WO2010038406A1 - タンデム型太陽電池 - Google Patents
タンデム型太陽電池 Download PDFInfo
- Publication number
- WO2010038406A1 WO2010038406A1 PCT/JP2009/004926 JP2009004926W WO2010038406A1 WO 2010038406 A1 WO2010038406 A1 WO 2010038406A1 JP 2009004926 W JP2009004926 W JP 2009004926W WO 2010038406 A1 WO2010038406 A1 WO 2010038406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subcell
- layer
- solar cell
- electron
- tandem solar
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 50
- 230000005525 hole transport Effects 0.000 claims description 25
- 230000000903 blocking effect Effects 0.000 claims description 20
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- 238000000034 method Methods 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- GGNDPFHHUHTCIO-UHFFFAOYSA-N 1h-benzimidazole;perylene-3,4,9,10-tetracarboxylic acid Chemical compound C1=CC=C2NC=NC2=C1.C1=CC=C2NC=NC2=C1.C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O GGNDPFHHUHTCIO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/353—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/311—Phthalocyanine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/621—Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a tandem solar cell.
- the present invention relates to a tandem solar cell including at least two subcells.
- fullerene derivatives PCBM, which is an electron transport material
- poly (3-hexylthiophene): P3HT which is a hole transport material
- PCBM which is an electron transport material
- P3HT poly (3-hexylthiophene)
- the bulk heterojunction was formed by co-evaporating the perylene derivative (PTCBI), which is an electron transport material
- PTCBI perylene derivative
- phthalocyanine which is a hole transport material.
- a tandem solar cell is constructed by connecting two or more subcells electrically in series, so that the open circuit voltage of each subcell is accumulated, and an improvement in the open circuit voltage can be expected, thereby improving the conversion efficiency.
- This is useful as a technique for It is also expected to improve the light utilization efficiency by stacking subcells, but the short-circuit current is limited by the shortest current of the smallest subcell, so the type of subcell should be considered taking into account the absorption region and absorption efficiency of each subcell. It is necessary to optimize the selection, stacking order, and film thickness of each subcell. Further, in order to electrically connect the subcells, it is necessary to arrange an intermediate layer between the subcells, and the compound and thickness used as the intermediate layer also need to be optimized for high efficiency.
- the intermediate layer is a field where electrons injected from the front subcell and holes injected from the rear subcell are recombined. Further, it is desirable that the intermediate layer is transparent or translucent, or has the smallest possible thickness so that the incident light reaches the rear subcell. On the other hand, when holes are injected from the front subcell or electrons from the rear subcell to the intermediate layer, the performance as a tandem element is not sufficiently exhibited.
- the hole block or the electron block In order not to inject holes from the front subcell or electrons from the rear subcell to the intermediate layer, it is necessary to make the hole block or the electron block perfect. Especially when the electron transport material and the hole transport material contained in the subcell have a bulk heterojunction, the electron transport material and the hole transport material are mixed on the subcell surface. Difficult to do.
- the present inventors observe the unevenness of the subcell surface immediately before forming the hole block layer or the electron block layer, and by forming the hole block layer or the electron block layer having a film thickness equal to or greater than the maximum value of the surface unevenness, The inventors have found that the hole block or the electronic block can be perfected, and have completed the present invention.
- the present invention includes a pair of electrodes, at least two or more subcells, and an intermediate layer disposed between two adjacent subcells, wherein at least one of the intermediate layers is a hole block layer or an electron block layer
- the present invention relates to a tandem solar cell characterized by having
- the present invention also relates to the tandem solar cell as described above, wherein the film thickness of the hole blocking layer is thicker than the maximum value of the subcell surface irregularities immediately before the hole blocking layer is formed.
- the present invention also relates to the tandem solar cell as described above, wherein the thickness of the electron block layer is thicker than the maximum value of the subcell surface irregularities immediately before the formation of the electron block layer.
- the present invention also relates to the above-described tandem solar cell, wherein the electron transport material and the hole transport material have at least one subcell in which a bulk heterojunction is formed. Further, the present invention is characterized in that the electron transport material and the hole transport material existing in the xth subcell have a bulk heterojunction, and the xth intermediate layer has a hole block layer or an electron block layer.
- the present invention also relates to the tandem solar cell as described above, wherein at least one of the subcells contains a conductive polymer.
- the present invention also relates to the tandem solar cell as described above, wherein the xth subcell contains a conductive polymer and the xth intermediate layer has a hole block layer or an electron block layer.
- the present invention also relates to the tandem solar cell as described above, wherein x is 1.
- the present invention also relates to the tandem solar cell as described above, wherein the hole blocking layer is made of an electron transport material.
- the present invention also relates to the tandem solar cell as described above, wherein the electron blocking layer is made of a hole transport material.
