preferably 200 nm or less.
  • the substrate-side hole transport layer or charge transport layer adjacent to the intermediate electrode layer contains a nitrogen-containing compound, and preferably the substrate-side charge transport layer adjacent to the intermediate electrode layer ( The first charge transport layer) contains a nitrogen-containing compound.
  • a nitrogen-containing polymer is preferable, and a nitrogen-containing polymer containing a nitrogen atom in the side chain is more preferable.
  • the nitrogen-containing polymer according to the present invention is preferably any one of the following chemical formulas (1) to (5), and any one of the following chemical formulas (1) to (4) and the chemical formula (5) It is more preferable to combine with.
  • the nitrogen-containing polymers of the chemical formulas (1) to (4) will be described.
  • the nitrogen-containing polymer according to the present invention includes a conjugated aromatic ring in the main chain and 1.5 or more primary to quaternary amino groups as substituents per aromatic ring.
  • the number is preferably 2 to 15, and more preferably 3 to 10. If the number (density) of amino groups is in such a range, not only good solubility and coating properties can be obtained, but also the intermediate electrode layer laminated on the upper layer forms a continuous layer, and further obtained. The durability of the organic photoelectric conversion element can be improved.
  • the upper limit of the number of amino groups present per aromatic ring is not particularly limited, but is preferably 15 or less, and more preferably 7 or less, from a synthetic viewpoint.
  • the intermediate electrode layer is directly coated on a photoelectric conversion layer that is not dissolved in a highly polar solvent. Can be easily formed.
  • a preferred conjugated polymer compound that is a nitrogen-containing polymer according to the present invention has the following chemical formula (1):
  • Z 1 and Z 2 represent —C (R 3 ) ⁇ C (R 4 ) —, —C (R 5 ) ⁇ N—, —O— or —S—.
  • Z 1 and Z 2 may be the same or different.
  • Z 1 and Z 2 in each structural unit may be the same or different.
  • Z 1 and Z 2 are each independently —CH ⁇ CH—, —CH ⁇ N— or —S—. More preferably, Z 1 and Z 2 are each independently —CH ⁇ CH— or —S—, and particularly preferably Z 1 and Z 2 are —S—.
  • Z 1 and Z 2 are —S—, that is, by introducing a polythiophene system into the conjugated polymer compound main chain, the carrier transport capability is improved, and the power generation layer and the p-type semiconductor material are similar. Since it becomes a structure and the affinity between layers increases, high efficiency and durability can be obtained.
  • R 3 to R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted Alternatively, it represents an unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms.
  • R 3 to R 5 are each independently a hydrogen atom, an alkyl group, and an amino group, more preferably a hydrogen atom.
  • the unsubstituted alkyl group having 1 to 20 carbon atoms is not particularly limited, and is a linear or branched alkyl group having 1 to 20 carbon atoms.
  • X 1 is a nitrogen atom, carbon atom, silicon atom or phosphorus atom (including a trivalent phosphorus atom and a pentavalent phosphorus atom; in the case of a pentavalent phosphorus atom, X 1 is , P ( ⁇ O) —R is preferably a group derived from a phosphine oxide compound.
  • X 1 in each structural unit may be the same or different.
  • X 1 is a carbon atom. Since X 1 is a carbon atom, a conjugated polymer compound having amino groups with a uniform and high density on the surface can be obtained with the conjugated polymer compound as the center, and the polarization of the dipole layer can be further increased. And the stability of the obtained organic photoelectric conversion element can be improved.
  • L 1 is a single bond or a divalent linking group.
  • the divalent linking group include a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, and a carbon number of 3 Substituted or unsubstituted cycloalkylene group having 20 to 20 carbon atoms, substituted or unsubstituted arylene group having 6 to 30 carbon atoms, substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms, 1 to 20 carbon atoms
  • a divalent group selected from a substituted or unsubstituted alkyleneoxy group and — (L 1 ′ ) — (OR 10 ) p — is preferable.
  • L 1 in each structural unit may be the same or different.
  • n is 2 (when X 1 is a carbon atom or a silicon atom), each L 1 may be the same or different.
  • L 1 ′ is a single bond, an alkylene group having 1 to 20 carbon atoms, or 6 to 30 carbon atoms.
  • R 10 represents an ethylene group, a trimethylene group or a propylene group, and p is an integer of 1 to 5.
  • Ra to Rb are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • L 3 to L 4 each independently represents a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, or 6 carbon atoms.
  • n represents an integer in which the substituent: —L 1 —N (R a ) (R b ) is bonded to X 1 and is 1 , 2 or 3. That is, when X 1 represents a phosphorus atom, n is 1 or 3, when X 1 represents a carbon atom or a silicon atom, n is 2, and when X 1 represents a nitrogen atom. In the formula, n is 1.
  • the substituted or unsubstituted alkyl group according to the present invention may be a linear or branched alkyl group, as long as it is a compound exhibiting sufficient solubility and performance. There is no particular limitation.
  • the nitrogen-containing polymer according to the present invention preferably has a structural unit represented by the above chemical formula 1.
  • the nitrogen-containing polymer according to the present invention may be a homopolymer composed of the structural unit represented by the chemical formula 1 or may be composed of two or more structural units represented by the chemical formula 1. It may be a copolymer.
  • the nitrogen-containing polymer according to the present invention further includes other structural unit having no amino group (hereinafter, also simply referred to as “other structural unit”) in addition to the structural unit represented by the above chemical formula 1.
  • other structural unit hereinafter, also simply referred to as “other structural unit”
  • a copolymer (copolymer) may be formed.
  • the content of the other structural units is not particularly limited as long as the effect of the conjugated polymer compound according to the present invention is not impaired.
  • the content of the monomer derived from the structural unit is preferably 10 to 75 mol%, more preferably 20 to 50 mol% in the monomer derived from all the structural units.
  • the method for producing the nitrogen-containing polymer according to the present invention is not particularly limited, and a known production method can be applied in the same manner or appropriately modified.
  • the nitrogen-containing polymer according to the present invention can be synthesized with reference to ADVANCED MATERIALS 2007, 19, 2010, and the like.
  • the molecular weight of the nitrogen-containing polymer represented by the chemical formula (1) that can be preferably used in the present invention is not particularly limited as long as the effect of the present invention is exerted, but is usually a number average molecular weight of 5 k to 1000 k. It is preferably about 10k to 100k, more preferably about 15k to 50k.
  • the number average molecular weight can be evaluated in terms of polystyrene from the value measured by GPC (for example, HLC-8220 manufactured by TOSOH).
  • More preferable examples of the chemical formula (1) include those having the following structures (formula 1-1 to formula 1-21). The present invention is not limited to these.
  • a compound is prescribed
  • N / A represents the number of primary to quaternary amino groups per aromatic ring present in each conjugated polymer compound.
  • Nonrogen-containing polymer of chemical formula (2) As the chemical formula (2) of the nitrogen-containing polymer, a polyvinyl structure represented by the following structural formula can be used.
  • the electron transport material that can be preferably used in the present invention include polymer materials having a nitrogen atom-containing aromatic group in the side chain of the following chemical formula (2).
  • —C (R 1 ) C (R 2 ) —, —C (R 5 ).
  • R 1 , R 2 and R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms.
  • an aromatic ring substituent containing a nitrogen atom is connected to Y described above.
  • Y Although it does not specifically limit as a specific example of Y, A pyridyl group, a bipyridyl group, a pyrazyl group, a pyrrole ring, an imidazolyl ring, etc. are mentioned, These substituted or condensed groups may be substituted.
  • X 1 to X 5 do not need to contain a nitrogen atom.
  • the higher the number of nitrogen atoms the higher the density
  • the intermediate electrode layer laminated on the substrate is not only a continuous film, but also the adhesion between the intermediate electrode layer and the charge transport layer is improved, which is more preferable in improving durability at high temperatures.
  • compounds included in the chemical formula (2) include those having the following structures (formula 2-1 to formula 2-9). The present invention is not limited to these.
  • the molecular weight of the nitrogen-containing polymer represented by the chemical formula (2) is not particularly limited as long as the effect of the present invention is exhibited, but is usually 5 k to 1000 k in terms of number average molecular weight, preferably 10 k to 100 k, more preferably Is preferably about 15 to 50 k.
  • the number average molecular weight can be evaluated in terms of polystyrene from the value measured by GPC (for example, HLC-8220 manufactured by TOSOH).
  • nitrogen-containing polymer of chemical formula (3) examples include polymer materials containing a nitrogen atom in the main chain represented by the following structural formula and a primary to quaternary nitrogen atom in the side chain.
  • examples of the electron transport material that can be preferably used in the present invention include polyalkyleneimines represented by the following chemical formula (3).
  • an embodiment including a polyalkyleneimine will be described.
  • the nitrogen-containing polymer according to the present invention has the following chemical formula (3):
  • X is — (CH 2 ) mN (R 1 ) (R 2 ), or a salt thereof — (CH 2 ) mN (R 1 ) (R 2 ) (R 3) + Xa - is represented by, R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted Or an unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, and further a cross-linked structure in which ethyleneamine is continuously connected via R 1 to R 3.
  • Xa is at least one selected from the group consisting of a halogen atom, an alkali metal, and an alkaline earth metal
  • m is preferably a polyal
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or An unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, and further R 1 It is preferably a cross-linked structure in which ethyleneamine is continuous through R 3 .
  • X in the chemical formula (IV) is at least one selected from the group consisting of a halogen atom, an alkali metal, and an alkaline earth metal, like Xa defined in the chemical formula (3).
  • the compound represented by the chemical formula (3) shown above is preferably a polymer containing at least one of the compounds represented by the chemical formulas (I) to (III) shown above in the main chain.
  • polyalkyleneimine means a linear or branched polymer having an aminoalkylene group as a repeating unit.
  • oligomers such as dimers and trimers are also included in the polyalkyleneimine.
  • polyethyleneimine which is a branched polymer having an aminoethylene group as a repeating unit is represented by the following chemical formula (3A).
  • the polyethyleneimine represented by the chemical formula (3A) includes a primary amino group (NH 2 —CH 2 CH 2 —), a secondary amino group (NH— (CH 2 CH 2 —) 2 ), and a tertiary amino group. (N— (CH 2 CH 2 —) 3 ).
  • the primary amino group constitutes the end of the chain
  • the tertiary amino group constitutes the branching point of the chain.
  • the polyalkyleneimine of this embodiment is not particularly limited as long as it is a polymer having an aminoalkylene group as a repeating unit as described above.
  • the alkylene group contained in the aminoalkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, and a 1,2-dimethylethylene group.
  • an ethylene group, a trimethylene group, and a propylene group are preferable from the viewpoint of ease of synthesis and availability, or from the viewpoint of compatibility with the coating solution.
  • the terminal structure is not particularly limited, but is usually a primary amino group (—NH 2 ) or an alkyl group (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, etc.) It can be.
  • a primary amino group —NH 2
  • an alkyl group eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, etc.
  • the polyalkyleneimine of this form may be linear (that is, not containing a tertiary amino group) or branched, but from the viewpoint of improving reactivity, branched polyalkyleneimine It is preferable that Further, the branched structure when the polyalkyleneimine is branched is not particularly limited, and may be a network structure or a dendrimer structure.
  • the content ratio of the primary amino group, secondary amino group, and tertiary amino group in the case of the branched polyalkyleneimine is not particularly limited, but the content ratio of the primary amino group is From the viewpoint of improving the reactivity by increasing the cation density, it is preferably 5 to 60% by mole, more preferably 20 to 50%, more preferably 30 to 45% with respect to 100% by mole of all amino groups. More preferably. Further, from the viewpoint of satisfactorily forming a polymer network, the content ratio of secondary amino groups is preferably 25 to 55 mol%, preferably 30 to 45% with respect to 100 mol% of all amino groups.
  • the content of the tertiary amino group is preferably 15 to 45 mol%, more preferably 15 to 35%.
  • required by the method as described in the below-mentioned Example is employ
  • Amine number of polyalkyleneimine (indicating the total amount of primary amino group, secondary amino group, and tertiary amino group, mg number of potassium hydroxide equivalent to hydrochloric acid required to neutralize 1 g of sample) Is usually 2 to 40 mmol / g, preferably 10 to 30 mmol / g.
  • the amine value is 2 mmol / g or more, reactivity with the diffusing substance is obtained, and when it is 40 mmol / g or less, an increase in the viscosity of the coating solution can be suppressed.
  • the method for measuring the amine value of polyalkyleneimine is as follows.
  • sample amount: Sg 20 ml of toluene is added to dissolve, and 20 ml of isopropyl alcohol and a few drops of bromophenol blue solution are added, and 1/10 N isopropyl alcohol solution (titer: f) is added. Titrate and read titration to end point (Titration: A [ml]). From this titration amount, the amine value is calculated by the following formula 1.
  • the molecular weight of the nitrogen-containing polymer represented by the chemical formula (3) that can be preferably used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, but is usually a number average molecular weight of 100 to 50,000, Preferably it is about 300 to 10,000, more preferably about 500 to 5,000.
  • the number average molecular weight can be evaluated in terms of polystyrene from the value measured by GPC (for example, HLC-8220 manufactured by TOSOH).
  • polyalkyleneimine represented by the chemical formula (3) used in the present invention a commercially available product may be used, or a product obtained by synthesis may be used.
  • a polyalkyleneimine is prepared by synthesis, it can be synthesized by the method described in JP-B-49-33120.
  • polyalkyleneimine can be obtained by reacting alkyleneimine with ethylenediamine, diethylenetriamine, monoethanolamine or the like as a raw material in the presence of an acid catalyst such as hydrochloric acid, sulfuric acid or p-toluenesulfonic acid.
  • linear polyethyleneimine is available from Wako Pure Chemical Industries, Kanto Chemical Co., Ltd., etc.
  • Epomin (registered trademark) SP-003, SP-006, SP-012, SP-018, SP-200, P-1000 manufactured by Nippon Shokubai Co., Ltd. can be used as the branched polyethyleneimine.
  • the first grade A part of the amino group or secondary amino group may be modified, for example, epoxy compounds, isocyanates, thioisocyanates, alkyl halides, unsaturated fats, fatty acids, anhydrous fatty acids, acyl halides It may have a structure modified with urea, guanidines, ketones, aldehydes or the like.
  • the modification rate of the modified polyalkyleneimine (the ratio of the amino group formed by adding the substituent after modification to the total number of primary amino groups and secondary amino groups before modification) is preferably 10% to 90%. %, More preferably 15% to 70%, and still more preferably 20% to 50%. If the modification rate is 10% or more, sufficient solubility to be dissolved in the coating solution can be ensured. On the other hand, when the modification rate is 90% or less, since the active amino group (primary amino group and secondary amino group) is contained, the effect of the present invention can be exhibited more remarkably. In the present specification, the modification rate can be calculated by 13 C-NMR measurement.
  • the polyalkyleneimine of the chemical formula (3) according to the present invention may be a homopolymer consisting only of aminoalkylene units, or may be a copolymer (heteropolymer) containing two or more aminoalkylene units. . Moreover, the copolymer containing other units other than an amino alkylene unit may be sufficient. Other units are not particularly limited as long as the effects of the present invention are not significantly reduced. For example, polyester compound units, acrylic compound units, polyurethane compound units, acrylic urethane compound units, polycarbonate compound units, cellulose compound units, polyvinyl compounds. Examples include acetal compound units and polyvinyl alcohol compound units.
  • the copolymer may be either a random copolymer or a block copolymer, and is preferably a block copolymer.
  • the content ratio of these other units can be selected from the viewpoint of compatibility with the coating solvent and the solute, and is preferably 50 mol% or less with respect to the total number of amino alkylene units of 100 mol%, and 20 mol. % Or less is more preferable.
  • nitrogen-containing polymer of chemical formula (4) examples include polymer materials containing primary to quaternary nitrogen atoms represented by the following chemical formula (4). Further, examples of the electron transport material that can be preferably used in the present invention include a nitrogen-containing polymer represented by the following chemical formula (4).
  • the nitrogen-containing polymer according to the present invention has the following chemical formula (4):
  • Ar is a substituted or unsubstituted heteroaromatic ring, aromatic ring or condensed ring structure
  • Y 1 and Y are each independently a single bond or a divalent linking group
  • R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon atom number, A 6-30 aryl group, or a substituted or unsubstituted heteroaryl group having 1-30 carbon atoms, and a continuous cross-linked structure via Y.
  • R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon atom number, A 6
  • a more preferable condition of the chemical formula (4) shown above is a polymer containing at least one of the following chemical formulas (4A) or (4B) in the main chain,
  • the divalent linking group includes —NH—, —N (R) —, —O—, —S—, or Si (R) (R ′), substituted or unsubstituted carbon atoms of 1 to 20
  • Y is a single bond or a divalent linking group
  • R 1 , R 2 and R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted group
  • an unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, and a continuous cross-linked structure via Y are preferable.
  • the divalent linking group includes —NH—, —N (R) —, —O—, —S—, or Si (R) (R ′), substituted or unsubstituted carbon atoms of 1 to 20
  • the compounds according to the present invention contained in the chemical formula (4) include those having the following structural formulas (formula 4-1 to 4-20). The present invention is not limited to these.
  • the molecular weight of the nitrogen-containing polymer represented by the chemical formula (4) is not particularly limited as long as the effect of the present invention is exhibited, but usually the number average molecular weight is 5 k to 1000 k, preferably 10 k to 100 k, more preferably Is preferably about 15 to 50 k.
  • the number average molecular weight can be evaluated in terms of polystyrene from the value measured by GPC (for example, HLC-8220 manufactured by TOSOH).
  • the first charge transport layer according to the present invention preferably contains a compound represented by the following chemical formula (5).
  • m is an integer of 1 or more, when m is 1, Y 1 represents a substituent, and when m is 2 or more, it is a single bond or an m-valent linking group;
  • Ar m is the following chemical formula (5A):
  • the compound represented by the chemical formula (5) preferably has at least two condensed aromatic rings formed by condensation of three or more rings in the molecule.
  • examples of the substituent represented by Y 1 include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group).
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group.
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • m-valent linking group represented by Y 1 examples include a divalent linking group, a trivalent linking group, and a tetravalent linking group.
  • the divalent linking group represented by Y 1 is an alkylene group (for example, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group).
  • alkenylene group for example, vinylene group, propenylene group, butenylene group, pentenylene group, 1-methylvinylene group, 1-methylpropenylene group) 2-methylpropenylene group, 1-methylpentenylene group, 3-methyl Rupentenylene group, 1-ethylvinylene group, 1-ethylpropenylene group, 1-ethylbutenylene group, 3-ethylbutenylene group, etc.
  • alkynylene group for example, ethynylene group, 1-propynylene group, 1-buty
  • examples of the trivalent linking group represented by Y 1 include ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, and octant. Liyl group, nonanetriyl group, decanetriyl group, undecanetriyl group, dodecanetriyl group, cyclohexanetriyl group, cyclopentanetriyl group, benzenetriyl group, naphthalenetriyl group, pyridinetriyl group, carbazoletriyl group, etc. Is mentioned.
  • the tetravalent linking group represented by Y 1 is a group in which one trivalent group is further attached to the above trivalent group.
  • the divalent linking group, the trivalent linking group, and the tetravalent linking group may each further have a substituent represented by Y 1 in the chemical formula (5).
  • Y 1 preferably represents a group derived from a condensed aromatic heterocyclic ring formed by condensation of three or more rings,
  • the condensed aromatic heterocycle formed by condensing the ring is preferably a dibenzofuran ring or a dibenzothiophene ring.
  • m is preferably 2 or more.
  • the compound represented by the chemical formula (5) has at least two condensed aromatic heterocycles in which three or more rings are condensed in the molecule.
  • Y 1 represents an m-valent linking group
  • Y 1 is preferably non-conjugated in order to keep the triplet excitation energy of the compound represented by the chemical formula (5) high
  • Tg glass From the viewpoint of improving the transition point or glass transition temperature, it is preferably composed of an aromatic ring (aromatic hydrocarbon ring + aromatic heterocycle).
  • non-conjugated means that the linking group cannot be expressed by repeating a single bond (also referred to as a single bond) and a double bond, or the conjugation between aromatic rings constituting the linking group is sterically cleaved. Means.
  • the divalent linking group represented by Y 2 has the same meaning as the divalent linking group represented by Y 1 in the chemical formula (5).
  • a 5-membered or 6-membered aromatic ring used for forming a group derived from a 5-membered or 6-membered aromatic ring represented by Y 3 and Y 4 may be benzene.
  • At least one of the groups derived from a 5-membered or 6-membered aromatic ring represented by Y 3 and Y 4 represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring constituent atom.
  • the aromatic heterocycle containing a nitrogen atom as the ring constituent atom includes an oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, diazine ring, triazine ring, imidazole ring, isoxazole ring, pyrazole Ring, triazole ring and the like.
  • the compound represented by the chemical formula (5) according to the present invention has the following chemical formula (6):
  • Y 5 is a divalent linking group comprising an arylene group, a heteroarylene group or a combination thereof
  • E 51 to E 66 are each independently —C (R 3 ) ⁇ or —N ⁇
  • R 3 is a hydrogen atom or a substituent
  • Y 6 to Y 9 are each independently a group derived from an aromatic hydrocarbon ring or a group derived from an aromatic heterocycle
  • At least one of Y 6 or Y 7 and at least one of Y 8 or Y 9 is a group derived from an aromatic heterocycle containing an N atom
  • n3 and n4 are integers from 0 to 4.
  • the substituent of R 3 in the chemical formula (6) is synonymous with the substituent of R 1 in the chemical formula (5), and Y 6 and Y 8 in the chemical formula (6) are the same as those in the chemical formula (5). has the same meaning as the substituent of Y 3, Y 7 and Y 9 in the chemical formula (6) has the same meaning as the substituent of Y 4 of formula (5).
  • the arylene group and heteroarylene group represented by Y 5 are the arylene group described as an example of the divalent linking group represented by Y 1 in the chemical formula (5), Each is synonymous with a heteroarylene group.
  • the divalent linking group comprising an arylene group, heteroarylene group or a combination thereof represented by Y 5
  • a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is derived from a group derived from a dibenzofuran ring or a dibenzothiophene ring.
  • Y 6 to Y 9 are each an aromatic hydrocarbon ring used for forming a group derived from an aromatic hydrocarbon ring, such as a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, Anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, A naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyranthrene ring, an aromatic hydrocarbon ring used
  • aromatic hydrocarbon ring may have a substituent represented by Y 1 in the chemical formula (5).
  • Y 6 to Y 9 are each an aromatic heterocycle used for forming a group derived from an aromatic heterocycle, for example, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, Pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, Benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring,
  • aromatic hydrocarbon ring may have a substituent represented by Y 1 in the chemical formula (5).
  • an N atom used for forming a group derived from an aromatic heterocyclic ring containing an N atom represented by at least one of Y 6 or Y 7 and at least one of Y 8 or Y 9 is examples of the aromatic heterocycle include oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole.
  • the groups represented by Y 7 and Y 9 each preferably represent a group derived from a pyridine ring.
  • the groups represented by Y 6 and Y 8 each preferably represent a group derived from a benzene ring.
  • Y 5 is a divalent linking group comprising an arylene group, a heteroarylene group or a combination thereof, and E 51 to E 66 and E 71 to E 88 are each independently , —C (R 3 ) ⁇ , or —N ⁇ , R 3 is a hydrogen atom or a substituent, at least one of E 71 to E 79 , and at least one of E 80 to E 88 is —N And n3 and n4 are integers of 0 to 4, and n3 + n4 is an integer of 2 or more).
  • the arylene group and heteroarylene group represented by Y 5 are the arylene group, heteroaryl group described as an example of the divalent linking group represented by Y 1 in the chemical formula (5). Each is synonymous with an arylene group.
  • the divalent linking group comprising an arylene group, heteroarylene group or a combination thereof represented by Y 5
  • a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is derived from a group derived from a dibenzofuran ring or a dibenzothiophene ring.
  • E 51 to E 58 and 6 or more of E 59 to E 66 are each represented by —C (R 3 ) ⁇ .
