WO2013187450A1 - 金属酸化物被膜用塗布液及び金属酸化物被膜 - Google Patents

金属酸化物被膜用塗布液及び金属酸化物被膜 Download PDF

Info

Publication number
WO2013187450A1
WO2013187450A1 PCT/JP2013/066269 JP2013066269W WO2013187450A1 WO 2013187450 A1 WO2013187450 A1 WO 2013187450A1 JP 2013066269 W JP2013066269 W JP 2013066269W WO 2013187450 A1 WO2013187450 A1 WO 2013187450A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal oxide
acid
oxide film
formula
Prior art date
Application number
PCT/JP2013/066269
Other languages
English (en)
French (fr)
Inventor
和輝 江口
慶太 村梶
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201380043117.1A priority Critical patent/CN104583350B/zh
Priority to JP2014521379A priority patent/JP6156373B2/ja
Priority to KR1020157000205A priority patent/KR102190716B1/ko
Publication of WO2013187450A1 publication Critical patent/WO2013187450A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a photosensitive metal oxide coating solution and a metal oxide coating.
  • the touch panel detects the contact position of the operation surface touched by a finger or pen. Using this function, the touch panel is used as an input device.
  • Examples of the contact position detection method include a resistance film method and a capacitance method, but the capacitance method is a method suitable for a portable device because it can be thinned by using a single substrate. It has been actively developed in recent years.
  • Patent Document 1 discloses a capacitive touch panel.
  • a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged via glass as a dielectric.
  • a plurality of electrodes for detecting coordinates in the X direction are arranged on one surface of a single glass substrate, and a plurality of electrodes for detecting coordinates in the Y direction are separated on the other surface. Arranged. That is, each transparent electrode is provided on one substrate.
  • Patent Document 2 discloses a capacitive touch panel having another configuration.
  • a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged on one surface of the transparent substrate, and intersect each other.
  • An insulating layer is interposed in the part so as not to conduct. Such a structure eliminates the need for electrode formation on both sides of the substrate.
  • an acrylic layer made of an acrylic material on a transparent electrode such as ITO is known.
  • the purpose of this acrylic layer is to protect the transparent electrode, but since it is an organic material thin film, its hardness as a protective film is not sufficient. Adhesiveness with a transparent electrode such as ITO is also weak, which is a cause of lowering the reliability of the touch panel.
  • the present invention has been made in view of these points. That is, an object of the present invention is to provide an inorganic oxide film that has sufficient hardness to protect a transparent electrode such as ITO, has good film formability, and can be patterned by a photolithography process. is there.
  • the present inventors can solve the above problems by using a coating solution for forming a metal oxide film containing a polymer obtained by condensing a metal alkoxide, a metal salt, and a tin compound at a certain composition ratio. As a result, the present invention has been completed.
  • the present invention has the following gist. 1.
  • M 1 (OR 1 ) n (I) Wherein (I), M 1 is silicon (Si), magnesium (Mg), zinc (Zn), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), indium (In), bismuth It represents at least one metal selected from the group consisting of (Bi) and niobium (Nb).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 2 to 5.
  • R 3 and R 4 each represents an alkyl group having 1 to 20 carbon atoms which may be substituted with a fluorine atom and may have a hetero atom.
  • M 2 (X) k (III)
  • M 2 is an aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and Represents at least one metal selected from the group consisting of cerium (Ce)
  • X is chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic thereof Represents a salt
  • k represents the valence of M 2 .
  • the anti-precipitation agent is at least one substance selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol and derivatives thereof. Or the coating liquid for metal oxide films in any one of 2. 4).
  • the coating solution for a metal oxide film as described in any one of 1 to 3 above. 5. 5. 5.
  • the organic tin compounds are tin octylate (II), neodecanoate (II), oleate (II), oxalate (II), acetylacetonate (II), hexafluoroacetylacetonate (II) Or the coating liquid for metal oxide coating according to any one of 1 to 6 above, which is tin (II) trifluoroacetylacetonate. 8).
  • the metal salt is a metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate or a basic salt thereof.
  • 11. 11 A metal oxide film formed by using the metal oxide film coating solution according to any one of 1 to 10 above.
  • an inorganic oxide film having sufficient hardness to protect a transparent electrode such as ITO, good film formability, and capable of patterning by a photolithography process, and such an inorganic film A coating solution for forming an oxide film is provided.
  • the condensation reaction between the metal alkoxide and the tin compound proceeds to some extent in the state of the composition by containing an appropriate amount of the metal salt. Therefore, it is presumed that a small amount of light energy is used for the condensation reaction, so that a contrast of the solubility of the film is generated by a small amount of light irradiation.
  • the coating solution for a metal oxide film of the present invention comprises a metal alkoxide represented by the formula (I) and an organotin compound represented by the formula (IIA) or the formula (IIB), and a metal salt represented by the formula (III). It is a coating solution for a metal oxide film obtained by hydrolyzing and polycondensing in an organic solvent in the presence of an acid and further adding a precipitation inhibitor. Below, each component is explained in full detail.
  • the metal alkoxide is represented by the following formula (I).
  • M 1 is silicon (Si), magnesium (Mg), zinc (Zn), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), indium (In), bismuth
  • silicon (Si) or titanium (Ti) is preferable, and silicon (Si) is particularly preferable.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 2 to 5.
  • the metal atom of Formula (I) may be used independently, or 2 or more types of mixtures may be sufficient as it.
  • silicon alkoxide for example, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and tetraacetoxysilane are used.
  • titanium alkoxide or a partial condensate thereof is used as the metal alkoxide represented by formula (I)
  • R ′′ represents an alkyl group having 1 to 5 carbon atoms.
  • titanium tetraalkoxide compounds such as titanium tetraethoxide, titanium tetrapropoxide, and titanium tetrabutoxide are used as the titanium alkoxide.
  • Other examples of the metal alkoxide represented by the formula (I) include zirconium tetraalkoxide compounds such as zirconium tetraethoxide, zirconium tetrapropoxide and zirconium tetrabutoxide, aluminum tributoxide, aluminum triisopropoxide and aluminum triethoxide.
  • aluminum tantalum compounds such as tantalum pentapropoxide and tantalum pentataboxide.
  • the organotin compound is a divalent organotin compound and is represented by the following formula (IIA) or formula (IIB).
  • Sn (OOCR 2 ) 2 (IIA) R 2 represents an alkyl group having 1 to 20, preferably 1 to 10 carbon atoms which may be substituted with a fluorine atom and may have a hetero atom.
  • Sn (R 3 COCHCOR 4 ) 2 (IIB) R 3 and R 4 each represents an alkyl group having 1 to 20, preferably 1 to 10 carbon atoms which may be substituted with a fluorine atom and may have a hetero atom.
  • formula (IIA) examples include tin octylate (II), tin neodecanoate (II), tin oleate (II), tin oxalate (II) and the like.
  • formula (IIB) include tin acetylacetonate (II), hexafluoroacetylacetonatotin (II), and trifluoroacetylacetonatotin (II).
  • the content of the organotin compound of formula (IIA) or formula (IIB) is 30 mol% or more based on the total amount of the mixture of formula (I) and formula (IIA) or formula (IIB) It is preferably 25 to 70 mol%, more preferably 30 to 70%. If it is less than 25 mol%, there may be a problem in the patternability of the resulting metal oxide film. On the other hand, if it exceeds 70 mol%, properties other than patterning properties such as hardness, storage stability, and coating properties may be extremely lowered.
  • the coating solution for metal oxide coating of the present invention can be obtained by hydrolyzing and polycondensing the above mixture in an organic solvent in the presence of a metal salt.
  • a metal salt represented by the following formula (III) and a metal oxalate used in the formula (III).
  • M 2 (X) k (III) In the formula (III), M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y).
  • Ce cerium
  • X is chlorine, nitric acid, sulfuric acid, acetic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt thereof