- the hole block or electron block is perfected by forming a hole block layer or electron block layer in the intermediate layer disposed between the subcells to a thickness greater than the maximum value of the surface irregularities of the subcells. Therefore, a highly efficient tandem solar cell can be obtained.
- FIG. 1 is an example of a sectional view of a tandem solar cell according to the present invention. Subcells are electrically stacked in series via an intermediate layer to form a tandem solar cell.
- the substrate 1 is a transparent substrate, and the material, thickness, dimensions, shape and the like can be appropriately selected according to the purpose.
- a colored transparent resin may be used.
- resins include polyesters such as polyethylene terephthalate, polyamide, polysulfone, polyether sulfone, polyether ether ketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, and polymethylpentene. Etc.
- “transparent” means having a transmittance of 10 to 100%
- “substrate” in the present invention has a smooth surface at room temperature, and the surface is flat or curved. It may be deformed by stress. Further, the incident light side of the substrate 1 may be provided with surface protection such as an ultraviolet protection film.
- the cathode electrode 2 is not particularly limited as long as it fulfills the object of the present invention as long as the cathode electrode 2 is transparent or translucent.
- the material for forming the cathode electrode 2 includes SnO 2 , ZnO, ITO (Indium doped Tin Oxide), FTO (Fluorine doped Tin Oxide), AZO (Aluminum doped Zinc Oxide), IZO (Indium doped Zinc Oxide), and the like. Examples thereof include conductive metal oxides and metal thin films such as gold, silver, copper, and aluminum.
- Each subcell has a photoactive layer.
- the photoactive layer includes a hole transport material and an electron transport material, and both form a bulk heterojunction or a planar heterojunction.
- the photoactive layer is formed using a known method such as a vacuum deposition method, an electron beam vacuum deposition method, a sputtering method, or a spin coating method.
- the photoactive layer should be thick, and the thickness is preferably 100 to 10,000 mm, although it varies depending on the hole transport material and electron transport material used.
- hole transport materials include conductive polymers such as polythiophene, polypyrrole, polyaniline, polyfuran, polypyridine, and polycarbazole, organic dye molecules such as phthalocyanine, porphyrin, and perylene, and derivatives and transition metal complexes thereof, triphenylamine compounds, and hydrazine.
- a charge transfer agent such as a compound, a charge transfer complex such as tetrariafulvalene (TTF), and the like can be used, but not limited thereto.
- carbon materials such as fullerene (C 60 , C 70, etc.), chemically modified fullerene derivatives, carbon nanotubes, chemically modified carbon nanotubes, and perylene derivatives can be used. This is not the case.
- the intermediate layer is a field where electrons injected from the front subcell and holes injected from the rear subcell are recombined, and must be efficiently recombined. Further, it is desirable that the intermediate layer is transparent or translucent, or the thickness is as thin as possible so that the incident light 10 reaches the rear subcell.
- the intermediate layer preferably includes both or one of the hole transport material and the electron transport material, and may include a metal layer. At that time, it is desirable that the metal layer is sufficiently thin and translucent so that the incident light 10 reaches the rear subcell.
- the intermediate layer is made of conductive metal oxide such as SnO 2 , ZnO, ITO (Indium doped Tin Oxide), FTO (Fluorine doped Tin Oxide), AZO (Aluminum doped Zinc Oxide), IZO (Indium doped Zinc Oxide), MoOx, etc. May be included.
- conductive metal oxide such as SnO 2 , ZnO, ITO (Indium doped Tin Oxide), FTO (Fluorine doped Tin Oxide), AZO (Aluminum doped Zinc Oxide), IZO (Indium doped Zinc Oxide), MoOx, etc. May be included.
- the material used is not limited to this.
- At least one of the intermediate layers arranged between two adjacent subcells has a hole block layer or an electron block layer.
- the hole blocking layer included in the intermediate layer is a layer that prevents injection of holes from the subcell to the intermediate layer
- the electron blocking layer is a layer that prevents injection of electrons from the subcell to the intermediate layer. Therefore, it is desirable that the electron transport material forms a hole blocking layer, and the hole transport material forms an electron blocking layer, but this is not restrictive.
- the hole block layer and the electron block layer can be formed using a known method such as a vacuum deposition method, an electron beam vacuum deposition method, a sputtering method, or a spin coating method. Usually, it is formed by laminating a hole block layer or an electron block layer on the subcell using the above-mentioned known method.
- the thickness of the hole block layer and the electron block layer is preferably as thin as possible so that light can efficiently enter the rear subcell. However, at least a film thickness that functions as a hole block and an electron block is ensured. There is a need.
- the film thickness of the hole block layer and the electron block layer needs to be greater than or equal to the surface unevenness of the subcell immediately before forming the hole block layer or the electron block layer (more than the maximum unevenness value).