  • At least one of E 75 to E 79 and at least one of E 84 to E 88 represent —N ⁇ .
  • any one of E75 to E79 and any one of E 84 to E 88 represent —N ⁇ .
  • E 71 to E 74 and E 80 to E 83 are each represented by —C (R 3 ) ⁇ .
  • E 53 is represented by —C (R 3 ) ⁇
  • R 3 represents a linking site
  • 61 is also simultaneously represented by —C (R 3 ) ⁇
  • R 3 preferably represents a linking site.
  • the compounds according to the present invention contained in the chemical formula (5) include those having the following structural formulas (formula 1 to formula 112). The present invention is not limited to these.
  • the organic photoelectric conversion element according to the present invention preferably has a hole transport layer in the first subcell and the second subcell.
  • the charge transport layer made of the above-described compound containing a nitrogen atom functions as a base layer adjacent to the intermediate electrode, but among the charge transport layers not adjacent to the intermediate electrode, charge transport having a function of transporting holes to the electrode in particular.
  • the layers will be described in detail below.
  • the hole transport layer has a function of transporting holes and a property of transporting electrons extremely small (for example, 1/10 or less of the mobility of holes).
  • the hole transport layer is provided between the photoelectric conversion layer and the anode and prevents recombination of electrons and holes by blocking the movement of electrons while transporting holes to the anode. Can do. Therefore, in this specification, a positive hole injection layer, an electronic block layer, etc. are also included in the concept of a positive hole transport layer.
  • the hole transport material used for the hole transport layer according to the present invention is not particularly limited, and materials that can be used in this technical field can be appropriately employed.
  • the conductive polymer preferably used in the present invention is not particularly limited, but preferably comprises a ⁇ -conjugated polymer and a polyanion.
  • a polymer can be easily produced by subjecting a precursor monomer forming a ⁇ -conjugated polymer to chemical oxidative polymerization in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
  • Examples of the ⁇ -conjugated polymer that can be used in the present invention include polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, and polyparaffins.
  • a chain conductive polymer of phenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl compounds can be used.
  • polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like.
  • polyethylenedioxythiophenes are preferable.
  • the polyanion preferably used in the present invention is not particularly limited, but it is more preferable to have a sulfo group as the anionic group.
  • Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. An acid etc. are mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • it may be a polyanion having fluorine (F) in the compound.
  • F fluorine
  • Nafion made by Dupont
  • Flemion made by Asahi Glass Co., Ltd.
  • perfluoro vinyl ether containing a carboxylic acid group and the like can be mentioned.
  • PEDOT PSS made by Heraeus, trade name CLEVIOS-P, fluorine-containing polyanions (Nafion etc.) described in European Patent No. 1546237, Japanese Patent Application Laid-Open No. 2009-1329797, etc.
  • cyanide compounds described in WO 2006/019270 pamphlet and the like are commercially available as PEDOT-PASS 483095 and 560598 from Aldrich and as the Denatron series from Nagase Chemtex.
  • Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, and the like can also be used.
  • the hole transport layer may be formed using an inorganic compound such as p-type-Si, p-type-SiC, nickel oxide, molybdenum oxide, vanadium oxide, or tungsten oxide.
  • a polymer material in which a structural unit contained in the above compound is introduced into a polymer chain, or a polymer material having the above compound as a polymer main chain can also be used as a hole transport material.
  • a p-type hole transport material as described in 139 can also be used.
  • a hole transport material with high p property doped with impurities can be used.
  • a hole transport layer made of an inorganic material can be preferably used.
  • a metal oxide as a main component.
  • the “main component” means that the proportion of the metal oxide in the total amount of 100 mass% of the constituent materials of the hole transport layer is 50 mass% or more.
  • the ratio of the metal material in the total amount of 100% by mass of the constituent material of the hole transport layer is preferably 60% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Yes, most preferably 100% by weight.
  • Examples of the metal oxide (including some nonmetallic materials) used in the hole transport layer according to the present invention include molybdenum, vanadium, tungsten, chromium, niobium, tantalum, titanium, zirconium, hafnium, scandium, yttrium, and thorium.
  • metal oxides such as MoO 3 , NiO, WO 3 , V 2 O 5 can be preferably used, and MoO 3 , WO 3 , V 2 O 5 can be used. Particularly preferred. These inorganic oxides may be used alone or in combination of two or more.
  • the thickness of the hole transport layer according to the present invention is not particularly limited, but is preferably 1 to 1000 nm, more preferably about 10 to 500 nm, and most preferably about 50 to 200 nm from the viewpoint of photoelectric conversion efficiency and durability.
  • the thickness is preferably 1 nm or more from the viewpoint of further improving the leak prevention effect, and the thickness is preferably 1000 nm or less from the viewpoint of maintaining high transmittance and low resistance.
  • the hole transport layer can be formed by using a general film forming method, for example, vacuum deposition method, heating vacuum deposition method, electron beam deposition method, laser beam deposition method, sputtering method, CVD method, atmospheric pressure plasma method, etc.
  • a wet process such as a dry process, a coating method, a plating method, or an electric field forming method can be used.
  • a direct patterning method using a printing technique for example, an ink jet printing method can be preferably used.
  • hole transport materials may be used alone or in combination of two or more. It is also possible to form a hole transport layer by laminating two or more layers made of each material.
  • the conductivity of the hole transport layer according to the present invention is generally preferably higher, but if it is too high, the ability to prevent electrons from moving can be reduced, and rectification can be reduced. Accordingly, the conductivity of the hole transport layer is preferably 10 ⁇ 5 to 1 S / cm, and more preferably 10 ⁇ 4 to 10 ⁇ 2 S / cm.
  • the organic photoelectric conversion element according to the present invention preferably has an electron transport layer in the first subcell and the second subcell.
  • the above-described charge transport layer made of a compound containing a nitrogen atom functions as a base layer adjacent to the intermediate electrode, but among the charge transport layers not adjacent to the intermediate electrode, in particular, the charge transport layer having a function of transporting electrons to the electrode Will be described in detail below.
  • the electron transport layer has a property of transporting electrons and a remarkably small ability to transport holes.
  • the electron transport layer is provided between the photoelectric conversion layer and the cathode, and prevents the recombination of electrons and holes by blocking the movement of holes while transporting electrons to the cathode. it can. Therefore, in this specification, an electron injection layer, a hole block layer, an exciton block layer, and the like are also included in the concept of the electron transport layer.
  • the electron transport material used for the electron transport layer is not particularly limited, and materials that can be used in this technical field can be appropriately employed.
  • materials that can be used in this technical field can be appropriately employed.
  • nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives the following compounds:
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • an inorganic semiconductor such as n-type-Si or n-type-SiC or an inorganic oxide having n-type conductivity (such as titanium oxide or zinc oxide) should be used as an electron transport material. Can do.
  • an electron transport layer made of an inorganic material can be preferably used.
  • a metal oxide as a main component.
  • main component means that the proportion of the metal oxide in the total amount of 100 mass% of the constituent materials of the electron transport layer is 50 mass% or more.
  • the proportion of the metal material in the total amount of 100% by mass of the constituent material of the electron transport layer is preferably 60% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Most preferably, it is 100 mass%.
  • the metal oxide (partly including a non-metal material) used for the electron transport layer the same metal oxide as exemplified as the metal oxide added to the charge transport layer described above can be used.
  • metal oxides such as titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ) can be preferably used from the viewpoint of excellent electron transport capability. 2 ) is particularly preferred.
  • These inorganic oxides may be used alone or in combination of two or more.
  • a material type that forms an interface dipole by bonding a dipole material to the electrode and improves charge extraction such as 3- (2-aminoethyl) aminopropyltrimethoxysilane (AEAP) described in WO2008 / 134492 -TMOS).
  • AEAP 3- (2-aminoethyl) aminopropyltrimethoxysilane
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • TPD N, N′-bis (3-methylphenyl)-(1,1′-b
  • Triazole derivatives Triazole derivatives, oki Use of dizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be preferably used.
  • the thickness of the electron transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further improving the leak prevention effect, the thickness is preferably 5 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 1000 nm or less, and more preferably 200 nm or less.
  • the organic photoelectric conversion element of this embodiment has a photoelectric conversion layer in the first subcell and the second subcell.
  • the photoelectric conversion layer included in the first subcell on the most substrate side is the first photoelectric conversion layer
  • the nth subcell farthest from the substrate side is the nth photoelectric conversion layer (n is 1 or more). An integer of 5 or less).
  • the photoelectric conversion layers in the plurality of subcells include light-absorbing organic semiconductor materials having different band gaps.
  • the band gap of the (n ⁇ 1) th photoelectric conversion layer is preferably narrower than the band gap of the nth photoelectric conversion layer.
  • the photoelectric conversion layer has a function of converting light energy into electric energy using the photovoltaic effect. When light is absorbed by these photoelectric conversion materials, excitons are generated, which are separated into holes and electrons at the pn junction interface.
  • the p-type organic semiconductor used for the photoelectric conversion layer of this embodiment is not particularly limited as long as it is a donor (electron donating) organic compound, and materials that can be used in this technical field can be appropriately employed.
  • the condensed polycyclic aromatic low molecular weight compounds include, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, Compounds such as circumanthracene, bisanthene, bisanthene, heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -t
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, polythiophene according to P328 - thienothiophene copolymers, WO2008 / 000,664 polythiophene according to - diketopyrrolopyrrole copolymer, Adv Mater, polythiophene according to 2007P4160 - thiazolothiazole copolymer, Nature Mat. vol.
  • P3HT poly-3-hexylthiophene
  • Polymer materials such as polypyrrole and oligomers thereof, polyaniline, polyphenylene and oligomers thereof, polyphenylene vinylene and oligomers thereof, polythienylene vinylene and oligomers thereof, polyacetylene, polydiacetylene, polysilane, and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamers ⁇ -sexual thiophene, ⁇ , ⁇ -dihexyl- ⁇ -sexual thiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis ( Oligomers such as 3-butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • compounds that are highly soluble in an organic solvent to the extent that a solution process can be performed, can form a crystalline thin film after drying, and can achieve high mobility are preferable. More preferably, it is a compound (a compound capable of forming an appropriate phase separation structure) having appropriate compatibility with a fullerene derivative which is an n-type organic semiconductor material described later.
  • a charge transport layer or a hole blocking layer is further formed on a bulk heterojunction layer by a solution process, it can be easily laminated if it can be further applied on a layer once applied.
  • a material that can be insolubilized after application by a solution process is preferable.
  • Such materials include materials that can be insolubilized by polymerizing and crosslinking the coating film after coating, such as Polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225, or Materials such as those described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834, in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, etc. Can be mentioned.
  • the n-type organic semiconductor used for the photoelectric conversion layer of this embodiment is not particularly limited as long as it is an acceptor (electron-accepting) organic compound, and materials that can be used in this technical field can be appropriately employed.
  • acceptor electron-accepting
  • examples of such compounds include fullerenes, carbon nanotubes, octaazaporphyrins, and the like perfluoro compounds in which hydrogen atoms of the p-type organic semiconductor are substituted with fluorine atoms (for example, perfluoropentacene and perfluorophthalocyanine), naphthalene, etc.
  • aromatic carboxylic acid anhydrides such as tetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product thereof as a skeleton.
  • fullerenes, carbon nanotubes, or derivatives thereof are preferably used from the viewpoint that charge separation can be efficiently performed with a p-type organic semiconductor at high speed (up to 50 fs). More specifically fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerenes, fullerene nanotubes, multi-walled carbon nanotubes, single-walled carbon nanotubes, carbon nano horns (conical) or the like , And some of these are hydrogen atoms, halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, iodine atoms), substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, And a fullerene derivative substituted with a cycloalkyl group, a si
  • [6,6] -phenyl C61-butyric acid methyl ester (abbreviated as PCBM or PC 60 BM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PCBnB), [6,6] -Phenyl C61-butyric acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PCBH), [6,6] -phenyl C71-butyric acid methyl ester (abbreviation) PC71BM), J.M. Am. Chem. Soc.
  • n-type organic semiconductor may be used alone or in combination of two or more.
  • the plurality of photoelectric conversion layers each include a light-absorbing organic semiconductor material having a different band gap, and the photoelectric conversion in the subcell on the light incident side. It is preferable to select an organic semiconductor material having a narrower band gap for the conversion layer.
  • the tandem organic photoelectric conversion element according to the present invention has the parallel tandem structure shown in FIG. 2, the first photoelectric conversion layer and the second photoelectric conversion layer have different optical absorption characteristics. It is preferable that an organic semiconductor material having a narrower band gap is selected for the first photoelectric conversion layer.
  • the junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment is a bulk heterojunction (that is, the photoelectric conversion layer is a bulk heterojunction photoelectric conversion layer).
  • the “bulk heterojunction” is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor, and the domain of the p-type organic semiconductor and the n-type organic semiconductor are formed in this single layer.
  • the domain has a microphase separation structure. Therefore, in a bulk heterojunction, many pn junction interfaces exist throughout the layer as compared to a planar heterojunction.
  • the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment is preferably a bulk heterojunction.
  • the bulk heterojunction layer is formed of a single layer (i layer) in which a normal p-type organic semiconductor material and an n-type organic semiconductor layer are mixed, and the i layer is made of a p-type organic semiconductor. In some cases, it has a three-layer structure (pin structure) sandwiched between a p layer and an n layer made of an n-type organic semiconductor. Such a pin structure has higher rectification of holes and electrons, reduces loss due to charge-separated hole-electron recombination, and can achieve higher photoelectric conversion efficiency. .
  • the mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 4: 6 to 6: 4. Range.
  • the thickness (dry film thickness) of the photoelectric conversion layer is not particularly limited, but is preferably 50 to 400 nm, more preferably 80 to 300 nm.
  • first electrode layer In the organic photoelectric conversion element of this embodiment, either the first electrode layer or the second electrode layer is essentially transparent.
  • the first electrode layer and the second electrode layer function as an anode and / or a cathode, respectively.
  • first and “second” are terms for distinguishing as an anode and / or a cathode because there are a plurality of electrodes. Therefore, the first electrode layer may function as an anode and the second electrode layer may function as a cathode. Conversely, the first electrode layer functions as a cathode and the second electrode layer functions as an anode. In some cases, both function, and both are anodes or both are cathodes. further. As also shown in FIG.
  • an electrode through which holes mainly flow is called an anode
  • an electrode through which electrons mainly flow is called a cathode.
  • the anode is usually a transparent electrode having a light transmitting property
  • the cathode is a counter electrode having no light transmitting property.
  • the material used for the electrode of this embodiment is not particularly limited as long as it is driven as a photoelectric conversion element, and an electrode material that can be used in this technical field can be appropriately employed.
  • the anode is preferably composed of a material having a relatively large work function compared to the cathode, and conversely, the cathode is preferably composed of a material having a relatively small work function compared to the anode.
  • a charge transport layer a hole transport layer or a charge transport layer
  • the first electrode 12 is made of a transparent electrode material (preferably having a transmittance of 80% or more for visible light of 380 to 800 nm). It is preferable.
  • the second electrode 18 can be generally composed of an electrode material with low translucency.
  • examples of the electrode material used for the first electrode 12 include gold, silver, platinum, copper, rhodium, and ruthenium.
  • Metals such as aluminum, magnesium, indium, tin and zinc; transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, IDIXO (In 2 O 3 —ZnO); metal nanowires, carbon Examples thereof include carbon materials such as nanoparticles, carbon nanowires, and carbon nanotubes.
  • a conductive polymer can be used as the electrode material.
  • Examples of the conductive polymer that can be used for the first electrode 12 include PEDOT: PSS, polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, Examples thereof include polyacene, polyphenylacetylene, polydiacetylene, polynaphthalene, and derivatives thereof.
  • These electrode materials may be used alone or as a mixture of two or more materials. Also, the shape of these materials is not particularly limited, and can be used in the form of nanoparticles, nanowires, ultrathin films and the like. Furthermore, it is also possible to constitute an electrode by laminating two or more layers made of each material.
  • an alloy, an electron conductive compound, and a mixture thereof can be used as the electrode material used for the second electrode 18 (counter electrode).
  • sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium examples include lithium / aluminum mixtures and rare earth metals.
  • a mixture of a first metal having a low work function and a second metal which is a metal having a larger work function and more stable than the first metal, from the viewpoint of electron extraction performance and durability against oxidation, etc.
  • a magnesium / silver mixture for example, it is preferable to use a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum which is a stable metal, or the like.
  • a metal among these materials for example, it is also preferable to use a metal among these materials, and by this, light incident from the first electrode layer side and transmitted without being absorbed by the photoelectric conversion layer is reflected by the second electrode layer to perform photoelectric conversion. The photoelectric conversion efficiency can be improved.
  • the shape of these materials is not particularly limited, and can be used in the form of nanoparticles, nanowires, ultrathin films and the like.
  • the first electrode 12 transparent electrode of the organic photoelectric conversion element in FIG.
  • the first electrode 12 transparent electrode
  • the auxiliary electrode it is possible to suppress the reduction of the fill factor (FF) that occurs when the element has a large area.
  • the shape of the auxiliary electrode is not particularly limited, but, for example, the conductive portion has a stripe shape, a mesh shape, or a random mesh shape.
  • the method of forming the stripe-shaped or mesh-shaped auxiliary electrode with the conductive portion and a conventionally known method can be used.
  • a metal layer can be formed on the entire surface of the substrate and can be formed by a known photolithography method.
  • a method of forming a conductor layer on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, plating, etc., or a metal foil on the substrate with an adhesive After the lamination, it can be processed into a desired stripe shape or mesh shape by a method of etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by various printing methods such as screen printing, flexographic printing, gravure printing, and an ink jet method, and various printing methods similar to plating catalyst ink
  • a method of applying a silver salt photographic technique can be used after coating in a desired shape.
  • the method of printing ink containing metal fine particles in a desired shape by various printing methods can be manufactured in a simple process, so that it is possible to reduce the entrainment of foreign matters that may cause leakage at the time of manufacture. Since the ink is used only at the portions, the liquid loss is small, which is most preferable.
  • examples of the electrode material used for the second electrode 18 include silver, nickel, molybdenum, gold, platinum, tungsten, and copper.
  • the sheet resistance of the first electrode layer and the second electrode layer is not particularly limited, but is preferably several hundred ⁇ / ⁇ square or less, more preferably 50 ⁇ / ⁇ square or less, and further preferably 15 ⁇ / ⁇ square or less.
  • the lower limit of the sheet resistance of the first electrode layer and the second electrode layer is not particularly limited, but is usually as low as possible within a range showing a transmittance of 80% or more for visible light having a wavelength of 380 to 800 nm. The more preferable.
  • the effect of the present invention can be obtained if it is 0.01 ⁇ / ⁇ square or more, preferably 0.1 ⁇ / ⁇ square or more.
  • the sheet resistances of the first electrode layer and the second electrode layer may be the same or different.
  • the thicknesses of the first electrode layer and the second electrode layer are not particularly limited, and vary depending on the material, but are usually 10 to 1000 nm, preferably 100 to 200 nm, and have a light transmittance or resistance. From a viewpoint, it can set suitably by those skilled in the art.
  • the film thicknesses of the first electrode layer and the second electrode layer may be the same or different.
  • the sheet resistance when the auxiliary electrode is provided is preferably 10 ⁇ / ⁇ square or less, and more preferably 0.01 to 8 ⁇ / ⁇ square.
  • the sheet resistance is determined by the shape (line width, height, pitch, shape) of the auxiliary electrode, and even if a material having higher resistance than the auxiliary electrode is used, the resistance of the window portion is hardly affected.
  • the substrate When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • transparent means that the transmittance is 80% or more with respect to visible light of 380 to 800 nm.
  • the substrate for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin films vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 0 ⁇ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion device of this embodiment may further include other members (other layers) in addition to the above-described members (each layer) in order to improve photoelectric conversion efficiency and improve the lifetime of the device.
  • other members include an exciton block layer, a UV absorption layer, a light reflection layer, a wavelength conversion layer, and a smoothing layer.
  • a layer such as a silane coupling agent may be provided in order to make the metal oxide fine particles unevenly distributed in the upper layer more stable.
  • a metal oxide layer may be laminated adjacent to the photoelectric conversion layer of the present invention.
  • the organic photoelectric conversion element of the present invention may have various optical function layers for the purpose of more efficient light reception of sunlight.
  • the optical functional layer include an antireflection layer, a condensing layer such as a microlens array, and a light diffusion layer that can scatter the light reflected by the cathode and enter the power generation layer again.
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a microlens array-like structure on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • Examples of the light diffusion layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the manufacturing method of the organic photoelectric conversion element of this embodiment includes a step of forming the first electrode 12, a step of forming a charge transport layer (not shown) on the first electrode 12, and a p-type organic semiconductor.
  • Forming a first photoelectric conversion layer 13 containing a material and an n-type organic semiconductor material, and forming a first charge transport layer 14 containing a nitrogen-containing compound on the first photoelectric conversion layer 13 A step of forming the intermediate electrode layer 15, a step of forming a charge transport layer (not shown), and a step of forming the second photoelectric conversion layer 16 including a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the first electrode is formed.
  • the method for forming the first electrode is not particularly limited, but it is formed by forming a transparent electrode made of a metal oxide using a sputtering apparatus or a CVD apparatus and patterning it using a photomask and an etching solution. Is done.
  • a charge transport layer may be formed on the first electrode as necessary.
  • the means for forming the charge transport layer may be either vapor deposition or solution coating, but is preferably solution coating.
  • a solution prepared by dissolving and dispersing the hole transport material or electron transport material described above in a suitable solvent is coated on the cathode using a suitable coating method. And then dried.
  • the coating methods used for the solution coating method include cast method, spin coating method, blade coating method, wire bar coating method, gravure coating method, spray coating method, dipping (dipping) coating method, bead coating method, air knife coating method.
  • Ordinary methods such as a curtain coating method, an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method, and a Langmuir-Blodgett (LB) method can be used.
  • LB Langmuir-Blodgett
  • the solid content concentration of the solution used in the coating method may vary depending on the coating method and the film thickness, but is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass.
  • the temperature of the coating solution and / or the coating surface during coating is not particularly limited, but is preferably 30 to 180 ° C.
  • drying heat treatment
  • it is 50 to 160 ° C.
  • limiting in particular also about the specific form of drying A conventionally well-known knowledge can be referred suitably.
  • An example of the drying (heat treatment) condition is exemplified by a condition of about 90 to 180 ° C. and about 5 to 90 minutes.
  • the apparatus used for drying include a hot plate, hot air drying, an infrared heater, a microwave, and a vacuum dryer. Of course, other drying apparatuses can be used.
  • a photoelectric conversion layer including a p-type organic semiconductor and an n-type organic semiconductor is formed on the charge transport layer formed as described above.
  • a specific method for forming the photoelectric conversion layer is not particularly limited, but preferably, a solution in which a p-type organic semiconductor and an n-type organic semiconductor are dissolved or dispersed in an appropriate solvent, respectively or collectively. Then, it may be applied on the cathode using an appropriate application method (the specific form is as described above) and dried. After that, it is preferable to perform heating in order to cause removal of residual solvent, moisture, gas, and improvement of mobility and absorption absorption by crystallization of the semiconductor material.
  • the photoelectric conversion layer can have an appropriate phase separation structure.
  • the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained.
  • the p-type organic semiconductor and the n-type organic semiconductor are uniformly mixed, and a bulk heterojunction organic photoelectric conversion element can be obtained.
  • the layer is applied after applying one layer. It can be formed by insolubilizing (pigmenting) and then applying another layer.
  • the step of forming the photoelectric conversion layer is preferably performed in a glove box under a nitrogen atmosphere so as not to be exposed to oxygen or moisture.
  • a nitrogen atmosphere it is possible to prevent the p-type organic semiconductor from being deteriorated by oxygen or moisture in the air, and to increase the durability of the element.
  • a step for forming these layers can be appropriately added by using a solution coating method, a vapor deposition method, or the like.