  • k represents the valence of M 2.
  • a metal nitrate, a metal chloride salt, a metal oxalate or a basic salt thereof is particularly preferable.
  • nitrates of aluminum, indium or cerium are more preferable from the viewpoint of easy availability and storage stability of the coating composition.
  • Examples of the organic solvent used in the coating solution for a metal oxide film of the present invention include alcohols such as methanol, ethanol, propanol, and butanol; esters such as ethyl acetate; glycols such as ethylene glycol; or ester derivatives thereof; Examples include ethers such as diethyl ether; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; and aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination.
  • examples of alkylene glycols or monoethers thereof contained in the organic solvent include ethylene glycol, diethylene glycol, propylene glycol, and hexylene glycol. Alternatively, monomethyl, monoethyl, monopropyl, monobutyl, monophenyl ether or the like thereof can be used. Glycols or monoethers thereof contained in the organic solvent used in the coating solution for metal oxide coating of the present invention have little effect on the stability of titanium alkoxide when the molar ratio to titanium alkoxide is less than 1, The storage stability of the coating composition is deteriorated.
  • glycols or monoethers thereof it is not a problem to use a large amount of glycols or monoethers thereof.
  • all of the organic solvents used in the coating composition can be the above-described glycols or monoethers thereof.
  • the coating composition does not contain a titanium alkoxide, it is not necessary to specifically contain the above-mentioned glycol and / or its monoether.
  • the precipitation inhibitor contained in the coating solution for a metal oxide film of the present invention prevents the metal salt from being precipitated in the coating film when the coating film is formed.
  • the precipitation preventing agent include at least one selected from the group consisting of N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. More than seeds can be used.
  • the precipitation inhibitor is used in a ratio of (precipitation inhibitor) / (metal oxide) ⁇ 1 (weight ratio) by converting the metal of the metal salt into a metal oxide. When the weight ratio is less than 1, the effect of preventing precipitation of the metal salt during formation of the coating film is reduced.
  • the precipitation inhibitor may be added when a metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide or titanium alkoxide undergoes hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the reaction.
  • the above molar ratio is less than 0.01, the mechanical strength of the resulting coating is not sufficient, which is not preferable.
  • the metal alkoxide contained in the coating composition includes a plurality of metal atoms
  • the metal atom ( M 1 ) means the sum of a plurality of types of metal atoms.
  • a second metal alkoxide represented by the following formula (IV) is used as the other component for the metal alkoxide used in the coating solution for a metal oxide film of the present invention. Also good.
  • M 3 represents silicon (Si), magnesium (Mg), zinc (Zn), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), indium (In), It represents at least one metal selected from the group consisting of bismuth (Bi) and niobium (Nb).
  • R 2 may be substituted with a hydrogen atom or a fluorine atom, and is substituted with a halogen atom, vinyl group, glycidoxy group, mercapto group, methacryloxy group, acryloxy group, isocyanate group, amino group or ureido group.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms.
  • m represents an integer of 2 to 5. l is 1 or 2 when m is 3, 1 to 3 when m is 4, and 1 to 4 when m is 5.
  • the metal atom (M 3 ) of the second metal alkoxide is preferably silicon from the viewpoint of availability.
  • glycidoxybutyl trimethoxysilane .delta.-glycidoxy butyl triethoxysilane, (3,4-epoxycyclohexyl) methyl trimethoxy silane, (3,4-epoxycyclohexyl) methyltriethoxysilane , ⁇ - (3,4 Epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltripropoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltri Butoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriphenoxysilane, ⁇ - (3,4-epoxycyclohexyl) propyltrimethoxys
  • the number of moles (m 1 ) of the metal atom (M 1 ) of the metal alkoxide and the metal atom (Sn) of the organotin compound contained in the coating solution for metal oxide film to the total number of moles (m Sn) and the metal atom of the metal salt (M 2) moles of (m 2) and the number of moles of the second metal alkoxide of the metal atom (M 3) (m 3) of)
  • the molar ratio (m 2 / (m 1 + m Sn + m 2 + m 3 )) of the number of moles (m 2 ) of metal atoms (M 2 ) of the metal salt is preferably 0.01 to 0.7, 03 to 0.6 is more preferable.
  • components such as inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and surfactants may be included as long as the effects of the present invention are not impaired.
  • the inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and a colloid solution of these inorganic fine particles is particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium or a commercially available colloidal solution.
  • the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
  • the dispersion medium for the inorganic fine particles examples include water and organic solvents.
  • the colloidal solution it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating solution for forming a film. More preferably, it is 2-7.
  • Organic solvents used for the dispersion medium of the colloidal solution include methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, ethylene Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; ethyl acetate and butyl acetate And esters such as ⁇ -butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as
  • Examples of the method for polycondensing the composition contained in the coating solution for a metal oxide film of the present invention include, for example, metal alkyloside represented by the formula (I), organic tin represented by the formula (IIA) or the formula (IIB).
  • Examples of the method include hydrolysis and polycondensation in a solvent such as alcohol or glycol using the compound and, if necessary, the second metal alkoxide represented by formula (IV) and the metal salt represented by formula (III).
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine;
  • a catalyst such as a metal salt such as hydrochloric acid, sulfuric acid or nitric acid is used.
  • the metal salt described in the formula (III) corresponds to this.
  • the heating temperature and the heating time can be appropriately selected as desired.
  • the reaction temperature is preferably in the range of 5 ° C to 100 ° C, more preferably in the range of 10 ° C to 80 ° C, and still more preferably in the range of 15 ° C to 60 ° C.
  • the reaction time is preferably in the range of 5 minutes to 6 hours, more preferably in the range of 10 minutes to 5 hours.
  • the solid content concentration of the coating solution for metal oxide coating of the present invention is in the range of 0.5 to 20 wt% as the solid content when metal alkoxide, organotin compound and metal salt are converted as metal oxide. Is preferred.
  • the solid content exceeds 20 wt%, the storage stability of the coating composition is deteriorated and the film thickness control of the metal oxide layer becomes difficult.
  • the solid content is 0.5 wt% or less, the thickness of the obtained metal oxide layer becomes thin, and many coatings are required to obtain a predetermined film thickness.
  • the coating solution for metal oxide coating of the present invention is obtained by hydrolyzing and condensing a metal alkoxide represented by M (OR) n and an organic tin compound in an organic solvent in the presence of a metal salt (for example, an aluminum salt). It is what The amount of water used for hydrolysis of the metal alkoxide is preferably 2 to 24 in terms of molar ratio with respect to the total number of moles of metal alkoxide. More preferably, it is 2-20.
  • the molar ratio (amount of water (mole) / (total number of moles of metal alkoxide)) is 2 or less, the hydrolysis of the metal alkoxide becomes insufficient and the film formability is lowered or the metal obtained This is not preferable because the strength of the oxide film is lowered.
  • the molar ratio is more than 24, polycondensation continues to proceed, which is not preferable because storage stability is lowered. The same applies when other metal alkoxides are used.
  • the coating solution for a metal oxide film of the present invention can be applied to a coating method generally used to form a coating film, and then formed into a metal oxide film of the present invention.
  • coating methods include dip coating, spin coating, spray coating, flow coating, brush coating, bar coating, gravure coating, roll transfer, blade coating, air knife coating, and slit coating.
  • Method, screen printing method, ink jet method, flexographic printing method and the like are used.