- the film thickness of the hole block layer and the electron block layer is preferably 1 to 1000 mm thick, more preferably 10 to 500 mm, and even more preferably 50 to 300 mm thick with respect to the maximum value of the surface unevenness of the subcell. desirable.
- the intermediate layer immediately after the subcell in which the electron transport material and the hole transport material have a bulk heterojunction preferably has a hole block layer or an electron block layer.
- the anode electrode 9 is not particularly limited as long as it fulfills the object of the present invention, and examples thereof include metal electrodes such as gold, silver, and aluminum, and carbon electrodes.
- a method for forming the anode electrode 9 a known method such as a vacuum evaporation method, an electron beam vacuum evaporation method, a sputtering method, or applying metal fine particles dispersed in a solvent and volatilizing and removing the solvent may be used.
- various organic and inorganic materials can be formed between the subcell and the metal electrode in order to ohmicly join the subcell and the metal electrode.
- the material used is not particularly limited as long as it fulfills the object of the present invention, and examples thereof include organic substances such as phenanthroline and bathocuproin (BCP), and inorganic substances such as LiF and TiOx.
- various sealing treatments can be performed in order to improve the durability of the solar cell element of the present invention.
- the sealing method is not particularly limited as long as it meets the object of the present invention.
- the element can be sealed using various materials having low gas permeability.
- the substrate material is used as a gas barrier layer, and a sealing process is performed by adhering to the device using an adhesive with low gas permeability. It is possible to improve.
- Example 1 As the substrate 1, a glass substrate in which ITO having a surface resistance of 15 ⁇ / sq as a cathode electrode 2 was formed by a sputtering method was used. The substrate 1 on which the cathode electrode 2 was formed was ultrasonically cleaned in a neutral detergent for 10 minutes, and then ultrasonically cleaned twice in water, acetone, and ethanol for 3 minutes each. Thereafter, UV-ozone treatment was performed on the substrate surface for 3 minutes. Next, Baytron P (manufactured by HC Stark) is spin-coated on the cathode electrode 2 at 5000 rpm (30 s) and dried at 120 ° C. for 10 minutes, so that poly (ethylenedioxythiophene) as a hole transport layer is formed.
- Baytron P manufactured by HC Stark
- the mixed solution was spin-coated at 800 rpm (30 s) to form a photoactive layer. Then, after drying overnight under nitrogen, the first subcell was formed by drying at 110 ° C. for 10 minutes. The surface of the first subcell prepared above was observed with an atomic force microscope (1 ⁇ m ⁇ 1 ⁇ m). The atomic force micrograph is shown in FIG. As a result, it was observed that the maximum surface roughness was about 250 mm, suggesting the presence of both P3HT and PCBM on the subcell surface.
- Example 2 A first subcell was formed based on Example 1, and a first intermediate layer was formed on the surface in the following manner. First, under a vacuum of about 10 -5 torr, while maintaining the 1 ⁇ 2 ⁇ / s and the evaporation rate, C 60 layer: forming a hole blocking layer. The film thickness was 400 mm, which is thicker than the unevenness (250 mm) on the surface of the first subcell.
- a deposition rate of about 2 to 3 liters / s was maintained at 100 liters of 3,4,9,10-perylenetetracarboxylic acid bisbenzimidazole (PTCBI) layer, and an evaporation rate was maintained at about 1 liter / s for 5 liters of Au. Layers were deposited.
- a second subcell was formed on the surface of the first intermediate layer in the following manner. First, copper phthalocyanine (CuPc) was vapor-deposited at 200 ° C. while keeping the vapor deposition rate at 1 to 2 / sec to form a hole transport layer.
- CuPc copper phthalocyanine
- Example 3 the film thickness of the hole blocking layer in the intermediate layer was set to 300 mm thicker than the unevenness (250 mm) on the surface of the first subcell. Otherwise, a tandem solar cell was produced in the same manner as in Example 2, and the current-potential characteristics were evaluated. The results are shown in Table 1.
- Example 4 the thickness of the hole blocking layer in the intermediate layer was set to 550 mm thicker than the unevenness (250 mm) on the surface of the first subcell. Otherwise, a tandem solar cell was produced in the same manner as in Example 2, and the current-potential characteristics were evaluated. The results are shown in Table 1.
- Example 5 A first subcell was formed based on Example 1, and a first intermediate layer was formed on the surface in the following manner. First, under a vacuum of about 10 -5 torr, while maintaining the 1 ⁇ 2 ⁇ / s and the evaporation rate, C 60 layer: forming a hole blocking layer. The film thickness was 400 mm, which is thicker than the unevenness (250 mm) on the surface of the first subcell.