  • a first charge transport layer containing a nitrogen atom-containing compound is formed on the photoelectric conversion layer. This layer can be formed in the same manner as the charge transport layer described above.
  • an intermediate electrode 15 is formed on the formed first charge transport layer.
  • the intermediate electrode 15 can be formed by any method such as a vapor deposition method and a coating method, but the vapor deposition method is preferred as a means for forming a continuous thin film electrode, and more preferably a resistance heating type vapor deposition device is used. More preferred is the conventional evaporation method.
  • the electrodes (cathode / anode), photoelectric conversion layer, hole transport layer, charge transport layer and the like can be patterned as necessary.
  • the patterning method is not particularly limited, and a known method can be appropriately applied. For example, when patterning soluble materials used in bulk heterojunction type photoelectric conversion layers, hole transport layers, charge transport layers, etc., only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc. Alternatively, patterning may be performed by ablation using a carbonic acid laser or the like after film formation, by direct scraping with a scriber, or by direct patterning at the time of coating using a method such as an inkjet method or screen printing. .
  • vacuum deposition method vacuum sputtering method, plasma CVD method, screen printing method using ink in which fine particles of electrode material are dispersed, gravure printing method, ink jet method, etc.
  • Various printing methods, and known methods such as etching or lift-off of the deposited film can be used.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the organic photoelectric conversion element of this embodiment can be sealed as necessary in order to prevent deterioration due to oxygen, moisture, etc. in the environment.
  • a method of sealing by bonding a cap made of aluminum or glass with an adhesive (2) a plastic film on which a gas barrier layer such as aluminum, silicon oxide, aluminum oxide or the like is formed and organic photoelectric conversion (3) A method of spin-coating an organic polymer material (polyvinyl alcohol, etc.) having a high gas barrier property; (4) An inorganic thin film (silicon oxide, aluminum oxide, etc
  • the organic photoelectric conversion element of this embodiment may have a configuration in which the entire element is sealed with two substrates with a barrier from the viewpoint of improving energy conversion efficiency and element lifetime, and preferably includes a moisture getter, an oxygen getter, and the like. It is more preferable that the configuration is as described above.
  • the solar cell which has the organic photoelectric conversion element which concerns on the above-mentioned 1st form, and the organic photoelectric conversion element obtained by the said manufacturing method is provided. Since the organic photoelectric conversion element of this form has the outstanding photoelectric conversion efficiency and durability, it can be used suitably for the solar cell which uses this as an electric power generation element.
  • an optical sensor array in which the above-described organic photoelectric conversion elements are arranged in an array. That is, the organic photoelectric conversion element of this embodiment can also be used as an optical sensor array that converts an image projected on the optical sensor array into an electrical signal using the photoelectric conversion function.
  • Example 1 ⁇ Synthesis of nitrogen-containing compounds> (Charge Transport Layer Material: Synthesis of Exemplary Compounds (Formula 1-4, Formula 1-6, Formula 1-16)) Synthesis Example 1 Synthesis of Exemplary Compounds of Formula 1-4, Formula 1-6, and Formula 1-16 Adv. Mater. With reference to 2007, 19, 2010, formulas 1-4, 1-6 and 1-16 were synthesized as exemplary compounds represented by chemical formula (1). The molecular weights of the obtained compounds were Example Compound (Formula 1-4) Mw: 8000, Example Compound (Formula 1-6) Mw: 4400, and Example Compound (Formula 1-16) Mw: 2500, respectively.
  • Poly (4-vinylpyridine) (formula 2-1) as a compound according to chemical formula (2) was obtained from Sigma-Aldrich (Mw ⁇ 60,000) and used as it was.
  • Epomin (registered trademark) SP-003 manufactured by Nippon Shokubai Co., Ltd. was obtained and used as it was.
  • SP-003 is a polyethyleneimine having a branched structure corresponding to the chemical formula [Chemical Formula 11] (Chemical Formula (3A)) having the chemical formulas (I) to (III) of the chemical formula [Chemical Formula 10] in the molecule. is there.
  • Ag metal manufactured by Kojundo Chemical Co., Ltd., purity 99.99%) was deposited at a deposition rate of 0.3 nm / s to a film thickness of 2 nm to produce S-01.
  • this substrate was set in a vacuum dryer, and Cr metal (manufactured by Koyo Chemical Co., Ltd., purity 99.9%) was deposited at 0.3 nm / s under vacuum conditions of 1.0 ⁇ 10 ⁇ 4 Pa Vapor deposition was performed at a rate of 1 nm, and Au metal (manufactured by Kojun Chemical Co., Ltd., purity 99.99%) was continuously deposited at a deposition rate of 0.3 nm / s to a thickness of 4 nm. Was made.
  • this substrate was set in a vacuum dryer, and Ag metal was deposited to a film thickness (8 to 16 nm) shown in Table 1 under a vacuum condition of 1.0 ⁇ 10 ⁇ 4 Pa, and S-08 to S-11. Was made.
  • the sheet resistance value is measured in accordance with JIS K 7194: 1994 (resistivity test method using conductive plastic four-probe method), Loresta MCP-T610 resistivity meter manufactured by Mitsubishi Chemical Analytic Co. Was used, and the sheet resistance value of the intermediate electrode layer having the charge transport layer formed on the surface prepared above was measured under the condition of 25 ° C. and 50% RH.
  • the transmittance is measured by measuring each of S-01 to S-07 (Comparative Example) and S-08 to S-25 (Invention), which are samples of the intermediate electrode layer formed on the surface with the charge transport layer prepared above.
  • the light transmittance was measured for the transparent electrode.
  • substrate produced above was moved to nitrogen atmosphere directly from the vapor deposition machine, and the sheet resistance value and the transmittance
  • Example 2 ⁇ Production and evaluation of tandem organic thin film solar cell> (Synthesis of p-type organic semiconductor material PSBTBT)
  • the following p-type organic semiconductor material PSBTBT was synthesized with reference to the specification of US Patent No. 8008421.
  • the number average molecular weight was 35,000, and PDI (polydispersity) was 1.8.
  • ZnO nanoparticle dispersion composition A (Preparation of ZnO nanoparticle dispersion composition A) NANO Lett. , Vol. 5, no. 12, with reference to the method described in 2005, ZnO nanoparticles were prepared. Specifically, 4.46 mmol of zinc acetate (Zn (Ac) 2 ) purchased from Sigma-Aldrich was dissolved in 250 ⁇ L of ultrapure water, and this solution was added dropwise to 42 mL of methanol. The liquid temperature was kept at 60 ° C. while stirring, and a solution of 7.22 mmol of potassium hydroxide dissolved in 23 mL of methanol was slowly dropped into the zinc acetate solution to form ZnO nanoparticles.
  • Zn (Ac) 2 zinc acetate
  • composition A in which ZnO nanoparticles were dispersed.
  • the primary average particle diameter was about 5 to 10 nm.
  • ITO indium tin oxide
  • a white glass substrate 50 mm ⁇ 50 mm
  • sheet resistance 10 ⁇ / ⁇ square
  • Patterning was performed to a width of 20 mm to form a first electrode layer.
  • the patterned first electrode layer is ultrasonically cleaned using a mixture of a surfactant and ultrapure water, then ultrasonically cleaned using ultrapure water, dried by nitrogen blowing, and finally exposed to ultraviolet rays. Ozone cleaning was performed.
  • Product B was prepared.
  • the obtained composition B was filtered through a 0.45 ⁇ m (aperture size) PVDF filter, applied and dried using a blade coater so that the dry film thickness was about 40 nm.
  • a cotton swab moistened with IPA (isopropanol) was used for wiping and patterning to a predetermined shape, followed by further heat treatment at 150 ° C. for 15 minutes to form a first hole transport layer.
  • P3HT PexcoreOS2100 manufactured by Plextronix
  • ICBA Q400 manufactured by Frontier Carbon Co., Ltd., Frontier Carbon Co.
  • a first photoelectric conversion layer was formed by wiping and patterning in a predetermined shape using a cotton swab.
  • the produced substrate was set in a vacuum vapor deposition machine, and under a vacuum condition of 1.0 ⁇ 10 ⁇ 5 Pa, a bathoproline (BCP, manufactured by Luminescence Technology) was deposited at a deposition rate of 0.1 nm / s to a 5 nm film. Formed thick.
  • a bathoproline BCP, manufactured by Luminescence Technology
  • Ag metal manufactured by High-Purity Chemical Co., Ltd., purity 99.99%) is vapor-deposited at a deposition rate of 0.3 nm / s to a film thickness of 2 nm.
  • An electrode layer was formed.
  • a series tandem structure was formed by vapor deposition in a shape that does not short-circuit the first electrode layer described above.
  • the intermediate electrode layer was an electrode layer equivalent to S-01 shown in Example 1.
  • composition B is applied to the substrate on which the intermediate electrode layer is formed using a blade coater so that the dry film thickness is 40 nm, and is wiped into a predetermined shape using a cotton swab moistened with IPA. Then, heat treatment was performed at 120 ° C. for 5 minutes to form a second hole transport layer.
  • the produced substrate was moved into a glove box under a nitrogen atmosphere, and 8 mg of PSBTBT as a p-type organic semiconductor material and PC 70 BM (a frontier carbon as an n-type organic semiconductor material) per 1 mL of o-dichlorobenzene.
  • a blade coater was prepared by preparing a composition D in which 16 mg of E110: PC 70 BM) manufactured by the company was dissolved and filtered through a 1.0 ⁇ m (opening size) PTFE filter, and then the dry film thickness was about 80 nm. Was used to form a second photoelectric conversion layer.
  • the prepared composition A in which the prepared ZnO nanoparticles are dispersed is applied using a blade coater so that the dry film thickness is 40 nm, and subsequently formed into a predetermined shape. After wiping and patterning, a drying process was performed at 150 ° C. for 5 minutes. Subsequently, this substrate was set in a vacuum dryer, and Ag metal (manufactured by Koyo Chemical Co., Ltd., purity 99.99%) was formed to a thickness of 100 nm under a vacuum condition of 1.0 ⁇ 10 ⁇ 4 Pa. An electrode layer was formed. The obtained photoelectric conversion element was sealed with a UV curable epoxy adhesive (sealing agent manufactured by Nagase ChemteX Corporation) and sealing glass to prepare an organic photoelectric conversion element SC-101.
  • a UV curable epoxy adhesive silicaling agent manufactured by Nagase ChemteX Corporation
  • a first photoelectric conversion layer was formed in the same manner as in S-101. Furthermore, a coating composition E, in which 1 part of isopropanol was mixed with 3 parts of PEDOT: PSS (PH500, CleviosPH500 manufactured by Heraeus), was formed into a film thickness of about 50 nm using a blade coater and moistened with toluene / IPA. The first photoelectric conversion layer and the first hole transport layer (first charge transport layer) were formed by wiping with a cotton swab into a predetermined shape and then annealing at 150 ° C. for 5 minutes.
  • PEDOT: PSS PH500, CleviosPH500 manufactured by Heraeus
  • the prepared substrate is set in a vacuum vapor deposition machine, and a metal mask different from S-101 is used so as not to short-circuit the first electrode layer, and Cr metal (manufactured by Kojundo Chemical Co., Ltd., purity 99.9%) is used.
  • the film was deposited to a film thickness of 1 nm at a deposition rate of 0.3 nm / s, and further Au metal (manufactured by Koyo Chemical Co., Ltd., purity 99.99%) was continuously deposited at 4 nm at a deposition rate of 0.3 nm / s.
  • the intermediate electrode layer was produced by vapor deposition to a film thickness.
  • the intermediate electrode layer was deposited in a parallel tandem shape and connected to an ITO substrate.
  • the intermediate electrode layer was an electrode layer equivalent to S-02 shown in Example 1.
  • composition B is applied to the substrate on which the intermediate electrode layer is formed using a blade coater so that the dry film thickness is 40 nm, and is wiped into a predetermined shape using a cotton swab moistened with IPA. Then, heat treatment was performed at 120 ° C. for 5 minutes to form a second hole transport layer.
  • the dissolved composition E is filtered through a 0.2 ⁇ m (opening size) PTFE filter, applied to a film thickness of about 10 nm using a blade coater, dried at 120 ° C.
  • the obtained photoelectric conversion element was sealed with a UV curable epoxy adhesive (sealing agent manufactured by Nagase ChemteX Corporation) and sealing glass to prepare an organic photoelectric conversion element SC-102.
  • composition F is obtained by dissolving 10 mg of KP115, which is the synthesized p-type organic semiconductor material, and 20 mg of PC 60 BM, which is an n-type organic semiconductor material (E100H manufactured by Frontier Carbon Co.), in 1 mL of o-dichlorobenzene. F was prepared.
  • the first electrode layer-provided substrate prepared in the same manner as in S-101 was prepared, and after forming the first hole transport layer, the composition D was prepared as 1.0 ⁇ m (opening size) PTFE. After filtration with a filter, a first photoelectric conversion layer was formed by forming a film using a blade coater such that the dry film thickness was about 80 nm.
  • composition E was filtered through a 0.2 ⁇ m (opening size) PTFE filter, it was applied to a film thickness of about 10 nm using a blade coater, dried at 120 ° C. for 10 minutes, and exemplified compound (Formula 1-6