  • the metal oxide film of the present invention can be obtained by drying and baking the coating film formed on the substrate.
  • the drying step is preferably in the temperature range of room temperature to 150 ° C, and more preferably in the range of 40 to 120 ° C.
  • the time is preferably about 30 seconds to 10 minutes, more preferably about 1 to 8 minutes.
  • a drying method it is preferable to use a hot plate, a hot air circulating oven, or the like.
  • ⁇ Patterning process> when a film dried within a range that retains solubility in a developer is exposed to light containing an ultraviolet region, oxidation of a tin compound in a metal oxide film occurs, and a dry film in an exposed area is selectively formed. Becomes insoluble.
  • a light source including a wavelength of 180 nm or more and 400 nm or less as light including the ultraviolet region is commercially available and is preferable because it is easily available. Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, and an excimer lamp.
  • the irradiation amount can be appropriately selected as necessary, but is preferably 100 to 10,000 mJ / cm 2 in terms of wavelength 365 nm, and more preferably 150 to 8,000 mJ / cm 2 .
  • the developer used in the present invention is for etching a metal oxide film. Therefore, it is preferable to use a basic compound solution or an acidic compound solution.
  • a basic compound solution for example, an aqueous solution of alkali metal or quaternary ammonium hydroxide, silicate, phosphate, acetate, amines or the like is used. Specific examples include sodium hydroxide, potassium hydroxide, ammonium hydroxide, trimethylbenzylammonium hydroxide, tetramethylammonium hydroxide, sodium silicate, sodium phosphate, sodium acetate, monoethanolamine, diethanolamine, triethanolamine, etc.
  • An aqueous solution of The acidic compound solution is preferably an aqueous solution of an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid or phosphoric acid, or an organic acid such as formic acid or acetic acid.
  • the amount of the basic compound or acidic compound relative to the amount of water is preferably such an amount that a sufficient difference in solubility occurs between the exposed portion and the unexposed portion.
  • the firing step is preferably in the temperature range of 100 ° C. to 300 ° C. and more preferably in the range of 150 ° C. to 250 ° C. in consideration of the heat resistance of the other components of the touch panel. Further, the time is preferably 5 minutes or more, and more preferably 15 minutes or more.
  • a baking method it is preferable to use a hot plate, a thermal circulation oven, an infrared oven, or the like.
  • TEOS tetraethoxysilane
  • OcSn tin octylate
  • TIPT tetraisopropoxytitanium
  • InN indium nitrate trihydrate
  • AN aluminum nitrate nonahydrate
  • HG 2-methyl-2,4-pentanediol (also known as hexylene glycol) )
  • BCS 2-butoxyethanol (also known as butyl cellosolve)
  • PB Propylene glycol monobutyl ether
  • Example 1 11.2 g of InN and 3.2 g of water were added to a 300 mL flask and stirred to dissolve InN. 96.3g of HG, 13.8g of PB, and 26.2g of TEOS were put there, and it stirred under room temperature for 30 minutes. Thereafter, 27.5 g of BCS and 21.8 g of OcSn were added and further stirred at room temperature for 30 minutes to obtain a solution ⁇ K1>.
  • Example 2 In a 300 mL flask, 9.2 g of InN and 2.7 g of water were added and stirred to dissolve InN. 97.7g of HG, 14.0g of PB, and 16.5g of TEOS were put there, and it stirred under room temperature for 30 minutes. Thereafter, 27.9 g of BCS and 32.1 g of OcSn were added and further stirred at room temperature for 30 minutes to obtain a solution ⁇ K2>.
  • ⁇ Synthesis Example 3> (Comparative Example 1) ⁇ Liquid A> In a 200 mL flask, 12.1 g of AN and 2.8 g of water were added and stirred to dissolve AN. 13.7g of EG, 39.2g of HG, 37.2g of BCS, and 22.9g of TEOS were put there, and it stirred at room temperature for 30 minutes.
  • ⁇ Liquid B> In a 300 mL flask, 13.4 g of TIPT and 58.8 g of HG were placed and stirred at room temperature for 30 minutes.
  • ⁇ A liquid> and ⁇ B liquid> were mixed and stirred at room temperature for 30 minutes to obtain a solution (K3).
  • ⁇ Synthesis Example 4> (Comparative Example 2) ⁇ C liquid> In a 200 mL flask, 11.5 g of AN and 2.7 g of water were added and stirred to dissolve AN. 13.7 g of EG, 39.3 g of HG, 37.3 g of BCS, and 15.5 g of TEOS were put there, and it stirred at room temperature for 30 minutes. ⁇ D liquid> In a 300 mL flask, 21.2 g of TIPT and 58.9 g of HG were placed and stirred at room temperature for 30 minutes. ⁇ C liquid> and ⁇ D liquid> were mixed and stirred at room temperature for 30 minutes to obtain a solution (K4).
  • ⁇ Film formation method> The solution of the example was filtered under pressure through a membrane filter having a pore size of 0.5 ⁇ m, and a film was formed on the substrate by spin coating. The substrate was dried on a hot plate at 60 ° C. for 3 minutes.
  • the films obtained from the solutions K1 and K2 were designated as KL1 and KL2, and the films obtained from the solutions K3 and K4 were designated as KM1 and KM2, respectively.
  • a film was formed on the Si wafer substrate by the above-described film forming method. Thereafter, irradiation was performed at 50 mW / cm 2 (converted to a wavelength of 365 nm) for 10, 20, and 60 seconds using an ultraviolet irradiation device (made by Eye Graphics, UB 011-3A type) and a high-pressure mercury lamp (input power supply 1000 W), respectively. (Totalized 500, 1000, and 3000 mJ / cm 2 ), the respective film thicknesses were measured with an optical film thickness meter (F20 thin film measurement system, manufactured by Filmetrics), and the film thickness before ultraviolet irradiation was measured using the results. The ratio was calculated.
  • ⁇ Crack evaluation> An acrylic film having a thickness of 2 ⁇ m was formed on the glass substrate.
  • the acrylic film was formed as follows. First, the acrylic material composition was filtered under pressure with a membrane filter having a pore size of 0.5 ⁇ m, and a coating film was formed on the entire surface of the glass substrate by a spin coating method. Next, this substrate was heated and dried for 2 minutes on a hot plate, then transferred to a hot-air circulating oven and baked for 30 minutes. Thereby, an acrylic film was formed on the glass substrate.
  • a film was formed on the acrylic film by the film forming method.
  • UV irradiation was performed for 2 minutes at a light intensity of 50 mW / cm 2 (wavelength 365 nm conversion) using a high pressure mercury lamp (input power supply 1000 W).
  • the amount of ultraviolet irradiation was 6000 mJ / cm 2 .
  • After the ultraviolet irradiation it was transferred into a hot air circulation oven set at 230 ° C. and baked for 30 minutes. Thus, a coat film was formed on the substrate.
  • ⁇ Patterning test> A film was formed on a Cr-deposited glass substrate by the above-described film forming method. Next, Cr-deposited glass was placed on the half of the substrate so that a portion exposed to ultraviolet rays and a portion not exposed were formed. Irradiation was carried out at 50 mW / cm 2 (converted to a wavelength of 365 nm) for 10, 20 and 60 seconds using an ultraviolet irradiation device (UB Graphics, UB 011-3A type) and a high pressure mercury lamp (input power supply 1000 W), respectively. did. (Totalized 500, 1000, and 3000 mJ / cm 2 )
  • Examples 1 and 2 have less decrease in film thickness than Comparative Examples 1 and 2. In other words, there is little volume shrinkage. Therefore, distortion with the lower layer can be reduced during ultraviolet irradiation or firing. Therefore, as shown in the crack evaluation results, Examples 1 and 2 do not cause cracks even when the organic overcoat layer is present in the lower layer. Moreover, from Table 2, Examples 1 and 2 could be patterned with an irradiation dose of about 500 mJ. On the other hand, Comparative Examples 1 and 2 could not be patterned unless irradiated with 3000 mJ or more. In Comparative Examples 2 and 3, it is considered that the film density is not sufficient with a small dose. In Examples 1 and 2, it was found that a dense film can be obtained efficiently by irradiation with ultraviolet rays while reducing distortion to other layers.
  • a metal oxide film that can appropriately protect a complicated electrode pattern in the production of various electronic devices including a touch panel can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 ITOなどの透明電極の保護に充分な硬度及び良好な成膜性を有し、かつ、フォトリソグラフィーによりパターニング可能な被膜を形成する金属酸化物被膜用塗布液を提供する。 式(I)で示される金属アルコキシドと、式(IIA)又は式(IIB)で示される有機すず化合物とを、式(III)で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる金属酸化物被膜用塗布液。 M(OR (I) (MはSi、Mg、Zn、Ti、Ta、Zr、B、In、Bi又はNb。Rは炭素数1~5のアルキル基。nは2~5の整数)。 Sn(OOCR (IIA) (Rはフッ素原子で置換されてもよく、またヘテロ原子を有していてもよい炭素数1~20のアルキル基) Sn(RCOCHCOR (IIB) (R、Rはフッ素原子で置換されてもよく、またヘテロ原子を有していてもよい炭素数1~20のアルキル基) M(X) (III) (MはAl、In、Zn、Zr、Bi、La、Ta、Y又はCe。Xは塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩。kはMの価数)

Description

金属酸化物被膜用塗布液及び金属酸化物被膜
 本発明は、感光性を有する金属酸化物被膜用塗布液及び金属酸化物被膜に関する。
 近年、スマートフォンの普及とともに携帯電話の表示画面が大型化している。これに伴って、ディスプレイの表示を利用した入力操作が可能なタッチパネルの開発が盛んに行われている。タッチパネルによれば、押下げ式のスイッチなどの入力手段が不要となるため、表示画面の大型化が図れる。
 タッチパネルは、指やペンなどが触れた操作面の接触位置を検出する。この機能を利用して、タッチパネルは入力装置として用いられる。接触位置の検出方式としては、例えば、抵抗膜方式や静電容量方式などがあるが、静電容量方式は、基板を1枚にして薄型化を図れるため、携帯機器に好適な方式であり、近年盛んに開発がなされている。
 特許文献1には、静電容量方式のタッチパネルが開示されている。このタッチパネルでは、X方向の座標を検出するための第1の透明電極と、Y方向の座標を検出するための第2の透明電極とが、誘電体であるガラスを介して配置されている。具体的には、1枚のガラス基板の一方の面にX方向の座標を検出するための電極が複数離間して配置され、他方の面にY方向の座標を検出するための電極が複数離間して配置される。すなわち、1枚の基板に各透明電極を設ける構成となっている。
 また、特許文献2には、別の構成の静電容量方式のタッチパネルが開示されている。このタッチパネルでは、透明基板の一方の面に、X方向の座標を検出するための第1の透明電極と、Y方向の座標を検出するための第2の透明電極とを配置し、それぞれの交差部に絶縁層を介在させて導通しないようにしている。かかる構造によれば、電極形成を基板の両面で行う必要がなくなる。
日本特開2003-173238号公報 日本特開2010-28115号公報
 従来のタッチパネルでは、ITOなどの透明電極の上にアクリル材料からなるアクリル層を設ける技術が知られている。このアクリル層は、透明電極を保護することを目的としているが、有機材料薄膜であるので保護膜としての硬度が十分でない。ITOなどの透明電極との密着性も弱く、タッチパネルの信頼性を低下させる一因となっている。
 本発明は、こうした点に鑑みてなされたものである。すなわち、本発明の目的は、ITOなどの透明電極を保護するに十分な硬度を持ち、成膜性が良好であり、かつ、フォトリソグラフィー工程によってパターニングが可能な無機酸化物被膜を提供することにある。
 本発明者らは鋭意検討の結果、金属アルコキシドと金属塩とスズ化合物をある組成比で縮合させた重合体を含有する金属酸化物被膜形成用塗布液を用いることによって、上記の課題を解決出来ることを見出し、本発明を完成させた。
 即ち、本発明は、以下の要旨を有するものである。
1.下記式(I)で示される金属アルコキシドと、下記式(IIA)又は(IIB)で示される有機すず化合物とを含有する混合物を、下記式(III)で示される金属塩の存在下に有機溶媒中で加水分解・重縮合し、さらに析出防止剤を添加して得られることを特徴とする金属酸化物被膜用塗布液。
(OR   (I)
 式(I)中、Mは珪素(Si)、マグネシウム(Mg)、亜鉛(Zn)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、インジウム(In)、ビスマス(Bi)及びニオビウム(Nb)からなる群から選択された少なくとも1種以上の金属を表す。Rは、炭素数1~5のアルキル基を表し、nは、2~5の整数を表す。
Sn(OOCR   (IIA)
 式(IIA)中、Rは、フッ素原子で置換されてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20のアルキル基を表す。
Sn(RCOCHCOR   (IIB)
 式(IIB)中、R及びRは、フッ素原子で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20のアルキル基を表す。
(X)           (III)
 式(III)中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)及びセリウム(Ce)よりなる群から選択された少なくとも1種以上の金属を表し、Xは、塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表し、kは、Mの価数を表す。
2.前記有機すず化合物の含有量は、前記金属アルコキシドのモル数と前記有機すず化合物のモル数との合計100モル%に対して、30モル%以上である、上記1に記載の金属酸化物被膜用塗布液。
3.前記析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びこれらの誘導体よりなる群から選択された少なくとも1以上の物質である、上記1又は2のいずれかに記載の金属酸化物被膜用塗布液。
4.前記金属アルコキシドの金属原子(M)のモル数(m)と前記有機すず化合物の金属原子(Sn)のモル数(mSn)と前記金属塩の金属原子(M)のモル数(m)との合計に対する、前記金属塩の金属原子(M)のモル数(m)のモル比率(m/(m+mSn+m))が、0.01~0.7である上記1~3のいずれかに記載の金属酸化物被膜用塗布液。
5.前記金属アルコキシドは、シリコンアルコキシド又はその部分縮合物と、チタンアルコキシド又はその部分縮合物との加水分解・重縮合物である、上記1~4のいずれかに記載の金属酸化物被膜用塗布液。
6.前記金属アルコキシドは、シリコンアルコキシドである、上記1~4のいずれかに記載の金属酸化物被膜用塗布液。
7.前記有機すず化合物は、オクチル酸すず(II)、ネオデカン酸すず(II)、オレイン酸すず(II)、シュウ酸すず(II)、アセチルアセトナートすず(II)、ヘキサフルオロアセチルアセトナートすず(II)、又はトリフルオロアセチルアセトナートすず(II)である、上記1~6のいずれかに記載の金属酸化物被膜用塗布液。
8.前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナート又はこれらの塩基性塩である、上記1~7のいずれかに記載の金属酸化物被膜用塗布液。
9.前記式(III)で示される金属塩が、アルミニウム、インジウム又はセリウムの硝酸塩である、上記1~8のいずれかに記載の金属酸化物被膜用塗布液。
10.前記有機溶媒は、アルキレングリコール類又はそのモノエーテル誘導体を含む、上記1~9のいずれかに記載の金属酸化物被膜用塗布液。
11.上記1~10のいずれかに記載の金属酸化物被膜用塗布液を用いて成膜される、金属酸化物被膜。
 本発明によれば、ITOなどの透明電極を保護するに充分な硬度を持ち、成膜性が良好であり、かつ、フォトリソグラフィー工程によってパターニングが可能な無機酸化物被膜、及び、そのような無機酸化物被膜を形成するための塗布液が提供される。
 本発明の構成により、なぜに上記の効果が発現するのかについては定かではないが、適量の金属塩を含有させることにより、組成物の状態である程度金属アルコキシドとスズ化合物との縮合反応を進行させることが出来るため、縮合反応に用いる光エネルギーが少量で済む結果、少量の光照射にて膜の溶解度のコントラストが生じるものと推測される。
 本発明の金属酸化物被膜用塗布液は、式(I)で示される金属アルコキシドと、式(IIA)又は式(IIB)で示される有機すず化合物とを、式(III)で示される金属塩の存在下に有機溶媒中で加水分解・重縮合し、さらに析出防止剤を添加して得られることを特徴とする金属酸化物被膜用塗布液である。以下に、それぞれの成分について詳述する。
<金属アルコキシド>
 金属アルコキシドは、下記式(I)で表される。
(OR   (I)
 式(I)中、Mは珪素(Si)、マグネシウム(Mg)、亜鉛(Zn)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、インジウム(In)、ビスマス(Bi)及びニオビウム(Nb)よりなる群から選択された少なくとも1種以上の金属を表すが、その中でも珪素(Si)、又はチタン(Ti)が好ましく、珪素(Si)が特に好ましい。Rは、炭素数1~5のアルキル基を表し、nは、2~5の整数を表す。
 また、式(I)の金属原子は単独で用いられてもよく、もしくは2種以上の混合物であってもよい。
 式(I)で示される金属アルコキシドとして、シリコンアルコキシド又はその部分縮合物を用いる場合、式(V)で示される化合物の1種若しくは2種以上の混合物又は部分縮合物(5量体以下)が用いられる。
 Si(OR’)   (V)
 式(V)中、R’は、炭素数1~5のアルキル基を表す。
 より具体的には、シリコンアルコキシドとして、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン及びテトラアセトキシシランなどのテトラアルコキシシラン類などが用いられる。
 また、式(I)で示される金属アルコキシドとして、チタンアルコキシド又はその部分縮合物を用いる場合、式(VI)で示される化合物の1種又は2種以上の混合物又は部分縮合物(4量体以下)が用いられる。
 Ti(OR”)   (VI)
 式(VI)中、R”は、炭素数1~5のアルキル基を表す。
 より具体的には、チタンアルコキシドとして、チタニウムテトラエトキシド、チタニウムテトラプロポキシド及びチタニウムテトラブトキシドなどのチタニウムテトラアルコキシド化合物などが用いられる。
 その他、式(I)で示される金属アルコキシドの例としては、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド及びジルコニウムテトラブトキシドなどのジルコニウムテトラアルコキシド化合物、アルミニウムトリブトキシド、アルミニウムトリイソプロポキシド及びアルミニウムトリエトキシドなどのアルミニウムトリアルコキシド化合物、又は、タンタリウムペンタプロポキシド及びタンタリウムペンタブトキシドなどのタンタリウムペンタアルコキシド化合物などを挙げることができる。
<有機すず化合物>
 有機すず化合物は、二価の有機すず化合物であり、下記式(IIA)又は式(IIB)で表される。
Sn(OOCR   (IIA)
 Rは、フッ素原子で置換されてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20、好ましくは1~10のアルキル基を表す。
Sn(RCOCHCOR   (IIB)
 R及びRは、フッ素原子で置換されてもよく、また、ヘテロ原子を有していてもよい炭素数1~20、好ましくは1~10のアルキル基を表す。
 上記の式(IIA)の具体例として、オクチル酸すず(II)、ネオデカン酸すず(II)、オレイン酸すず(II)、シュウ酸すず(II)などが挙げられる。また、式(IIB)の具体例として、アセチルアセトナートすず(II)、ヘキサフルオロアセチルアセトナートすず(II)、トリフルオロアセチルアセトナートすず(II)などが挙げられる。
 式(IIA)又は式(IIB)の有機すず化合物の含有量は、式(I)と、式(IIA)又は式(IIB)を合わせた混合物の総量に対して、30モル%以上であるのが好ましく、さらに、25~70モル%が好ましく、30~70%であることがさらに好ましい。25モル%未満では、得られる金属酸化物被膜のパターニング性に問題が生じる場合がある。また、70モル%より多くなると、硬度、保存安定性、塗布性など、パターニング性以外の特性が極端に低下する場合がある。
<金属塩>
 本発明の金属酸化物被膜用塗布液は、上述の混合物を金属塩の存在下に有機溶媒中で加水分解・重縮合して得られる。ここで、金属塩としては、下記式(III)で示される金属塩及び式(III)中で用いられる金属の蓚酸塩の使用が可能である。
(X)           (III)
(式(III)中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)及びセリウム(Ce)よりなる群から選択された少なくとも1種以上の金属を表し、Xは、塩素、硝酸、硫酸、酢酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表し、kは、Mの価数を表す。)
 式(III)で示される化合物のうち、特に、金属硝酸塩、金属塩化物塩、金属蓚酸塩又はその塩基性塩が好ましい。この内、入手の容易性と、コーティング組成物の貯蔵安定性の点から、アルミニウム、インジウム又はセリウムの硝酸塩がより好ましい。
 本発明の金属酸化物被膜用塗布液に用いられる有機溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;酢酸エチルエステルなどのエステル類;エチレングリコールなどのグリコール類、又はそのエステル誘導体;ジエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;又は、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられ、これらは単独又は組み合わせて用いられる。
 本発明の金属酸化物被膜用塗布液中に、チタンアルコシド成分を含む場合、有機溶媒中に含まれるアルキレングリコール類又はそのモノエーテルとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール又はそれらのモノメチル、モノエチル、モノプロピル、モノブチル又はモノフェニルエーテルなどが挙げられる。
 本発明の金属酸化物被膜用塗布液に用いられる有機溶媒に含まれるグリコール類又はそのモノエーテルは、チタンアルコキシドに対してモル比が1未満であると、チタンアルコキシドの安定性に効果が少なく、コーティング用組成物の貯蔵安定性が悪くなる。一方、グリコール類又はそのモノエーテルを多量に用いることは何ら問題でない。例えば、コーティング組成物に用いられる有機溶媒の全てが、上述のグリコール類又はそのモノエーテルであっても差支えない。しかしながら、コーティング組成物がチタンアルコキシドを含まない場合には、上述したグリコール及び/又はそのモノエーテルを特に含む必要はない。
 本発明の金属酸化物被膜用塗布液に含まれる析出防止剤は、塗布被膜を形成する際に、塗膜中に金属塩が析出するのを防止する。析出防止剤としては、N-メチル-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びこれらの誘導体よりなる群から選ばれる少なくとも1種が挙げられ、これらを少なくとも1種以上使用することができる。
 析出防止剤は、金属塩の金属を金属酸化物に換算して、(析出防止剤)/(金属酸化物)≧1(重量比)の比率で用いられる。重量比が1未満であると、塗布被膜を形成時における金属塩の析出防止効果が小さくなる。一方、析出防止剤を多量に用いることは、コーティング組成物に何ら影響を与えない。
 析出防止剤は、金属アルコキシド、特に、シリコンアルコキシド、チタンアルコキシド、又は、シリコンアルコキシド又はチタンアルコキシドが、金属塩の存在下で加水分解・縮合反応する際に添加されていても良く、加水分解・縮合反応の終了後に添加されていても良い。
 本発明の金属酸化物被膜用塗布液に含まれる、前記金属アルコキシドの金属原子(M)のモル数(m)と前記有機すず化合物の金属原子(Sn)のモル数(mSn)と前記金属塩の金属原子(M)のモル数(m)の合計に対する、前記金属塩の金属原子(M)のモル数(m)のモル比である、(m/(m+mSn+m)は、0.01~0.7が好ましい。
 上記のモル比が0.01より小さいと、得られる被膜の機械的強度が十分でないため好ましくない。一方、0.7を越えると、ガラス基板や透明電極などの基材に対するコート膜の密着性が低下する。さらに、450℃以下の低温で焼成した場合、得られるコート膜の耐薬品性が低下する傾向にもある。なかでも、上記のモル比は、0.03以上であり、0.6以下で有るのが特に好ましい、なお、コーティング組成物に含まれる金属アルコキシドの金属原子が複数種の場合、上記金属原子(M)は、複数種の金属原子の合計を意味する。
<その他の成分>
 本発明の金属酸化物被膜用塗布液に用いられる金属アルコキシドには、本発明の効果を損なわない限りにおいて、その他の成分として下記式(IV)で表される、第2の金属アルコキシドを用いても良い。
(ORm-1   (IV)
 式(IV)中、Mは、珪素(Si)、マグネシウム(Mg)、亜鉛(Zn)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、インジウム(In)、ビスマス(Bi)及びニオビウム(Nb)からなる群から選択された少なくとも1種以上の金属を表す。Rは、水素原子又はフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基又はウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の1価の炭化水素基を表す。Rは、炭素数1~5のアルキル基を表す。mは、2~5の整数を表す。lは、mが3の場合に1又は2であり、mが4の場合に1~3のいずれかであり、mが5の場合に1~4のいずれかである。
 また、上記第2の金属アルコキシドの金属原子(M)は、入手性などの観点から、珪素であることが好ましい。
 より具体的には、メチルトリメトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、メチルトリペントキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、αーグリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトメチルジエトキシシラン、メチルビニルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)-N-1-フェニルエチル-N’-トリエトキシシリルプロピルウレア、(R)-N-1-フェニルエチル-N’-トリメトキシシリルプロピルウレア、アリルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、ブロモプロピルトリエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルトリプロポキシシラン又はメチルビニルジエトキシシランなどを挙げることができる。これらは、単独で、又は、2種以上組み合わせて使用することができる。
 また、前記第2の金属アルコキシドを含む場合、金属酸化物被膜用塗布液に含まれる、前記金属アルコキシドの金属原子(M)のモル数(m)と前記有機すず化合物の金属原子(Sn)のモル数(mSn)と前記金属塩の金属原子(M)のモル数(m)と第2の金属アルコキシドの金属原子(M)のモル数(m)の合計に対する、前記金属塩の金属原子(M)のモル数(m)のモル比(m/(m+mSn+m+m))は、0.01~0.7が好ましく、0.03~0.6がより好ましい。
 加えて、本発明においては、本発明の効果を損なわない限りにおいて、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、フッ化マグネシウム微粒子等の微粒子が好ましく、これらの無機微粒子のコロイド溶液が特に好ましい。このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。
 本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状やその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬
化被膜の透明性が低下する場合がある。
 無機微粒子の分散媒としては、水、有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましい。より好ましくは2~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、2-メチル-2,4-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類又はケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。
<組成物の重合方法>
 本発明の金属酸化物被膜用塗布液中に含有する組成物を重縮合する方法としては、例えば、式(I)で示される金属アルキコシド、式(IIA)又は式(IIB)で示される有機すず化合物、及び必要に応じて式(IV)で示される第2の金属アルコキシド及び式(III)の金属塩を用いてアルコール又はグリコールなどの溶媒中で加水分解・重縮合する方法が挙げられる。通常、加水分解・重縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩などの触媒が用いられる。本発明においては、式(III)に記載した金属塩がそれにあたる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。反応温度は5℃~100℃の範囲が好ましく、より好ましくは10℃~80℃の範囲であり、さらに好ましくは15℃~60℃の範囲である。反応時間は5分~6時間の範囲が好ましく、より好ましくは10分~5時間の範囲である。
 本発明の金属酸化物被膜用塗布液の固形分濃度については、金属アルコキシドと有機すず化合物と金属塩を金属酸化物として換算した場合、固形分としては0.5~20wt%の範囲であることが好ましい。固形分が20wt%を越えると、コーティング組成物の貯蔵安定性が悪くなるうえ、金属酸化物層の膜厚制御が困難になる。一方、固形分が0.5wt%以下では、得られる金属酸化物層の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。
 本発明の金属酸化物被膜用塗布液は、M(OR)で示される金属アルコキシドと有機すず化合物を金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合して得られるものである。金属アルコキシドの加水分解に用いられる水の量は、金属アルコキシドの総モル数に対して、モル比換算で2~24にすることが好ましい。より好ましくは2~20である。モル比(水の量(モル)/(金属アルコキシドの総モル数))が2以下の場合には、金属アルコキシドの加水分解が不十分となって、成膜性を低下させたり、得られる金属酸化物被膜の強度を低下させたりするので好ましくない。また、モル比が24より多い場合は、重縮合が進行し続けるため、貯蔵安定性を低下させるので好ましくない。
 その他の金属アルコキシドを用いる場合でも同様である。
<製膜>
 本発明の金属酸化物被膜用塗布液は、一般に行われている塗布法を適用して、塗膜を成膜し、その後、本発明の金属酸化物被膜膜とすることが可能である。塗布法としては、例えば、ディップコート法、スピンコート法、スプレーコート法、フローコート法、刷毛塗り法、バーコート法、グラビアコート法、ロール転写法、ブレードコート法、エアーナイフコート法、スリットコート法、スクリーン印刷法、インクジェット法又はフレキソ印刷法などが用いられる。この中でも、スピンコート法、スリットコート法、ブレードコート法、又はスプレーコート法を用いることが好ましい。
<乾燥>
 基材に形成された塗膜を、乾燥、焼成することにより本発明の金属酸化物被膜が得られる。乾燥工程は、室温~150℃の温度範囲であることが好ましく、40~120℃の範囲であることがより好ましい。また、その時間は30秒~10分程度が好ましく、1~8分程度がより好ましい。乾燥方法としては、ホットプレートや熱風循環式オーブンなどを用いることが好ましい。
<パターニング工程>
 本発明において、現像液に対する溶解性を保持する範囲内で乾燥させた膜へ紫外領域を含む光により露光すると、金属酸化物被膜中のスズ化合物の酸化が起こり、選択的に露光部の乾燥膜が不溶化する。紫外領域を含む光として180nm以上400nm以下の波長を含む光源は、市販されており容易に入手しやすく好ましい。光源としては、例えば水銀ランプ、メタルハライドランプ、キセノンランプ、エキシマランプなどが挙げられる。
 照射量としては、必要に応じて適宜選択することができるが、波長365nm換算で100~10,000mJ/cmが好ましく、より好ましくは150~8,000mJ/cmである。
 本発明に用いられる現像液は、金属酸化物被膜のエッチングを行うものである。そのため、塩基性化合物溶液又は酸性化合物溶液を用いることが良い。塩基性化合物溶液(アルカリ性現像液)として例えば、アルカリ金属又は4級アンモニウムの水酸化物、ケイ酸塩、リン酸塩、酢酸塩、アミン類などの水溶液が用いられる。具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、トリメチルベンジルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、ケイ酸ナトリウム、リン酸ナトリウム、酢酸ナトリウム、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの水溶液が挙げられる。酸性化合物溶液(酸性現像液)としては、塩酸、硝酸、硫酸、フッ酸、燐酸などの無機酸、ギ酸、酢酸などの有機酸の水溶液が好ましい。ただし、水の量に対する塩基性化合物又は酸性化合物の量は、露光部と未露光部との溶解度差が充分生じるような量であることが好ましい。
<焼成>
 焼成工程は、タッチパネルの他の構成部材の耐熱性を考慮して、100℃~300℃の温度範囲であることが好ましく、150℃~250℃の範囲内であることがより好ましい。また、その時間は5分以上が好ましく、15分以上であることがより好ましい。焼成方法としては、ホットプレート、熱循環式オーブン、赤外線オーブンなどを用いることが好ましい。
 以下本発明の実施例によりさらに具体的に説明するが、これらに限定して解釈されるものではない。
 本実施例で用いた化合物における略語は以下のとおりである。
TEOS:テトラエトキシシラン
OcSn:オクチル酸錫
TIPT:テトライソプロポキシチタン
InN:硝酸インジウム三水和物
AN:硝酸アルミニウム九水和物
HG:2-メチル-2,4-ペンタンジオール(別称:へキシレングリコール)
BCS:2-ブトキシエタノール(別称:ブチルセロソルブ)
PB:プロピレングリコールモノブチルエーテル
EG:エチレングリコール
<合成例1>(実施例1)
 300mLフラスコ中にInNを11.2g、及び水を3.2g加えて攪拌し、InNを溶解した。そこに、HGを96.3g、PBを13.8g、及びTEOSを26.2g入れ、室温下で30分攪拌した。その後、BCSを27.5g、及びOcSnを21.8g入れ、さらに室温下で30分攪拌して溶液<K1>を得た。
<合成例2>(実施例2)
 300mLフラスコ中にInNを9.2g、及び水を2.7g加えて攪拌し、InNを溶解した。そこに、HGを97.7g、PBを14.0g、及びTEOSを16.5g入れ、室温下で30分攪拌した。その後、BCSを27.9g、及びOcSnを32.1g入れ、さらに室温下で30分攪拌して溶液<K2>を得た。
<合成例3>(比較例1)
<A液>
 200mLフラスコ中にANを12.1g、及び水を2.8g加えて攪拌し、ANを溶解した。そこに、EGを13.7g、HGを39.2g、BCSを37.2g、及びTEOSを22.9g入れ、室温下で30分攪拌した。
<B液>
 300mLフラスコ中にTIPTを13.4g、及びHGを58.8g入れ、室温下で30分攪拌した。
 <A液>と<B液>を混合し、室温下で30分攪拌して溶液(K3)を得た。
<合成例4>(比較例2)
<C液>
 200mLフラスコ中にANを11.5g、及び水を2.7g加えて攪拌し、ANを溶解した。そこに、EGを13.7g、HGを39.3g、BCSを37.3g、及びTEOSを15.5g入れ、室温下で30分攪拌した。
<D液>
 300mLフラスコ中にTIPTを21.2g、及びHGを58.9g入れ、室温下で30分攪拌した。