- a deposition rate of about 2 to 3 liters / s was maintained at 100 liters of 3,4,9,10-perylenetetracarboxylic acid bisbenzimidazole (PTCBI) layer, and an evaporation rate was maintained at about 1 liter / s for 5 liters of Au. Layers were deposited. Thereafter, a copper phthalocyanine (CuPc): electron blocking layer was formed while maintaining the vapor deposition rate at 1 to 2 liters / s.
- the film thickness was 300 mm thicker than the unevenness (250 mm) on the surface of the first subcell.
- CuPc copper phthalocyanine
- C 60 which is an electron transport material
- BCP bathocuproine
- the anode electrode 9 was formed, and a tandem type element was obtained (see FIG. 1).
- the produced tandem element was measured for current-potential characteristics while irradiating 100 mW / cm 2 simulated sunlight. The results are shown in Table 2. The maximum efficiency was calculated from the current-potential characteristics.
- Example 2 Comparative Example 1
- the thickness of the hole blocking layer in the intermediate layer was set to 100 mm, which is thinner than the unevenness (250 mm) on the surface of the first subcell. Otherwise, a tandem solar cell was produced in the same manner as in Example 2, and the current-potential characteristics were evaluated. The results are shown in Table 1.
- Example 2 Comparative Example 2
- the thickness of the electron blocking layer in the intermediate layer was set to 100 mm, which was thinner than the unevenness (250 mm) on the surface of the first subcell. Otherwise, a tandem solar cell was produced in the same manner as in Example 5, and the current-potential characteristics were evaluated. The results are shown in Table 2.
- the thickness of the hole blocking layer (C 60 layer) is 100 mm thinner than the unevenness of the surface of the first subcell, only the operation of the second subcell is confirmed, and holes from the first subcell to the intermediate layer are confirmed. Infusion was suggested.
- thicker than the unevenness of the first subcell surface the case of introducing hole blocking layer 300,400,550 ⁇ (C 60 layers), the injection of holes into the intermediate layer from the first subcell blocking And acted as a tandem element. According to the present invention, efficiency of 5% or more can be expected by optimizing the material used and the configuration of the subcell.
- the thickness of the electron block layer (copper phthalocyanine layer) is 100 mm thinner than the unevenness of the first subcell surface, the operation of only the first subcell is confirmed, and the second subcell moves to the intermediate layer. The injection of electrons was suggested.
- a 300-mm electron blocking layer (copper phthalocyanine layer) thicker than the unevenness of the surface of the first subcell is introduced, the injection of electrons from the second subcell to the intermediate layer is blocked, and the tandem element Operated as. According to the present invention, an efficiency of 5% or more can be expected by optimizing the material used and the structure of the subcell.
- a tandem solar cell having a perfect hole block or electronic block is provided.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