  • a first electron transport layer (first charge transport layer) made of The substrate on which the first electron transport layer is formed is set in a vacuum dryer, and Ag metal (manufactured by Kojundo Chemical Co., Ltd., purity 99.99%) is used under a vacuum condition of 1.0 ⁇ 10 ⁇ 4 Pa.
  • the intermediate electrode layer was deposited to a thickness of 10 nm at a deposition rate of 0.3 nm / s.
  • the intermediate electrode layer was an electrode layer equivalent to S-09 shown in Example 1.
  • composition A in which the prepared ZnO nanoparticles are dispersed is applied to the substrate on which the intermediate electrode layer has been formed using a blade coater so that the dry film thickness is 40 nm, and then the predetermined shape is applied. After patterning, the substrate was dried at 150 ° C. for 5 minutes.
  • the blade coater is adjusted so that the dry film thickness is about 150 nm.
  • the composition B described above was applied to a dry film thickness of 40 nm using a blade coater, wiped into a predetermined shape using a cotton swab moistened with toluene / IPA, and then heat treated at 120 ° C. for 5 minutes.
  • the second hole transport layer (second charge transport layer) was formed.
  • this substrate was set in a vacuum dryer, and Ag metal (manufactured by Koyo Chemical Co., Ltd., purity 99.99%) was formed to a film thickness of 100 nm under a vacuum condition of 1.0 ⁇ 10 ⁇ 4 Pa.
  • a second electrode layer was formed.
  • the obtained photoelectric conversion element was sealed with a UV curable epoxy adhesive (sealing agent manufactured by Nagase ChemteX Corporation) and sealing glass to prepare an organic photoelectric conversion element SC-105.
  • An organic photoelectric conversion device SC-110 was produced in the same manner as in the production of SC-106 except that the exemplary compound (Formula 1-6) was changed to SP-003 in the production of SC-106.
  • the intermediate electrode layer produced here was an electrode layer equivalent to S-15 shown in Example 1.
  • Organic photoelectric conversion element SC-115 was produced in the same manner as in SC-114 except that the exemplified compound (Formula 10) was changed to the exemplified compound (Formula 99) in the production of SC-114.
  • the intermediate electrode layer produced here was an electrode layer equivalent to S-23 shown in Example 1.
  • the composition G was formed into a film having a dry film thickness of 30 nm using a blade coater. The mixture was dried at 0 ° C. for 10 minutes to form a first electron transport layer (first charge transport layer) containing the exemplary compound (Formula 1-6) and ZnO nanoparticles.
  • An organic photoelectric conversion element SC-118 was produced in the same manner as in the production of SC-106 except for the produced first electron transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】タンデム型の有機光電変換素子を提供することを目的とする。 【解決手段】第2の電極層と基板上に形成された第1の電極層との間に挟持にされ、かつ電荷輸送層、および光電変換層を順次積層してなるサブセルを少なくとも2つ中間電極層を介して積層したタンデム型有機光電変換素子であって、 前記中間電極層は、金、銀、銅、またはこれらを主成分とする合金からなり、 前記中間電極層と隣接する基板側の前記電荷輸送層に窒素含有化合物を含むことを特徴とする、タンデム型有機光電変換素子。

Description

タンデム型有機光電変換素子およびこれを用いた太陽電池
 本発明は、タンデム型有機光電変換素子およびこれを用いた太陽電池に関し、具体的には、タンデム中間電極層の組成に関し、より透過率が高く低抵抗な中間電極層およびそれを用いた太陽電池に関する。
 近年、地球温暖化に対処するため、二酸化炭素排出量の削減が切に望まれている。また、近い将来、石油、石炭、および天然ガス等の化石燃料が枯渇することが予想されており、これらに替わる地球に優しいエネルギー資源の確保が急務となっている。そこで、太陽光、風力、地熱、原子力等利用した発電技術の開発が盛んに行われているが、なかでも太陽光発電は、安全性の高さから特に注目されている。
 太陽光発電では、光起電力効果を利用した光電変換素子を用いて、光エネルギーを直接電力に変換する。光電変換素子は、一般的に、一対の電極の間に光電変換層(光吸収層)が挟持されてなる構造を有し、当該光電変換層において光エネルギーが電気エネルギーに変換される。光電変換素子は、光電変換層に用いられる材料や、素子の形態により、単結晶・多結晶・アモルファスのSiを用いたシリコン系光電変換素子、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体)等の化合物半導体を用いた化合物系光電変換素子、色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。
 しかしながら、これらの太陽電池を用いた場合の発電コストは、依然として化石燃料を用いて発電・送電する場合のコストと比較して高く、これが太陽光発電の普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、屋根等に設置する場合に補強工事が必要であり、これらも発電コストを高騰させる一因であった。
 太陽光発電における発電コストを低減させるための技術として、透明電極と対電極との間に、電子供与性有機化合物(p型有機半導体)と電子受容性有機化合物(n型有機半導体)との混合物を光電変換層として含むバルクへテロジャンクション型の光電変換素子が提案されている(例えば、非特許文献1を参照)。
 バルクへテロジャンクション型有機光電変換素子は、軽量で柔軟性に富むことから、様々な製品への応用が期待されている。また、構造が比較的単純であり、p型有機半導体およびn型有機半導体を塗布することによって光電変換層を形成できることから、大量生産に好適であり、コストダウンによる太陽電池の早期普及にも寄与するものと考えられる。より具体的には、バルクへテロジャンクション型有機光電変換素子において、電極(陽極および陰極)等を構成する金属層や金属酸化物層は蒸着法等により形成されうるが、これら以外の層は塗布プロセスを用いて形成することができる。したがって、バルクへテロジャンクション型光電変換素子の製造は高速でかつ安価に行うことが可能であると期待され、上述した発電コストの課題を解決できる可能性があると考えられるのである。さらに、従来のシリコン系光電変換素子、化合物系光電変換素子、色素増感型光電変換素子等の製造とは異なり、高温の製造プロセスを必須に伴うものではないため、安価でかつ軽量なプラスチック基板上への連続形成も可能であると期待される。
 しかしながら、有機光電変換素子は、他のタイプの光電変換素子と比較して、未だ光電変換効率が不十分であることに加え、フレキシブル性を活かすためにバリアフィルムなどで封止した場合、僅かではあるがバリアフィルムを透過する水分や酸素の影響によって、熱湿耐久性が低下することが課題と言われている。
 例えば、特許文献1では、光電変換効率向上技術の一つとして2つ以上のサブセルを重ねた、所謂タンデム構造の素子構造が提案されている。中でも、特許文献2や非特許文献2では、より高い短絡電流密度(Jsc)が得られる構造として、各々のサブセル間に導電性が高い主には金属電極から成る光透過性の中間電極層を挟むことで効率よく電流を取り出すタンデム型構造が紹介されている。
米国特許第7205585号明細書 米国特許出願公開第2009-0211633号明細書
A.J.Heeger et al.,Nature Mat.,vol.6(2007),p497 Srinivas Sista et.al.,Advanced Mat.,2010,22,E77-E80
 上述した従来の並列タンデム型有機光電変換素子は、金属からなる中間電極層の透過率が低く、低抵抗化との両立が不十分であるため、光吸収による短絡電流密度(Jsc)が低いことや、抵抗が高いことによるフィルファクター(FF)が低い要因となり、タンデム型構造の優位性が損なわれていた。また、本発明者らの鋭意検討の結果、従来技術に記載されている方法では、金属電極を中間電極層に用いる場合、上下の挟まれる電荷輸送層などの有機層、または無機層との界面接着性が弱く、熱湿耐久性などのストレスによって膜剥がれが起き素子寿命を劣化させる課題があることが判明した。
 本発明は、上記課題について解決する技術であり、タンデム型構造の中間電極層に必要な、十分な透過率と低抵抗化を両立することで、十分な光電変換効率を発揮し、また同時に、バリアフィルムなどで封止した有機光電変換素子においても、熱湿劣化テストにおいて優れた耐久性を有するタンデム型の有機光電変換素子を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を行ったところ、以下に示す技術によって、十分な光電変換効率を発揮し、また同時に、熱湿劣化テストにおいて優れた耐久性が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、第2の電極層と基板上に形成された第1の電極層との間に挟持され、かつ電荷輸送層、光電変換層、および正孔輸送層を順次積層してなるサブセルを少なくとも2つ中間電極層を介して積層したタンデム型有機光電変換素子であって、前記中間電極層は、金、銀、銅、またはこれらを主成分とする合金からなり、前記中間電極層と隣接する基板側の前記正孔輸送層または前記電荷輸送層に窒素含有化合物を含むことを特徴とする、タンデム型有機光電変換素子により、上記目的を達成する。
発明の実施形態に係る、直列タンデム型有機光電変換素子を模式的に表した断面概略図である。 発明の実施形態に係る、並列タンデム型有機光電変換素子を模式的に表した断面概略図である。 実施例におけるシート抵抗評価結果を示すグラフである。 実施例における透過率の測定結果を示すグラフである。
 本発明の第一は、第2の電極層と基板上に形成された第1の電極層との間に挟持され、かつ電荷輸送層、および光電変換層を順次積層してなるサブセルを少なくとも2つ中間電極層を介して積層したタンデム型有機光電変換素子であって、
 前記中間電極層は、金、銀、銅、またはこれらを主成分とする合金からなり、
 前記中間電極層と隣接する基板側の前記正孔輸送層または前記電荷輸送層に窒素含有化合物を含むことを特徴とする、タンデム型有機光電変換素子である。
 かかる構成を有することにより、タンデム型構造の中間電極層に必要な、十分な透過率と低抵抗化を両立することで、十分な光電変換効率を発揮し、また同時に、バリアフィルムなどで封止した有機光電変換素子においても、熱湿劣化テストにおいて優れた耐久性を有するタンデム型の有機光電変換素子、およびそれを用いた太陽電池を提供することができる。
 また同時に、裏面のサブセルを除き中間電極層まで積層した有機光電変換素子は、例えば発電するウィンドウフィルムとして、その透過率を活かした産業用途などに用いることが可能となる。
 このように、サブセル同士の間に中間電極層を形成する前に、中間電極層と隣接する基板側の層(下地層)、特に電荷輸送層に窒素含有化合物が含有することで、薄膜に形成した中間電極層が高い透過率と低い抵抗を示し、その結果、十分な光電変換効率を発揮し、また同時に、熱湿劣化テストにおいて優れた耐久性が得られることを見出した。
 従来技術で示されるような中間電極層などと比較して、この様な高い透過率と低い抵抗が得られるメカニズムは定かではないが、中間電極層と隣接する基板側の層(下地層)の窒素原子含有化合物が蒸着した金属原子または金属クラスターと強い相互作用による結合(ここでは金属-有機物の結合原理を問わない)を形成することで、蒸着源から飛散した金属または金属クラスターが下地層上に固定化し、基板横方向への移動およびそれに続く凝集体形成を抑制する働きがある結果と推察される。
 また、このような相互作用は、熱湿耐久性においても強固な結合の存在から、金属-有機物間の乖離を抑制し、結果として膜剥がれを抑制するものと考えられる。なお、本発明の実施上は上記の推察に限定されるものではない。
 なお、本明細書において「基板上に」とは基板の表面に直接接触している場合だけでなく、基板と直接接触しておらず、基板の上方側に存在する場合も含む概念であり、「層上に」なども同様に解釈される。
 以下、本発明のタンデム型の有機光電変換素子について、添付した図面を参照しながら、具体的に説明するが、本発明の技術的範囲は、特許請求の範囲の記載により定められるべきものであり、以下の形態のみに制限されない。なお、本発明の効果において、例示した図面のスケール比は、説明の都合上誇張されており、実際の比率とは異なる場合があり、これに限定されるものではない。
 <有機光電変換素子の構成>
 有機光電変換素子の構成を、図1~図2を用いて説明する。図1~図2は、本発明の実施形態に係る、タンデム型(多接合型とも呼ぶ)有機光電変換素子(以下、「有機光電変換素子」を、「有機薄膜太陽電池」または「有機太陽電池」とも称する。)であり、太陽光利用率(光電変換効率)の向上を目的として、通常用いられるシングル型の有機光電変換素子(サブセル)を2セル以上積層スタックさせた、タンデム型有機光電変換素子(タンデム型有機太陽電池)を模式的に表した断面概略図である。
 本明細書中では、タンデム型有機光電変換素子の透明電極側または電極を有する基板側に位置するセルを第1のサブセル(「第1サブセル」とも称する。)、反射電極側または基板と反対側に位置するセルを第2のサブセル(「第2サブセル」とも称する。)と呼ぶ。本発明においてサブセルとは、光電変換層を必須に含み、さらには電荷輸送層として、電子輸送層および正孔輸送層の少なくともいずれかを含む、光電変換素子の最小の構成単位を意味し、電荷輸送層および光電変換層を積層してなる積層体をいう。また、本発明のタンデム型有機光電変換素子は、第1のサブセルと第2のサブセルとの間に、中間電極層を有するが、第1のサブセルと第2のサブセルとを電気的に直列接続した場合は直列タンデム型(例えば、図1の構造)、一方で電気的に並列接続した場合は並列タンデム型(例えば、図2の構造)と呼び、本発明に係るタンデム型有機光電変換素子は、直列型および並列型のいずれも含む。
 なお、本明細書では便宜上基板側から構成要素に対して順に番号を付している。そのため、最も基板側に形成されている第1のサブセルに含まれる電荷輸送層や光電変換層はそれぞれ第1とし、基板側からn番目のサブセルに含まれる電荷輸送層や光電変換層はそれぞれ第nとしている。
 また、後に詳説するが、本明細書における電荷輸送層とは、電子輸送層および正孔輸送層のいずれも含む上位概念である。
 本発明のタンデム型有機光電変換素子は、中間電極層が金、銀、銅、またはこれらを主成分とする合金からなり、かつ第1のサブセルにおいて、当該中間電極層と接する正孔輸送層または電子輸送層に窒素含有化合物を含む点に特徴を有する。
 図1は直列接続型のタンデム型有機光電変換素子の構成の一態様を模式的に表した断面概略図である。当該図1の直列タンデム型有機光電変換素子10は、第1の電極層12を形成した基板11と、前記第1の電極層12上に形成される、第1の光電変換層13、および第1の電荷輸送層14が順次積層されてなる第1のサブセルと、金、銀、銅、またはこれらを主成分とする合金からなる中間電極層15と、前記中間電極層15上に形成される、第2の光電変換層16、および第2の電荷輸送層17が順次積層されてなる第2のサブセルと、第2の電極層18と、を有する。図1の中間電極層15は、第2のサブセルとのリーク発生を抑制すると共に、正孔および電子を再結合させる役割を担っている。図1に例示した構成では、二つのサブセル同士が中間層により直列接続された直列接続型のタンデム型有機光電変換素子となる。
 上述した図1の実施形態では、電極12をカソード(陽極)とし、電極18をアノード(陰極)とした所謂、順層構成でもよいし、積層の順序によってアノードおよびカソードが逆の働きをする所謂、逆層構成も本願においてはとることができる。具体的には、第1の光電変換層13上に形成した第1の電荷輸送層14、第2の光電変換層16上に形成した第2の電荷輸送層17がいずれも電子輸送層である場合、電極12がカソード、電極18がアノードとなるため、本発明においては順層構成と言い、A点がカソード極、B点がアノード極となり外部回路と接続される。また一方で、第1の光電変換層13上に形成した第1の電荷輸送層14、第2の光電変換層16上に形成した第2の電荷輸送層17がいずれも正孔輸送層である場合、電極12がアノード、電極18がカソードとなるため、本発明においては逆層構成と言い、点Aがアノード極、点Bがカソード極となり外部回路と接続される。
 図1には特に図示していないが、電荷輸送層14とは逆の極の電荷輸送層を設けてもよい。電荷輸送層14が正孔輸送層の場合、第1の電極12と第1の光電変換層13との間に電子輸送層を設けることがより好ましく、同様に中間電極15と第2の光電変換層16との間にも電子輸送層を設けることがより好ましい。これは第1の電荷輸送層が電子輸送層の場合、それぞれ逆の極性を有する電荷輸送層が電極と光電変換層との間に形成されることを意味する。
 すなわち、電荷輸送層14が正孔輸送層の場合は、第1の電極12と第1の光電変換層13との間に第1の電子輸送層をさらに設け、かつ中間電極15と第2の光電変換層16との間に第2の電子輸送層を設ける構成が好ましく、電荷輸送層14が電子輸送層の場合は、第1の電極12と第1の光電変換層13との間に第1の正孔輸送層をさらに設け、かつ中間電極15と第2の光電変換層16との間に第2の正孔輸送層を設ける構成が好ましい。そのため、本発明に係るタンデム型有機光電変換素子の好ましい構成について換言すると、本発明に係るタンデム型有機光電変換素子は、基板上に形成された第1の電極層と、前記第1の電極層上に形成され、かつ第1の電子輸送層、第1の光電変換層、および第1の正孔輸送層を順次積層してなる第1のサブセルと、前記第1のサブセル上に形成される中間電極層と、前記中間電極層上に形成され、かつ第2の電子輸送層、第2の光電変換層、および第2の正孔輸送層を順次積層してなる第2のサブセルと、前記第2のサブセル上に形成される第2の電極層と、を少なくとも有するタンデム型有機光電変換素子であって、前記中間電極層は、金、銀、銅、またはこれらを主成分とする合金からなり、前記中間電極層と隣接する前記第1の正孔輸送層または第1の電子輸送層に窒素含有化合物を含むことが好ましい。
 図2は並列接続型のタンデム型有機光電変換素子の構成の一態様を模式的に表した断面概略図である。当該図2の並列タンデム型有機光電変換素子20は、第1の電極層12を形成した基板11と、前記第1の電極層12を形成した基板11の上に、第1の光電変換層13、および第1の電荷輸送層14が順次積層されてなる第1のサブセルと、金、銀、銅、またはこれらを主成分とする合金からなる中間電極層15と、前記中間電極層上に、第2の光電変換層16、および第2の電荷輸送層17が順次積層されてなる第2のサブセルと、第2の電極層18とを有する。並列接続型のタンデム型有機光電変換素子の構成では、第1の電極層12と、第2の電極層18とが接続することで一つの極を形成し、中間電極15からもう一方の極を取出す構成となる。第2のサブセルにおける第2の電荷輸送層17は、図1の第2のサブセルとは逆の順序で積層される。例えば、図2に示される第1の電荷輸送層14が正孔輸送層の場合、中間電極15が正孔を捕集する電極となるためカソード極となり、同時に第2の電荷輸送層17は電子輸送層となり、第2の電極18はアノード極となり第1の電極12と接続され、A点がアノード極、B点がカソード極となり外部回路と接続される。一方で、第1の電荷輸送層14が電子輸送層の場合、中間電極15が電子を捕集する電極となるため、先ほどとは逆に第2の電荷輸送層が正孔輸送層となる結果、A点がカソード極、B点がアノード極となり外部回路と接続される。
 図2には特に図示していないが、電荷輸送層14とは逆の極の電荷輸送層を設けてもよい。電荷輸送層14が正孔輸送層の場合、第1の電極12と第1の光電変換層13との間に電子輸送層を設けることがより好ましく、更には中間電極15と第2の光電変換層16との間にも電子輸送層を設けることが好ましい。これは第1の電荷輸送層が電子輸送層の場合、それぞれ逆の極性を有する電荷輸送層が電極と光電変換層との間に形成されることを意味する。
 本発明におけるタンデム型有機光電変換素子の構成は、中間電極15と第1のサブセルにおける第1の電荷輸送層とが直接接している。
 本発明のタンデム型有機光電変換素子は、第1の光電変換層13の吸収スペクトルと、第2の光電変換層16の吸収スペクトルとを、同じスペクトルを吸収する層としてもよいし、異なるスペクトルを吸収する層としてもよいが、太陽光スペクトルの内、より広い波長域の光を効率よく電気に変化することが可能となるため、異なるスペクトルを吸収する層をそれぞれのサブセルに配した構成とすることが好ましい。
 本発明のタンデム型有機光電変換素子の発電機構について、同様に添付した図面を参照しながら説明する。
 図1に示すタンデム型有機光電変換素子10の作動時について、太陽光は図の下方、基板11側から照射されるとする。ひとつの実施形態において、第1の電極層12および中間電極層15は少なくとも、照射された光が光電変換層13または16へと届くようにするため、透明な電極材料、または構造を有する。
 図1において、基板11を通り第1の電極層12から入射された光は、第1のサブセルの第1の光電変換層13における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は電荷輸送層間、または陰極および陽極の電位差(エネルギー差)により作られる内部電界や、光電変換層13中の電荷密度の分布によって移動し、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電荷輸送層または電極へ運ばれる。
 なお、電荷輸送層14が電子輸送層の場合、電子の移動度が高い材料、若しくは正孔に対してブロック能として働く材料で形成されており、光電変換層13中のpn接合界面で生成した電子を効率よく電極へと輸送する機能を担っている。一方、電荷輸送層14が正孔輸送層の場合、正孔の移動度が高い材料、若しくは電子に対してブロック能として働く材料で形成されており、光電変換層14のpn接合界面で生成した正孔を効率よく中間電極層15へと輸送する機能を担っている。
 また、図1において、例えばA点がアノードとした場合、第1のサブセルを透過した光は、中間電極層15を透過し、第2のサブセルに到達する。第2のサブセルにおいても、基本的な発電メカニズムは第1のサブセルと同様であり、中間電極層15に、第2のサブセルで発生した電子が効率よく輸送され、同時に、第2のサブセル上部に形成された電極18に、第2のサブセルで発生した正孔が効率よく輸送される。
 第1のサブセルで発生した正孔と、第2のサブセルで発生した電子とが、中間電極層15で再結合することで、第1のサブセルと第2のサブセル間で電気的な直列接続が形成され外部回路が駆動される。この再結合が効率よく行われたとき、出力される開放端電圧(Voc)は、第1のサブセルの電圧と第2のサブセルの電圧とを足し合わせた合算値になる。
 続けて、図2に示す並列型のタンデム型有機光電変換素子20の動作機構について説明する。並列型においても直列型と同様に、陽極12および中間電極層15は少なくとも、照射された光が光電変換層13または16へと届くようにするため、透明な電極材料、または構造を有する。
 図2において、第1のサブセルの動作機構については、前述した直列型の有機光電変換素子と同様に駆動し、例えば第1の電荷輸送層14が電子輸送層の場合、第1のサブセルで発生した電子は中間電極層15に、第1のサブセルで発生した正孔は効率よく輸送され、電極12に効率よく輸送される構成となる。
 また、図2において、第1のサブセルを透過した光は、中間電極層15を透過し第2のサブセルに到達する。第2のサブセルにおいても、基本的な発電メカニズムは第1のサブセルと同様であるが、第2のサブセルの電荷輸送層が、図1に示される直列型とは積層順が異なるため、第2のサブセル上部に形成された第2の電極層18に、第2のサブセルで発生した正孔が効率よく輸送され、同時に、中間電極層15に、第2のサブセルで発生した電子が効率よく輸送される構成となる。
 第1のサブセルで発生した電子と、第2のサブセルで発生した電子と各々が、中間電極層15から出力され、同時に、第1のサブセルで発生した正孔と、第2のサブセルで発生した正孔とが出力されることで、第1のサブセルと第2のサブセル間で電気的な並列接続が形成され、図面に示された様に接続することで、外部回路が駆動される。この並列接続が効率よく行われたとき、出力される短絡電流密度(Jsc)は、第1のサブセルの電流密度と第2のサブセルの電流密度とを足し合わせた合算値になる。(ただし、第1のサブセルを透過した光は、第1のサブセルの吸収によって減衰するため、一般的にはこのフィルタ効果により、サブセル単独の電流密度に対して低い値となる。)。
 〔中間電極層(電荷再結合層)〕
 図1~図2で示すような、2以上の光電変換層を有するタンデム型(多接合型)の有機光電変換素子において、直列型、並列型光電変換層間には中間電極層が配置される。本発明の実施においては、少なくとも2つ以上のサブセルを中間電極層を介して積層したタンデム型の有機光電変換素子であって、基板上に形成された第1の電極層と、第2の電極層と、1つ以上の中間電極層を有し、各々のサブセルが光電変換層を有し、中間電極層が金、銀、銅、またはこれらを主成分とする合金から成る連続層であり、基板側のサブセルが窒素原子含有化合物を含む電荷輸送層を有し、前記中間電極層が、前記電荷輸送層を下地層として設けられた電極層であることを特徴とするものである。
 そのため、本発明に係る中間電極層は、金、銀、銅、またはこれらを主成分とする合金から構成され、好ましくは、銀、銅、および、銀を主成分とし、マンガン、マグネシウム、アルミニウム、スズ、亜鉛、ビスマスなどと構成される銀から成る。ここで合金の場合は主成分に金、銀、銅を少なくとも50%以上含むことを示す。好ましくは主成分が60%以上、95%以下、更に好ましくは70%以上、90%以下である。導電性や、耐腐食性などの目的によって、本発明においては上述する範囲で好ましい組成を選ぶことができる。
 このような中間電極層の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられる。なかでも蒸着法が好ましく適用される。また中間電極層は、後述の下地層上に成膜されることにより、導電性層は成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであっても良い。
 本発明の中間電極層は高い導電性と透明性を両立するために、後述する下地層上に形成されることが特徴である。このとき、形成される中間電極層は粒界の少ない、ほぼ連続した均一層であることが好ましい。ほぼ連続したとは、例えば電子顕微鏡像などから観察した下地層上に形成した中間電極層において、金属の占める面積率が少なくとも90%以上を占め、より好ましくは93%以上、更に好ましくは95%以上の面積が金属薄膜で占められていることがより好ましい。また、中間電極層は極薄膜であることが好ましく、膜厚は4nm~18nm程度であり、より好ましくは3nm~15nm、更に好ましくは5nm~12nmである。このような面積率と膜厚であれば、十分な光透過率が得られるだけでなく、連続した金属膜であるためシート抵抗が低減でき、例えば並列タンデム型の有機薄膜太陽電池であっても、集電電極として十分なシート抵抗を得ることができ好ましい。
 本発明の様に、極薄膜の金属膜が連続膜となることで、高い導電性が得られると同時に、粒界が減ることによるプラズモン吸収が低減する効果と推定される透過率の向上が見られ、このような特性によってタンデム型有機薄膜太陽電池の中間電極において特に好ましい特性が得られる。
 [電荷輸送層(下地層)]
 本発明に係る有機光電変換素子は複数のサブセルを有し、少なくともサブセル間に中間電極層が、下地層としての電荷輸送層上に形成されていることを特徴とする。電荷輸送層は、電子または正孔を輸送する機能を有し、かつ逆の極性の電荷を輸送する能力が著しく小さいという性質を有する。電子輸送層は、光電変換層と陰極との間に設けられ、電子を陰極へと輸送しつつ、正孔の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。一方で正孔輸送層は、光電変換層と陽極との間に設けられ、正孔を正極へと輸送しつつ、電子の移動を阻止することで、電子と正孔とが再結合するのを防ぐ。よって、本明細書では、電荷注入層、電荷ブロック層、励起子ブロック層等も電荷輸送層の概念に含む。また、基板側に設けられている第1のサブセルにおける電荷輸送層を第1の電荷輸送層、第2のサブセルにおける電荷輸送層を第2の電荷輸送層として順次積層する。