 <C液>と<D液>を混合し、室温下で30分攪拌して溶液(K4)を得た。
<製膜法>
 実施例の溶液を孔径0.5μmのメンブランフィルターで加圧濾過し、基板にスピンコート法により成膜した。この基板を60℃のホットプレート上で3分間乾燥した。
 上記製膜法にて、溶液K1及びK2から得られた被膜をKL1及びKL2とし、溶液K3及びK4から得られた被膜をそれぞれKM1及びKM2とした。
<膜厚比>
 Siウェハー基板に上記製膜法にて被膜を製膜した。その後、紫外線照射装置(アイグラフィックス社製、UB 011-3A形)、高圧水銀ランプ(入力電源1000W)を用いて50mW/cm(波長365nm換算)で10、20、及び60秒間それぞれ照射し(積算500、1000、及び3000mJ/cm)、それぞれの膜厚を光学式膜厚計(フィルメトリックス社製、F20薄膜測定システム)にて測定し、その結果を用いて紫外線照射前の膜厚との比率を算出した。
<クラック評価>
 ガラス基板上に、膜厚2μmのアクリル膜を形成した。アクリル膜の形成は、次のようにして行った。まず、アクリル材料組成物を、孔径0.5μmのメンブランフィルタで加圧濾過し、ガラス基板全面にスピンコート法により塗膜を形成した。次いで、この基板をホットプレート上で2分間加熱乾燥した後、熱風循環式オーブン内に移し、30分間焼成した。これにより、ガラス基板上にアクリル膜を形成した。
 上記のアクリル膜の上に、上記製膜法にて被膜を製膜した。次いで、高圧水銀ランプ(入力電源1000W)を用いて50mW/cm(波長365nm換算)の光強度で2分間紫外線照射した。紫外線照射量は6000mJ/cmとした。紫外線照射の後、230℃に設定された熱風循環式オーブン内に移し、30分間焼成した。こうして、基板上にコート膜を成膜した。
 クラック評価の評価基準については、基板上のコート膜において、クラックを生じないものを◎評価とし、面内は生じないがエッジのみクラックが生じるものを○評価とし、全面にクラックが生じるものを×評価とした。
<パターニング試験>
 Cr蒸着ガラス基板上に、上記製膜法にて被膜を製膜した。次いで、その基板の半分にCr蒸着ガラスを載せ、紫外線が露光される部分と、されない部分ができるようにした。そこに、紫外線照射装置(アイグラフィックス社製、UB 011-3A形)、高圧水銀ランプ(入力電源1000W)を用いて50mW/cm(波長365nm換算)で10、20、及び60秒間それぞれ照射した。(積算500、1000、及び3000mJ/cm
 その後、2.38%水酸化テトラメチルアンモニウム水溶液に30秒間浸漬し、その後エアーブローにより余分な水滴を飛ばした後、目視にて膜面を観察した。面内に膜が完全になかったものを0、エッジ部分のみ若干だけ残存したものを1、面内に膜が若干だけ残存しているものを2、面内にもある程度の膜が残存したものを3、膜表面のみ若干変質しているものを4、全く変化がないものを5として評価を行った。
 上記の膜厚比及びクラック評価結果を表1に、パターニング試験結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例1及び2は、比較例1及び2と比較して膜厚の減少が少ない。言い換えると、体積収縮が少ない。そのため、紫外線照射時や焼成時などに下層との歪みが小さく出来る。したがって、クラック評価結果にある通り、実施例1及び2は、下層に有機のオーバーコート層がある場合であっても、クラックを生じることがない。
 また、表2より、実施例1及び2は、500mJ程度の照射量でパターニングが可能であった。それに対して、比較例1及び2は3000mJ以上照射しなければパターニングできなかった。比較例2及び3は、少ない照射量では膜の緻密度が十分でないためと考えられる。
 実施例1及び2は紫外線照射により、効率的に、かつ他の層への歪みを小さくしつつ緻密な膜が得られることがわかった。
 本発明の金属酸化物被膜用塗布液を用いることで、タッチパネルをはじめとする各種電子デバイスの製造において、複雑な電極パターンを適切に保護することが出来る金属酸化物被膜が得られる。
 なお、2012年6月14日に出願された日本特許出願2012-135055号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記式(I)で示される金属アルコキシドと、下記式(IIA)又は式(IIB)で示される有機すず化合物とを含有する混合物を、下記式(III)で示される金属塩の存在下に有機溶媒中で加水分解・重縮合し、さらに析出防止剤を添加して得られることを特徴とする金属酸化物被膜用塗布液。
    (OR   (I)
     式(I)中、Mは珪素(Si)、マグネシウム(Mg)、亜鉛(Zn)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、インジウム(In)、ビスマス(Bi)及びニオビウム(Nb)からなる群から選択された少なくとも1種以上の金属を表す。Rは、炭素数1~5のアルキル基を表し、nは、2~5の整数を表す。
    Sn(OOCR   (IIA)
     式(IIA)中、Rは、フッ素原子で置換されていてもよく、また、ヘテロ原子を有していてもよい炭素数1~20のアルキル基を表す。
    Sn(RCOCHCOR   (IIB)
     式(IIB)中、R及びRは、フッ素原子で置換されていてもよく、また、ヘテロ原子を有していてもよい炭素数1~20のアルキル基を表す。
    (X)           (III)
     式(III)中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)及びセリウム(Ce)よりなる群から選択された少なくとも1種以上の金属を表し、Xは、塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表し、kは、Mの価数を表す。
  2.  前記有機すず化合物の含有量は、前記金属アルコキシドのモル数と前記有機すず化合物のモル数との合計100モル%に対して、30モル%以上である請求項1に記載の金属酸化物被膜用塗布液。
  3.  前記析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びこれらの誘導体よりなる群から選択された少なくとも1以上の物質である請求項1又は請求項2に記載の金属酸化物被膜用塗布液。
  4.  前記金属アルコキシドの金属原子(M)のモル数(m)と前記有機すず化合物の金属原子(Sn)のモル数(mSn)と前記金属塩の金属原子(M)のモル数(m)との合計に対する、前記金属塩の金属原子(M)のモル数(m)のモル比(m/(m+mSn+m))が0.01~0.7である請求項1~請求項3のいずれか1項に記載の金属酸化物被膜用塗布液。
  5.  前記金属アルコキシドは、シリコンアルコキシド又はその部分縮合物と、チタンアルコキシド又はその部分縮合物との重縮合物である請求項1~請求項4のいずれか1項に記載の金属酸化物被膜用塗布液。
  6.  前記金属アルコキシドは、シリコンアルコキシドである請求項1~請求項4のいずれか1項に記載の金属酸化物被膜用塗布液。
  7.  前記有機すず化合物は、オクチル酸すず(II)、ネオデカン酸すず(II)、オレイン酸すず(II)、シュウ酸すず(II)、アセチルアセトナートすず(II)、ヘキサフルオロアセチルアセトナートすず(II)、又はトリフルオロアセチルアセトナートすず(II)である請求項1~請求項6のいずれか1項に記載の金属酸化物被膜用塗布液。
  8.  前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナート又はこれらの塩基性塩である請求項1~請求項7のいずれか1項に記載の金属酸化物被膜用塗布液。
  9.  前記式(III)で示される金属塩が、アルミニウム、インジウム又はセリウムの硝酸塩である請求項1~請求項8のいずれか1項に記載の金属酸化物被膜用塗布液。
  10.  前記有機溶媒は、アルキレングリコール類又はそのモノエーテル誘導体を含む請求項1~請求項9に記載の金属酸化物被膜用塗布液。
  11.  請求項1~請求項10のいずれか1項に記載の金属酸化物被膜用塗布液を用いて成膜された金属酸化物被膜。
PCT/JP2013/066269 2012-06-14 2013-06-12 金属酸化物被膜用塗布液及び金属酸化物被膜 WO2013187450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380043117.1A CN104583350B (zh) 2012-06-14 2013-06-12 金属氧化物被膜用涂布液以及金属氧化物被膜
JP2014521379A JP6156373B2 (ja) 2012-06-14 2013-06-12 金属酸化物被膜用塗布液の製造方法
KR1020157000205A KR102190716B1 (ko) 2012-06-14 2013-06-12 금속 산화물 피막용 도포액 및 금속 산화물 피막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012135055 2012-06-14
JP2012-135055 2012-06-14

Publications (1)

Publication Number Publication Date
WO2013187450A1 true WO2013187450A1 (ja) 2013-12-19

Family

ID=49758268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066269 WO2013187450A1 (ja) 2012-06-14 2013-06-12 金属酸化物被膜用塗布液及び金属酸化物被膜

Country Status (5)

Country Link
JP (1) JP6156373B2 (ja)
KR (1) KR102190716B1 (ja)
CN (1) CN104583350B (ja)
TW (1) TWI613163B (ja)
WO (1) WO2013187450A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509621A (ja) * 1973-04-12 1975-01-31
JPS57140162A (en) * 1981-02-24 1982-08-30 Nippon Sheet Glass Co Ltd Coating polycarbonate group resin shape article
JPH02258646A (ja) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd コーティング用組成物及びその製造法
JPH0633000A (ja) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd 液晶表示素子用高屈折率絶縁被膜形成用塗布液
JPH06347605A (ja) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd コーティング組成物の製造方法
JPH07278491A (ja) * 1994-04-15 1995-10-24 Nissan Chem Ind Ltd 金属酸化物被膜形成用塗布液
JPH11209692A (ja) * 1998-01-23 1999-08-03 Dainippon Ink & Chem Inc 塗装物
WO2004039892A1 (ja) * 2002-11-01 2004-05-13 Kaneka Corporation 硬化性組成物および復元性、クリープ性改善方法
JP2005332748A (ja) * 2004-05-21 2005-12-02 Asahi Denka Kogyo Kk 透明導電膜形成用塗布液
WO2007020781A1 (ja) * 2005-08-19 2007-02-22 Nissan Chemical Industries, Ltd. 被膜形成用塗布液の製造方法
JP2008115323A (ja) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液および透明被膜付基材
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
JP2009155541A (ja) * 2007-12-27 2009-07-16 Ito Kogaku Kogyo Kk ハードコート組成物
JP2011034732A (ja) * 2009-07-30 2011-02-17 Namics Corp 導電性組成物、導電体及びその製造方法
WO2012099253A1 (ja) * 2011-01-20 2012-07-26 日産化学工業株式会社 タッチパネル用コーティング組成物、コート膜およびタッチパネル
WO2013065696A1 (ja) * 2011-10-31 2013-05-10 日産化学工業株式会社 金属酸化物被膜用塗布液の製造方法、金属酸化物被膜用塗布液及び金属酸化物被膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173238A (ja) 2001-12-05 2003-06-20 Sharp Corp タッチセンサおよびタッチセンサ付き表示装置
US9342176B2 (en) 2008-07-21 2016-05-17 Samsung Display Co., Ltd. Organic light emitting display device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509621A (ja) * 1973-04-12 1975-01-31
JPS57140162A (en) * 1981-02-24 1982-08-30 Nippon Sheet Glass Co Ltd Coating polycarbonate group resin shape article
JPH02258646A (ja) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd コーティング用組成物及びその製造法
JPH0633000A (ja) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd 液晶表示素子用高屈折率絶縁被膜形成用塗布液
JPH06347605A (ja) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd コーティング組成物の製造方法
JPH07278491A (ja) * 1994-04-15 1995-10-24 Nissan Chem Ind Ltd 金属酸化物被膜形成用塗布液
JPH11209692A (ja) * 1998-01-23 1999-08-03 Dainippon Ink & Chem Inc 塗装物
WO2004039892A1 (ja) * 2002-11-01 2004-05-13 Kaneka Corporation 硬化性組成物および復元性、クリープ性改善方法
JP2005332748A (ja) * 2004-05-21 2005-12-02 Asahi Denka Kogyo Kk 透明導電膜形成用塗布液
WO2007020781A1 (ja) * 2005-08-19 2007-02-22 Nissan Chemical Industries, Ltd. 被膜形成用塗布液の製造方法
JP2008115323A (ja) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液および透明被膜付基材
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
JP2009155541A (ja) * 2007-12-27 2009-07-16 Ito Kogaku Kogyo Kk ハードコート組成物
JP2011034732A (ja) * 2009-07-30 2011-02-17 Namics Corp 導電性組成物、導電体及びその製造方法
WO2012099253A1 (ja) * 2011-01-20 2012-07-26 日産化学工業株式会社 タッチパネル用コーティング組成物、コート膜およびタッチパネル
WO2013065696A1 (ja) * 2011-10-31 2013-05-10 日産化学工業株式会社 金属酸化物被膜用塗布液の製造方法、金属酸化物被膜用塗布液及び金属酸化物被膜

Also Published As

Publication number Publication date
CN104583350B (zh) 2018-04-10
KR102190716B1 (ko) 2020-12-14
CN104583350A (zh) 2015-04-29
TWI613163B (zh) 2018-02-01
TW201412671A (zh) 2014-04-01
JP6156373B2 (ja) 2017-07-05
JPWO2013187450A1 (ja) 2016-02-08
KR20150023644A (ko) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6417669B2 (ja) 感光性樹脂組成物、保護膜及び絶縁膜並びにタッチパネルの製造方法
TWI597265B (zh) A photosensitive resin composition, a protective film or an insulating film, a touch panel, and a method of manufacturing the same
JP5509675B2 (ja) シロキサン系樹脂組成物およびこれを用いた光学デバイス
JP6201280B2 (ja) シロキサン系樹脂組成物の製造方法、それを用いた硬化膜、光学物品および固体撮像素子の製造方法
JPWO2012099253A1 (ja) タッチパネル用コーティング組成物、コート膜およびタッチパネル
JP6075292B2 (ja) 金属酸化物被膜用塗布液の製造方法、金属酸化物被膜用塗布液及び金属酸化物被膜
JP6489288B1 (ja) 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板
CN104854509B (zh) 无机氧化物被膜形成用涂布液、无机氧化物被膜及显示器件
JP2013014680A (ja) シロキサン系樹脂組成物およびその製造方法、それを硬化してなる硬化膜ならびにそれを有する光学物品および固体撮像素子
JPWO2013115333A1 (ja) 金属酸化物被膜用塗布液及び金属酸化物被膜
JP6156373B2 (ja) 金属酸化物被膜用塗布液の製造方法
JP2022064302A (ja) ネガ型シロキサン樹脂組成物、硬化膜および素子
WO2017057543A1 (ja) 感光性樹脂組成物、硬化膜、タッチパネル及びタッチパネルの製造方法
JPWO2014054748A1 (ja) 微細塗布可能な無機酸化物被膜形成用塗布液及び微細無機酸化物被膜の製造方法
KR102490287B1 (ko) 감광성 실록산 수지 조성물, 경화막 및 터치패널용 부재
JP2012158743A (ja) 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
TW202302462A (zh) 提高耐候性之改質金屬氧化物膠體粒子及其溶膠,與其製造方法
JP2010222431A (ja) シロキサン系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13805050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000205

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13805050

Country of ref document: EP

Kind code of ref document: A1