とりわけ、サブセルに含まれている電子輸送材料とホール輸送材料がバルクヘテロ接合を有している場合は、サブセル表面に電子輸送材料とホール輸送材料が混在しており、ホールブロックもしくは電子ブロックを完璧にすることが困難である。
本発明者らは、ホールブロック層もしくは電子ブロック層を形成する直前のサブセル表面の凹凸を観察し、表面凹凸の最大値以上の膜厚を有するホールブロック層もしくは電子ブロック層を形成することで、前記のホールブロックもしくは電子ブロックを完璧にすることができることを見出し、本発明を完成するに至ったものである。
また本発明は、ホールブロック層の膜厚が、該ホールブロック層を形成する直前のサブセル表面凹凸の最大値よりも厚いことを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、電子ブロック層の膜厚が、該電子ブロック層を形成する直前のサブセル表面凹凸の最大値よりも厚いことを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、電子輸送材料とホール輸送材料がバルクへテロ接合を成すサブセルを少なくとも1つ以上有することを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、第x番目のサブセルに存在する電子輸送材料とホール輸送材料がバルクへテロ接合を有し、かつ第x番目の中間層にホールブロック層もしくは電子ブロック層を有することを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、サブセルの少なくとも一つが導電性高分子を含むことを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、第x番目のサブセルが導電性高分子を含み、かつ第x番目の中間層にホールブロック層もしくは電子ブロック層を有することを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、前記xが1であることを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、ホールブロック層が電子輸送材料からなることを特徴とする前記記載のタンデム型太陽電池に関する。
また本発明は、電子ブロック層がホール輸送材料からなることを特徴とする前記記載のタンデム型太陽電池に関する。
図1は本発明に従うタンデム型太陽電池の断面図の例であり、サブセル同士が中間層を介して電気的に直列に積層することによって、タンデム型太陽電池を形成する。
中間層としては、前記のホール輸送材料、電子輸送材料の両者もしくはどちらか一方を含んでいることが望ましく、また、金属層を含んでいてもよい。その際、入射光10が後方のサブセルに到達するように、金属層の厚みは十分薄く、半透明であることが望ましい。さらに中間層は、SnO2、ZnO、ITO(Indium doped Tin Oxide)、FTO(Fluorine doped Tin Oxide)、AZO(Aluminum doped Zinc Oxide)、IZO(Indium doped Zinc Oxide)、MoOx等の導電性金属酸化物を含んでいてもよい。なお、用いられる材料はこの限りではない。
中間層に含まれるホールブロック層はサブセルから中間層へホールが注入されることを防止する層であり、電子ブロック層はサブセルから中間層へ電子が注入されることを防止する層である。したがって、前記の電子輸送材料がホールブロック層を、ホール輸送材料が電子ブロック層を形成することが望ましいが、この限りではない。
ホールブロック層および電子ブロック層の膜厚は、ホールブロック層もしくは電子ブロック層を形成する直前のサブセルの表面凹凸以上(凹凸の最大値以上)の膜厚とすることが必要である。具体的には、ホールブロック層および電子ブロック層の膜厚は、サブセルの表面凹凸の最大値に対して、1~1000Å厚いのが好ましく、より好ましく10~500Å、さらに好ましく50~300Å厚いのが望ましい。
基板1は、カソード電極2として15Ω/sqの面抵抗を持つITOをスパッタ法により成膜したガラス基板を用いた。
カソード電極2を成膜した基板1を中性洗剤中で10分間超音波洗浄し、水、アセトン、エタノール中でそれぞれ2回ずつ3分間超音波洗浄を行った。その後、基板表面上にUV-オゾン処理を3分間行った。
次に、カソード電極2上にBaytron P(H.C.Stark社製)を5000rpm(30s)でスピンコートし、120℃で10分間乾燥させることで、ホール輸送層であるポリ(エチレンジオキシチオフェン)/ポリ(スチレン・スルフォン酸):PEDOT/PSS層を形成した。
次に以下の要領でITO電極/ホール輸送層上に、第1番目のサブセルを形成した。
電子輸送材料としてフェニルC61ブチリックアシッドメチルエステル:PCBM(ADS社製)、ホール輸送材料として分子量17500のポリ(3-ヘキシルチオフェン)(アルドリッチ社製)を用いて重量比1:1で混合し、PCBMの濃度が1.26wt%となるようにオルトジクロロベンゼンに溶解させた。前記PEDOT/PSS層上に、前記混合溶液を800rpm(30s)でスピンコートし、光活性層を形成した。その後、窒素下一晩乾燥させた後、110℃で10分間乾燥させることで、第1番目のサブセルを形成した。
上記で作製した第1番目のサブセル表面を原子間力顕微鏡により観察した(1μm×1μm)。その原子間力顕微鏡写真を図2に示す。その結果、表面の凹凸の最大値が250Å程度であることが観察され、サブセル表面にはP3HTとPCBMの両者の存在が示唆された。
実施例1に基づいて第1番目のサブセルを形成し、その表面上に以下の要領で第1番目の中間層を形成した。
まず、約10-5torrの真空下で、蒸着レートを1~2Å/sに保って、C60層:ホールブロック層を形成した。膜厚は、第1番目のサブセル表面の凹凸(250Å)よりも厚い、400Åにした。その後、蒸着レートを約2~3Å/sに保って100Åの3,4,9,10-ペリレンテトラカルボン酸ビスベンゾイミダゾール(PTCBI)層を、蒸着レートを約1Å/sに保って5ÅのAu層を蒸着した。
次に、第1番目の中間層の表面上に、以下の要領で第2番目のサブセルを形成した。
まず、銅フタロシアニン(CuPc)を蒸着レートを1~2Å/sに保って200Å蒸着し、ホール輸送層を形成した。その後、C60を蒸着レートを1~2Å/sに保って400Å蒸着して電子輸送層を形成した。
最後に、第2番目のサブセルの表面上に、バソクプロイン(BCP)を蒸着レートを1~2Å/sに保って75Å蒸着し、そしてAgを蒸着レートを3~4Å/sに保って、600Å蒸着することでアノード電極9を形成し、タンデム型素子を得た(図1参照)。
作製したタンデム素子は、100mW/cm2擬似太陽光を照射しながら電流-電位特性を測定した。その結果を表1に示す。電流-電位特性より最大の効率を計算した。
実施例2において、中間層におけるホールブロック層の膜厚を、第1番目のサブセル表面の凹凸(250Å)よりも厚い、300Åにした。その他は実施例2と同様にしてタンデム型太陽電池を作製し、電流-電位特性を評価した。その結果を表1に示す。
実施例2において、中間層におけるホールブロック層の膜厚を、第1番目のサブセル表面の凹凸(250Å)よりも厚い、550Åにした。その他は実施例2と同様にしてタンデム型太陽電池を作製し、電流-電位特性を評価した。その結果を表1に示す。
実施例1に基づいて第1番目のサブセルを形成し、その表面上に以下の要領で第1番目の中間層を形成した。