 本発明に係る有機光電変換素子において、中間電極層に隣接する第1の電荷輸送層には窒素含有化合物を含有することを必須としており、当該第1の電荷輸送層に窒素含有化合物が含まれる場合、窒素含有化合物自体が電荷を輸送する機能を有する輸送材料として作用してもよく、また本発明の第1の電荷輸送層には窒素含有化合物とそれ以外の電荷輸送材料とが共存して含有してもよい。一方、本発明の第2の電荷輸送層は、電荷を輸送する機能を有する電荷輸送材料が含まれていれば特に制限されることはなく、電荷を輸送する機能を備えていれば分子構造や組成について特に制約されない。
 したがって、本発明に係る有機光電変換素子において、中間電極層と第1の電荷輸送層とが隣接して両者が当接する場合、本発明に係る第1の電荷輸送層は、窒素含有化合物を含み、必要により電荷輸送材料として他の有機材料や金属酸化物を併用して含むことがより好ましい。
 特に、中間電極層と隣接する基板側の層(下地層)に特定の窒素原子含有化合物(化学式(1)~(5))が存在すると、蒸着した金属原子または金属クラスターと強い相互作用が生じると考えられる。
 さらに、上記図1~2で示した有機光電変換素子では、サブセルを2つ有する実施形態を例示したが、サブセルをn個(nは2以上5以下の整数)有する有機光電変換素子であってもよい。その場合中間電極層はn-1個存在し、当該n-1個の中間電極層に直接隣接し、かつ基板側に設置された電荷輸送層(電子輸送層または正孔輸送層)は、最も基板側の電荷輸送層(電子輸送層または正孔輸送層)を第1の電荷輸送層(または第1の電子輸送層もしくは第1の正孔輸送層)として番号をふると、第n-1の電荷輸送層(または第n-1の電子輸送層もしくは第n-1の正孔輸送層)が形成されていると仮定した場合、中間電極層と接する第1の電荷輸送層~第n-1の電荷輸送層(または第1の電子輸送層もしくは第1の正孔輸送層~第n-1の電子輸送層もしくは第n-1の正孔輸送層)の最大n-1個の層のうち少なくとも1つの層に本発明に係る窒素含有化合物を含んでいればよく、最大n-1個の全ての層に当該窒素含有化合物を含有してもよい。
 さらに、窓貼り用途に使われるような向こうが見えるシースルータイプのタンデム型有機薄膜太陽電池の場合、上述した中間電極数に加え、最上層に形成される電極においても、上述したような中間電極と同様に、下地層としてその下に配された電荷輸送層を有する構成を積層することで得ることができる。この際、最上層の金属と空気または封止時の接着剤との間で大きな屈折率差が形成されると、界面での反射が起きてしまい透過率が低下することがある。この場合は、最上層に形成した金属薄膜の電極上に、新たに屈折率を調整する機能層を設けてもよい。
 また、本発明の実施において、後述する窒素原子含有化合物が、下地層形成時に気液界面に析出または偏析するような化合物の場合、上述した添加量の限りではなく、本発明で得られる極薄膜の中間電極層が形成できることがあり、本発明において好ましい態様のひとつである。
 なお、上述のようにサブセルをn個(nは2以上5以下の整数)有する有機光電変換素子であって、かつ中間電極層と接するn-1個の電荷輸送層が存在する場合において、窒素含有化合物を含有する電荷輸送層は、上記第1の電荷輸送層と同様の組成比となり、それ以外の電荷輸送層は第2の電荷輸送層と同様の組成比となることが好ましい。
 本発明の電荷輸送層に用いることができる化合物としては、窒素原子を含有する、ポリマー材料、低分子材料等から選ばれる。電荷輸送層上の中間電極層が連続層になるためには、窒素原子が1級~4級アミンもしくは、芳香族窒素として結合した有機物が設計の自由度といった観点でより好ましい。中でも2級アミン、無置換の窒素原子含有芳香族が中間電極層の金属と強く相互作用を示すため最も好ましい。
 好ましいポリマー材料としては一般的にポリマー型有機半導体として用いられるものとして、ポリピリジン(J. Am. Chem. Soc. 1994, 116, 4832)やポリアニリン、ポリカルバゾール、ポリピロール(Polym. Prepr. 2000, 41, 1770)、ポリアゾール、ポリイミダゾールや、ピリジル、ビピリジル、ピロール、ピラジル、イミダゾリル構造を含む縮環構造を有したポリマーも好ましく用いることができる。本発明においては、これら有機半導体に限定する必要はなく、電荷輸送性を示す材料であれば好ましく用いることができる。当該電荷輸送性を示す材料としては、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。また、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電荷輸送層は、電荷輸送性を向上させるために、さらに金属酸化物を含むことが好ましく、本発明に係る中間電極層と隣接する前記第1の電荷輸送層に、さらに金属酸化物を含むことがより好ましい。本発明においては、n型の伝導性を有する無機酸化物(酸化チタン、酸化亜鉛等)を上述した窒素原子含有材料に加えて添加することがより好ましい。
 本発明に係る第1の電荷輸送層において、当該第1の電荷輸送層に金属酸化物を含む場合は、電荷輸送層の固形分100質量%に対して、好ましくは金属酸化物を1質量%~50質量%含み、より好ましくは5質量%~40質量%含むことでより高い電荷輸送性が得られ好ましい。
 電荷輸送層に添加される金属酸化物(一部、非金属材料を含む)としては、モリブデン、バナジウム、タングステン、クロム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウム、スカンジウム、イットリウム、トリウム、マンガン、鉄、ルテニウム、オスミウム、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン、ビスマスあるいは、ランタンからルテチウムまでのいわゆる希土類元素などの酸化物が挙げられる。なかでも、電子輸送能に優れるという観点からは、酸化亜鉛(ZnO)、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化ジルコニウム(ZrO2)等の金属酸化物等を好ましく用いることができ、酸化亜鉛および酸化チタンが特に好ましい。これらの無機酸化物は1種単独で用いてもよいし、2種以上併用してもよい。
 更には電極に双極子材料を結合させることで界面双極子を形成し、電荷の取り出しを向上させる材料種、例えばWO2008/134492に記載の3-(2-アミノエチル)アミノプロピルトリメトキシシラン(AEAP-TMOS)などを挙げることができる。
 また、不純物をドープしたn性の高い電荷輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 具体例としては、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物やその誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体等を用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体等を好ましく用いることができる。
 電荷輸送層の厚さは、特に制限はないが、通常1~2000nmである。リーク防止効果をより高める観点からは、厚さは5nm以上であることが好ましい。また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。
 本発明に係る有機光電変換素子において、中間電極層と隣接する基板側の正孔輸送層または電荷輸送層に窒素含有化合物を含み、好ましくは、中間電極層と隣接する基板側の電荷輸送層(第1の電荷輸送層)に窒素含有化合物を含む。
 本発明に使用できる窒素含有化合物として、窒素含有ポリマーが好ましく、側鎖に窒素原子を含む窒素含有ポリマーがより好ましい。本発明に係る窒素含有ポリマーは、下記の化学式(1)~(5)のいずれか一つであることが好ましく、下記の化学式(1)~(4)のいずれか一つと、化学式(5)とを組み合わせることがより好ましい。以下、各化学式(1)~(4)の窒素含有ポリマーについて説明する。
 (化学式(1)の窒素含有ポリマー)
 本発明に係る窒素含有ポリマーは、主鎖に共役系芳香族環を含み、かつ置換基として1級~4級のアミノ基を前記芳香族環あたり1.5個以上有することが挙げられる。好ましくは2個~15個であり、より好ましくは3個~10個である。このような範囲のアミノ基の数(密度)であれば、良好な溶解性、塗布性が得られるだけでなく、上層に積層される中間電極層が連続層を形成し、更には、得られる有機光電変換素子の耐久性を改善することができる。ここで、芳香族環1個あたりに存在するアミノ基数の上限は、特に制限されないが、合成的な観点からは15個以下であることが好ましく、7個以下であることがより好ましい。また、このような共役系高分子化合物はアルコール、フッ化アルコール等の極性の高い有機溶媒に溶解するため、中間電極層を極性の高い溶媒には溶解しない光電変換層の上に直接塗布法により容易に形成できる。
 本発明に係る窒素含有ポリマーである好ましい共役系高分子化合物は、下記化学式(1):
Figure JPOXMLDOC01-appb-C000010
で表わされる構造単位(塩の形態を含む)を主鎖として有することが好ましい。
 上記化学式(1)において、Z1およびZ2は、-C(R3)=C(R4)-、-C(R5)=N-、-O-または-S-を表す。ここで、Z1およびZ2は、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、Z1およびZ2は、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、Z1およびZ2は、それぞれ独立して、-CH=CH-、-CH=N-または-S-である。より好ましくは、Z1およびZ2は、それぞれ独立して、-CH=CH-または-S-であり、特に好ましくは、Z1およびZ2は、-S-である。Z1およびZ2が-S-である、即ち、共役系高分子化合物主鎖にポリチオフェン系を導入することで、キャリア輸送能が向上し、また、発電層とp型半導体材料とが類似の構造となり、層間の親和性が高まるため、高い効率と耐久性を得ることができる。ここで、R3~R5は、それぞれ独立して、水素原子、置換若しくは無置換の炭素原子数1~20のアルキル基、置換若しくは無置換の炭素原子数3~20のシクロアルキル基、置換若しくは無置換の炭素原子数6~30のアリール基または置換若しくは無置換の炭素原子数1~30のヘテロアリール基を表す。好ましくは、R3~R5は、それぞれ独立して、水素原子、アルキル基、およびアミノ基であり、より好ましくは水素原子である。
 ここで、上記化学式(1)において、炭素原子数1~20の無置換のアルキル基としては、特に制限されず、炭素原子数1~20の直鎖または分岐鎖のアルキル基である。
 上記化学式(1)において、X1は、窒素原子、炭素原子、ケイ素原子またはリン原子(3価のリン原子および5価のリン原子を含む;5価のリン原子の場合には、X1は、P(=O)-Rのホスフィンオキシド系化合物由来の基であることが好ましい)を表す。ここで、各構造単位中のX1は、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、X1は、炭素原子である。X1が炭素原子であることで、共役系高分子化合物を中心として、表面が均一かつ高密度にアミノ基を有する共役系高分子化合物とすることができ、双極子層の分極をさらに高めることができ、得られる有機光電変換素子の安定性を高めることができる。
 上記化学式(1)において、L1は、単結合または二価の連結基であり、当該二価の連結基としては、炭素原子数1~20の置換若しくは無置換のアルキレン基、炭素原子数3~20の置換若しくは無置換のシクロアルキレン基、炭素原子数6~30の置換若しくは無置換のアリーレン基、炭素原子数1~30の置換若しくは無置換のヘテロアリーレン基、炭素原子数1~20の置換若しくは無置換のアルキレンオキシ基および-(L1 ')-(OR10p-から選ばれる2価の基が好ましい。ここで、各構造単位中のL1は、それぞれ、同じであってもあるいは異なるものであってもよい。また、nが2の場合(X1が炭素原子またはケイ素原子の場合)には、各L1は、それぞれ、同じであってもあるいは異なるものであってもよい。
 また、上記置換基L1が-(L1 ')-(OR10p-である場合の、L1 'は、単結合、炭素原子数1~20のアルキレン基または炭素原子数6~30のアリーレン基を表し、R10は、エチレン基、トリメチレン基またはプロピレン基を表し、pは1~5の整数である。
 上記化学式(1)において、Ra~Rbは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、-L3-N(R8)(R9)、-L4-N(R6)(R7)または置換もしくは無置換の炭素原子数1~30のヘテロアリール基である。
 この際、L3~L4は、それぞれ独立して、炭素原子数1~20の置換もしくは無置換のアルキレン基、炭素原子数3~20の置換もしくは無置換のシクロアルキレン基、炭素原子数6~30の置換もしくは無置換のアリーレン基、炭素原子数1~30の置換もしくは無置換のヘテロアリーレン基、炭素原子数1~20の置換もしくは無置換のアルキレンオキシ基、および-(L1’)-(OR10)p-から選ばれる2価の連結基であり、R6~R9は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基である。
 上記化学式(1)において、nは、置換基:-L1-N(Ra)(Rb)がX1に結合する整数を表わし、1、2または3である。すなわち、X1がリン原子を表す場合には、nは1または3であり、X1が炭素原子またはケイ素原子を表す場合には、nは2であり、X1が窒素原子を表す場合には、nは1である。
 本発明に係る置換もしくは無置換のアルキル基(後述の化学式においても同様)としては、直鎖状、または分岐状のアルキル基であってもよく、十分な溶解性と性能を示す化合物であれば特に限定されない。
 本発明に係る窒素含有ポリマーは、上記化学式1で示される構造単位を有することが好ましい。ここで、本発明に係る窒素含有ポリマーは、上記化学式1で示される構造単位から構成される単独重合体(ホモポリマー)であってもあるいは上記化学式1で示される2種以上の構造単位から構成される共重合体(コポリマー)であってもよい。また、本発明に係る窒素含有ポリマーは、上記化学式1で示される構造単位に加えて、アミノ基を持たない他の構造単位(以下、単に「他の構造単位」とも称する)をさらに有し、共重合体(コポリマー)を形成していてもよい。
 本発明に係る窒素含有ポリマーが他の構造単位を有する場合の、他の構造単位の含有量は、本発明に係る共役系高分子化合物による効果を損なわない程度であれば特に制限されないが、他の構造単位由来の単量体の含有量が、全構造単位由来の単量体中、好ましくは10~75モル%、より好ましくは20~50モル%である。
 本発明に係る窒素含有ポリマーの製造方法は、特に制限されず、公知の製造方法が同様にしてまたは適宜修飾して適用できる。例えば、本発明に係る窒素含有ポリマーは、ADVANCED MATERIALS 2007、19、2010等を参考して合成可能である。
 本発明において好ましく用いることができる化学式(1)に示される窒素含有ポリマーの分子量は、本発明の効果が発揮される限りにおいて特に制限はないが、通常は数平均分子量で5k~1000kであり、好ましくは10k~100k、更に好ましくは15k~50k程度が好ましい。数平均分子量はGPC(例えばTOSOH社製HLC-8220など)によって測定された値からポリスチレン換算により評価することができる。
 上記化学式(1)の好ましい化学式について、より具体的には、下記構造(式1-1~式1-21)を有するものが挙げられる。なお、本発明はこれらに限定されない。なお、本明細書では、化合物を、下記化合物番号にて規定する。また、下記構造中、「N/A」は、各共役系高分子化合物に存在する芳香族環1個あたり1級~4級のアミノ基の数を表す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 (化学式(2)の窒素含有ポリマー)
 窒素含有ポリマーの化学式(2)としては、下記の構造式で示されるポリビニル構造を用いることができる。本発明に好ましく用いることができる電子輸送材料として下記の化学式(2)の側鎖に窒素原子含有芳香族を有するポリマー材料が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記化学式(2)中、X1~X5はそれぞれ独立して、=N-、-O-または-S-、-C(R1)=C(R2)-、-C(R5)=N-のいずれかを表し、少なくともX1~X5のいずれか、またはYに1~3個は=N-構造の窒素原子を含むことが好ましい。
 この際、R1、R2、R5は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基である。
 また、上述したYには窒素原子を含む芳香環置換基が接続される。Yの具体例としては特に限定されないが、ピリジル基、ビピリジル基、ピラジル基、ピロール環、イミダゾリル環などが挙げられ、これらの置換または縮環した基が置換されていてもよい。
 ここで、Yに窒素原子を含む場合、X1~X5は窒素原子を含む必要はないが、上述した効果を得るためには窒素原子の数が多い(高密度である)方が、上層に積層される中間電極層が連続した膜となるだけでなく、中間電極層と電荷輸送層との密着性が向上することから、高温化での耐久性向上においてより好ましい。
 より具体的には、化学式(2)に含まれる化合物は下記構造(式2-1~式2-9)を有するものが挙げられる。なお、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 化学式(2)に示される窒素含有ポリマーの分子量は、本発明の効果が発揮される限りにおいて特に制限はないが、通常は数平均分子量で5k~1000kであり、好ましくは10k~100k、更に好ましくは15k~50k程度が好ましい。数平均分子量はGPC(例えばTOSOH社製HLC-8220など)によって測定された値からポリスチレン換算により評価することができる。
 (化学式(3)の窒素含有ポリマー)
 窒素含有ポリマーの化学式(3)としては、下記の構造式で示される主鎖に窒素原子を含み、側鎖に1級~4級の窒素原子を含むポリマー材料を挙げることができる。また、本発明に好ましく用いることができる電子輸送材料として下記の化学式(3)に示されるようなポリアルキレンイミン類が挙げられる。以下ポリアルキレンイミンが含まれる実施形態について説明する。
 本発明に係る窒素含有ポリマーは、下記化学式(3):
Figure JPOXMLDOC01-appb-C000018
 上記化学式(3)中、Xは、-(CH2)m-N(R1)(R2)、またはその塩である-(CH2)m-N(R1)(R2)(R3+Xa-で表され、
前記R1、R2およびR3はそれぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはR1~R3を介してエチレンアミンが連続したクロスリンク構造であり、
Xaは、ハロゲン原子、アルカリ金属、およびアルカリ土類金属からなる群から選択される少なくとも一つであり、
mは1以上3以下の整数である、ポリアルキレンイミンであることが好ましい。
 また、上記で示される化学式(3)のより好ましい条件は、下記化学式(I)~(IV)のいずれか一つであり、
Figure JPOXMLDOC01-appb-C000019
 上記化学式(I)~(IV)において、前記R1、R2、R3、およびR4はそれぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはR1~R3を介してエチレンアミンが連続したクロスリンク構造であることが好ましい。上記化学式(IV)中のXは、上記化学式(3)に規定するXaと同様に、ハロゲン原子、アルカリ金属、およびアルカリ土類金属からなる群から選択される少なくとも一つである。さらに上記で示される化学式(3)で示される化合物は、上記で示される化学式(I)~(III)で示される化合物のいずれかを少なくとも主鎖に含むポリマーであるのが好ましい。
 本発明において、ポリアルキレンイミンとは、アミノアルキレン基を繰り返し単位として有する直鎖状または分岐鎖状の重合体を意味する。なお、本明細書では二量体、三量体等のオリゴマーもポリアルキレンイミンに含むものとする。本形態で使用されるポリアルキレンイミンの一例として、アミノエチレン基を繰り返し単位とする分岐鎖状の重合体であるポリエチレンイミンを下記化学式(3A)に示す。
Figure JPOXMLDOC01-appb-C000020
 上記化学式(3A)に示すポリエチレンイミンは、第1級アミノ基(NH2-CH2CH2-)、第2級アミノ基(NH-(CH2CH2-)2)、第3級アミノ基(N-(CH2CH2-)3)を含む。このうち、第1級アミノ基は鎖の末端を構成し、第3級アミノ基は鎖の分岐点を構成している。
 本形態のポリアルキレンイミンは、上述のようにアミノアルキレン基を繰り返し単位として有する重合体である限りにおいて、特に制限はない。当該アミノアルキレン基に含まれるアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、1,2-ジメチルエチレン基等が挙げられる。このうち、合成の容易さ・入手し易さの観点、または塗布液への相溶性の観点から、エチレン基、トリメチレン基、プロピレン基が好ましい。なお、末端の構造は特に制限はないが、通常、第1級アミノ基(-NH2)またはアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等)でありうる。
 本形態のポリアルキレンイミンは、直鎖状(すなわち、第3級アミノ基を含まない)であっても分岐鎖状であってもよいが、反応性向上の観点から分岐鎖状のポリアルキレンイミンであることが好ましい。また、ポリアルキレンイミンが分岐鎖状の場合の分岐構造も特に制限はなく、網目型の構造であってもよいし、デンドリマー型の構造であってもよい。分岐鎖状のポリアルキレンイミンである場合の第1級アミノ基、第2級アミノ基、および第3級アミノ基のそれぞれの含有割合は特に制限はないが、第1級アミノ基の含有割合は、カチオン密度の上昇により反応性を向上させる観点から、全アミノ基100モル%に対して、5~60モル%であることが好ましく、20~50%であることがより好ましく、30~45%であることがさらに好ましい。また、重合体のネットワークを良好に形成させる観点から、全アミノ基100モル%に対して、第2級アミノ基の含有割合は25~55モル%であることが好ましく、30~45%であることがより好ましく、第3級アミノ基の含有割合は15~45モル%であることが好ましく、15~35%であることがより好ましい。なお、本明細書において、ポリアルキレンイミンの第1級アミノ基、第2級アミノ基、および第3級アミノ基の含有割合は、後述の実施例に記載の方法により求める値を採用する。
 ポリアルキレンイミンのアミン価(第1アミノ基、第2級アミノ基、および第3級アミノ基の総量を示すもので、試料1gを中和するのに要する塩酸に当量の水酸化カリウムのmg数で表わす)は、通常2~40mmol/gであり、好ましくは10~30mmol/gである。アミン価が2mmol/g以上であると、拡散物質との反応性が得られ、40mmol/g以下であると、塗布液の粘度上昇を抑制できる。本明細書において、ポリアルキレンイミンのアミン価の測定方法は以下の通りである。試料約1gを精秤し(試料量:Sg)、トルエン20mlを加えて溶解し、イソプロピルアルコール20mlおよびブロムフェノールブルー溶液を数滴加えて、1/10N塩酸イソプロピルアルコール溶液(力価:f)で滴定し、終点までの滴定量を読み取る(滴定量:A[ml])。この滴定量から下記の式1によりアミン価を算出する。
Figure JPOXMLDOC01-appb-M000021
 本発明において好ましく用いることができる化学式(3)に示される窒素含有ポリマーの分子量は、本発明の効果が発揮される限りにおいて特に制限はないが、通常は数平均分子量で100~50000であり、好ましくは300~10000、更に好ましくは500~5000程度が好ましい。数平均分子量はGPC(例えばTOSOH社製HLC-8220など)によって測定された値からポリスチレン換算により評価することができる。
 本発明で使用される化学式(3)に示すポリアルキレンイミンは、市販されているものを使用してもよいし、合成により得たものを使用しても構わない。合成によりポリアルキレンイミンを調製する場合、特公昭49-33120号公報に記載の方法等により合成することができる。具体的には、エチレンジアミン、ジエチレントリアミン、モノエタノールアミン等を原料に、塩酸、硫酸、p-トルエンスルホン酸等の酸触媒下にアルキレンイミンを反応させ、ポリアルキレンイミンを得ることができる。また、市販品としては、例えば直鎖状のポリエチレンイミンは和光純薬工業製、関東化学社製等から入手可能である。また、例えば分岐状のポリエチレンイミンは日本触媒社製のエポミン(登録商標)SP-003、SP-006、SP-012、SP-018、SP-200、P-1000等を使用することができる。
 本発明に係る化学式(3)に示される窒素含有ポリマーが電荷輸送層に含有する場合は、光電変換層または正孔輸送層を形成する際の塗布液への溶解性を高めるため、第1級アミノ基または第2級アミノ基の一部が変性されたものであってもよく、例えば、エポキシ化合物、イソシアネート類、チオイソシアネート類、アルキルハライド、不飽和脂肪類、脂肪酸、無水脂肪酸、アシルハライド類、ウレア、グアニジン類、ケトン、アルデヒド等で変性させた構造を有していてもよい。
 上記変性ポリアルキレンイミンの変性率(変性前の第1級アミノ基および第2級アミノ基総数に対する、変性後の上記置換基が付加されてなるアミノ基の割合)は、好ましくは10%~90%であり、より好ましくは15%~70%であり、さらに好ましくは20%~50%である。変性率が10%以上あれば、塗布液に溶解させるのに十分な溶解性を確保することができる。一方、変性率が90%以下であれば、活性なアミノ基(第1級アミノ基および第2級アミノ基)を含むため本発明の効果をより一層顕著に発揮させることができる。なお、本明細書において、変性率は、13C-NMR測定により算出することができる。
 本発明に係る化学式(3)のポリアルキレンイミンは、アミノアルキレンユニットのみからなるホモポリマーであってもよいし、2種以上のアミノアルキレンユニットを含む共重合体(ヘテロポリマー)であってもよい。また、アミノアルキレンユニット以外の他のユニットを含む共重合体であってもよい。他のユニットは、本発明の作用効果を著しく低減させない限りにおいては特に制限はなく、例えば、ポリエステル化合物ユニット、アクリル化合物ユニット、ポリウレタン化合物ユニット、アクリルウレタン化合物ユニット、ポリカーボネート化合物ユニット、セルロース化合物ユニット、ポリビニルアセタール化合物ユニット、ポリビニルアルコール化合物ユニット等を挙げることができる。なお、本発明において、共重合体とは、ランダム共重合体、ブロック共重合体のいずれであってもよく、好ましくは、ブロック共重合体である。これらの他のユニットの含有割合は塗布溶媒や溶質との相溶性の観点で選択することができ、アミノアルキレンユニットの総数100モル%に対して、50モル%以下であることが好ましく、20モル%以下であることがより好ましい。
 (化学式(4)の窒素含有ポリマー)
 本発明に係る窒素含有ポリマーとしては、下記化学式(4)で示される1級~4級の窒素原子を含むポリマー材料を挙げることができる。また、本発明に好ましく用いることができる電子輸送材料として下記の化学式(4)に示される窒素含有ポリマーが挙げられる。
 本発明に係る窒素含有ポリマーは、下記化学式(4):
Figure JPOXMLDOC01-appb-C000022
 (上記化学式(4)中、Arは置換もしくは無置換の複素芳香環、芳香族環もしくは縮環構造であり、
 Y1およびYはそれぞれ独立して、単結合または二価の連結基であり、
 Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造である。)
であることが好ましい。
 また、上記で示される化学式(4)のより好ましい条件は、下記化学式(4A)または(4B)に示されるいずれかを少なくとも主鎖に含むポリマーであり、
Figure JPOXMLDOC01-appb-C000023
 上記化学式(4A)中、X1~X5は、それぞれ独立して、=N-、-O-、または-S-、-C(R1)=C(R2)-、-C(R5)=N-のいずれかであり、当該X1~X5のうち少なくとも1~3個は、=N-構造の窒素原子を含み、
YまたはY1はそれぞれ独立して、単結合または二価の連結基であり、
1、R2、R5は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造であることが好ましい。
 また、上記二価の連結基としては-NH-、-N(R)-、-O-、-S-、またはSi(R)(R’)、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数3~20のシクロアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、または置換もしくは無置換の炭素原子数1~30のヘテロアリーレン基が挙げられ、
当該R、R’は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記化学式(4B)中、X1~X10は、それぞれ独立して、=N-、-O-、または-S-、-C(R1)=C(R2)-、-C(R5)=N-のいずれかであり、当該X1~X5のうち少なくとも1~3個は、=N-構造の窒素原子を含み、当該X6~X10のうち少なくとも1~3個は、=N-構造の窒素原子を含むことが好ましい。
Yは、単結合または二価の連結基であり、
1、R2、R5は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造であることが好ましい。
 また、上記二価の連結基としては-NH-、-N(R)-、-O-、-S-、またはSi(R)(R’)、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数3~20のシクロアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、または置換もしくは無置換の炭素原子数1~30のヘテロアリーレン基が挙げられ、
当該R、R’は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造であることが好ましい。
 より具体的には、化学式(4)に含まれる本発明に係る化合物は下記構造式(式4-1~式4-20)を有するものが挙げられる。なお、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 化学式(4)に示される窒素含有ポリマーの分子量は、本発明の効果が発揮される限りにおいて特に制限はないが、通常は数平均分子量で5k~1000kであり、好ましくは10k~100k、更に好ましくは15k~50k程度が好ましい。数平均分子量はGPC(例えばTOSOH社製HLC-8220など)によって測定された値からポリスチレン換算により評価することができる。
 (化学式(5)で示される化合物)
 本発明に係る第1の電荷輸送層は、下記化学式(5)で示される化合物を含むことが好ましい。
 前記下記化学式(5)で示される化合物は、
Figure JPOXMLDOC01-appb-C000034
(上記化学式(5)中、mは1以上の整数であり、mが1の場合、Y1は置換基を表し、mが2以上の場合、単結合またはm価の連結基であり、
Armは下記化学式(5A):
Figure JPOXMLDOC01-appb-C000035
(上記化学式(5A)中、Xは、-N(R)-、-O-、-S-、またはSi(R)(R’)であり、E1~E8は、それぞれ独立であって、-C(R1)=、または-N=であり、前記R、R’、R1は、それぞれ独立であって、水素原子、置換基、Y1との連結部位であり、*は、Y1との連結部位であり、Y2は、結合手、または2価の連結基であり、Y3およびY4は、それぞれ独立であって、5員または6員の芳香族環から導出される基を表し、少なくともY3およびY4の一方は環構成原子として窒素原子を含む芳香族複素環から導出される基であり、n2は1~4の整数であり、mが2以上の場合、それぞれのArmは独立である)
で示される化合物を含み、かつ前記化学式(5)で示される化合物は、分子内に3環以上の環が縮合してなる縮合芳香族環を少なくとも2つ有することが好ましい。
 上記化学式(5)において、Y1で表される置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 上記化学式(5)において、Y1で表されるm価の連結基としては、具体的には、2価の連結基、3価の連結基、4価の連結基等が挙げられる。
 上記化学式(5)において、Y1で表される2価の連結基としては、アルキレン基(例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、2,2,4-トリメチルヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、シクロヘキシレン基(例えば、1,6-シクロヘキサンジイル基等)、シクロペンチレン基(例えば、1,5-シクロペンタンジイル基など)等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1-メチルビニレン基、1-メチルプロペニレン基、2-メチルプロペニレン基、1-メチルペンテニレン基、3-メチルペンテニレン基、1-エチルビニレン基、1-エチルプロペニレン基、1-エチルブテニレン基、3-エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1-プロピニレン基、1-ブチニレン基、1-ペンチニレン基、1-ヘキシニレン基、2-ブチニレン基、2-ペンチニレン基、1-メチルエチニレン基、3-メチル-1-プロピニレン基、3-メチル-1-ブチニレン基等)、アリーレン基(例えば、o-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子、3環以上の環が縮合してなる縮合芳香族複素環から導出される基等(ここで、3環以上の環が縮合してなる縮合芳香族複素環としては、好ましくはN、O及びSから選択されたヘテロ原子を、縮合環を構成する元素として含有する芳香族複素縮合環であることが好ましく、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等)が挙げられる。
 上記化学式(5)において、Y1で表される3価の連結基としては、例えば、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ウンデカントリイル基、ドデカントリイル基、シクロヘキサントリイル基、シクロペンタントリイル基、ベンゼントリイル基、ナフタレントリイル基、ピリジントリイル基、カルバゾールトリイル基等が挙げられる。
 上記化学式(5)において、Y1で表される4価の連結基としては、上記の3価の基にさらにひとつ結合基がついたものであり、例えば、プロパンジイリデン基、1,3-プロパンジイル-2-イリデン基、ブタンジイリデン基、ペンタンジイリデン基、ヘキサンジイリデン基、ヘプタンジイリデン基、オクタンジイリデン基、ノナンジイリデン基、デカンジイリデン基、ウンデカンジイリデン基、ドデカンジイリデン基、シクロヘキサンジイリデン基、シクロペンタンジイリデン基、ベンゼンテトライル基、ナフタレンテトライル基、ピリジンテトライル基、カルバゾールテトライル基等が挙げられる。
 なお、上記の2価の連結基、3価の連結基、4価の連結基は、各々さらに、化学式(5)において、Y1で表される置換基を有していてもよい。
 上記化学式(5)で表される化合物の好ましい態様としては、Y1が3環以上の環が縮合してなる縮合芳香族複素環から導出される基を表すことが好ましく、当該3環以上の環が縮合してなる縮合芳香族複素環としては、ジベンゾフラン環またはジベンゾチオフェン環が好ましい。また、mが2以上であることが好ましい。
 さらに、化学式(5)で表される化合物は、分子内に上記の3環以上の環が縮合してなる縮合芳香族複素環を少なくとも2つ有する。
 また、Y1がm価の連結基を表す場合、化学式(5)で表される化合物の三重項励起エネルギーを高く保つために、Y1は非共役であることが好ましく、さらに、Tg(ガラス転移点、ガラス転移温度ともいう)を向上させる点から、芳香環(芳香族炭化水素環+芳香族複素環)で構成されていることが好ましい。
 ここで、非共役とは、連結基が単結合(一重結合ともいう)と二重結合の繰り返しによって表記できないか、または連結基を構成する芳香環同士の共役が立体的に切断されている場合を意味する。
 ここで、化学式(5A)のXで表される-N(R)-または-Si(R)(R′)-において、さらに、E1~E8で表される-C(R1)=において、R、R′及びR1で各々表される置換基は、化学式(5)において、Y1で表される置換基と同義である。
 また、化学式(5A)において、Y2で表される2価の連結基としては、化学式(5)において、Y1で表される2価の連結基と同義である。
 さらに、化学式(5A)において、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の形成に用いられる5員または6員の芳香族環としては、ベンゼン環、オキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
 さらに、Y3及びY4で各々表される5員または6員の芳香族環から導出される基の少なくとも一方は、環構成原子として窒素原子を含む芳香族複素環から導出される基を表すが、当該環構成原子として窒素原子を含む芳香族複素環としては、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、イソオキサゾール環、ピラゾール環、トリアゾール環等が挙げられる。
 本発明に係る化学式(5)で示される化合物は、下記の化学式(6):
Figure JPOXMLDOC01-appb-C000036
(上記化学式(6)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基であり、
 E51~E66は、それぞれ独立して、-C(R3)=、または-N=であり、
3は水素原子または置換基であり、
6~Y9は、それぞれ独立して、芳香族炭化水素環から導出される基、または芳香族複素環から導出される基であり、
6もしくはY7の少なくとも一方、およびY8もしくはY9の少なくとも一方は、N原子を含む芳香族複素環から導出される基であり、
 n3およびn4は0~4の整数である。)
で示される化合物であることがより好ましい。
 上記化学式(6)中のR3の置換基は、上記化学式(5)のR1の置換基と同義であり、上記化学式(6)中のY6およびY8は、上記化学式(5)のY3の置換基と同義であり、上記化学式(6)中のY7およびY9は、上記化学式(5)のY4の置換基と同義である。
 また、上記化学式(6)において、Y5で表されるアリーレン基、ヘテロアリーレン基は、化学式(5)において、Y1で表される2価の連結基の一例として記載されているアリーレン基、ヘテロアリーレン基と各々同義である。
 Y5で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
 上記化学式(6)において、E51~E66で各々表される基としては、E51~E58のうちの6つ以上及びE59~E66のうちの6つ以上が、各々-C(R3)=で表されることが好ましい。
 上記化学式(6)において、Y6~Y9は、各々芳香族炭化水素環から導出される基の形成に用いられる芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 さらに、前記芳香族炭化水素環は、上記化学式(5)において、Y1で表される置換基を有してもよい。
 上記化学式(6)において、Y6~Y9は、各々芳香族複素環から導出される基の形成に用いられる芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
 さらに、前記芳香族炭化水素環は、上記化学式(5)において、Y1で表される置換基を有してもよい。
 上記化学式(6)において、Y6またはY7の少なくとも一方、及びY8またはY9の少なくとも一方で表されるN原子を含む芳香族複素環から導出される基の形成に用いられるN原子を含む芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つがさらに窒素原子で置換されている環を示す)等が挙げられる。
 上記化学式(6)において、Y7、Y9で表される基としては、各々ピリジン環から導出される基を表すことが好ましい。
 また、上記化学式(6)において、Y6及びY8で表される基としては、各々ベンゼン環から導出される基を表すことが好ましい。
 さらに、本発明に係る化学式(6)で示される化合物は、下記の化学式(7):
Figure JPOXMLDOC01-appb-C000037
(上記化学式(7)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基であり、E51~E66、およびE71~E88は、それぞれ独立して、-C(R3)=、または-N=であり、R3は水素原子または置換基であり、E71~E79の少なくとも1つ、およびE80~E88の少なくとも1つは-N=であり、n3およびn4は0~4の整数であって、n3+n4は2以上の整数である。)で示される化合物であることがさらに好ましい。
 上記化学式(7)において、Y5で表されるアリーレン基、ヘテロアリーレン基は、上記化学式(5)において、Y1で表される2価の連結基の一例として記載されているアリーレン基、ヘテロアリーレン基と各々同義である。
 Y5で表されるアリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基の好ましい態様としては、ヘテロアリーレン基の中でも、3環以上の環が縮合してなる縮合芳香族複素環から導出される基を含むことが好ましく、また、当該3環以上の環が縮合してなる縮合芳香族複素環から導出される基としては、ジベンゾフラン環から導出される基またはジベンゾチオフェン環から導出される基が好ましい。
 上記化学式(7)において、E51~E66、E71~E88で各々表される-C(R3)=のR3で表される置換基は、上記化学式(5)において、Y1で表される置換基と同義である。
 上記化学式(7)において、E51~E58のうちの6つ以上及びE59~E66のうちの6つ以上が、各々-C(R3)=で表されることが好ましい。
 上記化学式(7)において、E75~E79の少なくとも1つ及びE84~E88の少なくとも1つが-N=を表すことが好ましい。
 さらには、一般式(7)において、E75~E79のいずれか1つ及びE84~E88のいずれか1つが-N=を表すことが好ましい。
 また、上記化学式(7)において、E71~E74及びE80~E83が、各々-C(R3)=で表されることが好ましい態様として挙げられる。
 さらに、一般式(6)または一般式(7)で表される化合物において、E53が-C(R3)=で表され、且つ、R3が連結部位を表すことが好ましく、さらに、E61も同時に-C(R3)=で表され、且つ、R3が連結部位を表すことが好ましい。
 さらに、E75及びE84が-N=で表されることが好ましく、E71~E74及びE80~E83が、各々-C(R3)=で表されることが好ましい。
 より具体的には、化学式(5)に含まれる本発明に係る化合物は下記構造式(式1~式112)を有するものが挙げられる。なお、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
 <有機光電変換素子のその他の構成>
 [正孔輸送層]
 本発明に係る有機光電変換素子は、第1サブセルおよび第2サブセルにおいて、正孔輸送層を有することが好ましい。上述した窒素原子を含む化合物からなる電荷輸送層は、中間電極と隣接した下地層として機能するが、中間電極と隣接しない電荷輸送層のうち、特に正孔を電極に輸送する機能を有する電荷輸送層について以下詳細に説明する。
 正孔輸送層は、正孔を輸送する機能を有し、かつ電子を輸送する能力が著しく小さい(例えば、正孔の移動度の10分の1以下)という性質を有する。正孔輸送層は、光電変換層と陽極との間に設けられ、正孔を陽極へと輸送しつつ、電子の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。よって、本明細書では、正孔注入層、電子ブロック層等も正孔輸送層の概念に含む。
 本発明に係る正孔輸送層に用いられる正孔輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。
 本発明で好ましく用いられる導電性高分子は、特に限定されないが、π共役系高分子とポリアニオンとを有してなることが好ましい。こうした高分子は、π共役系高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
 本発明に用いることができるπ共役系高分子としては、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類、の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。更にはポリエチレンジオキシチオフェン類であることが好ましい。
 本発明で好ましく用いられるポリアニオンは特に限定されないが、アニオン性基として、スルホ基を有することがより好ましい。ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 また、化合物内にフッ素(F)を有するポリアニオンであってもよい。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等を挙げることができる。
 こうした導電性高分子としては公知の材料や市販の材料も好ましく利用できる。例えば、一例を挙げると、ヘレウス社製、商品名CLEVIOS-P等のPEDOT:PSS、欧州特許第1546237号、特開2009-132897号公報等に記載のフッ素系ポリアニオン類(ナフィオン等)含有、または特開2006-225658号公報のようなフッ素系ポリアニオン添加構成、欧州特許第1647566号等に記載のポリチエノチオフェン類、特開2010-206146号に記載のスルホン化ポリチオフェン類、ポリアニリンおよびそのドープ材料、国際公開第2006/019270号パンフレット等に記載のシアン化合物等、Aldrich社からPEDOT-PASS483095、560598として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることができる。
 また、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等もまた、用いられうる。
 また、これら以外にも、ポルフィリン化合物、芳香族第3級アミン化合物、およびスチリルアミン化合物等が使用可能であり、これらのうちでは、芳香族第3級アミン化合物を用いることが好ましい。なお、場合によっては、p型-Si、p型-SiC、酸化ニッケル、酸化モリブデン、酸化バナジウム、酸化タングステン等の無機化合物を用いて正孔輸送層を形成してもよい。
 さらに上記化合物に含まれる構造単位を高分子鎖に導入した、あるいは、上記化合物を高分子の主鎖とした高分子材料を正孔輸送材料として用いることもできる。また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、p型正孔輸送材料を用いることもできる。さらに、不純物をドープしたp性の高い正孔輸送材料を用いることもできる。一例を挙げると、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)、Appl.Phys.Let.,98,073311(2011)等に記載された材料、および構成が挙げられる。
 本発明においては、無機材料からなる正孔輸送層を好ましく用いることができる。中でも金属酸化物を主成分とすることが好ましい。ここで、「主成分」とは正孔輸送層の構成材料の合計量100質量%に占める金属酸化物の割合が50質量%以上であることを意味する。ただし、正孔輸送層の構成材料の合計量100質量%に占める金属材料の割合は、好ましくは60質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、最も好ましくは100質量%である。
 本発明に係る正孔輸送層に用いられる金属酸化物(一部、非金属材料を含む)としては、モリブデン、バナジウム、タングステン、クロム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウム、スカンジウム、イットリウム、トリウム、マンガン、鉄、ルテニウム、オスミウム、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン、ビスマスあるいは、ランタンからルテチウムまでのいわゆる希土類元素などの酸化物が挙げられる。なかでも、正孔輸送能に優れるという観点からは、MoO3、NiO、WO3、V25等の金属酸化物等を好ましく用いることができ、MoO3、WO3、V25が特に好ましい。これらの無機酸化物は1種単独で用いてもよいし、2種以上併用してもよい。
 本発明に係る正孔輸送層の厚さは、特に制限はないが、光電変換効率と耐久性の観点から、1~1000nmであり、より好ましくは10~500nm、50~200nm程度が最も好ましい。リーク防止効果をより高める観点からは、厚さは1nm以上であることが好ましく、また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましい。
 正孔輸送層は一般的な製膜方法を用いて形成でき、例えば、真空蒸着法、加熱真空蒸着法、電子ビーム蒸着法、レーザービーム蒸着法、スパッタ法、CVD法、大気圧プラズマ法などのドライプロセス、塗布法、メッキ法、電界形成法などのウェットプロセスなどを用いることができる。また、塗布法の中でも、印刷技術を用いた直接パターニング法、例えば、インクジェット印刷法などを好ましく用いることができる。
 なお、これらの正孔輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて正孔輸送層を構成することも可能である。
 本発明に係る正孔輸送層の導電率は、一般的に高い方が好ましいが、高くなりすぎると電子が移動するのを阻止する能力が低下し、整流性が低くなりうる。したがって、正孔輸送層の導電率は、10-5~1S/cmであることが好ましく、10-4~10-2S/cmであることがより好ましい。
 [電子輸送層]
 本発明に係る有機光電変換素子は、第1サブセルおよび第2サブセルにおいて、電子輸送層を有することが好ましい。上述した窒素原子を含む化合物からなる電荷輸送層は、中間電極と隣接した下地層として機能するが、中間電極と隣接しない電荷輸送層のうち、特に電子を電極に輸送する機能を有する電荷輸送層について以下詳細に説明する。
 電子輸送層は、電子を輸送する機能を有し、かつ正孔を輸送する能力が著しく小さいという性質を有する。電子輸送層は、光電変換層と陰極との間に設けられ、電子を陰極へと輸送しつつ、正孔の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。よって、本明細書では、電子注入層、正孔ブロック層、励起子ブロック層等も電子輸送層の概念に含む。
 電子輸送層に用いられる電子輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体、下記化合物:
Figure JPOXMLDOC01-appb-C000066
等が挙げられる。また、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。上述の正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体や、n型の伝導性を有する無機酸化物(酸化チタン、酸化亜鉛等)も電子輸送材料として用いることができる。
 本発明においては、無機材料からなる電子輸送層を好ましく用いることができる。中でも金属酸化物を主成分とすることが好ましい。ここで、「主成分」とは電子輸送層の構成材料の合計量100質量%に占める金属酸化物の割合が50質量%以上であることを意味する。ただし、電子輸送層の構成材料の合計量100質量%に占める金属材料の割合は、好ましくは60質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、最も好ましくは100質量%である。
 電子輸送層に用いられる金属酸化物(一部、非金属材料を含む)としては、前述した電荷輸送層に添加される金属酸化物として例示されたものと同様のものを使用することができる。なかでも、電子輸送能に優れるという観点からは、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化ジルコニウム(ZrO2)等の金属酸化物等を好ましく用いることができ、酸化チタン(TiO2)が特に好ましい。これらの無機酸化物は1種単独で用いてもよいし、2種以上併用してもよい。
 更には電極に双極子材料を結合させることで界面双極子を形成し、電荷の取り出しを向上させる材料種、例えばWO2008/134492に記載の3-(2-アミノエチル)アミノプロピルトリメトキシシラン(AEAP-TMOS)などを挙げることができる。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 具体例としては、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物やその誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体等を用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体等を好ましく用いることができる。
 電子輸送層の厚さは、特に制限はないが、通常1~2000nmである。リーク防止効果をより高める観点からは、厚さは5nm以上であることが好ましい。また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。
 [光電変換層]
 本形態の有機光電変換素子は、第1のサブセルおよび第2のサブセルにおいて、光電変換層を有する。また、最も基板側の第1のサブセルに含まれる光電変換層を第1の光電変換層とし、最も基板側から離れた第n番目のサブセルを第nの光電変換層としている(nは1以上5以下の整数)。さらに、複数のサブセルにおける光電変換層がそれぞれバンドギャップの異なる光吸収性の有機半導体材料を含むことが好ましい。
 仮に、第1の光電変換層側から光を照射する場合は、第n-1の光電変換層のバンドギャップは第nの光電変換層のバンドギャップより狭いことが好ましい。
 (p型有機半導体)
 光電変換層は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する機能を有する。これらの光電変換材料に光が吸収されると、励起子が発生し、これがpn接合界面において、正孔と電子とに電荷分離される。
 本形態の光電変換層に使用されるp型有機半導体は、ドナー性(電子供与性)の有機化合物であれば特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。このような化合物のうち縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、およびこれらの誘導体や前駆体が挙げられる。
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェンおよびそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008/000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、Adv.Mater.,vol.19,(2007)p2295に記載のポリチオフェン-カルバゾール-ベンゾチアジアゾール共重合体(PCDTBT)、Macromolecules 2009,42,p1610-1618に記載のビニル基置換ポリヘキシルチオフェン(P3HNT)、米国特許第8008421号明細書に記載のpoly(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d)silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl](PSBTBT):
Figure JPOXMLDOC01-appb-C000067
ポリピロールおよびそのオリゴマー、ポリアニリン、ポリフェニレンおよびそのオリゴマー、ポリフェニレンビニレンおよびそのオリゴマー、ポリチエニレンビニレンおよびそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェン、α,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。より好ましくは、後述のn型有機半導体材料であるフラーレン誘導体と適度な相溶性を有するような化合物(適度な相分離構造を形成し得る化合物)であることが好ましい。
 また、バルクへテロジャンクション層上にさらに溶液プロセスで電荷輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性のよい材料からなる層の上にさらに層を溶液プロセスによって積層しようとすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料が好ましい。
 このような材料としては、Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008-16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。
 (n型有機半導体)
 本形態の光電変換層に使用されるn型有機半導体も、アクセプター性(電子受容性)の有機化合物であれば特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。このような化合物としては、例えば、フラーレン、カーボンナノチューブ、オクタアザポルフィリン等、上記p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等が挙げられる。
 このうち、p型有機半導体と高速(~50fs)かつ効率的に電荷分離を行うことができるという観点から、フラーレンもしくはカーボンナノチューブまたはこれらの誘導体を用いることが好ましい。より具体的には、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層カーボンナノチューブ、単層カーボンナノチューブ、カーボンナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、置換されたまたは非置換の、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基等によって置換されたフラーレン誘導体が挙げられる。
 特に、[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBMまたはPC60BM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、[6,6]-フェニルC71-ブチリックアシッドメチルエステル(略称PC71BM)、J. Am. Chem. Soc. 2011, 133, 14534-14537記載のビスインデン-C60(略称ICBA)、Adv.Mater.,vol.20(2008),p2116に記載のbis-PCBM、特開2006-199674号公報に記載のアミノ化フラーレン、特開2008-130889号公報に記載のメタロセン化フラーレン、米国特許第7,329,709号明細書に記載の環状エーテル基を有するフラーレン等のような、置換基により溶解性が向上されてなるフラーレン誘導体を用いることが好ましい。なお、本形態において、n型有機半導体は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。
 本発明に係るタンデム型有機光電変換素子が並列型のタンデム構造の場合は、複数の光電変換層が、それぞれバンドギャップの異なる光吸収性の有機半導体材料を含み、かつ光入射側のサブセルにおける光電変換層に、よりバンドギャップが狭い有機半導体材料が選択されることが好ましい。
 すなわち、本発明に係るタンデム型有機光電変換素子が図2に示す並列型のタンデム構造である場合、第1の光電変換層と第2の光電変換層とが、それぞれバンドギャップの異なる光吸収性の有機半導体材料を含み、かつ第1の光電変換層に、よりバンドギャップが狭い有機半導体材料が選択されることが好ましい。
 これは各サブセルにおける対電極(反射電極)からの距離が大きく関係しており、より長波長域の光は反射電極からより遠い領域で電界が強めあう傾向にあり、より短波長の光は対電極より近い領域で電界が強めあう傾向にあるため、上述したように、よりバンドギャップが狭く長波長の光を吸収するサブセルを、対電極から遠い側に配することでより強く光吸収を起こす効果を得ることができる。
 本形態の光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、バルクへテロ接合である(即ち、光電変換層は、バルクヘテロジャンクション型の光電変換層である)。ここで、「バルクヘテロジャンクション」とは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロジャンクションでは、平面へテロ接合と比較して、pn接合界面が層全体にわたって数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、本形態の光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクヘテロジャンクションであることが好ましい。
 また、バルクヘテロジャンクション層は、通常の、p型有機半導体材料とn型有機半導体層が混合されてなる単一の層(i層)からなる場合の他に、当該i層がp型有機半導体からなるp層およびn型有機半導体からなるn層により挟持されてなる3層構造(p-i-n構造)を有する場合がある。このようなp-i-n構造は、正孔および電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
 本発明において、光電変換層に含まれるp型有機半導体とn型有機半導体との混合比は、質量比で2:8~8:2の範囲が好ましく、より好ましくは4:6~6:4の範囲である。また、光電変換層の厚さ(乾燥膜厚)は、特に制限はないが、好ましくは50~400nmであり、より好ましくは80~300nmである。
 [電極]
 本形態の有機光電変換素子は、第1の電極層および第2の電極層のどちらかが必須に透明である。第1の電極層および第2の電極層は、各々、陽極および/または陰極として機能する。本明細書において、「第一の」および「第二の」とは、複数電極が存在するため、陽極および/または陰極として区別するための用語である。したがって、第1の電極層が陽極として機能し、第2の電極層が陰極として機能する場合もあるし、逆に、第1の電極層が陰極として機能し、第2の電極層が陽極として機能する場合もあり、両者が陽極、または両者が陰極の場合もある。さらに。図1においても示されているように、光電変換層13、16で生成されるキャリア(正孔・電子)は、電極間を移動し、正孔は陽極へ、電子は陰極へと到達する。なお、本発明においては、主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。図1の形態の場合、通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。また、図2の並列型の場合は、第1の電極層12および第2の電極層18が陽極の場合は、中間電極層15が陰極となり、第1の電極層12および第2の電極層18が陰極の場合は、中間電極層15が陽極となる。
 本形態の電極に使用される材料は、光電変換素子として駆動する限りにおいては特に制限はなく、本技術分野で使用されうる電極材料を適宜採用することができる。なかでも、陽極は陰極と比較して相対的に仕事関数が大きい材料から構成されることが好ましく、逆に陰極は陽極と比較して相対的に仕事関数が小さい材料から構成されることが好ましい。なお、電荷輸送層(正孔輸送層または電荷輸送層)が存在する場合は、上記以外の形態であっても十分に光電変換素子として機能する。
 上述の図1~2に示す有機光電変換素子10において、第1の電極12は透明な(好ましくは、380~800nmの可視光に対して80%以上の透過率を有する)電極材料から構成されることが好ましい。一方、第2の電極18は、通常、透光性の低い電極材料から構成されうる。
 このような、図1~2に示す有機光電変換素子10ないし20において、第1の電極12(透明電極)に使用される電極材料としては、例えば、金、銀、白金、銅、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム、スズ、亜鉛等の金属;インジウムスズ酸化物(ITO)、SnO2、ZnO、IDIXO(In23-ZnO)等の透明な導電性金属酸化物;金属ナノワイヤ、カーボンナノ粒子、カーボンナノワイヤ、カーボンナノチューブ等の炭素材料等が挙げられる。また、電極材料として導電性高分子を用いることも可能である。第1の電極12に使用されうる導電性高分子としては、例えば、PEDOT:PSS、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、ポリナフタレンおよびこれらの誘導体等が挙げられる。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、これらの材料の形状も特に制限はなく、ナノ粒子、ナノワイヤ、極薄膜等の形状で使用されうる。さらに、各材料からなる層を2種以上積層させて電極を構成することも可能である。
 一方、図1の有機光電変換素子において、第2の電極18(対電極)に使用される電極材料としては、合金、電子伝導性化合物、およびこれらの混合物が使用されうる。具体的には、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。このうち、電子の取り出し性能や、酸化等に対する耐久性の観点から、仕事関数が低い第一の金属と、第一の金属よりも仕事関数が大きく安定な金属である第二の金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物や、安定な金属であるアルミニウム等を用いることが好ましい。また、これらの材料のうち金属を用いることも好ましく、これにより、第1の電極層側から入射し光電変換層で吸収されずに透過した光を、第2の電極層で反射させて光電変換に再利用することができ、光電変換効率を向上させることが可能である。また、これらの材料の形状も特に制限はなく、ナノ粒子、ナノワイヤ、極薄膜等の形状で使用されうる。さらに、各材料からなる層を2種以上積層させて電極を構成することも可能である。
 また、金属系の材料を使用する場合、第2の電極18(対電極)と対向する側に、例えば、金、銀、銅、鉄、ニッケル、クロム、アルミニウム、またはこれらの合金(アルミニウム合金)、金属化合物(銀化合物)等を用いて、補助電極(グリッド電極、バスライン電極とも称される)を作製した後、上述の図1の有機光電変換素子の第1の電極12(透明電極)材料として例示した導電性高分子の膜を設けることで、第1の電極12(透明電極)とすることができる。このように補助電極を設けることにより、素子を大面積化した場合に起こる曲線因子(FF)の低減を抑えることができる。
 補助電極の形状は特に制限はないが、例えば、導電部がストライプ状もしくはメッシュ状、またはランダムな網目状である。導電部がストライプ状またはメッシュ状の補助電極を形成する方法としては、特に制限はなく、従来公知の方法が利用できる。例えば、基板全面に金属層を形成し、公知のフォトリソグラフィ法によって形成できる。具体的には、基板上に全面に、蒸着、スパッタ、めっき等の1もしくは2以上の物理的または化学的形成手法を用いて導電体層を形成する方法や、金属箔を接着剤で基板に積層した後、公知のフォトリソグラフィ法を用いてエッチングする方法等により、所望のストライプ状またはメッシュ状に加工できる。別の方法としては、金属微粒子を含有するインクをスクリーン印刷、フレキソ印刷、グラビア印刷、インクジェット方式等の各種印刷法により所望の形状に印刷する方法や、めっき可能な触媒インクを同様な各種印刷法で所望の形状に塗布した後、めっき処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。こうした方法の中でも、金属微粒子を含有するインクを各種印刷法により所望の形状に印刷する方法は簡便な工程で製造できることから製造時にリークの原因となるような異物の巻き込みを低減でき、また、必要個所にしかインクを使用しないので液のロスが少ないことから最も好ましい。
 一方、図2の並列タンデム型有機光電変換素子において、第2の電極18(対電極)に使用される電極材料としては、例えば、銀、ニッケル、モリブデン、金、白金、タングステン、および銅等が挙げられる。第1の電極層および第2の電極層のシート抵抗は、特に制限はないが、数百Ω/□ square以下が好ましく、50Ω/□ square以下がより好ましく、15Ω/□ square以下がさらに好ましい。なお、第1の電極層および第2の電極層のシート抵抗の下限は、特に制限されないが、通常、380~800nmの波長の可視光に対して80%以上の透過率を示す範囲でなるべく低いほど好ましい。通常は0.01Ω/□ square以上、好ましくは0.1Ω/□ square以上であれば本発明の効果を得ることができる。ここで、第1の電極層および第2の電極層のシート抵抗は、同じであってもあるいは異なってもよい。また、第1の電極層および第2の電極層の膜厚も特に制限はなく、材料によって異なるが、通常、10~1000nmであり、好ましくは100~200nmであり、光の透過率または抵抗の観点から当業者により適宜設定されうる。ここで、第1の電極層および第2の電極層の膜厚は、同じであってもあるいは異なってもよい。
 また、補助電極を有する場合のシート抵抗は、10Ω/□ square以下であることが好ましく、0.01~8Ω/□ squareであることがより好ましい。この場合、シート抵抗は補助電極の形状(線幅、高さ、ピッチ、形状)によって決まり、補助電極よりも抵抗の高い材料を使用する場合であっても窓部の抵抗影響はほとんど受けない。
 [基板]
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。ここで「透明」とは、380~800nmの可視光に対して80%以上の透過率を示すことを意味する。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。
 本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。なかでも透明性、耐熱性、取り扱いやすさ、強度およびコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
 また、酸素および水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
 (その他の層)
 本形態の有機光電変換素子は、上記の各部材(各層)の他に、光電変換効率の向上や、素子の寿命の向上のために、他の部材(他の層)をさらに設けてもよい。その他の部材としては、例えば、励起子ブロック層、UV吸収層、光反射層、波長変換層、平滑化層等が挙げられる。また、上層に偏在した金属酸化物微粒子をより安定にするため等にシランカップリング剤等の層を設けてもよい。さらに本発明の光電変換層に隣接して金属酸化物の層を積層してもよい。
 また、本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止層、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等が挙げられる。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダ樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
 また光拡散層(光散乱層)としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層等を挙げることができる。
 <有機光電変換素子の製造方法>
 上述の本形態の有機光電変換素子の製造方法は特に制限はなく、従来公知の手法を適宜参照することにより製造することができる。以下、図2に示す有機光電変換素子の製造方法を例に挙げて、本形態の有機光電変換素子の好ましい製造方法を説明する。ただし、当該製造方法における各工程は、図2の有機光電変換素子のみならず図1に示す有機光電変換素子の製造に適用可能である。
 本形態の有機光電変換素子の製造方法は、第1の電極12を形成する工程と、前記第1の電極12の上に、電荷輸送層(図示しない)を形成する工程と、p型有機半導体材料およびn型有機半導体材料を含む第1の光電変換層13を形成する工程と、前記第1の光電変換層13の上に、窒素含有化合物を含む第1の電荷輸送層14を形成する工程と、中間電極層15を形成する工程と、電荷輸送層(図示しない)を形成する工程と、p型有機半導体材料およびn型有機半導体材料を含む第2の光電変換層16を形成する工程と、前記第2の光電変換層16の上に、第2の電荷輸送層17を形成する工程と、前記第2の電荷輸送層17の上に、第2の電極層18を形成する工程とを含む。
 以下、本形態の有機光電変換素子の製造方法の各工程について、詳細に説明する。
 本形態の製造方法では、まず、第1の電極を形成する。例えば、第1の電極を形成する方法は、特に制限はないが、スパッタリング装置やCVD装置を用いて金属酸化物からなる透明電極を形成し、フォトマスクおよびエッチング液を用いてパターニングすることで形成される。
 上記で第1の電極12を形成した後、必要に応じて、第1の電極上に、電荷輸送層を形成してもよい。電荷輸送層を形成する手段としては、蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。溶液塗布法を用いて電荷輸送層を形成する場合には、上述した正孔輸送材料もしくは電子輸送材料を適当な溶剤に溶解・分散させた溶液を、適当な塗布法を用いて陰極上に塗布し、乾燥させればよい。溶液塗布法に用いられる塗布法としては、キャスト法、スピンコート法、ブレードコーティング法、ワイヤーバーコーティング法、グラビアコート法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法、Langmuir-Blodgett(LB)法等の通常の方法を用いることができる。なかでも、スピンコート法、ブレードコーティング法を用いることが特に好ましい。なお、塗布法に使用する溶液の固形分濃度は、塗布方法や膜厚によっても変動しうるが、0.5~15質量%が好ましく、より好ましくは1~10質量%である。また、塗布の際の塗布液および/または塗布面の温度は、特に制限はないが、塗布・乾燥時の温度変動による析出、ムラを防ぐといった観点から、好ましくは30~180℃であり、より好ましくは50~160℃である。さらに、乾燥の具体的な形態についても特に制限はなく、従来公知の知見が適宜参照されうる。乾燥(加熱処理)条件の一例を挙げると90~180℃程度の温度で、5~90分間程度といった条件が例示される。乾燥に使用する装置としては、ホットプレート、温風乾燥、赤外線ヒーター、マイクロウエーブ、真空乾燥機等が挙げられるが、これ以外の乾燥装置を用いることも勿論可能である。
 続いて、上記で形成した電荷輸送層上に、p型有機半導体およびn型有機半導体を含む光電変換層を形成する。光電変換層を形成するための具体的な手法について特に制限はないが、好ましくは、p型有機半導体およびn型有機半導体をそれぞれ、または一括して、適当な溶剤に溶解・分散させた溶液を、適当な塗布法(具体的な形態については、上述した通りである)を用いて陰極上に塗布し、乾燥させればよい。その後、残留溶媒および水分、ガスの除去、および半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部の凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。このようにして、p型有機半導体およびn型有機半導体が一様に混合され、バルクヘテロジャンクション型の有機光電変換素子とすることができる。
 一方、p型有機半導体とn型有機半導体の混合比の異なる複数層からなる光電変換層(例えば、p-i-n構造)を形成する場合には、一の層を塗布後に、当該層を不溶化(顔料化)し、その後、他の層を塗布することにより形成することが可能である。
 当該光電変換層を形成する工程は、酸素や水分に曝さないようにするために窒素雰囲気下のグローブボックス内で行うことが好ましい。このように、窒素雰囲気下で行うことにより、大気中の酸素または水分によりp型有機半導体が劣化するのを防ぎ、素子の耐久性を高めることができる。
 さらに、上述した各種の層以外の層が含まれる場合には、これらの層を形成するための工程を、溶液塗布法や蒸着法等を用いることで適宜追加して行うことができる。
 さらに、光電変換層上に窒素原子含有化合物を含む第1の電荷輸送層を形成する。この層の形成方法は上述する電荷輸送層と同様に形成することができる。
 更に前記形成した第1の電荷輸送層上に、中間電極15を形成する。本発明において中間電極15の形成は蒸着法、塗布法などいかなる方法も好ましく用いることができるが、連続した薄膜電極を形成する手段として蒸着法が好ましく、より好ましくは抵抗加熱型の蒸着機を用いた蒸着法がより好ましい。
 上記電極(陰極・陽極)、光電変換層、正孔輸送層、電荷輸送層等は、必要に応じてパターニングされうる。パターニングの方法は特に制限はなく、公知の手法を適宜適用することができる。例えば、バルクへテロジャンクション型の光電変換層や正孔輸送層・電荷輸送層等で使用される可溶性の材料をパターニングする場合には、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、製膜後に炭酸レーザー等を用いてアブレーションする方法、スクライバで直接削り取る方法等でパターニングしてもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。一方、電極等で使用される不溶性の材料の場合は、真空蒸着法や真空スパッタ法、プラズマCVD法、電極材料の微粒子を分散させたインキを用いたスクリーン印刷法やグラビア印刷法、インクジェット法等の各種印刷方法、蒸着膜に対しエッチングまたはリフトオフする等の公知の方法を用いることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
 また、本形態の有機光電変換素子は、環境中の酸素、水分等による劣化を防止するために、必要に応じて封止されうる。封止の方法は特に制限はなく、有機光電変換素子や有機エレクトロルミネッセンス素子等で用いられる公知の手法によって行われうる。例えば、(1)アルミニウムまたはガラス等でできたキャップを接着剤によって接着することによって封止する手法;(2)アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法;(3)ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法;(4)ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法;ならびに(5)これらを複合的に用いて積層する方法等が挙げられる。
 さらに、本形態の有機光電変換素子は、エネルギー変換効率と素子寿命向上の観点から、素子全体を2枚のバリア付き基板で封止した構成でもよく、好ましくは、水分ゲッター、酸素ゲッター等を同封した構成であることがより好ましい。
 <有機光電変換素子の用途>
 本発明の他の形態によれば、上述の第1の形態に係る有機光電変換素子や、上記製造方法により得られる有機光電変換素子を有する太陽電池が提供される。本形態の有機光電変換素子は、優れた光電変換効率、耐久性を有するため、これを発電素子とする太陽電池に好適に使用されうる。
 また、本発明のさらに他の形態によれば、上述した有機光電変換素子がアレイ状に配列されてなる光センサアレイが提供される。すなわち、本形態の有機光電変換素子は、その光電変換機能を利用して、光センサアレイ上に投影された画像を電気的な信号に変換する光センサアレイとして利用することもできる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 「実施例1」
 <窒素含有化合物の合成>
 (電荷輸送層材料:例示化合物(式1-4、式1-6、式1-16)の合成)
 合成例1:例示化合物の式1-4、式1-6、式1-16の合成
 Adv. Mater. 2007, 19, 2010を参考として、化学式(1)で示される例示化合物として式1-4、式1-6、式1-16を合成した。得られた化合物の分子量はそれぞれ、例示化合物(式1-4) Mw:8000、例示化合物(式1-6) Mw:4400、例示化合物(式1-16)の Mw:2500であった。
Figure JPOXMLDOC01-appb-C000068
 化学式(2)に係る化合物としてポリ(4-ビニルピリジン)(上記式2-1)はSigma-Aldrich社から入手(Mw ~60,000)し、そのまま用いた。
 化学式(3)に係るポリアルキレンイミンは日本触媒社製エポミン(登録商標)SP-003を入手しそのまま用いた。なお、SP-003は、上記化学式[化10]の化学式(I)~(III)を分子内に有した上記化学式[化11](化学式(3A))に相当する分岐構造を有するポリエチレンイミンである。
 化学式(4)に係る化合物として以下に示す化合物(式4-2、式4-19)を、J.Am.Chem.Soc.,Vol.116,No.11,1994に記載の方法を参考に合成した。得られたポリマーの分子量はほぼ参考通りであった。
Figure JPOXMLDOC01-appb-C000069
 また、化学式(4)に係る上記式4-20に示すアミノ樹脂塗料として、DIC社製ブチル化メラミン樹脂スーパーベッカミン(登録商標)L-109-65を入手しそのまま用いた。
 上記一般式(5)の例示化合物である式99、一般式(6)の例示化合物である式94および式112、一般式(7)の例示化合物である式10を、それぞれ上述の作製法に従って合成した。
 <電荷輸送層を表面に形成した中間電極層の作製およびその評価>
 <中間電極の評価>
 [S-01の形成](比較例)
 透明な白板ガラス基板(50mm×50mm)を、界面活性剤液、イソプロパノールで超音波洗浄し、スピンドライヤーにより乾燥させた。洗浄した基板を真空蒸着機にセットし、1.0×10-4Paの真空条件で、バソキュプロイン(BCP、Luminescence Technology社製)を0.1nm/sの蒸着レートで10nmの膜厚に形成した。続けて、Agメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで2nmの膜厚に蒸着しS-01を作製した。
 [S-02の形成](比較例)
 S-01と同様にして準備したガラス基板に、PEDOT:PSS(PH500、ヘレウス社製CleviosPH500)3部に対してイソプロパノールを1部混合した液を、ブレードコーターを用い約50nmの膜厚に製膜し、150℃で15分間アニールした。続けて、この基板を真空乾燥機にセットし、1.0×10-4Paの真空条件で、Crメタル(高純度化学社製、純度99.9%)を、0.3nm/sの蒸着レートで1nmの膜厚に蒸着し、更に連続してAuメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで4nmの膜厚に蒸着しS-02を作製した。
 [S-03の形成](比較例)
 S-02と同様にして形成したPEDOT:PSS膜の上に、Auメタルを12nmの膜厚に蒸着した以外はS-02と同様にしてS-03を作製した。
 [S-04~S-07の形成](比較例)
 S-02と同様にして形成したPEDOT:PSS膜の上に、Agメタルを表1に示す膜厚(8~16nm)に蒸着した以外はS-02と同様にしてS-04~S-07を作製した。
 [S-08~S-11の形成](本発明)
 S-01と同様にして準備したガラス基板に、例示化合物(式1-6)を1-ブタノール:ヘキサフルオロイソプロパノール=1:1(体積比)の溶媒に0.5質量%溶解した液を、ブレードコーターを用い10nmの膜厚に塗布し、120℃で10分間乾燥し上記例示化合物(式1-6)からなる膜を形成した。続けてこの基板を真空乾燥機にセットし、1.0×10-4Paの真空条件で、Agメタルを表1に示す膜厚(8~16nm)に蒸着し、S-08~S-11を作製した。
 [S-12の形成](本発明)
 S-09の形成において、例示化合物(式1-6)に替えて例示化合物(式1-4)を用いた以外はS-09の形成と同様にしてS-12を作製した。
 [S-13の形成](本発明)
 S-09の形成において、例示化合物(式1-6)に替えて例示化合物(式1-16)を用いた以外はS-09の形成と同様にしてS-13を作製した。
 [S-14の形成](本発明)
 S-09の形成において、例示化合物(式1-6)に替えて例示化合物(式2-1 ポリ(4-ビニルピリジン))を用いた以外はS-09の形成と同様にしてS-14を作製した。
 [S-15の形成](本発明)
 S-09の形成において、例示化合物(式1-6)に替えてポリエチレンイミン(SP-003、日本触媒社製エポミン(登録商標) 化学式(3))を用いた以外はS-09の形成と同様にしてS-15を作製した。
 [S-16~S18の形成](本発明)
 S-09の形成において、例示化合物(式1-6)に替えて例示化合物の式4-2、式4-19、式4-20をそれぞれ用いた以外はS-09の形成と同様にしてS-16~S-18を作製した。
 [S-19~S-22の形成](本発明)
 S-01と同様にして準備したガラス基板を真空蒸着機にセットし、1.0×10-5Paの真空条件で例示化合物(式10)を20nmの膜厚に蒸着し、続けて1.0×10-4Paの真空条件でAgメタルを表1に示す膜厚(8~16nm)に蒸着し、S-19~S-22を作製した。
 [S-23の形成](本発明)
 S-20の形成において、例示化合物(式10)に替えて例示化合物の式99を用いた以外はS-20の形成と同様にしてS-23を作製した。
 [S-24の形成](本発明)
 S-20の形成において、例示化合物(式10)に替えて例示化合物の式94を用いた以外はS-20の形成と同様にしてS-24を作製した。
 [S-25の形成](本発明)
 S-20の形成において、例示化合物(式10)に替えて例示化合物の式112を用いた以外はS-20の形成と同様にしてS-25を作製した。
 (シート抵抗評価)
 上記方法により作製した電荷輸送層を表面に形成した中間電極層の透過率とシート抵抗を以下の方法により測定した。
 具体的には、シート抵抗値の測定は、JIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)に準拠して、三菱化学アナリティック社製ロレスタMCP-T610抵抗率計を使用し、上記で作製した表面に電荷輸送層が形成された中間電極層のシート抵抗値を25℃50%RHの条件で測定した。
 (透過率の測定)
 透過率の測定は、上記で作製した電荷輸送層を表面に形成した中間電極層の試料であるS-01~S-07(比較例)およびS-08~S-25(本発明)の各透明電極について、光透過率を測定した。光透過率の測定は、分光光度計(オーシャンオプティクス社製Maya2000Pro、同社製光源DT-MINI-2)(λ=550nmの波長)を用い、試料と同じ基材をベースラインとして行った。
 なお、電荷輸送層形成後に透過率を測定するのは、実際の有機薄膜太陽電池の構成と同等の試料とするため、および、最表層(金属薄膜)での反射の影響を低減できるためである。以上により得られた結果を、表1に示す。また、S-04~S-07、S-08~S-11、S-19~S-22について、シート抵抗評価結果、および透過率の測定結果についてグラフ化し図3および図4に示す。
 なお、上記で作製した基板は蒸着機から直接、窒素雰囲気下に移動させ、同窒素雰囲気下にてシート抵抗値、および透過率の測定を行った。
Figure JPOXMLDOC01-appb-T000070
 「実施例2」
 <タンデム型有機薄膜太陽電池の作製およびその評価>
 (p型有機半導体材料PSBTBTの合成)
 米国特許第8008421号明細書を参考として、下記p型有機半導体材料PSBTBTを合成した。数平均分子量は35、000、PDI(多分散度)は1.8であった。なお、多分散度PDIとは、〔PDI=重量平均分子量Mw/数平均分子量Mn〕で表わされる分子量の比であり、分子量分布の大きさを表わす指標を意味する。
Figure JPOXMLDOC01-appb-C000071
 (p型有機半導体材料KP115の合成)
 p型半導体材料として、チアゾロチアゾール共重合体(KP115)を、APPLPHYSLETT,98,(2011)p043301に記載の方法にしたがって合成した。なお、下記KP115の数平均分子量は43、000、PDI(多分散度)は2.0であった。
Figure JPOXMLDOC01-appb-C000072
 (ZnOナノ粒子分散組成物Aの調製)
 NANO Lett., Vol. 5, No. 12, 2005に記載の方法を参考に、ZnOナノ粒子を作製した。具体的にはシグマアルドリッチ社から購入した酢酸亜鉛(Zn(Ac)2)の4.46mmolを250μLの超純水に溶解し、この液を42mLのメタノールに滴下した。続けて撹拌しながら液温を60℃に保ち、水酸化カリウムの7.22mmolを23mLのメタノールに溶かした溶液を、前記の酢酸亜鉛溶液にゆっくり滴下しZnOのナノ粒子を形成した。続けて7000rpmの遠心分離機でこの分散液からZnOナノ粒子を沈降させ、クロロホルム10mLに再分散して、ZnOナノ粒子を分散した組成物Aを調製した。
 なお、得られたZnOナノ粒子の粒子径を透過型電子顕微鏡(TEM)を用いて観察したところ、一次平均粒径は約5~10nm程度だった。
 [有機光電変換素子SC-101の作製](比較例)
 白板ガラス基板(50mm×50mm)上に、インジウムスズ酸化物(ITO)透明導電膜を150nm堆積させたもの(シート抵抗:10Ω/□ square)を、フォトリソグラフィおよび塩酸を用いた湿式エッチングを用いて20mm幅にパターニングし、第1の電極層を形成した。パターン形成した第1の電極層を、界面活性剤と超純水の混合液を用いて超音波洗浄した後、さらに超純水を用いて超音波洗浄し、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 次いで、正孔輸送層として、導電性高分子およびポリアニオンからなるPEDOT:PSS(Clevios(登録商標)P4083、ヘレウス社製)分散液(固形分約3質量%)に対し、イソプロパノール20wt%を含む組成物Bを調製した。得られた組成物Bを0.45μm(目開きサイズ)のPVDFフィルタでろ過し、乾燥膜厚が約40nmになるようにブレードコーターを用いて塗布し乾燥させた。IPA(イソプロパノール)で湿らせた綿棒を用い所定の形状に拭き取りパターニングした後、さらに150℃で15分間加熱処理し、第1の正孔輸送層を製膜した。
 続けて、o-ジクロロベンゼン1mLに対し、p型有機半導体材料であるP3HT(Plextronix社製PlexcoreOS2100)を15mg、n型有機半導体材料であるICBA(フロンティアカーボン社製Q400:ビスインデン-C60)を15mg溶解させた組成物Cを調製したものを、1.0μm(目開きサイズ)のPTFEフィルタでろ過した後、乾燥膜厚が約150nmになるよう、ブレードコーターを用いて製膜し、トルエンで湿らせた綿棒を用い所定の形状に拭き取りパターニングすることで第1の光電変換層を形成した。
 続いて、前記作製した基板を真空蒸着機にセットし、1.0×10-5Paの真空条件で、バソキュプロイン(BCP、Luminescence Technology社製)を0.1nm/sの蒸着レートで5nmの膜厚に形成した。続けて、1.0×10-5Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで2nmの膜厚に蒸着し中間電極層を形成した。前述した第1の電極層と短絡しない形状に蒸着し直列タンデム型の構成とした。なお、中間電極層は実施例1で示すS-01と等価な電極層とした。
 続けて、上記中間電極層が形成された基板に、上述した組成物Bをブレードコーターを用いて乾燥膜厚が40nmになるよう塗布し、IPAで湿らせた綿棒を用い所定の形状に拭き取りパターニングした後、120℃で5分間熱処理を行い、第2の正孔輸送層を形成した。
 さらに、前記作製した基板を窒素雰囲気下のグローブボックス中に移動し、o-ジクロロベンゼン1mLに対し、p型有機半導体材料であるPSBTBTを8mg、n型有機半導体材料であるPC70BM(フロンティアカーボン社製E110:PC70BM)を16mg溶解させた組成物Dを調製したものを、1.0μm(目開きサイズ)のPTFEフィルタでろ過した後、乾燥膜厚が約80nmになるよう、ブレードコーターを用いて製膜し、第2の光電変換層を形成した。
 上記第2の光電変換層を形成した上に、前記作製したZnOナノ粒子を分散した組成物Aを、乾燥膜厚が40nmになるようにブレードコーターを用いて塗布し、続けて所定の形状に拭き取りパターニングした後、150℃で5分間乾燥処理を行った。続けて、この基板を真空乾燥機にセットし、1.0×10-4Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を100nm製膜し、第2の電極層を形成した。得られた光電変換素子を、UV硬化型のエポキシ系接着剤(ナガセケムテックス社製封止剤)と封止ガラスを用いて封止し有機光電変換素子SC-101を作製した。
 [有機光電変換素子SC-102の作製](比較例)
 S-101と同様に準備した第1の電極層付き基板を準備し、前記調製したZnOナノ粒子を分散した組成物Aを、ブレードコーターを用いて乾燥膜厚が40nmになるように塗布し、所定の形状に拭き取りパターニングした後、150℃で15分間乾燥処理し第1の電子輸送層を形成した。
 続けて、S-101と同様に第1の光電変換層を形成した。さらに、PEDOT:PSS(PH500、ヘレウス社製CleviosPH500)3部に対してイソプロパノールを1部混合した塗布組成物Eを、ブレードコーターを用い約50nmの膜厚に製膜し、トルエン・IPAで湿らせた綿棒で所定の形状に拭き取った後、150℃で5分間アニールすることで第1の光電変換層および第1の正孔輸送層(第1の電荷輸送層)を形成した。
 上記作製した基板を真空蒸着機にセットし、第1の電極層と短絡しないように、S-101とは異なるメタルマスクを用い、Crメタル(高純度化学社製、純度99.9%)を、0.3nm/sの蒸着レートで1nmの膜厚に蒸着し、更に連続してAuメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで4nmの膜厚に蒸着し中間電極層を作製した。中間電極層の形状は並列タンデム型になるように蒸着しITOの基板に接続した。
 なお、中間電極層は実施例1で示すS-02と等価な電極層とした。
 続けて、上記中間電極層が形成された基板に、上述した組成物Bをブレードコーターを用いて乾燥膜厚が40nmになるよう塗布し、IPAで湿らせた綿棒を用い所定の形状に拭き取りパターニングした後、120℃で5分間熱処理を行い、第2の正孔輸送層を形成した。