まず、約10-5torrの真空下で、蒸着レートを1~2Å/sに保って、C60層:ホールブロック層を形成した。膜厚は、第1番目のサブセル表面の凹凸(250Å)よりも厚い、400Åにした。その後、蒸着レートを約2~3Å/sに保って100Åの3,4,9,10-ペリレンテトラカルボン酸ビスベンゾイミダゾール(PTCBI)層を、蒸着レートを約1Å/sに保って5ÅのAu層を蒸着した。その後、蒸着レートを1~2Å/sに保って、銅フタロシアニン(CuPc):電子ブロック層を形成した。膜厚は、第1番目のサブセル表面の凹凸(250Å)よりも厚い、300Åにした。
次に、第1番目の中間層の表面上に、ホール輸送材料である銅フタロシアニン(CuPc)と電子輸送材料であるC60を、蒸着レートを1~2Å/sに保って700Å共蒸着させることで、ホール輸送材料と電子輸送材料をバルクへテロ接合させた、第2番目のサブセルを形成した。
最後に、第2番目のサブセルの表面上に、バソクプロイン(BCP)を蒸着レートを1~2Å/sに保って75Å蒸着し、そしてAgを蒸着レートを3~4Å/sに保って、600Å蒸着することでアノード電極9を形成し、タンデム型素子を得た(図1参照)。
作製したタンデム素子は、100mW/cm2擬似太陽光を照射しながら電流-電位特性を測定した。その結果を表2に示す。電流-電位特性より最大の効率を計算した。
実施例2において、中間層におけるホールブロック層の膜厚を、第1番目のサブセル表面の凹凸(250Å)よりも薄い、100Åにした。その他は実施例2と同様にしてタンデム型太陽電池を作製し、電流-電位特性を評価した。その結果を表1に示す。
実施例5において、中間層における電子ブロック層の膜厚を、第1番目のサブセル表面の凹凸(250Å)よりも薄い、100Åにした。その他は実施例5と同様にしてタンデム型太陽電池を作製し、電流-電位特性を評価した。その結果を表2に示す。
2 カソード電極
3 ホール輸送層
4 第1番目のサブセル
5 第1番目の中間層
6 第2番目のサブセル
7 第n-1番目の中間層
8 第n番目のサブセル
9 アノード電極
10 入射光
Claims (10)
- 一対の電極と、少なくとも二つ以上のサブセルと、二つの隣接するサブセルの間に配置される中間層を備え、前記中間層の少なくとも一つはホールブロック層または電子ブロック層を有することを特徴とするタンデム型太陽電池。
- ホールブロック層の膜厚が、該ホールブロック層を形成する直前のサブセル表面凹凸の最大値よりも厚いことを特徴とする請求項1に記載のタンデム型太陽電池。
- 電子ブロック層の膜厚が、該電子ブロック層を形成する直前のサブセル表面凹凸の最大値よりも厚いことを特徴とする請求項1に記載のタンデム型太陽電池。
- 電子輸送材料とホール輸送材料がバルクへテロ接合を成すサブセルを少なくとも1つ以上有することを特徴とする請求項1乃至3のいずれかに記載のタンデム型太陽電池。
- 第x番目のサブセルに存在する電子輸送材料とホール輸送材料がバルクへテロ接合を有し、かつ第x番目の中間層にホールブロック層もしくは電子ブロック層を有することを特徴とする請求項1乃至4のいずれかに記載のタンデム型太陽電池。
- サブセルの少なくとも一つが導電性高分子を含むことを特徴とする請求項1乃至5のいずれかに記載のタンデム型太陽電池。
- 第x番目のサブセルが導電性高分子を含み、かつ第x番目の中間層にホールブロック層もしくは電子ブロック層を有することを特徴とする請求項1乃至6のいずれかに記載のタンデム型太陽電池。
- 前記xが1であることを特徴とする請求項5又は7に記載のタンデム型太陽電池。
- ホールブロック層が電子輸送材料からなることを特徴とする請求項1乃至8のいずれかに記載のタンデム型太陽電池。
- 電子ブロック層がホール輸送材料からなることを特徴とする請求項1乃至9のいずれかに記載のタンデム型太陽電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009299353A AU2009299353A1 (en) | 2008-09-30 | 2009-09-28 | Tandem solar cell |
CN2009801356877A CN102150293A (zh) | 2008-09-30 | 2009-09-28 | 叠层型太阳能电池 |
US13/119,833 US20110174367A1 (en) | 2008-09-30 | 2009-09-28 | Tandem solar cell |
EP09817449A EP2333861A4 (en) | 2008-09-30 | 2009-09-28 | SOLAR CELL TANDEM |
JP2010531728A JP5155404B2 (ja) | 2008-09-30 | 2009-09-28 | タンデム型太陽電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-253158 | 2008-09-30 | ||
JP2008253158 | 2008-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010038406A1 true WO2010038406A1 (ja) | 2010-04-08 |
Family
ID=42073188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004926 WO2010038406A1 (ja) | 2008-09-30 | 2009-09-28 | タンデム型太陽電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110174367A1 (ja) |
EP (1) | EP2333861A4 (ja) |
JP (1) | JP5155404B2 (ja) |
KR (1) | KR20110065483A (ja) |
CN (1) | CN102150293A (ja) |
AU (1) | AU2009299353A1 (ja) |
WO (1) | WO2010038406A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097509A (zh) * | 2010-11-24 | 2011-06-15 | 北京航空航天大学 | 一种叠层薄膜非微晶硅太阳能电池五层结构的设计 |
WO2012124515A1 (ja) * | 2011-03-11 | 2012-09-20 | 住友化学株式会社 | 有機光電変換素子 |
CN102810639A (zh) * | 2011-05-30 | 2012-12-05 | 海洋王照明科技股份有限公司 | 一种并联式聚合物太阳能电池及其制备方法 |
WO2013035305A1 (ja) * | 2011-09-09 | 2013-03-14 | 出光興産株式会社 | 有機太陽電池 |
JP2013179173A (ja) * | 2012-02-28 | 2013-09-09 | Sumitomo Chemical Co Ltd | 光電変換素子 |
WO2013187482A1 (ja) * | 2012-06-15 | 2013-12-19 | コニカミノルタ株式会社 | タンデム型有機光電変換素子およびこれを用いた太陽電池 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9660207B2 (en) | 2012-07-25 | 2017-05-23 | Samsung Electronics Co., Ltd. | Organic solar cell |
CN103824944A (zh) * | 2012-11-19 | 2014-05-28 | 海洋王照明科技股份有限公司 | 太阳能电池器件及其制备方法 |
US9385348B2 (en) | 2013-08-29 | 2016-07-05 | The Regents Of The University Of Michigan | Organic electronic devices with multiple solution-processed layers |
KR20160047571A (ko) | 2013-08-29 | 2016-05-02 | 더 리젠츠 오브 더 유니버시티 오브 미시간 | 다중의 용액 가공된 층을 지닌 유기 전자 디바이스 |
CN104253222B (zh) * | 2014-09-18 | 2017-10-10 | 浙江大学 | 有机串联叠层太阳电池的中间连接层及构成的高效太阳电池 |
CN111740018B (zh) * | 2020-07-07 | 2022-08-09 | 吉林大学 | 一种级联结构有机光电探测器及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522413A (ja) * | 2004-11-24 | 2008-06-26 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | フェナントロリン励起子阻止層を有する有機感光性オプトエレクトロニックデバイス |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4954182A (en) * | 1980-11-13 | 1990-09-04 | Energy Conversion Devices, Inc. | Multiple cell photoresponsive amorphous photo voltaic devices including graded band gaps |
US6451415B1 (en) * | 1998-08-19 | 2002-09-17 | The Trustees Of Princeton University | Organic photosensitive optoelectronic device with an exciton blocking layer |
US6278055B1 (en) * | 1998-08-19 | 2001-08-21 | The Trustees Of Princeton University | Stacked organic photosensitive optoelectronic devices with an electrically series configuration |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US20050126628A1 (en) * | 2002-09-05 | 2005-06-16 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
KR101086129B1 (ko) * | 2003-06-25 | 2011-11-25 | 더 트러스티즈 오브 프린스턴 유니버시티 | 개선된 태양 전지 |
US8592680B2 (en) * | 2004-08-11 | 2013-11-26 | The Trustees Of Princeton University | Organic photosensitive devices |
US7638356B2 (en) * | 2006-07-11 | 2009-12-29 | The Trustees Of Princeton University | Controlled growth of larger heterojunction interface area for organic photosensitive devices |
-
2009
- 2009-09-28 KR KR1020117007279A patent/KR20110065483A/ko active Search and Examination
- 2009-09-28 AU AU2009299353A patent/AU2009299353A1/en not_active Abandoned
- 2009-09-28 EP EP09817449A patent/EP2333861A4/en not_active Withdrawn
- 2009-09-28 CN CN2009801356877A patent/CN102150293A/zh active Pending
- 2009-09-28 WO PCT/JP2009/004926 patent/WO2010038406A1/ja active Application Filing
- 2009-09-28 JP JP2010531728A patent/JP5155404B2/ja not_active Expired - Fee Related
- 2009-09-28 US US13/119,833 patent/US20110174367A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522413A (ja) * | 2004-11-24 | 2008-06-26 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | フェナントロリン励起子阻止層を有する有機感光性オプトエレクトロニックデバイス |
Non-Patent Citations (4)
Title |
---|
B.MAENNIG ET AL.: "Orgaic p-i-n solar cells", APPLIED PHYSICS A: MATERIALS SCIENCE AND PROCESSING, vol. A79, no. 1, 2004, pages 1 - 14, XP008051078 * |
M. HIRAMOTO; H. FUJIWARA; M. YOKOYAMA, APPL. PHYS. LETT, vol. 58, 1991, pages 1062 |
N. S. SARICIFTCI; L. SMILOWITZ; A. J. HEEGER; F. WUDL, SCIENCE, vol. 258, 1992, pages 1474 - 1476 |
See also references of EP2333861A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097509A (zh) * | 2010-11-24 | 2011-06-15 | 北京航空航天大学 | 一种叠层薄膜非微晶硅太阳能电池五层结构的设计 |
WO2012124515A1 (ja) * | 2011-03-11 | 2012-09-20 | 住友化学株式会社 | 有機光電変換素子 |