 上記作製した第2の正孔輸送層上に、上述した組成物DをSC-101の作製と同様にして製膜し、第2の光電変換層を形成した。続けて、第2の光電変換層を形成した膜上に、上述した例示化合物(式1-6)を1-ブタノール:ヘキサフルオロイソプロパノール=1:1(体積比)の溶媒に0.5質量%溶解した組成物Eを、0.2μm(目開きサイズ)のPTFEフィルタでろ過した後、ブレードコーターを用い約10nmの膜厚に塗布し、120℃で10分間乾燥し例示化合物(式1-6)からなる第2の電子輸送層(第2の電荷輸送層)を形成した。続けて、この基板を真空乾燥機にセットし、1.0×10-4Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を100nmの膜厚に製膜し、第2の電極層を形成した。得られた光電変換素子を、UV硬化型のエポキシ系接着剤(ナガセケムテックス社製封止剤)と封止ガラスを用いて封止し有機光電変換素子SC-102を作製した。
 [有機光電変換素子SC-103の作製](比較例)
 SC-102の作製において、中間電極層をCrメタルおよびAuメタルで形成したものを、Agメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで10nmの膜厚に蒸着し中間電極層とした以外はSC-102と同様にして有機光電変換素子SC-103を作製した。なお、中間電極層は実施例1で示すS-05と等価な電極層とした。
 [有機光電変換素子SC-104の作製](比較例)
 SC-103の作製において、第1の光電変換層における組成物Bを、以下に示す組成物Fに換えた以外はSC-103の作製と同様にして有機光電変換素子SC-104を作製した。組成物Fは、o-ジクロロベンゼン1mLに対し、上記合成したp型有機半導体材料であるKP115を10mg、n型有機半導体材料であるPC60BM(フロンティアカーボン社製E100H)を20mg溶解させ組成物Fを調製した。
 [有機光電変換素子SC-105の作製](本発明)
 S-101と同様に準備した第1の電極層付き基板を準備し、第1の正孔輸送層を形成した後、組成物Dを調製したものを、1.0μm(目開きサイズ)のPTFEフィルタでろ過した後、乾燥膜厚が約80nmになるよう、ブレードコーターを用いて製膜し、第1の光電変換層を形成した。
 続けて、組成物Eを0.2μm(目開きサイズ)のPTFEフィルタでろ過した後、ブレードコーターを用い約10nmの膜厚に塗布し、120℃で10分間乾燥し例示化合物(式1-6)からなる第1の電子輸送層(第1の電荷輸送層)を形成した。上記の第1の電子輸送層を形成した基板を、真空乾燥機にセットし、1.0×10-4Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで10nmの膜厚に蒸着し中間電極層とした。なお、中間電極層は実施例1で示すS-09と等価な電極層とした。
 続けて、上記中間電極層が形成された基板に、前記作製したZnOナノ粒子を分散した組成物Aを、乾燥膜厚が40nmになるようにブレードコーターを用いて塗布し、続けて所定の形状に拭き取りパターニングした後、150℃で5分間乾燥処理を行った。
 さらに、前記作製した基板を窒素雰囲気下のグローブボックス中に移動し、組成物Cを1.0μm(目開きサイズ)のPTFEフィルタでろ過した後、乾燥膜厚が約150nmになるよう、ブレードコーターを用いて製膜し、第2の光電変換層を形成した。続けて、上述した組成物Bをブレードコーターを用いて乾燥膜厚が40nmになるよう塗布し、トルエン・IPAで湿らせた綿棒を用い所定の形状に拭き取りパターニングした後、120℃で5分間熱処理を行い、第2の正孔輸送層(第2の電荷輸送層)を形成した。続けて、この基板を真空乾燥機にセットし、1.0×10-4Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を100nmの膜厚に製膜し第2の電極層を形成した。得られた光電変換素子を、UV硬化型のエポキシ系接着剤(ナガセケムテックス社製封止剤)と封止ガラスを用いて封止し有機光電変換素子SC-105を作製した。
 [有機光電変換素子SC-106の作製](本発明)
 SC-105の作製において、第2の光電変換層における組成物Bを、組成物Fに換えた以外はSC-105の作製と同様にして有機光電変換素子SC-106を作製した。
 [有機光電変換素子SC-107の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物(式1-4)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-107を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-12と等価な電極層とした。
 [有機光電変換素子SC-108の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物31(式1-16)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-108を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-13と等価な電極層とした。
 [有機光電変換素子SC-109の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物(式2-1)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-109を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-14と等価な電極層とした。
 [有機光電変換素子SC-110の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)をSP-003に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-110を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-15と等価な電極層とした。
 [有機光電変換素子SC-111の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物(式4-2)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-111を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-16と等価な電極層とした。
 [有機光電変換素子SC-112の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物(式4-19)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-112を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-17と等価な電極層とした。
 [有機光電変換素子SC-113の作製](本発明)
 SC-106の作製において、例示化合物(式1-6)を例示化合物(式4-20)に変更した以外は、SC-106の作製と同様にして、有機光電変換素子SC-113を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-18と等価な電極層とした。
 [有機光電変換素子SC-114の作製](本発明)
 SC-106の作製において、第1の光電変換層を形成した後、基板を真空乾燥機にセットし、1.0×10-5Paの真空条件で、例示化合物(式10)を0.1nm/sの蒸着レートで5nmの膜厚に形成し第1の電子輸送層(第1の電荷輸送層)を形成した。続けて、1.0×10-4Paの真空条件で、Agメタル(高純度化学社製、純度99.99%)を、0.3nm/sの蒸着レートで10nmの膜厚に蒸着し中間電極層とした。なお、ここで作製した中間電極層は、実施例1で示すS-20と等価な電極層とした。続けて前記作製した中間電極層以降は、SC-106と同様に作製し有機光電変換素子SC-114を作製した。
 [有機光電変換素子SC-115の作製](本発明)
 SC-114の作製において、例示化合物(式10)を例示化合物(式99)に変更した以外は、SC-114の作製と同様にして、有機光電変換素子SC-115を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-23と等価な電極層とした。
 [有機光電変換素子SC-116の作製](本発明)
 SC-114の作製において、例示化合物(式10)を例示化合物(式94)に変更した以外は、SC-114の作製と同様にして、有機光電変換素子SC-116を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-24と等価な電極層とした。
 [有機光電変換素子SC-117の作製](本発明)
 SC-114の作製において、例示化合物(式10)を例示化合物(式112)に変更した以外は、SC-114の作製と同様にして、有機光電変換素子SC-117を作製した。なお、ここで作製した中間電極層は、実施例1で示すS-25と等価な電極層とした。
 [有機光電変換素子SC-118の作製](本発明)
 上述した例示化合物(式1-6)を含む組成物Eの70部を撹拌器に入れ、上記作製したZnOナノ粒子の分散物である組成物Aの30部を、撹拌しながらゆっくり滴下し、ZnOナノ粒子および例示化合物(式1-6)を含む塗布用の組成物Gを調製した。
 SC-106の作製において、第1の電子輸送層(第1の電荷輸送層)に換えて、前記の組成物Gを、ブレードコーターを用い乾燥膜厚が30nmになるように製膜し、120℃で10分間乾燥し例示化合物(式1-6)およびZnOナノ粒子を含む第1の電子輸送層(第1の電荷輸送層)を形成した。前記作製した第1の電子輸送層以外は、SC-106の作製と同様にして有機光電変換素子SC-118を作製した。
 [有機光電変換素子SC-119の作製](本発明)
 SC-118の作製において、例示化合物(式1-6)をSP-003に変更した以外は、SC-118の作製と同様にして、有機光電変換素子SC-119を作製した。
 <有機光電変換素子の光電変換率の評価>
 上記で作製した有機光電変換素子SC-101~SC-119について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cm2の強度の光を照射し、有効面積を1cm2にしたマスクを受光部に重ね、I-V特性を評価することで、短絡電流密度Jsc[mA/cm2]、開放電圧Voc[V]およびフィルファクターFFを測定し、また光電変換効率ηを下記式2よりそれぞれ算出し、SC-101の光電変換効率を100とした時の相対値を「効率相対値」として表2に示す。
Figure JPOXMLDOC01-appb-M000073
 <有機光電変換素子の耐久性保持率評価>
 上記で作製した有機光電変換素子SC-101~SC-119について光電変換効率を測定した後、それぞれの素子を85℃の加速条件に保持し、100mW/cm2の強度のLED光を1,000h照射し劣化させ、再度、光電変換効率を測定し、式3に従って耐久性保持率を算出した。
Figure JPOXMLDOC01-appb-M000074
 以下に示す指標により評価を行い、結果を表2に示す。
◎:保持率90%以上
○:保持率85%以上、90%未満
△:保持率80%以上、85%未満
×:保持率80%未満
Figure JPOXMLDOC01-appb-T000075
 本出願は、2012年6月15日に出願された日本特許出願番号2012-136389号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  10  有機光電変換素子
  11  基板
  12  第1の電極層
  13  (第1の)光電変換層
  14  (第1の)電荷輸送層
  15  中間電極層
  16  (第2の)光電変換層
  17  (第2の)電荷輸送層
  18  第2の電極層
  20  タンデム型有機薄膜太陽電池

Claims (11)

  1.  第2の電極層と基板上に形成された第1の電極層との間に挟持にされ、かつ電荷輸送層、および光電変換層を順次積層してなるサブセルを少なくとも2つ中間電極層を介して積層したタンデム型有機光電変換素子であって、
     前記中間電極層は、金、銀、銅、またはこれらを主成分とする合金からなり、
     前記中間電極層と隣接する基板側の前記電荷輸送層に窒素含有化合物を含むことを特徴とする、タンデム型有機光電変換素子。
  2.  前記窒素含有化合物は、窒素含有ポリマーである、請求項1に記載のタンデム型有機光電変換素子。
  3.  前記窒素含有ポリマーは、下記の化学式(1)~(5):
    Figure JPOXMLDOC01-appb-C000001
    (上記化学式(1)中、Z1およびZ2は、それぞれ独立して、-C(R3)=C(R4)-、-C(R5)=N-、-O-、または-S-であり、
     この際、R3~R5は、それぞれ独立して、水素原子、置換若しくは無置換の炭素原子数1~20のアルキル基、置換若しくは無置換の炭素原子数3~20のシクロアルキル基、置換若しくは無置換の炭素原子数6~30のアリール基または置換若しくは無置換の炭素原子数1~30のヘテロアリール基を表し、
    1は、窒素原子、炭素原子、ケイ素原子、またはリン原子であり、
    1は、単結合、炭素原子数1~20の置換もしくは無置換のアルキレン基、炭素原子数3~20の置換もしくは無置換のシクロアルキレン基、炭素原子数6~30の置換もしくは無置換のアリーレン基、炭素原子数1~30の置換もしくは無置換のヘテロアリーレン基、炭素原子数1~20の置換もしくは無置換のアルキレンオキシ基、および-(L1’)-(OR15)p-から選ばれる2価の連結基であり、
     この際、L1’は、単結合、炭素原子数1~20のアルキレン基または炭素原子数6~30のアリーレン基を表し、R15は、エチレン基、トリメチレン基またはプロピレン基を表し、pは1~5の整数であり、
    Ra~Rbは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、-L3-N(R8)(R9)、-L4-N(R6)(R7)または置換もしくは無置換の炭素原子数1~30のヘテロアリール基であり、
     この際、L3~L4は、それぞれ独立して、炭素原子数1~20の置換もしくは無置換のアルキレン基、炭素原子数3~20の置換もしくは無置換のシクロアルキレン基、炭素原子数6~30の置換もしくは無置換のアリーレン基、炭素原子数1~30の置換もしくは無置換のヘテロアリーレン基、炭素原子数1~20の置換もしくは無置換のアルキレンオキシ基、および-(L1’)-(OR15)p-から選ばれる2価の連結基であり、
     R6~R9は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基であり、
    nは、1、2または3である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記化学式(2)中、X1~X5は、それぞれ独立して、=N-、-O-、または-S-、-C(R1)=C(R2)-、-C(R5)=N-のいずれかであり、当該X1~X5のうち少なくとも1~3個は、=N-構造の窒素原子を含み、
     この際、R1、R2、R5は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基であり、
    Yは窒素原子を含む、置換もしくは無置換の芳香環または縮環構造である。)
    Figure JPOXMLDOC01-appb-C000003
    (上記化学式(3)中、Xは、-(CH2)m-N(R1)(R2)、またはその塩である-(CH2)m-N(R1)(R2)(R3+Xa-で表され、
    前記R1、R2およびR3はそれぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはR1~R3を介してエチレンアミンが連続したクロスリンク構造であり、
    Xaは、ハロゲン原子、アルカリ金属、およびアルカリ土類金属からなる群から選択される少なくとも一つであり、
    mは1以上3以下の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    (上記化学式(4)中、Arは置換もしくは無置換の複素芳香環、芳香族環もしくは縮環構造であり、
     Y1およびYはそれぞれ独立して、単結合または二価の連結基であり、
     Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはYを介して連続したクロスリンク構造である。)
    Figure JPOXMLDOC01-appb-C000005
    (上記化学式(5)中、mは1以上の整数であり、mが1の場合、Y1は置換基を表し、mが2以上の場合、単結合またはm価の連結基であり、
    Armは下記化学式(5A):
    Figure JPOXMLDOC01-appb-C000006
    上記化学式(5A)中、Xは、-N(R)-、-O-、-S-、またはSi(R)(R’)であり、E1~E8は、それぞれ独立であって、-C(R1)=、または-N=であり、前記R、R’、R1は、それぞれ独立であって、水素原子、置換基、Y1との連結部位であり、
    *は、Y1との連結部位であり、
    2は、結合手、または2価の連結基であり、
     Y3およびY4は、それぞれ独立であって、5員または6員の芳香族環から導出される基を表し、少なくともY3およびY4の一方は環構成原子として窒素原子を含む芳香族複素環から導出される基であり、
     n2は1~4の整数であり、
    mが2以上の場合、それぞれのArmは独立である)
    で示される化合物の少なくとも1つを含み、前記化学式(5)で示される化合物が含まれる場合、前記化学式(5)で示される化合物は、分子内に3環以上の環が縮合してなる縮合芳香族環を少なくとも2つ有する、
    で示される、請求項2に記載のタンデム型有機光電変換素子。
  4.  前記中間電極層と隣接する電荷輸送層は、第1の正孔輸送層または第1の電荷輸送層であり、かつ金属酸化物を含む、請求項1~3のいずれか1項に記載のタンデム型有機光電変換素子。
  5.  前記中間電極層と隣接する電荷輸送層に含む前記窒素含有化合物は、前記化学式(1)~(4)に示される化合物の少なくとも一つと、前記化学式(5)に示される化合物と、を含む請求項1~4のいずれか1項に記載のタンデム型有機光電変換素子。
  6.  前記化学式(3)で示される化合物は、下記の化学式(I)~(IV):
    Figure JPOXMLDOC01-appb-C000007
    (上記化学式(I)~(IV)において、前記R1、R2、R3、およびR4は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、更にはR1~R3を介してエチレンアミンが連続したクロスリンク構造である。)
    で示される化合物の少なくとも一つである、請求項3~5のいずれか1項に記載のタンデム型有機光電変換素子。
  7.  前記化学式(3)で示される化合物は、前記化学式(I)~(III)で示される化合物のいずれかを少なくとも主鎖に含むポリマーである、請求項6に記載のタンデム型有機光電変換素子。
  8.  前記化学式(5)で示される化合物は、下記の化学式(6):
    Figure JPOXMLDOC01-appb-C000008
    (上記化学式(6)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基であり、
     E51~E66は、それぞれ独立して、-C(R3)=、または-N=であり、
    3は水素原子または置換基であり、
    6~Y9は、それぞれ独立して、芳香族炭化水素環から導出される基、または芳香族複素環から導出される基であり、
    6もしくはY7の少なくとも一方、およびY8もしくはY9の少なくとも一方は、N原子を含む芳香族複素環から導出される基であり、
     n3およびn4は0~4の整数である。)
    で示される化合物である、請求項3~7のいずれか1項に記載のタンデム型有機光電変換素子。
  9.  前記化学式(6)で示される化合物は、下記の化学式(7):
    Figure JPOXMLDOC01-appb-C000009
    (上記化学式(7)中、Y5は、アリーレン基、ヘテロアリーレン基またはそれらの組み合わせからなる2価の連結基であり、
     E51~E66、およびE71~E88は、それぞれ独立して、-C(R3)=、または-N=であり、R3は水素原子または置換基であり、
     E71~E79の少なくとも1つ、およびE80~E88の少なくとも1つは-N=であり、
    n3およびn4は0~4の整数であって、n3+n4は2以上の整数である。)
    で示される化合物である、請求項8に記載の並列タンデム型有機光電変換素子。
  10.  前記タンデム型有機光電変換素子が並列型のタンデム構造であり、最も基板側に設けられたサブセルにおける光電変換層と、最も第2の電極側に設けられたサブセルにおける光電変換層とが、それぞれバンドギャップの異なる光吸収性の有機半導体材料を含み、かつ基板側の光電変換層がよりバンドギャップが狭い有機半導体材料が選択される、請求項1~9のいずれか1項に記載のタンデム型有機光電変換素子。
  11.  前記請求項1~10のいずれか1項に記載のタンデム型有機光電変換素子を含む太陽電池。
PCT/JP2013/066376 2012-06-15 2013-06-13 タンデム型有機光電変換素子およびこれを用いた太陽電池 WO2013187482A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521406A JP6135668B2 (ja) 2012-06-15 2013-06-13 タンデム型有機光電変換素子およびこれを用いた太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136389 2012-06-15
JP2012136389 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013187482A1 true WO2013187482A1 (ja) 2013-12-19

Family

ID=49758300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066376 WO2013187482A1 (ja) 2012-06-15 2013-06-13 タンデム型有機光電変換素子およびこれを用いた太陽電池

Country Status (2)

Country Link
JP (1) JP6135668B2 (ja)
WO (1) WO2013187482A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122185A (ja) * 2013-12-24 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
WO2016035832A1 (ja) * 2014-09-02 2016-03-10 国立大学法人東京大学 カーボンナノチューブ膜を有する透光性電極、太陽電池およびそれらの製造方法
WO2016181962A1 (ja) * 2015-05-12 2016-11-17 住友化学株式会社 有機光電変換素子
JP2021002635A (ja) * 2019-06-21 2021-01-07 位速科技股▲ふん▼有限公司 複合式光起電力構造およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549434B2 (ja) * 2015-07-15 2019-07-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066707A (ja) * 2004-08-27 2006-03-09 Sony Corp 光電変換装置
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
WO2010038406A1 (ja) * 2008-09-30 2010-04-08 新日本石油株式会社 タンデム型太陽電池
JP2011071163A (ja) * 2009-09-24 2011-04-07 Konica Minolta Holdings Inc 有機光電変換素子と、それを用いた太陽電池及び光センサアレイ
WO2011093309A1 (ja) * 2010-01-28 2011-08-04 コニカミノルタホールディングス株式会社 有機光電変換素子
JP2012018959A (ja) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc 有機光電変換素子、該素子を用いた太陽電池
WO2012014466A1 (ja) * 2010-07-28 2012-02-02 出光興産株式会社 フェナントロリン化合物、該化合物よりなる電子輸送材料、及び該化合物を含んでなる有機薄膜太陽電池
JP2012033606A (ja) * 2010-07-29 2012-02-16 Idemitsu Kosan Co Ltd 光電変換素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066707A (ja) * 2004-08-27 2006-03-09 Sony Corp 光電変換装置
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
WO2010038406A1 (ja) * 2008-09-30 2010-04-08 新日本石油株式会社 タンデム型太陽電池
JP2011071163A (ja) * 2009-09-24 2011-04-07 Konica Minolta Holdings Inc 有機光電変換素子と、それを用いた太陽電池及び光センサアレイ
WO2011093309A1 (ja) * 2010-01-28 2011-08-04 コニカミノルタホールディングス株式会社 有機光電変換素子
JP2012018959A (ja) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc 有機光電変換素子、該素子を用いた太陽電池
WO2012014466A1 (ja) * 2010-07-28 2012-02-02 出光興産株式会社 フェナントロリン化合物、該化合物よりなる電子輸送材料、及び該化合物を含んでなる有機薄膜太陽電池
JP2012033606A (ja) * 2010-07-29 2012-02-16 Idemitsu Kosan Co Ltd 光電変換素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122185A (ja) * 2013-12-24 2015-07-02 コニカミノルタ株式会社 透明電極及び電子デバイス
WO2016035832A1 (ja) * 2014-09-02 2016-03-10 国立大学法人東京大学 カーボンナノチューブ膜を有する透光性電極、太陽電池およびそれらの製造方法
JPWO2016035832A1 (ja) * 2014-09-02 2017-09-14 国立大学法人 東京大学 カーボンナノチューブ膜を有する透光性電極、太陽電池およびそれらの製造方法
US10930442B2 (en) 2014-09-02 2021-02-23 University Of Tokyo Light-transmitting electrode having carbon nanotube film, solar cell, method for producing light-transmitting electrode having carbon nanotube film, and method for manufacturing solar cell
US11854751B2 (en) 2014-09-02 2023-12-26 The University Of Tokyo Light-transmitting electrode having carbon nanotube film, solar cell, method for producing light-transmitting electrode having carbon nanotube film, and method for manufacturing solar cell
WO2016181962A1 (ja) * 2015-05-12 2016-11-17 住友化学株式会社 有機光電変換素子
JP2021002635A (ja) * 2019-06-21 2021-01-07 位速科技股▲ふん▼有限公司 複合式光起電力構造およびその製造方法
US11101081B2 (en) 2019-06-21 2021-08-24 Ways Technical Corp., Ltd. Composite photovoltaic structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP6135668B2 (ja) 2017-05-31
JPWO2013187482A1 (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
JP6149856B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
WO2013021971A1 (ja) 有機光電変換素子、およびそれを用いた有機太陽電池
JP5742705B2 (ja) 有機光電変換素子
JP6015672B2 (ja) 有機光電変換素子
JP5360197B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP5845937B2 (ja) 有機光電変換素子
JP6135668B2 (ja) タンデム型有機光電変換素子およびこれを用いた太陽電池
JP5862189B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5920341B2 (ja) 有機光電変換素子、その製造方法及び太陽電池
JP6090166B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5699524B2 (ja) 有機光電変換素子および太陽電池
JPWO2010095517A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5853805B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5686141B2 (ja) 有機光電変換素子および太陽電池
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
JP5867987B2 (ja) 有機光電変換素子、該素子を用いた太陽電池
JP2013225542A (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2013077760A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP2012018958A (ja) 有機光電変換素子、それを用いた太陽電池
JP2013091712A (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP2011060998A (ja) 有機光電変換素子、その製造方法、有機光電変換素子を用いた太陽電池及び光センサアレイ
JP5930090B2 (ja) 有機光電変換素子
JP2012134337A (ja) 有機光電変換素子
JP6194982B2 (ja) 有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803868

Country of ref document: EP

Kind code of ref document: A1