JP2012191026A (ja) * | 2011-03-11 | 2012-10-04 | Sumitomo Chemical Co Ltd | 有機光電変換素子 |
CN102810639A (zh) * | 2011-05-30 | 2012-12-05 | 海洋王照明科技股份有限公司 | 一种并联式聚合物太阳能电池及其制备方法 |
WO2013035305A1 (ja) * | 2011-09-09 | 2013-03-14 | 出光興産株式会社 | 有機太陽電池 |
JP2013179173A (ja) * | 2012-02-28 | 2013-09-09 | Sumitomo Chemical Co Ltd | 光電変換素子 |
WO2013187482A1 (ja) * | 2012-06-15 | 2013-12-19 | コニカミノルタ株式会社 | タンデム型有機光電変換素子およびこれを用いた太陽電池 |
JPWO2013187482A1 (ja) * | 2012-06-15 | 2016-02-08 | コニカミノルタ株式会社 | タンデム型有機光電変換素子およびこれを用いた太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
JP5155404B2 (ja) | 2013-03-06 |
KR20110065483A (ko) | 2011-06-15 |
EP2333861A4 (en) | 2012-02-29 |
AU2009299353A1 (en) | 2010-04-08 |
EP2333861A1 (en) | 2011-06-15 |
US20110174367A1 (en) | 2011-07-21 |
CN102150293A (zh) | 2011-08-10 |
JPWO2010038406A1 (ja) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5155404B2 (ja) | タンデム型太陽電池 | |
Jung et al. | High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer | |
Meng et al. | Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT: PSS as the hole transport layer | |
US20130061930A1 (en) | Surface-modified electrode layers in organic photovoltaic cells | |
Lee et al. | A transparent conducting oxide as an efficient middle electrode for flexible organic tandem solar cells | |
JP2006245073A (ja) | 有機薄膜太陽電池 | |
WO2009017700A9 (en) | Polymer electronic devices by all-solution process | |
WO2010113606A1 (ja) | 有機薄膜太陽電池およびその製造方法 | |
Oh et al. | Enhanced air stability of polymer solar cells with a nanofibril-based photoactive layer | |
JP5098957B2 (ja) | 有機光電変換素子 | |
Sakai et al. | Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): fullerene active layers | |
KR101334222B1 (ko) | 태양 전지 및 그 제조 방법 | |
KR100971113B1 (ko) | 소자 면적분할을 통해 광전변환효율이 향상된 유기광전변환소자를 제조하는 방법 및 이 방법에 의해 제조된유기 광전변환소자 | |
JP5476969B2 (ja) | 有機光電変換素子、太陽電池、及び光センサアレイ | |
Ho et al. | Interconnecting layers for tandem organic solar cells | |
KR101065798B1 (ko) | 태양 전지 및 그 제조 방법 | |
Benten et al. | Design of Multilayered Nanostructures and Donor–Acceptor Interfaces in Solution‐Processed Thin‐Film Organic Solar Cells | |
JP5359255B2 (ja) | 有機光電変換素子 | |
JP5375066B2 (ja) | 有機光電変換素子の製造方法、及び有機光電変換素子 | |
WO2012160911A1 (ja) | 有機発電素子 | |
KR102064650B1 (ko) | 유기 태양 전지의 제조방법 및 이를 이용하여 제조된 유기 태양 전지 | |
JP5310230B2 (ja) | 有機光電変換素子 | |
US20150255735A1 (en) | Solar cell, and method for producing same | |
Mori et al. | Photovoltaic properties of organic thin-film solar cell using various exciton-diffusion blocking materials | |
Kim et al. | Organic tandem solar cell using a semi-transparent top electrode for both-side light absorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980135687.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09817449 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009817449 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009817449 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009299353 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010531728 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2009299353 Country of ref document: AU Date of ref document: 20090928 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13119833 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117007279 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |