WO2013183694A1 - 熱延鋼板用冷却水の水切り装置及び水切り方法 - Google Patents

熱延鋼板用冷却水の水切り装置及び水切り方法 Download PDF

Info

Publication number
WO2013183694A1
WO2013183694A1 PCT/JP2013/065647 JP2013065647W WO2013183694A1 WO 2013183694 A1 WO2013183694 A1 WO 2013183694A1 JP 2013065647 W JP2013065647 W JP 2013065647W WO 2013183694 A1 WO2013183694 A1 WO 2013183694A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
rolled steel
draining
water
steel sheet
Prior art date
Application number
PCT/JP2013/065647
Other languages
English (en)
French (fr)
Inventor
仁之 二階堂
芹澤 良洋
菱沼 紀行
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49712083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013183694(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to IN9187DEN2014 priority Critical patent/IN2014DN09187A/en
Priority to KR1020147002268A priority patent/KR101490663B1/ko
Priority to CN201380002508.9A priority patent/CN103747888B/zh
Priority to US14/395,154 priority patent/US9649679B2/en
Priority to BR112014027788-5A priority patent/BR112014027788B1/pt
Priority to JP2013547760A priority patent/JP5549786B2/ja
Priority to EP13801187.9A priority patent/EP2859964B2/en
Publication of WO2013183694A1 publication Critical patent/WO2013183694A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the present invention relates to the cooling water sprayed on the hot-rolled steel sheet when the hot-rolled steel sheet after finish rolling in the hot rolling process is cooled, particularly from more than 4 m 3 / m 2 / min to 10 m 3 / m 2 /
  • the present invention relates to a draining device and a draining method for draining cooling water having a water density of less than min.
  • the hot-rolled steel sheet after finish rolling in the hot rolling process is cooled to a predetermined temperature by a cooling device provided above and below the runout table while being transported from the finish rolling mill to the coiler by the runout table. Winded by a coiler.
  • the cooling mode after finish rolling is an important factor that determines the mechanical properties, workability, weldability, etc. of hot-rolled steel sheets. It is important to cool to a predetermined temperature.
  • the hot-rolled steel sheet is usually cooled using, for example, water (hereinafter referred to as cooling water) as a cooling medium.
  • cooling water water
  • the hot-rolled steel sheet is cooled using cooling water in a predetermined cooling region of the hot-rolled steel sheet.
  • Patent Document 1 discloses slit-type or circular-type nozzle injection so that the injection angle is inclined toward the upstream side in the sheet passing direction of the hot-rolled steel sheet on the downstream side of the cooling device, that is, the cooling nozzle that injects cooling water. It has been proposed to arrange one or more nozzles that inject drain water from the mouth. And the drainage of cooling water is performed with the drain water sprayed from this nozzle to a hot-rolled steel plate.
  • Patent Document 2 proposes that a water injection type draining facility is additionally provided in the cooling device, and an air nozzle group is disposed on the downstream side of the water jet type draining facility. Then, water is sprayed onto the hot-rolled steel sheet from the water-jet type water draining facility, and air is injected from the air nozzle group onto the hot-rolled steel sheet at the same time so that the air wind direction is substantially perpendicular to the sheet passing direction. Is going.
  • Patent Document 3 in a water draining device comprising a header provided with a nozzle for injecting water draining on a hot rolled steel sheet, the unit time of water draining water and the momentum per unit width (power of water draining water) are determined by hot rolling. Maintaining the cooling water staying on the upper surface of the steel plate within 1.5 to 5 times the unit time and momentum per unit width (cooling water force), and spraying drain water from the nozzle to the hot-rolled steel plate.
  • the unit time of water draining water and the momentum per unit width power of water draining water
  • cooling water having a large water amount density of more than 4 m 3 / m 2 / min to 10 m 3 / m 2 / min or less may be sprayed onto the hot-rolled steel sheet.
  • Patent Document 1 Although only the injection angle of the nozzle which injects draining water is illustrated by patent document 1, other conditions, for example, the amount of water, the flow rate, etc. of draining water, are not disclosed. Also, Patent Document 2 does not disclose conditions such as the amount of water drainage and the flow rate. Furthermore, in Patent Document 3, for example, as described in the examples of the specification of Patent Document 3 and Table 1, when cooling water having a small water amount density of 4 m 3 / m 2 / min or less is injected onto a hot-rolled steel sheet Only consider. Therefore, the draining methods described in these patent documents 1 to 3 do not consider draining cooling water having a large water amount density at all, and may not drain cooling water having a large water amount density.
  • the hot-rolled steel sheet 10 is sprayed from a plurality of flat spray nozzles 100.
  • the collision area 101 of the drained water that collides with the surface is arranged in a mountain shape so as not to interfere with each other.
  • the flat spray nozzle 100 temporarily receives the flow in the direction of the plate water (the negative direction in the Y direction in FIG. 8), generates a flow in the width direction, and the plate water is discharged by the flow. It is.
  • the present invention has been made in view of the above circumstances, and when the hot-rolled steel sheet after finish rolling in the hot rolling process is cooled with a large amount of cooling water, the hot-rolled steel sheet is cooled with the cooling water.
  • the purpose is to drain the cooling water appropriately while performing appropriately.
  • the present invention employs the following means in order to solve the above problems and achieve the object. That is, (1)
  • the cooling water draining device for hot-rolled steel sheets according to one aspect of the present invention is 4 m 3 / m to the hot-rolled steel sheet when cooling the hot-rolled steel sheet after finish rolling in the hot rolling process.
  • a draining device for draining the 10m 3 / m 2 / min cooling water injected in the following water flow rate from 2 / min greater, comprises a plurality of draining nozzles for injecting draining water to the hot-rolled steel sheet, the heat On the surface of the rolled steel sheet, the collision area of the drained water sprayed from each of the draining nozzles is continuously arranged linearly in the width direction of the hot-rolled steel sheet, and a part of the collision areas adjacent to each other overlap. ing.
  • the conventional draining method as described above may cause collision of adjacent draining water.
  • the water on the plate leaks out from the gap between the regions as indicated by the oblique arrows in FIG. 8, and the hot-rolled steel plate cannot be cooled and drained properly. Therefore, the inventor of the present application first sets the nozzle arrangement and the injection direction of the drained water so that the plurality of drained water collision areas are continuously arranged linearly in the width direction of the hot rolled steel sheet on the surface of the hot rolled steel sheet. Adjustment was made to verify the draining effect. As a result, there was no gap between adjacent draining water collision areas, and it succeeded in improving the leakage of water on the plate as compared with the conventional method, but the inventor of the present application is to cope with a larger amount of cooling water. Further studies were conducted.
  • the collision areas of adjacent draining waters do not overlap (in other words, the draining waters do not interfere with each other).
  • Arrangement, draining water injection direction, etc. were set.
  • the arrangement of nozzles, the direction of water injection, and the like are generally set so that water injected from the nozzles does not interfere with each other. The reason for this is that it is difficult to predict the influence of interference between water sprayed from the nozzles on the cooling capacity or descaling capacity, and the loss of water flow is also large.
  • the top priority is to prevent the leakage of water on the board.
  • a plurality of draining water collision regions are continuously arranged linearly in the width direction of the hot-rolled steel sheet,
  • the draining effect was verified by adjusting the nozzle arrangement and the jetting direction of the draining water so that a part of the adjacent collision areas overlapped (that is, the draining water adjacent to each other interferes)
  • the leakage of the large amount of water on the board can be significantly improved as compared with the conventional method.
  • the configuration of such a draining device can be realized by the present inventor who has changed the concept from conventional general technical common sense in order to cope with a large amount of cooling water. Is difficult to realize.
  • the height at which the jets of the draining water adjacent to each other in the width direction of the hot-rolled steel sheet join is a side view as viewed from the sheet passing direction of the hot-rolled steel sheet.
  • it may be higher than 400 mm from the surface of the hot-rolled steel sheet. That is, drainage water exists in the vertical direction without any gap from the surface of the hot-rolled steel sheet to a position higher than 400 mm.
  • the height of the cooling water is less than 400 mm from the surface of the hot-rolled steel sheet.
  • the cooling water does not flow out beyond the drained water by satisfying the condition that the height at which the jets of the adjacent drained water merge is higher than 400 mm from the surface of the hot-rolled steel sheet.
  • the cooling water scatters vertically upward from the surface of the hot-rolled steel sheet.
  • the momentum F A of the drained water flowing in the sheet passing direction of the hot-rolled steel sheet on the surface of the hot-rolled steel sheet is It may be 1.0 to 1.5 times the momentum F B of the cooling water flowing in the plate passing direction.
  • the momentum F A of the draining water is equal to or greater than the momentum F B of the cooling water, the draining water can dam the cooling water, and the cooling water does not flow through the draining water.
  • the momentum F A of the drained water is greater than 1.5 times the momentum F B of the cooling water according to the verification by the present inventor, the drained water sinks below the cooling water, and the cooling capacity of the hot-rolled steel sheet by the cooling water Turned out to be lower. Therefore, as described above, the momentum F A of draining water is preferably 1.0 to 1.5 times the momentum F B of cooling water.
  • the momentum per unit time and unit width of water draining (force of draining water) is set as 1. of the momentum of cooling water per unit time and unit width (power of cooling water). 5 to 5 times.
  • This condition is, for example, as described in the example of Patent Document 3 and Table 1 with a small water density of 4 m 3 / m 2 / min or less (hereinafter, this range of water density is referred to as a small water density).
  • the dominant factor for defining the momentum of the cooling water is, for example, the momentum of the cooling water defined in paragraph 0019 of the specification of Patent Document 3. As it is, it becomes the depth (potential energy) of the cooling water staying on the surface of the hot rolled steel sheet. That is, the cooling water staying on the surface of the hot rolled steel sheet contributes most to the cooling of the hot rolled steel sheet.
  • the momentum of the cooling water is reduced, if the momentum of the draining water is set to be equal to or greater than the momentum of the cooling water, the draining water will sink under the cooling water, resulting in a cooling capacity different from that when cooling without draining. .
  • the dominant factor in defining the momentum F B of the cooling water is the cooling injected from the nozzle to the hot-rolled steel sheet. It is a horizontal component of water. That is, the cooling water sprayed from the nozzle contributes most to the cooling of the hot-rolled steel sheet.
  • the momentum of the cooling water having a large water density increases, if the momentum F A of the draining water is made larger than 1.5 times the momentum F B of the cooling water, the draining water is placed below the cooling water as described above. It sinks and the cooling capacity of the hot-rolled steel sheet by cooling water decreases.
  • the plurality of draining nozzles are a distance between the draining nozzle and the surface of the hot-rolled steel sheet in the spraying direction of the draining water. May be arranged side by side in the width direction of the hot-rolled steel sheet so as to be within 2000 mm. According to the inventor's verification, when the distance in the direction of spraying water between the draining nozzle and the surface of the hot rolled steel sheet exceeds 2000 mm, the drained water sprayed from the draining nozzle to the hot rolled steel sheet is attenuated by air resistance.
  • the momentum of the drained water becomes small, and there is a possibility that a large amount of cooling water cannot be drained appropriately. Therefore, as described above, it is preferable to set the distance between the draining nozzle and the surface of the hot-rolled steel sheet in the jet direction of draining water within 2000 mm.
  • the spray angle from the vertical direction of drained water sprayed from the drain nozzle may be 20 to 65 degrees. .
  • the plurality of draining nozzles are provided upstream and downstream of a cooling water nozzle that injects cooling water onto the hot-rolled steel sheet. Each may be arranged.
  • the plurality of draining nozzles may be flat spray nozzles.
  • the cooling water draining method for hot-rolled steel sheets according to one aspect of the present invention is 4 m 3 / m with respect to the hot-rolled steel sheet when the hot-rolled steel sheet after finish rolling in the hot rolling process is cooled. 2 / from min greater a 10 m 3 / m 2 / min draining method for draining the cooling water injected at a water density of less, the hot-rolled steel sheet impact area of a plurality of draining water on the surface of the hot-rolled steel sheet A step of injecting the drained water from a plurality of draining nozzles onto the hot-rolled steel sheet so that a part of the adjacent collision regions are arranged in a straight line in the width direction.
  • the height at which the jets of the draining water adjacent to each other in the width direction of the hot-rolled steel sheet join is a side view as viewed from the sheet passing direction of the hot-rolled steel sheet. In this case, it may be higher than 400 mm from the surface of the hot-rolled steel sheet.
  • the momentum F A of the drained water flowing in the sheet passing direction of the hot-rolled steel sheet on the surface of the hot-rolled steel sheet is It may be 1.0 to 1.5 times the momentum F B of the cooling water flowing in the plate passing direction.
  • the plurality of draining nozzles is a distance between the draining nozzle and the surface of the hot-rolled steel sheet in the spraying direction of the draining water. May be arranged side by side in the width direction of the hot-rolled steel sheet so as to be within 2000 mm.
  • the spray angle from the vertical direction of drained water sprayed from the drain nozzle may be 20 to 65 degrees.
  • the plurality of draining nozzles are provided upstream and downstream of a cooling water nozzle that injects cooling water onto the hot-rolled steel sheet. Even if the cooling water on the upstream side and the downstream side of the cooling water nozzle is drained by the draining water sprayed from the draining nozzles arranged on the upstream side and the downstream side of the cooling water nozzle, respectively. Good.
  • the plurality of draining nozzles may be flat spray nozzles.
  • the cooling water can be appropriately drained.
  • Drawing 1 is an explanatory view showing the outline of the composition of hot rolling equipment 1 which has the draining device concerning this embodiment.
  • the heated slab S is continuously rolled up and down with a roll, and rolled to a sheet thickness of, for example, 1 mm, and the hot rolled steel sheet 10 is wound up.
  • the hot rolling facility 1 includes a heating furnace 11 for heating the slab S, a width-direction rolling machine 12 for rolling the slab S heated in the heating furnace 11 in the width direction, and a slab rolled in the width direction.
  • a roughing mill 13 that rolls S from above and below to make a rough bar, a finishing mill 14 that continuously hot-rolls the rough bar to a predetermined thickness, and a hot finishing by this finishing mill 14.
  • a cooling device 15 that cools the rolled hot-rolled steel plate 10 with cooling water
  • a draining device 16 that drains the cooling water sprayed from the cooling device 15, and the hot-rolled steel plate 10 cooled by the cooling device 15 in a coil shape
  • a winding device 17 for winding.
  • the heating furnace 11 is provided with a side burner, an axial flow burner, and a roof burner for heating the slab S by blowing out a flame with respect to the slab S carried in from the outside through the loading port.
  • the slab S carried into the heating furnace 11 is sequentially heated in each heating zone formed in each zone, and further in the soaking zone formed in the final zone, the slab S is evenly heated using a roof burner, A coercive heat treatment is performed to enable conveyance at the optimum temperature.
  • the slab S is transferred to the outside of the heating furnace 11 and moves to a rolling process by the rough rolling mill 13.
  • the rough rolling mill 13 allows the slab S that has been conveyed to pass through the gap between the cylindrical rotating rolls that are arranged across a plurality of stands.
  • the rough rolling mill 13 hot-rolls the slab S with only the work rolls 13a disposed up and down in the first stand to form a rough bar.
  • the rough bar that has passed through the work roll 13a is further continuously rolled by a plurality of quadruple rolling mills 13b constituted by the work roll and the backup roll.
  • the rough bar is rolled to a thickness of about 30 to 60 mm and conveyed to the finishing mill 14.
  • the finishing mill 14 finish-rolls the conveyed coarse bar to a thickness of about several mm. These finishing mills 14 allow the coarse bar to pass through the gaps between the finishing rolling rolls 14a arranged in a straight line over 6 to 7 stands, and gradually reduce them.
  • the hot-rolled steel sheet 10 finish-rolled by the finish rolling mill 14 is transported by a transport roll 18 described later and sent to the cooling device 15.
  • cooling device 15 The configuration of the cooling device 15 and the draining device 16 will be described in detail later.
  • the winding device 17 winds the hot-rolled steel sheet 10 cooled by the cooling device 15 at a predetermined winding temperature.
  • the hot-rolled steel sheet 10 wound up in a coil shape by the winding device 17 is conveyed outside the hot rolling facility 1.
  • the cooling device 15 has a plurality of cooling water nozzles 20 that inject cooling water onto the surface of the hot-rolled steel sheet 10 above the hot-rolled steel sheet 10 that is transported on the transport roll 18 of the run-out table. ing.
  • the cooling water nozzle 20 for example, a full cone spray nozzle is used.
  • a plurality of, for example, five cooling water nozzles 20 are arranged in the width direction (X direction in the drawing) of the hot-rolled steel plate 10, and the sheet passing direction (Y direction in the drawing) of the hot-rolled steel plate 10. ), For example, four.
  • the cooling water nozzle 20 in this embodiment by injecting cooling water from 4m 3 / m 2 / min greater relative hot-rolled steel sheet 10 10m 3 / m 2 / min or less large water density, hot-rolled steel sheet 10 is cooled to a predetermined temperature.
  • the cooling device 15 has a plurality of other cooling water nozzles 21 for injecting cooling water, for example, on the back surface of the hot rolled steel sheet 10 below the hot rolled steel sheet 10 as shown in FIG.
  • a full cone spray nozzle is also used for the other cooling water nozzles 21.
  • the arrangement of the other cooling water nozzles 21 is the same as the arrangement of the cooling water nozzles 20 described above.
  • the cooling water from the cooling nozzle 20 is injected in the vertical direction, and therefore, the injection angle ⁇ from the vertical direction of the cooling water injected from the cooling water nozzle 20 described later. B is 0 °.
  • the draining device 16 has a plurality of draining nozzles 22 for injecting draining water onto the surface of the hot-rolled steel sheet 10 above the hot-rolled steel sheet 10 and upstream and downstream of the cooling water nozzle 20.
  • the draining nozzle 22 for example, a flat spray nozzle is used.
  • the upstream draining nozzle 22 drains the cooling water flowing from the cooling water nozzle 20 to the upstream side by draining water ejected from the draining nozzle 22.
  • the draining nozzle 22 on the downstream side drains the cooling water flowing downstream from the cooling water nozzle 20 with the draining water sprayed from the draining nozzle 22.
  • a plurality of, for example, five, draining nozzles 22 are arranged in the width direction of the hot-rolled steel sheet 10.
  • a collision area 30 of a jet of drained water that is jetted from the draining nozzle 22 and collides with the surface of the hot-rolled steel sheet 10 is linearly continued in the width direction of the hot-rolled steel sheet 10 in a plan view.
  • a part of the collision areas 30 arranged side by side and adjacent to each other are arranged so as to overlap each other. For example, in the width direction of the hot-rolled steel sheet 10, if there is a gap in the collision region of draining water adjacent to each other, cooling water (board water) may flow out from the gap.
  • the cooling water since the collision region of drained water exists without a gap in the width direction of the hot-rolled steel sheet 10, the cooling water does not flow out.
  • the draining nozzle 22 is disposed so that the spray angle of the draining water is inclined toward the cooling water nozzle 20.
  • FIG. 4 schematically shows the arrangement of the draining nozzles 22 in a side view of the hot-rolled steel sheet 10 as viewed from the sheet passing direction.
  • the interval P in the width direction of the hot-rolled steel sheet 10 between the adjacent water-draining nozzles 22, 22 is a height H at which the jets of water-draining water adjacent to each other in the width direction of the hot-rolled steel sheet 10 merge.
  • the cooling water does not flow out beyond the drained water by satisfying the condition that the height at which the jets of drained water adjacent to each other join is higher than 400 mm from the surface of the hot-rolled steel sheet 10.
  • the cooling water having a large water amount density is sprayed onto the hot-rolled steel sheet 10 as in the present embodiment, the cooling water scatters vertically upward from the surface of the hot-rolled steel sheet 10, so the condition of the height of the drained water It is preferable to satisfy.
  • the height H at which the jet of drained water merges is geometrically calculated by the following equation (3).
  • the interval P between the draining nozzles 22 and 22 in the following formula (3) the angle of attack ⁇ A of the draining water, so that the height H at which the jets of the draining water merge is higher than 400 mm from the surface of the hot rolled steel sheet 10.
  • injection angle theta S of draining water is set.
  • the height H at which the jets of drained water merge is naturally less than the height h A from the surface of the hot-rolled steel sheet 10 of the drain nozzle 22, and the upper limit of the height H is substantially 900 mm. is there.
  • H ⁇ h A / cos ⁇ A ⁇ tan ( ⁇ S / 2) ⁇ P / 2 ⁇ ⁇ cos ⁇ A / tan ( ⁇ S / 2) (3)
  • h A is the height from the surface of the hot-rolled steel sheet 10 of the draining nozzle 22 (about 1000 mm)
  • theta A is from vertical draining water sprayed from the draining nozzle 22 Is an injection angle (hereinafter may be referred to as an angle of attack)
  • ⁇ S is an injection angle of draining water from the draining nozzle 22
  • P is a width direction of the hot-rolled steel sheet 10 between the draining nozzles 22, 22. It is an interval.
  • the spray angle ⁇ S of draining water is, for example, 5 to 150 °.
  • the spray angle ⁇ S of the drained water is preferably 10 to 130 °, and more preferably 20 to 60 °.
  • the injection angle theta S of draining water is too narrow, the smaller the nozzle pitch in order to ensure draining height, economical because the number of nozzles increases is deteriorated.
  • the injection angle theta S of draining water is too wide, the nozzle pitch is large, becomes better economics since the number of nozzles is reduced, since the amount of water draining water push back the coolant direction is reduced, the function of draining Decreases. Therefore, it is realistic that the spray angle ⁇ S of draining water is 5 to 150 °.
  • the spray angle ⁇ S of draining water is 10 to 130 °, it is preferable because drainability is improved. Further, the spray angle ⁇ S of draining water is more preferably 20 to 60 °. The reason for this is that increasing the number of nozzles and setting the injection angle ⁇ S smaller makes it easier to secure the amount of drained water in the direction of pushing back the cooling water, so the water supply system scale (piping, pump capacity, etc.) is reduced. It can be said that it is economical.
  • FIG. 5 schematically shows the arrangement of the draining nozzle 22 with respect to the cooling water nozzle 20 in a side view as viewed from the width direction of the hot-rolled steel sheet 10.
  • the draining nozzle 22 is disposed at a position where the distance L between the draining nozzle 22 and the surface of the hot-rolled steel sheet 10 is within 2000 mm in the spraying direction of the draining water from the draining nozzle 22.
  • the distance L in the spraying direction of the draining water between the draining nozzle 22 and the surface of the hot-rolled steel sheet 10 exceeds 2000 mm
  • the drained water sprayed from the draining nozzle 22 onto the hot-rolled steel sheet 10 is verified by the inventors It has been found that there is a possibility that the amount of momentum of the drained water is reduced due to the air resistance, and the large amount of cooling water may not be drained appropriately. Therefore, as described above, it is preferable to set the distance L between the draining nozzle 22 and the surface of the hot-rolled steel sheet 10 in the spraying direction of the draining water within 2000 mm.
  • the draining nozzle 22 is disposed at a position where the draining water ejected from the draining nozzle 22 and the cooling water ejected from the cooling water nozzle 20 do not collide before reaching the hot-rolled steel sheet 10. That is, the draining nozzle 22 is disposed at a position where the distance D between the draining nozzle 22 and the cooling water nozzle 20 satisfies the following formula (4).
  • h A is the height of the draining nozzle 22 from the surface of the hot-rolled steel sheet 10
  • ⁇ A is the angle of attack from the vertical direction of the draining water sprayed from the draining nozzle 22.
  • H B is the height of the cooling water nozzle 20 from the surface of the hot-rolled steel sheet 10
  • ⁇ B is the injection angle of the cooling water injected from the cooling water nozzle 20 from the vertical direction.
  • the draining water sprayed from the draining nozzle 22 is such that the momentum F A of the draining water flowing to the cooling water nozzle 20 side in the sheet passing direction of the hot-rolled steel sheet 10 is on the surface of the hot-rolled steel sheet 10. It is injected so as to be 1.0 to 1.5 times the momentum F B of the cooling water flowing toward the draining nozzle 22 in the direction.
  • the amount of movement F A of the draining water is, for example, the density ⁇ of water, the amount Q A of the draining water ejected from the draining nozzle 22, the flow velocity v A of the draining water ejected from the draining nozzle 22, and the ejecting from the draining nozzle 22.
  • the momentum F B of the cooling water is, for example, the density ⁇ of water, the amount Q B of cooling water sprayed from the one row of cooling water nozzles 20 arranged in the width direction of the hot-rolled steel sheet 10, and the cooling water nozzle 20.
  • F A ⁇ ⁇ Q A ⁇ v A ⁇ (1 + sin ⁇ A ) / 2
  • F B ⁇ ⁇ Q B ⁇ v B ⁇ (1 + sin ⁇ B ) / 2 (2)
  • the method for deriving the equation (2) is the same as the method for deriving the equation (1).
  • the amount of drained water ejected from the draining nozzle 22 is Q A
  • the flow rate of the drained water ejected from the draining nozzle 22 is v A
  • the draining water ejected from the draining nozzle 22 is viewed from the vertical direction.
  • the jet angle is ⁇ A and the water density is ⁇ .
  • the momentum F A of draining water flowing toward the cooling water nozzle 20 along the surface of the hot-rolled steel sheet 10 is defined by the following equation (5).
  • the momentum F A ′ of drained water flowing to the opposite side of the cooling water nozzle 20 along the surface of the hot-rolled steel sheet 10 is defined by the following equation (6).
  • F A ⁇ ⁇ Q 1 ⁇ v 1 (5)
  • F A ' ⁇ ⁇ Q 2 ⁇ v 2 (6)
  • Q 1 is the amount of drained water that flows to the cooling water nozzle 20 side along the surface of the hot-rolled steel sheet 10
  • v 1 is the cooling water nozzle 20 side along the surface of the hot-rolled steel sheet 10.
  • Q 2 is the amount of drained water that flows to the opposite side of the cooling water nozzle 20 along the surface of the hot-rolled steel sheet 10
  • v 2 is the cooling water nozzle along the surface of the hot-rolled steel sheet 10.
  • 20 is the flow rate of drained water flowing to the opposite side of 20.
  • Equation (10) Water to Q 1 drained water is expressed by the following equation (11), water Q 2 of the draining water can be expressed by the following equation (12).
  • Q A Q 1 + Q 2 (10)
  • Q 1 Q A ⁇ (1 + sin ⁇ A ) / 2 (11)
  • Q 2 Q A ⁇ (1-sin ⁇ A ) / 2 (12)
  • the momentum F A of the drained water (that is, drained water flowing toward the cooling water nozzle 20 along the surface of the hot-rolled steel sheet 10) is finally obtained by the above formula (5), the above formula (8) and the above formula (11).
  • F A ⁇ ⁇ Q A ⁇ v A ⁇ (1 + sin ⁇ A ) / 2 (1)
  • the momentum F B of the cooling water represented by the formula (2) is the cooling water flowing toward the draining nozzle 22 along the surface of the hot-rolled steel sheet 10. (See FIG. 5).
  • various devices are used so that the momentum F A of draining water is 1.0 to 1.5 times the momentum F B of cooling water based on the equations (1) and (2).
  • Parameters (variables in the above equations (1) and (2)) are set.
  • the momentum F A and the momentum F B of the cooling water are vector quantities that face the direction in which the draining water and the cooling water collide with each other on the surface of the hot-rolled steel sheet 10.
  • the above (1) and (2) in the amount of water Q B of the water Q A of draining water jetted with draining nozzle 22 from the cooling water nozzle 20 cooling water, respectively draining nozzle 22 coolant nozzle 20 It is assumed that the temperature is constant from immediately after spraying until the surface of the hot-rolled steel sheet 10 is reached.
  • the injection angle ⁇ B of the cooling water injected from the cooling water nozzle 20 is an angle from the vertical direction
  • the amount of cooling water Q B injected from the cooling water nozzle 20 is It is assumed that all flows on the surface either upstream or downstream.
  • the cooling water amount Q B of the coolant when considering the amount of water in water Q B of the coolant, will be under consideration the amount of water (the safest side from the viewpoint of drainage) most dangerous, even the largest momentum F B of the cooling water.
  • the cooling water amount Q B when considering the cooling water amount Q B is considered, only one row of cooling water from the cooling water nozzle 20 on the most upstream side or the most downstream side, that is, the cooling water nozzle 20 closest to the draining nozzle 22 is considered. The cooling water from other cooling water nozzles 20 is not considered.
  • the cooling water from the other cooling water nozzle 20 since the flow of the hot-rolled steel sheet 10 in the sheet passing direction cancels, the said cooling water flows in the width direction of the hot-rolled steel sheet 10.
  • the draining water uses the cooling water. It can be dammed up and cooling water will not flow through the draining water.
  • the momentum F A of the drained water is larger than 1.5 times the momentum F B of the cooling water according to the verification by the present inventor, the drained water sinks below the cooling water, and the hot rolled steel sheet 10 is cooled by the cooling water. It was found that the ability declined. Therefore, it is preferable to set the momentum F A of draining water to 1.0 to 1.5 times the momentum F B of cooling water as in the present embodiment.
  • the angle of attack ⁇ A from the vertical direction of drained water sprayed from the draining nozzle 22 is 20 to 65 degrees, and more preferably 30 to 50 degrees.
  • the angle of attack ⁇ A is smaller than 20 degrees, draining water sprayed from the draining nozzle 22 may flow in the opposite direction to the cooling water. In this case, there is a possibility that the cooling water cannot be drained properly by draining water.
  • the attack angle ⁇ A is larger than 65 degrees, the distance between the draining nozzle 22 and the collision region 30 is increased, and the area occupied by the hot rolling facility 1 is increased. Therefore, the angle of attack ⁇ A is preferably 20 to 65 degrees.
  • the collision areas 30 of the drained water sprayed from each of the draining nozzles 22 are continuously arranged linearly in the width direction of the hot-rolled steel sheet 10, And the arrangement
  • variety of the hot-rolled steel sheet 10 is set so that the distance L of the water-drain nozzle 22 and the surface of the hot-rolled steel sheet 10 in the injection direction of the drained water may be within 2000 mm. They are arranged side by side.
  • the height H at which the jets of drained water adjacent to each other in the width direction of the hot-rolled steel sheet 10 join is the surface of the hot-rolled steel sheet 10 in a side view as viewed from the sheet passing direction of the hot-rolled steel sheet 10. Is set to be higher than 400 mm. Furthermore, in this embodiment, on the surface of the hot-rolled steel sheet 10, the momentum F A of draining water flowing in the direction of the hot-rolled steel sheet 10 (cooling water nozzle side) It is set to be 1.0 to 1.5 times the momentum F B of the cooling water flowing to the side).
  • the hot-rolled steel sheet 10 is cooled with cooling water having a large water density from 4 m 3 / m 2 / min to 10 m 3 / m 2 / min or less.
  • the cooling water can be drained appropriately while properly cooling 10. The effect of each condition is as described above.
  • the hot-rolled steel sheet 10 can be uniformly cooled to a predetermined temperature using the cooling device 15. Moreover, since the hot-rolled steel sheet 10 is cooled with cooling water having a large water amount density of more than 4 m 3 / m 2 / min to 10 m 3 / m 2 / min or less, the hot-rolled steel sheet 10 is appropriately cooled with a high cooling capacity. Can do.
  • the draining nozzles 22 are provided on both the upstream side and the downstream side of the cooling water nozzle 20.
  • a restraining roll or a side spray is used instead of any one of the draining nozzles 22, a restraining roll or a side spray is used. May be.
  • FIG. 7A illustrates a case where a plurality of draining nozzles 22 are arranged in a direction inclined by an angle ⁇ 1 counterclockwise with respect to the width direction of the hot-rolled steel sheet 10.
  • angles ⁇ 1 and ⁇ 2 are preferably 0 ° or more and 30 ° or less. If the angles ⁇ 1 and ⁇ 2 exceed 30 °, the equipment size is increased due to an increase in the pipe length and the number of nozzles, so the economic efficiency deteriorates. Moreover, when the angles ⁇ 1 and ⁇ 2 exceed 30 °, there is a possibility that a problem such as a temperature difference between the work side and the drive side occurs.
  • the draining nozzle 22 may be arranged so that draining water directly hits the table roll.
  • the plate-passability is not impaired when the steel plate tip passes. For example, it is necessary to reduce the amount and pressure of drained water only when passing through the front end of the steel sheet, or to eject drained water after passing through the front end of the steel sheet. Therefore, it is preferable to arrange the draining nozzle 22 so that draining water directly hits the table roll.
  • the draining water collision area 30 on the surface of the hot-rolled steel sheet 10 is continuously arranged linearly in the width direction of the hot-rolled steel sheet 10 in a plan view and adjacent to the width direction of the hot-rolled steel sheet 10.
  • the height H at which the water jets merge is higher than 400 mm from the surface of the hot-rolled steel sheet 10, and the momentum F A of draining water flowing in the direction of the hot-rolled steel sheet 10 on the surface of the hot-rolled steel sheet 10 is the cooling water.
  • another nozzle such as a full cone spray nozzle may be used as the draining nozzle 22.
  • a full-width slit nozzle nozzle with fluid ejection holes extending in the entire width direction of the hot-rolled steel sheet
  • a full width slit nozzle for hot rolling is used at a low pressure and a large flow rate.
  • the full width slit nozzle for high pressure and large flow rate is used only in a special process because the amount of water becomes very large. The reason is that the full-width slit nozzle has a fluid ejection hole (slit) that extends in the entire width direction of the hot-rolled steel sheet, so that it is necessary to reduce the thickness of the slit in order to obtain an ejection width equivalent to that of the spray nozzle. Because.
  • a slit having a width of 2 m has a slit thickness of 0.6 mm, and thus is easily clogged.
  • this thickness is about 3 mm, for example, the flow rate is 1/5 and the flow rate is significantly reduced. Therefore, it is difficult to organize only by the ratio of the momentum of draining and cooling water. For example, the drainage problem occurs because the amount of drained water is very large. For the above reasons, it is not preferable to use a full width slit nozzle as the draining nozzle 22.
  • cooling water amount (water amount density) Q B As shown in Table 1, cooling water amount (water amount density) Q B , draining water amount (water amount density) Q A , draining water injection angle ⁇ S , draining water angle ⁇ A , draining nozzles 22, 22 The interval (pitch) P between them was changed, and the draining effect of the cooling water was verified.
  • the amount of water Q B of the cooling water, the cooling water nozzle 20 of the most upstream or the most downstream side that is, considering only one half of one column of the cooling water from the cooling water nozzle 20 of the side closest to the draining nozzle 22
  • the cooling water from other cooling water nozzles 20 is not considered.
  • the impingement region 30 of the water draining water jet on the surface of the hot rolled steel sheet 10 is in the width direction of the hot rolled steel sheet 10 in plan view. A part of the collision areas 30 that are arranged in a straight line and are adjacent to each other overlap.
  • A is a less than 1.3 the ratio F A / F B of the momentum F A of draining water and momentum F B of the coolant, without the cooling capacity decreases substantially (reduced cooling capability than 0% and less than 10% ).
  • B is a ratio F A / F B is less than 1.3 to 1.5 with momentum F A of draining water and momentum F B of the coolant, there cooling capacity decreases slightly (less than 10% or more 30% It is judged that the cooling capacity is reduced.
  • F A / F B is an at least 1.5 percentage F A / F B of the momentum F A of draining water and momentum F B of the coolant, is determined cooling capacity decreases there (30% or more of the cooling capacity decreases) It means that.
  • B and C are cases in which the cooling capacity of the cooling facility is not as designed, but draining is possible, and in the case where draining is given priority over grasping the cooling capacity of the cooling facility body,
  • the ratio F A / F B may be 1.5 or more.
  • the momentum ratio F A / F B is a guideline, and the amount of decrease in cooling capacity is affected by the amount of water in the cooling facility and the nozzle distance.
  • the momentum F A of draining water flowing in the sheet passing direction of the hot-rolled steel sheet 10 is 1.0 to 1.5 times the momentum F B of cooling water.
  • the distance L between the draining nozzle 22 and the surface of the hot-rolled steel sheet 10 in the spraying direction of draining water from the draining nozzle 22 is within 2000 mm. We verified whether these three conditions were satisfied.
  • the amount of cooling water (water amount density) Q B is a small water amount density of 4 m 3 / m 2 / min or less.
  • Examples 1 to 5 and Comparative Examples 12 to 17, Tables 6 to 10 and Comparative Examples 18 to 23, Examples 11 to 15 and Comparative Examples 24 to 29 in Table 1 are respectively the amount of cooling water (water amount).
  • Density) Q B is a large water density from 4 m 3 / m 2 / min to 10 m 3 / m 2 / min.
  • Comparative Examples 1 to 11 in which the cooling water quantity (water density) Q B is a small water density of 3.5 m 3 / m 2 / min will be examined.
  • the cooling water quantity (water density) Q B is a small water density of 3.5 m 3 / m 2 / min.
  • all the above conditions (1) to (3) were satisfied, and draining was performed appropriately.
  • the momentum F A of the draining water is equal to or greater than the momentum F B of the cooling water.
  • the draining water enters under the cooling water, and the cooling capacity of the hot-rolled steel sheet 10 by the cooling water. Decreased.
  • Comparative Example 7 satisfies the conditions (2) and (3), and the drainage water has a momentum F A larger than 1.5 times the cooling water momentum F B. Because momentum F a is too large, draining water slip below the cooling water, the cooling capacity of the hot-rolled sheet 10 by the cooling water is lowered. Therefore, “Evaluation” of Comparative Examples 1 to 7 is “B”. In Comparative Examples 8 and 9, since the momentum F A of the draining water is equal to or greater than the momentum F B of the cooling water, the cooling ability of the hot-rolled steel sheet 10 by the cooling water is reduced. Moreover, since any one of the conditions (1) to (3) is not satisfied, draining was not performed properly. Therefore, “evaluation” of Comparative Examples 8 and 9 is “B”.
  • Comparative Examples 10 and 11 since the momentum F A of the draining water is smaller than the momentum F B of the cooling water, the cooling capacity of the hot-rolled steel sheet 10 by the cooling water did not decrease, but the condition (1) was not satisfied. Draining was not performed properly. Therefore, “Evaluation” of Comparative Examples 10 and 11 is “B”. As described above, when the hot-rolled steel sheet 10 is cooled with the cooling water having a small water density, the cooling water cannot be appropriately drained while appropriately cooling the hot-rolled steel sheet 10 with the cooling water.
  • Examples 1 to 5 and Comparative Examples 12 to 17 in which the amount of cooling water (water amount density) Q B is a large water amount density of 4.2 m 3 / m 2 / min will be examined.
  • Comparative Example 12 satisfies the conditions (2) and (3) and the momentum F A of the draining water is larger than 1.5 times the momentum F B of the cooling water, the draining performance is good, but the momentum F A of the draining water is good. Is too large, drained water has entered under the cooling water, and the cooling capacity of the hot-rolled steel sheet 10 by the cooling water has decreased.
  • Comparative Examples 13 to 15 since the momentum F A of draining water is smaller than the momentum F B of cooling water, the cooling ability of the hot-rolled steel sheet 10 by the cooling water did not decrease, but the condition (1) was not satisfied. Draining was not performed properly.
  • Comparative Example 16 the condition (1) was satisfied, and the cooling capacity of the hot-rolled steel sheet 10 with the cooling water did not decrease, but the height H at which the adjacent jets of drained water merge was 400 mm or less, and the condition (2) was not satisfied, and draining was not performed properly.
  • Comparative Example 17 the distance L between the draining nozzle 22 and the surface of the hot-rolled steel sheet 10 was greater than 2000 mm, did not satisfy the condition (3), and the draining was not performed properly.
  • Examples 6 to 10 and Comparative Examples 18 to 23 in which the amount of cooling water (water amount density) Q B is a large water amount density of 6.0 m 3 / m 2 / min will be examined.
  • Comparative Example 18 satisfies the conditions (2) and (3) and the momentum F A of the draining water is larger than 1.5 times the momentum F B of the cooling water, the draining performance is good, but the momentum F A of the draining water is good. Is too large, drained water has entered under the cooling water, and the cooling capacity of the hot-rolled steel sheet 10 by the cooling water has decreased.
  • Examples 11 to 15 and Comparative Examples 24 to 29 in which the amount of cooling water (water amount density) Q B is a large water amount density of 8.0 m 3 / m 2 / min will be examined.
  • Comparative Example 24 satisfies the conditions (2) and (3) and the momentum F A of the draining water is larger than 1.5 times the momentum F B of the cooling water, the draining performance is good, but the momentum F A of the draining water is good. Is too large, drained water has entered under the cooling water, and the cooling capacity of the hot-rolled steel sheet 10 by the cooling water has decreased.
  • Comparative Examples 25 to 27 since the momentum F A of draining water is smaller than the momentum F B of cooling water, the cooling capacity of the hot-rolled steel sheet 10 by the cooling water did not decrease, but the condition (1) was not satisfied. Draining was not performed properly.
  • Comparative Example 28 the condition (1) was satisfied, and the cooling capacity of the hot-rolled steel sheet 10 by the cooling water did not decrease, but the height H at which the adjacent jets of drained water merge was 400 mm or less, and the condition (2) was not satisfied, and draining was not performed properly.
  • Comparative Example 29 the distance L between the water draining nozzle 22 and the surface of the hot-rolled steel sheet 10 was greater than 2000 mm, the condition (3) was not satisfied, and water draining was not performed properly.
  • Examples 11 to 15 satisfy all of the conditions (1) to (3) and appropriately drain the cooling water while appropriately cooling the hot-rolled steel sheet 10 with the cooling water. I was able to.
  • the water density of the cooling water is a large water density of more than 4 m 3 / m 2 / min to 10 m 3 / m 2 / min and when the draining device and draining method of the present invention are used. That is, when all of the conditions (1) to (3) are satisfied, it was confirmed that the cooling water can be appropriately drained while appropriately cooling the hot-rolled steel sheet 10 with the cooling water. On the other hand, when the water volume density of the cooling water is a small water volume density of 4 m 3 / m 2 / min or less, or any one of the conditions (1) to (3) is not satisfied, It was confirmed that the cooling water could not be drained properly while properly cooling 10.
  • Examples 2 and 12 in which “drainage” is “A” are the best examples. That is, the best condition is that the draining water injection angle ⁇ S is 50 degrees, the draining water attack angle ⁇ A is 30 degrees, and the interval P between the draining nozzles 22 and 22 is 225 mm.
  • the distance P between the draining nozzle 22 is greater than 225 mm, the momentum F B of the cooling water is reduced.
  • the interval P between the draining nozzles 22 and 22 is smaller than 225 mm, it is necessary to provide a large number of draining nozzles 22, which increases the cost of the apparatus.
  • the present invention is useful when draining the cooling water sprayed on the hot-rolled steel sheet when the hot-rolled steel sheet after finish rolling in the hot rolling process is cooled.
  • Hot rolling equipment 10 Hot-rolled steel plate 11 Heating furnace 12 Width direction rolling mill 13 Rough rolling mill 13a Work roll 13b Quadruple rolling mill 14 Finishing rolling mill 14a Finishing rolling roll 15 Cooling device 16 Draining device 17 Winding device 18 Conveying roll 20 Cooling water nozzle 21 Other cooling water nozzle 22 Draining nozzle 30 Collision area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

本発明に係る熱延鋼板用冷却水の水切り装置は、熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に、前記熱延鋼板に対して4m/m/min超から10m/m/min以下の水量密度で噴射された冷却水を水切りする水切り装置であって、前記熱延鋼板に水切り水を噴射する複数の水切りノズルを備え、前記熱延鋼板の表面において、前記水切りノズルの各々から噴射される前記水切り水の衝突領域が前記熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う前記衝突領域の一部が重なり合っている。

Description

熱延鋼板用冷却水の水切り装置及び水切り方法

本発明は、熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に当該熱延鋼板に対して噴射された冷却水、特に4m/m/min超から10m/m/min以下の水量密度の冷却水を水切りする水切り装置及び水切り方法に関する。
本願は、2012年06月08日に、日本に出願された特願2012-130630号と、2012年09月06日に、日本に出願された特願2012-196536号に基づき優先権を主張し、その内容をここに援用する。
熱間圧延工程の仕上げ圧延後の熱延鋼板は、仕上げ圧延機からコイラーまでをランアウトテーブルによって搬送される間に、ランアウトテーブルの上下に設けられている冷却装置によって所定の温度まで冷却された後、コイラーに巻き取られる。熱延鋼板の熱間圧延においては、この仕上げ圧延後の冷却の様態が熱延鋼板の機械的特性、加工性、溶接性などを決定する重要な因子となっており、熱延鋼板を均一に所定の温度に冷却することが重要となっている。
 この仕上げ圧延後の冷却工程では、通常、冷却媒体として例えば水(以下、冷却水と呼称する)を用いて熱延鋼板を冷却する。具体的には、熱延鋼板の所定の冷却領域において、冷却水を用いて熱延鋼板を冷却している。そして、上述したように熱延鋼板を均一に所定の温度に冷却するためには、この冷却領域の上流側や下流側に余分な冷却水が流出するのを防止する必要がある。
 そこで、熱延鋼板上の冷却水の水切りが行われている。この冷却水の水切り方法としては、従来より種々の方法が提案されている。
 特許文献1には、冷却装置、すなわち冷却水を噴射する冷却ノズルの下流側において、噴射角度が熱延鋼板の通板方向上流側に向けて傾斜するように、スリット状または円形状のノズル噴射口から水切り水を噴射する1列以上のノズルを配置することが提案されている。そして、このノズルから熱延鋼板に噴射される水切り水によって冷却水の水切りを行っている。
 また、特許文献2には、冷却装置に水噴射式水切り設備を併設し、さらに水噴射式水切り設備の下流側にエアノズル群を配置することが提案されている。そして、水噴射式水切り設備から熱延鋼板に水切り水を噴射すると共に、エアノズル群から熱延鋼板に、エア風向が通板方向とほぼ直交するエアを一斉に噴射して、冷却水の水切りを行っている。
 さらに、特許文献3には、熱延鋼板に水切り水を噴射するノズルが設けられたヘッダからなる水切り装置において、水切り水の単位時間及び単位幅当たりの運動量(水切り水の力)を、熱延鋼板上面に滞留する冷却水が有する単位時間及び単位幅当たりの運動量(冷却水の力)の1.5~5倍の範囲内に維持して、ノズルから熱延鋼板に水切り水を噴射することが提案されている。
日本国特開2007-152429号公報 日本国特開2010-227966号公報 日本国特開2012-51013号公報

ここで、熱延鋼板を冷却する際には、例えば4m/m/min超から10m/m/min以下の大きい水量密度の冷却水を熱延鋼板に噴射する場合がある。
 しかしながら、特許文献1には水切り水を噴射するノズルの噴射角度のみ例示されているが、その他の条件、例えば水切り水の水量や流速等は開示されていない。また、特許文献2にも、水切り水の水量や流速等の条件は開示されていない。さらに、特許文献3では、例えば特許文献3の明細書の実施例及び表1に記載されているとおり、4m/m/min以下の小さい水量密度の冷却水を熱延鋼板に噴射する場合のみを考慮している。したがって、これら特許文献1~3に記載された水切り方法は、大きい水量密度の冷却水を水切りすることは全く考慮されておらず、大きい水量密度の冷却水を水切りできない場合がある。
 また、流量4m/m/min以下の冷却水で生じる板上水の水切りをする場合、図8に示すように平面視において、複数のフラットスプレーノズル100から噴射されて熱延鋼板10の表面に衝突する水切り水の衝突領域101が、相互に干渉しないように山形に配置されるものを考えることができる。これは、フラットスプレーノズル100によって板上水の通板方向(図8中のY方向負方向)の流れを一旦受け止め、幅方向に流れを生じさせ、その流れによって板上水が排出されるものである。干渉し合わない水切り水の流れの幅方向成分が効率的に作用するので、水切り水の間に隙間があっても、流量4m/m/min以下の冷却水の場合では、図8中の斜めの矢印のようには冷却水が漏れることはほとんどないと考えられる。
 さらに、発明者らが鋭意検討したところ、4m/m/min超から10m/m/min以下の大きい水量密度の冷却水を熱延鋼板に噴射する場合において、特許文献3に記載されたように水切り水の運動量を冷却水の運動量の1.5~5倍の範囲内に維持すると、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板の冷却能力が低下することが分かった。
 本発明は、上記の事情に鑑みてなされたものであり、熱間圧延工程の仕上げ圧延後の熱延鋼板を大水量の冷却水で冷却する際に、当該冷却水による熱延鋼板の冷却を適切に行いつつ、冷却水を適切に水切りすることを目的とする。

 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用する。すなわち、
(1)本発明の一態様に係る熱延鋼板用冷却水の水切り装置は、熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に、前記熱延鋼板に対して4m/m/min超から10m/m/min以下の水量密度で噴射された冷却水を水切りする水切り装置であって、前記熱延鋼板に水切り水を噴射する複数の水切りノズルを備え、前記熱延鋼板の表面において、前記水切りノズルの各々から噴射される前記水切り水の衝突領域が前記熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う前記衝突領域の一部が重なり合っている。
 既に述べたように、従来の冷却設備は、冷却水の水量が少ないものが多く、大水量の冷却水を使用する冷却設備周辺の水切りに関するニーズはなかった(特許文献1~3参照)。しかしながら、さまざまな材質の鋼板が求められる近年では、冷却設備の大水量化が進んでおり、大水量の板上水の流出を防ぐための水切り設備が必要とされはじめている。
 そこで、本願発明者らが鋭意検討した結果、熱延鋼板を4m/m/min超から10m/m/min以下の大きい水量密度の冷却水で冷却する場合、上記熱延鋼板の表面において、複数の水切りノズルから噴射される水切り水の衝突領域が熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う衝突領域の一部が重なり合うという条件を満たすことにより、冷却水による熱延鋼板の冷却を適切に行いつつ、冷却水を適切に水切りできることが判明した。
従来、小水量の冷却水を水切りする場合、熱延鋼板の表面において、複数の水切りノズルから噴射される水切り水の衝突領域を、板上水の流れ方向に対してクサビ状に配置することで、板上水を左右に押し分ける方法を採用することが一般的であった(図8参照)。このような従来の水切り方法において、隣り合う水切り水の衝突領域の間に隙間があっても、流量4m/m/min以下の小水量の冷却水で熱延鋼板を冷却する場合では、上記隙間から図8中の斜め矢印のように板上水(冷却水)が漏れることはなかった。
 しかしながら、熱延鋼板を4m/m/min超から10m/m/min以下の大水量の冷却水で冷却する場合、上記のような従来の水切り方法では、隣り合う水切り水の衝突領域の隙間から図8中の斜め矢印のように板上水が漏れ出てしまい、熱延鋼板の冷却及び冷却水の水切りを適切に行うことができない。
 そこで、本願発明者は、まず、熱延鋼板の表面において、複数の水切り水の衝突領域が熱延鋼板の幅方向に直線状に連続して並ぶように、水切り水のノズル配置や噴射方向を調整して水切り効果を検証した。その結果、隣り合う水切り水の衝突領域の隙間が無くなり、従来手法と比較して板上水の漏出を改善することに成功したが、本願発明者は、より大水量の冷却水に対応するために、さらなる検討を行った。
小水量の冷却水に対応した従来の水切り方法では、図8に示すように、隣り合う水切り水の衝突領域が重ならないように(言い換えれば、水切り水同士が干渉しないように)、水切りノズルの配置や水切り水の噴射方向等が設定されていた。例えば、冷却水やデスケーリング用の高圧水についても、ノズルから噴射される水同士が干渉しないように、ノズルの配置や水の噴射方向等が設定されることが一般的である。この理由として、ノズルから噴射される水同士の干渉が冷却能力或いはデスケーリング能力に及ぼす影響を予測することが困難であること、また、水流の損失も大きいことが挙げられる。このため、従来の水切り方法でも、冷却水やデスケーリング用の高圧水の噴射方法に従って、水切り水同士の干渉を回避していた。
しかしながら、熱延鋼板に対して水切り水を噴射する場合、水切り水同士の干渉による冷却能力への影響や水流の損失等を考慮する必要はなく、水切り水の噴射によって鋼板表面に形成される水流で板上水の漏出を防ぐことが最優先の目的となる。

そこで、本願発明者は、従来の技術常識に縛られることなく、熱延鋼板の表面において、複数の水切り水の衝突領域が熱延鋼板の幅方向に直線状に連続して並び、さらに、互いに隣り合う衝突領域の一部が重なり合うように(つまり、互いに隣り合う水切り水が干渉するように)、水切り水のノズル配置や噴射方向を調整して水切り効果を検証したところ、熱延鋼板を4m/m/min超から10m/m/min以下の大水量の冷却水で冷却する場合であっても、従来手法と比較して板上水の漏出を大幅に改善することに成功した。
この理由として、隣り合う水切り水の衝突領域の隙間が無くなるのに加えて、隣り合う水切り水の干渉によって強固な水壁が形成されることにより、大水量で水位の高い板上水の漏出が妨げられたことが挙げられる。また、上記の検証の結果、水切り水同士の干渉が原因と考えられる問題は発生しないことも確認された。
以上のように、上記(1)に記載の水切り装置によれば、従来手法と比較して大水量の板上水(冷却水)の漏出を大幅に改善することができる。このような水切り装置の構成は、大水量の冷却水に対応するために、従来の一般的な技術常識から発想を転換した本願発明者であればこそ実現できたものであり、他の当業者が実現することは困難である。
(2)上記(1)に記載の水切り装置において、前記熱延鋼板の幅方向に互いに隣り合う前記水切り水の噴流が合流する高さが、前記熱延鋼板の通板方向から見た側面視において前記熱延鋼板の表面から400mmより高くてもよい。
 すなわち、熱延鋼板の表面から400mmより高い位置までは、水切り水が鉛直方向に隙間なく存在している。本願発明者の検証により、熱延鋼板を大水量の冷却水で冷却する場合でも、この冷却水の高さは熱延鋼板の表面から400mm未満であることが判明した。したがって、隣り合う水切り水の噴流が合流する高さが、熱延鋼板の表面から400mmより高いという条件を満たすことによって、冷却水が水切り水を超えて流出することはない。なお、特に大きい水量密度の冷却水を熱延鋼板に噴射する場合、当該冷却水が熱延鋼板の表面から鉛直上方に飛散するので、この水切り水の高さの条件を満たすことが好ましい。
(3)上記(1)または(2)に記載の水切り装置では、前記熱延鋼板の表面において、前記熱延鋼板の通板方向に流れる前記水切り水の運動量Fが、前記熱延鋼板の通板方向に流れる前記冷却水の運動量Fの1.0~1.5倍であってもよい。
 このように水切り水の運動量Fが冷却水の運動量F以上であるので、水切り水が冷却水を堰き止めることができ、冷却水が水切り水を突き抜けて流出することはない。一方、本願発明者の検証により、水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きくなると、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板の冷却能力が低下することが判明した。したがって、上記のように、水切り水の運動量Fが冷却水の運動量Fの1.0~1.5倍であることが好ましい。
 なお、上述したように特許文献3では、水切り水の単位時間及び単位幅当たりの運動量(水切り水の力)を、冷却水の単位時間及び単位幅当たりの運動量(冷却水の力)の1.5~5倍としている。この条件は、例えば特許文献3の実施例及び表1に記載されているように4m/m/min以下の小さい水量密度(以下、この水量密度の範囲を小水量密度と呼称する)の冷却水で熱延鋼板を冷却する際に、冷却水を水切りするための条件であり、4m/m/min超から10m/m/min以下の大きい水量密度(以下、この水量密度の範囲を大水量密度と呼称する)の冷却水で熱延鋼板を冷却する場合には適用できない。
 本願発明者の検証により、特許文献3に記載されているように、小水量密度の冷却水で熱延鋼板を冷却する場合と、本発明のように大水量密度の冷却水で熱延鋼板を冷却する場合とでは、熱延鋼板を冷却するメカニズムが異なることが判明した。
 例えば、小水量密度の冷却水で熱延鋼板を冷却する場合、当該冷却水の運動量を定義するのに支配的な要因は、例えば特許文献3の明細書の段落0019に冷却水の運動量が定義されているとおり、熱延鋼板の表面に滞留する冷却水の深さ(位置エネルギー)になる。すなわち、熱延鋼板の表面に滞留する冷却水が、熱延鋼板の冷却に最も寄与する。この場合、冷却水の運動量が小さくなるので、水切り水の運動量を冷却水の運動量以上にすると、水切り水が冷却水の下方に潜り込み、水切り無しで冷却した場合とは異なる冷却能力となってしまう。
 一方、本発明のように大水量密度の冷却水で熱延鋼板を冷却する場合、当該冷却水の運動量Fを定義するのに支配的な要因は、ノズルから熱延鋼板に噴射された冷却水の水平成分である。すなわち、ノズルから噴射された冷却水が、熱延鋼板の冷却に最も寄与する。この場合、大水量密度の冷却水の運動量が大きくなるので、水切り水の運動量Fを冷却水の運動量Fの1.5倍より大きくすると、上述したように水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板の冷却能力が低下してしまう。
(4)上記(1)~(3)のいずれか一つに記載の水切り装置において、前記複数の水切りノズルが、前記水切り水の噴射方向における前記水切りノズルと前記熱延鋼板の表面との距離が2000mm以内となるように、前記熱延鋼板の幅方向に並べて配置されていてもよい。
 本願発明者の検証により、水切りノズルと熱延鋼板の表面との間の水切り水の噴射方向の距離が2000mmを超えた場合、水切りノズルから熱延鋼板に噴射された水切り水が空気抵抗により減衰して、当該水切り水の運動量が小さくなり、大水量の冷却水を適切に水切りできない可能性があることが判明した。そこで、上記のように、水切り水の噴射方向における水切りノズルと熱延鋼板の表面との距離を2000mm以内に設定することが好ましい。
(5)上記(1)~(4)のいずれか一つに記載の水切り装置において、前記水切りノズルから噴射される水切り水の鉛直方向からの噴射角度が、20~65度であってもよい。
(6)上記(1)~(5)のいずれか一つに記載の水切り装置において、前記複数の水切りノズルが、前記熱延鋼板に冷却水を噴射する冷却水ノズルの上流側と下流側にそれぞれ配置されていてもよい。
(7)上記(1)~(6)のいずれか一つに記載の水切り装置において、前記複数の水切りノズルが、フラットスプレーノズルであってもよい。
(8)本発明の一態様に係る熱延鋼板用冷却水の水切り方法は、熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に、前記熱延鋼板に対して4m/m/min超から10m/m/min以下の水量密度で噴射された冷却水を水切りする水切り方法であって、前記熱延鋼板の表面において複数の水切り水の衝突領域が前記熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う前記衝突領域の一部が重なり合うように、複数の水切りノズルから前記水切り水を前記熱延鋼板に噴射する工程を含む。
(9)上記(8)に記載の水切り方法において、前記熱延鋼板の幅方向に互いに隣り合う前記水切り水の噴流が合流する高さが、前記熱延鋼板の通板方向から見た側面視において前記熱延鋼板の表面から400mmより高くてもよい。
(10)上記(8)または(9)に記載の水切り方法において、前記熱延鋼板の表面において、前記熱延鋼板の通板方向に流れる前記水切り水の運動量Fが、前記熱延鋼板の通板方向に流れる前記冷却水の運動量Fの1.0~1.5倍であってもよい。
(11)上記(8)~(10)のいずれか一つに記載の水切り方法において、前記複数の水切りノズルが、前記水切り水の噴射方向における前記水切りノズルと前記熱延鋼板の表面との距離が2000mm以内となるように、前記熱延鋼板の幅方向に並べて配置されていてもよい。
(12)上記(8)~(11)のいずれか一つに記載の水切り方法において、前記水切りノズルから噴射される水切り水の鉛直方向からの噴射角度が、20~65度であってもよい。
(13)上記(8)~(12)のいずれか一つに記載の水切り方法において、前記複数の水切りノズルが、前記熱延鋼板に冷却水を噴射する冷却水ノズルの上流側と下流側にそれぞれ配置されており、前記冷却水ノズルの上流側及び下流側に配置された前記水切りノズルから噴射される前記水切り水によって、前記冷却水ノズルの上流側と下流側における冷却水を水切りしてもよい。
(14)上記(8)~(13)のいずれか一つに記載の水切り方法において、前記複数の水切りノズルが、フラットスプレーノズルであってもよい。

上記の態様によれば、熱間圧延工程の仕上げ圧延後の熱延鋼板を大水量の冷却水で冷却する際に、当該冷却水を適切に水切りすることができる。

本発明の一実施形態に係る水切り装置を有する熱間圧延設備の構成の概略を示す説明図である。 冷却装置と水切り装置の構成の概略を示す側面図である。 冷却装置と水切り装置の構成の概略を示す平面図である。 熱延鋼板の通板方向から見た側面視において、水切りノズルの配置を模式的に示す説明図である。 熱延鋼板の幅方向から見た側面視において、冷却水ノズルに対する水切りノズルの配置を模式的に示す説明図である。 水切り水の運動量Fを表す(1)式及び冷却水の運動量Fを表す(2)式の導出方法に関する説明図である。 水切りノズルの配置に関する変形例を示す図である。 水切りノズルの配置に関する変形例を示す図である。 平面視において、流量4m/m/min以下の冷却水で生じる板上水の水切りをする場合のフラットスプレーノズル衝突面と板上水の流れ方を示す説明図である。
以下、本発明の一実施形態について説明する。図1は、本実施形態に係る水切り装置を有する熱間圧延設備1の構成の概略を示す説明図である。
 熱間圧延設備1では、加熱したスラブSをロールで上下に挟んで連続的に圧延し、例えば1mmの板厚まで薄くして熱延鋼板10を巻き取る。熱間圧延設備1は、スラブSを加熱するための加熱炉11と、この加熱炉11において加熱されたスラブSを幅方向に圧延する幅方向圧延機12と、この幅方向に圧延されたスラブSを上下方向から圧延して粗バーにする粗圧延機13と、粗バーをさらに所定の厚みまで連続して熱間仕上圧延をする仕上圧延機14と、この仕上圧延機14により熱間仕上圧延された熱延鋼板10を冷却水により冷却する冷却装置15と、冷却装置15から噴射された冷却水を水切りする水切り装置16と、冷却装置15により冷却された熱延鋼板10をコイル状に巻き取る巻取装置17とを備えている。
 加熱炉11には、装入口を介して外部から搬入されてきたスラブSに対して、火炎を吹き出すことによりスラブSを加熱するサイドバーナ、軸流バーナ、及びルーフバーナが配設されている。加熱炉11に搬入されたスラブSは、各ゾーンにおいて形成される各加熱帯において順次加熱され、さらに最終ゾーンにおいて形成される均熱帯において、ルーフバーナを利用してスラブSを均等加熱することにより、最適温度で搬送できるようにするための保熱処理を行う。加熱炉11における加熱処理が全て終了すると、スラブSは加熱炉11外へと搬送され、粗圧延機13による圧延工程へと移行することになる。
 粗圧延機13は、搬送されてきたスラブSにつき、複数スタンドに亘って配設される円柱状の回転ロールの間隙を通過させる。例えば、この粗圧延機13は、第1スタンドにおいて上下に配設されたワークロール13aのみによりスラブSを熱間圧延して粗バーとする。次にこのワークロール13aを通過した粗バーをワークロールとバックアップロールとにより構成される複数の4重圧延機13bによりさらに連続的に圧延する。その結果、この粗圧延工程終了時に粗バーは、厚さ30~60mm程度の板厚まで圧延され、仕上圧延機14へと搬送されることになる。
 仕上圧延機14は、搬送されてきた粗バーを数mm程度の板厚まで仕上げ圧延する。これら仕上圧延機14は、6~7スタンドに亘って上下一直線に並べた仕上圧延ロール14aの間隙に粗バーを通過させ、これを徐々に圧下していく。この仕上圧延機14により仕上げ圧延された熱延鋼板10は、後述する搬送ロール18により搬送されて冷却装置15へと送られることになる。
 冷却装置15と水切り装置16の構成については、後述において詳しく説明する。
 巻取装置17は、冷却装置15により冷却された熱延鋼板10を所定の巻取温度で巻き取る。巻取装置17によりコイル状に巻き取られた熱延鋼板10は、熱間圧延設備1外へと搬送されることになる。
 次に、上述した冷却装置15の構成について説明する。冷却装置15は、図2に示すようにランナウトテーブルの搬送ロール18上を搬送される熱延鋼板10の上方において、熱延鋼板10の表面に冷却水を噴射する冷却水ノズル20を複数有している。冷却水ノズル20には、例えばフルコーンスプレーノズルが用いられる。
冷却水ノズル20は、図3に示すように熱延鋼板10の幅方向(図中のX方向)に複数、例えば5つ配置され、また熱延鋼板10の通板方向(図中のY方向)に複数、例えば4つ配置されている。なお、本実施形態における冷却水ノズル20は、熱延鋼板10に対して4m/m/min超から10m/m/min以下の大きい水量密度で冷却水を噴射し、熱延鋼板10を所定の温度に冷却する。
 また、冷却装置15は、図2に示すように熱延鋼板10の下方において、例えば熱延鋼板10の裏面に冷却水を噴射する他の冷却水ノズル21を複数有している。他の冷却水ノズル21にも、例えばフルコーンスプレーノズルが用いられる。また、他の冷却水ノズル21の配置も、上述した冷却水ノズル20の配置と同様である。
なお、冷却水ノズル20及び21には、本実施形態のスプレーノズル以外の他のノズル、例えばパイプラミナーノズル等の種々のノズルを用いてもよい。例えば冷却ノズル20にパイプラミナーノズルを用いた場合、当該冷却ノズル20からの冷却水は鉛直方向に噴射されるため、後述する冷却水ノズル20から噴射される冷却水の鉛直方向からの噴射角度θは0°となる。
 次に、上述した水切り装置16の構成について説明する。水切り装置16は、熱延鋼板10の上方であって、冷却水ノズル20の上流側と下流側において、熱延鋼板10の表面に水切り水を噴射する水切りノズル22をそれぞれ複数有している。水切りノズル22には、例えばフラットスプレーノズルが用いられる。そして、図3に示すように、上流側の水切りノズル22は、当該水切りノズル22から噴射される水切り水によって、冷却水ノズル20から上流側に流れる冷却水を水切りする。同様に下流側の水切りノズル22は、当該水切りノズル22から噴射される水切り水によって、冷却水ノズル20から下流側に流れる冷却水を水切りする。
 次に、上述した冷却水ノズル20に対する水切りノズル22の配置、及び冷却水に対する水切り水の作用について説明する。なお、上流側の水切りノズル22と下流側の水切りノズル22の配置、及び冷却水に対する水切り水の作用は同じである。
 水切りノズル22は、図3に示すように熱延鋼板10の幅方向に複数、例えば5つ並べて配置されている。これら複数の水切りノズル22は、水切りノズル22から噴射されて熱延鋼板10の表面に衝突する水切り水の噴流の衝突領域30が、平面視において熱延鋼板10の幅方向に直線状に連続して並び、且つ互いに隣り合う衝突領域30の一部が重なり合うように配置されている。例えば熱延鋼板10の幅方向において、互いに隣り合う水切り水の衝突領域に隙間が存在すると、当該隙間から冷却水(板上水)が流出する可能性がある。この点、本実施形態では、熱延鋼板10の幅方向において、水切り水の衝突領域が隙間なく存在するので、冷却水が流出しない。なお、水切りノズル22は、水切り水の噴出角が冷却水ノズル20側に傾斜するように配置されている。
 図4は、熱延鋼板10の通板方向から見た側面視において、水切りノズル22の配置を模式的に示している。図4に示すように、互いに隣り合う水切りノズル22、22間の熱延鋼板10の幅方向の間隔Pは、熱延鋼板10の幅方向に互いに隣り合う水切り水の噴流が合流する高さHが、熱延鋼板10の表面から400mmより高くなるように設定されている。
すなわち、熱延鋼板10の表面から400mmより高い高さHまでは、水切り水が鉛直方向に隙間なく存在している。本願発明者の検証により、熱延鋼板10を大水量の冷却水で冷却する場合でも、この冷却水の高さは熱延鋼板10の表面から400mm未満であることが判明した。したがって、互いに隣り合う水切り水の噴流が合流する高さが、熱延鋼板10の表面から400mmより高いという条件を満たすことによって、冷却水が水切り水を超えて流出することはない。特に本実施形態のように、大きい水量密度の冷却水を熱延鋼板10に噴射する場合、当該冷却水が熱延鋼板10の表面から鉛直上方に飛散するので、この水切り水の高さの条件を満たすことが好ましい。
なお、水切り水の噴流が合流する高さHは、下記式(3)によって幾何学的に算出される。そして、水切り水の噴流が合流する高さHが熱延鋼板10の表面から400mmより高くなるように、下記式(3)における水切りノズル22、22間の間隔P、水切り水の迎え角度θ、水切り水の噴射角度θが設定される。また、水切り水の噴流が合流する高さHは、当然に水切りノズル22の熱延鋼板10の表面からの高さh未満であって、その高さHの上限は実質的には900mmである。
H={h/cosθ×tan(θ/2)-P/2}
×cosθ/tan(θ/2)      …(3)
但し、上記(3)式において、hは水切りノズル22の熱延鋼板10の表面からの高さ(1000mm程度)であり、θは水切りノズル22から噴射される水切り水の鉛直方向からの噴射角度(以下、迎え角度と呼称する場合がある)であり、θは水切りノズル22からの水切り水の噴射角度であり、Pは水切りノズル22、22間の熱延鋼板10の幅方向の間隔である。
水切り水の噴射角度θは、例えば5~150°である。この水切り水の噴射角度θは、10~130°であることが好ましく、さらに、20~60°であることがより好ましい。
水切り水の噴射角度θが狭すぎると、水切り高さを確保するためにノズルピッチが小さくなり、ノズル数が増えるため経済性が悪くなる。一方、水切り水の噴射角度θが広すぎると、ノズルピッチが大きくなり、ノズル数が少なくなるため経済性は良くなるが、冷却水を押し返す方向の水切り水の水量が減るので、水切りの機能が低下する。よって、水切り水の噴射角度θは、5~150°であることが現実的である。
 また、水切り水の噴射角度θが、10~130°である場合には水切り性が向上するので好ましい。
さらに、水切り水の噴射角度θは、20~60°であることがより好ましい。この理由として、ノズル数を増やして噴射角度θを小さめに設定した方が、冷却水を押し返す方向の水切り水の水量を確保しやすいので、給水系の規模(配管やポンプ容量等)を小さくでき、経済性が高いことが挙げられる。
 図5は、熱延鋼板10の幅方向から見た側面視において、冷却水ノズル20に対する水切りノズル22の配置を模式的に示している。図5に示すように、水切りノズル22は、当該水切りノズル22からの水切り水の噴射方向において水切りノズル22と熱延鋼板10の表面との距離Lが2000mm以内となる位置に配置されている。本願発明者の検証により、水切りノズル22と熱延鋼板10の表面との間の水切り水の噴射方向の距離Lが2000mmを超えた場合、水切りノズル22から熱延鋼板10に噴射された水切り水が空気抵抗により減衰して、当該水切り水の運動量が小さくなり、大水量の冷却水を適切に水切りできない可能性があることが判明した。そこで、上記のように、水切り水の噴射方向における水切りノズル22と熱延鋼板10の表面との距離Lを2000mm以内に設定することが好ましい。
 また、複数の水切りノズル22を冷却水ノズル20に近い位置に配置すれば、熱間圧延設備1の占有面積を小さくすることもできる。ただし、水切りノズル22から噴射される水切り水と、冷却水ノズル20から噴射される冷却水とが、熱延鋼板10に到達する前に衝突することはない位置に水切りノズル22は配置される。すなわち、水切りノズル22と冷却水ノズル20との距離Dが下記式(4)を満たす位置に、水切りノズル22は配置される。
D≧(h×tanθ+h×tanθ)   …(4)
但し、上記(4)式において、hは水切りノズル22の熱延鋼板10の表面からの高さであり、θは水切りノズル22から噴射される水切り水の鉛直方向からの迎え角度であり、hは冷却水ノズル20の熱延鋼板10の表面からの高さであり、θは冷却水ノズル20から噴射される冷却水の鉛直方向からの噴射角度である。
 水切りノズル22から噴射される水切り水は、熱延鋼板10の表面において、熱延鋼板10の通板方向の冷却水ノズル20側へ流れる水切り水の運動量Fが、熱延鋼板10の通板方向の水切りノズル22側へ流れる冷却水の運動量Fの1.0~1.5倍になるように噴射される。
水切り水の運動量Fは、例えば、水の密度ρ、水切りノズル22から噴射される水切り水の水量Q、水切りノズル22から噴射される水切り水の流速v、及び水切りノズル22から噴射される水切り水の鉛直方向からの噴射角度θからなる下記(1)式で定義される。
また、冷却水の運動量Fは、例えば、水の密度ρ、熱延鋼板10の幅方向に配置された一列の冷却水ノズル20から噴射される冷却水の水量Q、冷却水ノズル20から噴射される冷却水の流速v、及び冷却水ノズル20から噴射される冷却水の鉛直方向からの噴射角度θからなる下記(2)式で定義される。
=ρ・Q・v・(1+sinθ)/2   …(1)
=ρ・Q・v・(1+sinθ)/2   …(2)
 以下、上記(1)式の導出方法について説明する。なお、上記(2)式の導出方法は、上記(1)式の導出方法と同じである。
 図6に示すように、水切りノズル22から噴射される水切り水の水量をQ、水切りノズル22から噴射される水切り水の流速をv、水切りノズル22から噴射される水切り水の鉛直方向からの噴射角度をθ、水の密度をρとする。ここで、熱延鋼板10の表面に衝突した後、熱延鋼板10の表面に沿って冷却水ノズル20側へ流れる水切り水の運動量Fを下記(5)式で定義する。
 また、熱延鋼板10の表面に衝突した後、熱延鋼板10の表面に沿って冷却水ノズル20の反対側へ流れる水切り水の運動量F’を下記(6)式で定義する。
=ρ・Q・v    …(5)
’=ρ・Q・v   …(6)
 ただし、上記(5)式において、Qは熱延鋼板10の表面に沿って冷却水ノズル20側へ流れる水切り水の水量、vは熱延鋼板10の表面に沿って冷却水ノズル20側へ流れる水切り水の流速である。
 また、上記(6)式において、Qは熱延鋼板10の表面に沿って冷却水ノズル20の反対側へ流れる水切り水の水量、vは熱延鋼板10の表面に沿って冷却水ノズル20の反対側へ流れる水切り水の流速である。
 熱延鋼板10に水切り水が衝突する前後で摩擦などの損失が無いと仮定した場合、流体の運動量保存則に基づいて下記(7)式が成立する。
ρ・Q・v・sinθ=ρ・Q・v-ρ・Q・v  …(7)
 ここで、熱延鋼板10に水切り水が衝突する前後で損失が無いという仮定から下記(8)式が成立すると考えると、上記(7)式は下記(9)式で表すことができる。
=v=v       …(8)
・sinθ=Q-Q   …(9)
 水切り水の水量Q、Q及びQに関しては下記(10)式が成立する。従って、上記(9)式及び下記(10)式に基づいて、水切り水の水量Qは下記(11)式で表され、水切り水の水量Qは下記(12)式で表される。
=Q+Q           …(10)
=Q・(1+sinθ)/2   …(11)
=Q・(1-sinθ)/2   …(12)
 上記(5)式、上記(8)式及び上記(11)式により、最終的に、水切り水(つまり熱延鋼板10の表面に沿って冷却水ノズル20側へ流れる水切り水)の運動量Fを表す下記(1)式が導出される。
=ρ・Q・v・(1+sinθ)/2   …(1)
 なお、以上説明した(1)式の導出方法からわかるように、(2)式で表される冷却水の運動量Fは、熱延鋼板10の表面に沿って水切りノズル22側へ流れる冷却水の運動量である(図5参照)。
本実施形態では、上記(1)式及び(2)式に基づいて、水切り水の運動量Fが、冷却水の運動量Fの1.0~1.5倍になるように、各種の装置パラメータ(上記(1)式及び(2)式の各変数)が設定されている。これら水切り水の運動量Fと冷却水の運動量Fは、熱延鋼板10の表面において、水切り水と冷却水が互いに衝突する方向を向くベクトル量である。
なお、上記(1)式及び(2)式において、水切りノズル22と冷却水ノズル20から噴射される水切り水の水量Qと冷却水の水量Qは、それぞれ水切りノズル22と冷却水ノズル20から噴射された直後から熱延鋼板10の表面に到達するまで一定であると仮定している。また、冷却水ノズル20から噴射される冷却水の噴射角度θが鉛直方向からの角度であると仮定し、冷却水ノズル20から噴射される冷却水の水量Qは、熱延鋼板10の表面においてすべて上流側又は下流側のいずれか一方に流れると仮定している。
したがって、冷却水の水量Qの水量を考慮する場合、最も危険側(水切りという観点からは最も安全側)の水量を考慮していることになり、冷却水の運動量Fも最も大きくなる。なお、冷却水の水量Qを考慮する場合、最上流側又は最下流側の冷却水ノズル20、すなわち水切りノズル22に最も近い側の冷却水ノズル20からの冷却水の一列分のみを考慮しており、その他の冷却水ノズル20からの冷却水は考慮していない。また、その他の冷却水ノズル20からの冷却水については、熱延鋼板10の通板方向の流れが打ち消しあうので、当該冷却水は熱延鋼板10の幅方向に流れる。
このように本実施形態では、熱延鋼板10の表面において、熱延鋼板10の通板方向に流れる水切り水の運動量Fが冷却水の運動量F以上であるので、水切り水が冷却水を堰き止めることができ、冷却水が水切り水を突き抜けて流出することはない。一方、本願発明者の検証により、水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きくなると、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下することが判明した。したがって、本実施形態のように、水切り水の運動量Fを冷却水の運動量Fの1.0~1.5倍に設定することが好ましい。
 なお、水切りノズル22から噴射される水切り水の鉛直方向からの迎え角度θは、20~65度であり、より好ましくは30~50度である。例えば迎え角度θが20度よりも小さくなると、水切りノズル22から噴射される水切り水が、冷却水と反対方向に流れるおそれがある。この場合、水切り水によって冷却水を適切に水切りできない可能性がある。また、例えば迎え角度θが65度よりも大きくなると、水切りノズル22と衝突領域30との距離が大きくなり、熱間圧延設備1の占有面積が大きくなる。従って、迎え角度θは20~65度であることが好ましい。
 以上のように、本実施形態では、熱延鋼板10の表面において、水切りノズル22の各々から噴射される水切り水の衝突領域30が熱延鋼板10の幅方向に直線状に連続して並び、且つ互いに隣り合う衝突領域30の一部が重なり合うように、各水切りノズル22の配置及び水切り水の噴射角度が設定されている。

また、本実施形態では、複数の水切りノズル22が、それぞれ、水切り水の噴射方向における水切りノズル22と熱延鋼板10の表面との距離Lが2000mm以内となるように、熱延鋼板10の幅方向に並べて配置されている。
また、本実施形態では、熱延鋼板10の幅方向に互いに隣り合う水切り水の噴流が合流する高さHが、熱延鋼板10の通板方向から見た側面視において熱延鋼板10の表面から400mmより高くなるように設定されている。
さらに、本実施形態では、熱延鋼板10の表面において、熱延鋼板10の通板方向(冷却水ノズル側)に流れる水切り水の運動量Fが、熱延鋼板10の通板方向(水切りノズル側)に流れる冷却水の運動量Fの1.0~1.5倍となるように設定されている。したがって、本実施形態によれば、熱延鋼板10を4m/m/min超から10m/m/min以下の大きい水量密度の冷却水で冷却する場合でも、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りできる。なお、各条件の効果については上述したとおりである。
 そして、このように水切りノズル22からの水切り水によって冷却水が適切に水切りされるので、当該冷却水が冷却装置15による冷却領域を超えて流出することがない。したがって、冷却装置15を用いて熱延鋼板10を均一に所定の温度に冷却することができる。また、4m/m/min超から10m/m/min以下の大きい水量密度の冷却水で熱延鋼板10を冷却するので、高い冷却能力で熱延鋼板10を適切に冷却することができる。
 なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、冷却水ノズル20の上流側と下流側の両側に水切りノズル22を設けていたが、例えばいずれか一方の水切りノズル22に代えて、拘束ロールやサイドスプレー等を用いてもよい。
(2)上記実施形態では、複数の水切りノズル22が、熱延鋼板10の幅方向に並べて配置されている場合を例示したが、例えば、図7A及び図7Bに示すように、平面視した場合に、複数の水切りノズル22が、熱延鋼板10の幅方向に対して傾斜した方向に並べて配置されていてもよい。
 図7Aは、複数の水切りノズル22が、熱延鋼板10の幅方向に対して、反時計回りに角度α1だけ傾斜した方向に並べて配置されている場合を図示している。図7Bは、複数の水切りノズル22が、熱延鋼板10の幅方向に対して、時計回りに角度α2だけ傾斜した方向に並べて配置されている場合を図示している。
 角度α1及びα2は、ともに0°以上30°以下であることが好ましい。角度α1及びα2が30°を超えると、配管長やノズル数の増大による設備サイズの大型化を招くので、経済性が悪化する。また、角度α1及びα2が30°を超えると、ワークサイドとドライブサイドの鋼板温度差が発生する等の不具合が生じる可能性もある。
(3)上記実施形態では特に言及していないが、水切り水がテーブルロール上に直接あたるように水切りノズル22を配置してもよい。隣り合うテーブルロールの中間位置に水切り水を噴射する場合、鋼板先端部の通過時に通板性を損なわないことを配慮する必要が生じる。例えば、水切り水の水量及び圧力等を鋼板先端部の通過時のみ低くしたり、鋼板先端部の通過後に水切り水を噴射する必要が生じる。従って、水切り水がテーブルロール上に直接あたるように水切りノズル22を配置することが好ましい。
(4)また、上記実施形態では、水切りノズル22としてフラットスプレーノズル22を用いていたが、上記実施形態におけるすべての条件を満たしていれば、他のノズルを用いてもよい。すなわち、熱延鋼板10の表面における水切り水の噴流の衝突領域30が、平面視において熱延鋼板10の幅方向に直線状に連続して並び、且つ熱延鋼板10の幅方向に隣り合う水切り水の噴流が合流する高さHが熱延鋼板10の表面から400mmより高く、且つ熱延鋼板10の表面において、熱延鋼板10の通板方向に流れる水切り水の運動量Fが冷却水の運動量F以上となるように冷却水が噴射されれば、水切りノズル22として、他のノズル、例えばフルコーンスプレーノズル等を用いてもよい。
 ただし、水切りノズル22として全幅スリットノズル(流体噴出孔が熱延鋼板の幅方向全体に広がっているノズル)を用いることは好ましくない。一般的に熱延用の全幅スリットノズルは、低圧大流量で用いられる。高圧大流量用の全幅スリットノズルは、水量が非常に大きくなるため特殊な工程でしか用いられていない。その理由は、全幅スリットノズルは、流体噴出孔(スリット)が熱延鋼板の幅方向全体に広がっているため、スプレーノズルと同等の噴出幅とするためにはスリットの厚みを小さくする必要があるからである。
例えば、直径14mmの流体噴出孔を有するフラットノズルが8本並んでいる場合、幅2mのスリットでは0.6mmのスリット厚みとなるので、非常に詰まりやすい。この厚みを例えば3mm程度とした場合、流速が1/5となり流速の低下が著しいために水切りと冷却水の運動量の比率だけで整理するのは難しい。例えば、水切り水の水量が非常に多いために排水性の問題が生じるなどである。以上の理由から、水切りノズル22として全幅スリットノズルを使用することは好ましくない。
 以上、添付図面を参照しながら本発明の好適な実施形態及び変形例について説明したが、本発明は上記実施形態及び変形例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 以下、本発明の水切り装置と水切り方法を用いた場合の冷却水の水切り効果について検証した結果について説明する。水切り効果の検証においては、本発明の水切り装置として、図1~5に示した水切り装置16を用いた。
 表1に示すように、冷却水の水量(水量密度)Q、水切り水の水量(水量密度)Q、水切り水の噴射角度θ、水切り水の迎え角度θ、水切りノズル22、22間の間隔(ピッチ)Pをそれぞれ変化させて、冷却水の水切り効果について検証を行った。なお、冷却水の水量Qは、最上流側又は最下流側の冷却水ノズル20、すなわち水切りノズル22に最も近い側の冷却水ノズル20からの冷却水の一列分の半分のみを考慮しており、その他の冷却水ノズル20からの冷却水は考慮していない。さらに、表1に示すいずれの実施例1~15及び比較例1~29においても、熱延鋼板10の表面における水切り水の噴流の衝突領域30は、平面視において熱延鋼板10の幅方向に直線状に連続して並び、且つ隣り合う衝突領域30の一部が重なり合っている。
 表1中の「冷却能力低下」の欄において、冷却能力低下の程度を、A、B、Cの3段階で示している。Aは、水切り水の運動量Fと冷却水の運動量Fとの比率F/Fが1.3未満であって、冷却能力低下がほぼ無し(0%以上10%未満の冷却能力低下)と判断されることを意味している。Bは、水切り水の運動量Fと冷却水の運動量Fとの比率F/Fが1.3以上1.5未満であって、冷却能力低下が若干有り(10%以上30%未満の冷却能力低下)と判断されることを意味している。Cは、水切り水の運動量Fと冷却水の運動量Fとの比率F/Fが1.5以上であって、冷却能力低下が有り(30%以上の冷却能力低下)と判断されることを意味している。ただし、BとCは、冷却設備の冷却能力が設計通りにはならないが、水切りが可能なケースであり、冷却設備本体の冷却能力を把握することよりも水切りを優先する場合においては、運動量の比率F/Fが1.5以上でも良い。また、運動量の比率F/Fは目安であり、冷却設備の水量やノズル距離でも冷却能力の低下量は影響を受ける。
また、表1中の「水切り性」の欄において、実際に水切りの状況を観察した結果、水切りが余裕を持って適切に行われた場合には「A」を記し、水切りが適切に行われた場合には「B」を記し、水切りが適切に行われず、冷却水が水切り水を超えて流出した場合には「C」を記している。
さらに、「冷却能力低下」が「A」または「B」であり、且つ「水切り性」が「A」又は「B」の場合には、表1中の「評価」の欄に「A」を記している。一方、「冷却能力低下」が「C」であるか、又は「水切り性」が「C」の場合には、表1中の「評価」の欄に「B」を記している。したがって、「評価」の欄が「A」であれば、本発明の効果が実証されたことになる。
 なお、「水切り性」の効果の検証に関しては、本発明の条件である、
(1)熱延鋼板10の通板方向に流れる水切り水の運動量Fが、冷却水の運動量Fの1.0~1.5倍である、
(2)熱延鋼板10の幅方向に隣り合う水切り水の噴流が合流する高さHが熱延鋼板10の表面から400mmより高い、
(3)水切りノズル22からの水切り水の噴射方向において水切りノズル22と熱延鋼板10の表面との距離Lが2000mm以内である、
という3つの条件を満たすか否かの検証を行った。
 表1中の比較例1~11は、冷却水の水量(水量密度)Qが、4m/m/min以下の小水量密度である。一方、表1中の実施例1~5及び比較例12~17、実施例6~10及び比較例18~23、実施例11~15及び比較例24~29は、それぞれ冷却水の水量(水量密度)Qが、4m/m/min超から10m/m/min以下の大水量密度である。
 先ず、冷却水の水量(水量密度)Qが、3.5m/m/minの小水量密度である比較例1~11について検討する。
比較例1~6は、上記の条件(1)~(3)をすべて満たしており、水切りが適切に行われた。しかしながら、水切り水の運動量Fが冷却水の運動量F以上となる。この場合、小水量密度の冷却水で熱延鋼板10を冷却して、冷却水の運動量Fが小さくなるので、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
また、比較例7は、条件(2)及び(3)を満たしており、且つ水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きいので水切り性は良いが、水切り水の運動量Fが大き過ぎるため、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。したがって、比較例1~7の「評価」は「B」となる。
比較例8及び9は、水切り水の運動量Fが冷却水の運動量F以上となるので、冷却水による熱延鋼板10の冷却能力が低下した。しかも、条件(1)~(3)のいずれかを満たさないので、水切りも適切に行われなかった。したがって、比較例8及び9の「評価」は「B」となる。
比較例10及び11は、水切り水の運動量Fが冷却水の運動量Fより小さいので、冷却水による熱延鋼板10の冷却能力は低下しなかったが、条件(1)を満たしておらず、水切りが適切に行われなかった。したがって、比較例10及び11の「評価」は「B」となる。
以上のように、小水量密度の冷却水で熱延鋼板10を冷却した場合、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りすることはできなかった。
 次に、冷却水の水量(水量密度)Qが、4.2m/m/minの大水量密度である実施例1~5及び比較例12~17について検討する。
比較例12は、条件(2)及び(3)を満たし、且つ水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きいので水切り性は良いが、水切り水の運動量Fが大き過ぎるため、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
比較例13~15は、水切り水の運動量Fが冷却水の運動量Fより小さいので、冷却水による熱延鋼板10の冷却能力は低下しなかったが、条件(1)を満たしておらず、水切りが適切に行われなかった。
比較例16は、条件(1)を満たしており、冷却水による熱延鋼板10の冷却能力は低下しなかったが、隣り合う水切り水の噴流が合流する高さHが400mm以下であり、条件(2)を満たしておらず、水切りが適切に行われなかった。
比較例17は、水切りノズル22と熱延鋼板10の表面との距離Lが2000mmよりも大きくて、条件(3)を満たしておらず、水切りが適切に行われなかった。また、この場合、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
これに対して、実施例1~5は、条件(1)~(3)のいずれも満たしており、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りすることができた。
 同様に、冷却水の水量(水量密度)Qが、6.0m/m/minの大水量密度である実施例6~10及び比較例18~23について検討する。
比較例18は、条件(2)及び(3)を満たし、且つ水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きいので水切り性は良いが、水切り水の運動量Fが大き過ぎるため、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
比較例19~21は、水切り水の運動量Fが冷却水の運動量Fより小さいので、冷却水による熱延鋼板10の冷却能力は低下しなかったが、条件(1)を満たしておらず、水切りが適切に行われなかった。
比較例22は、条件(1)を満たしており、冷却水による熱延鋼板10の冷却能力は低下しなかったが、隣り合う水切り水の噴流が合流する高さHが400mm以下であり、条件(2)を満たしておらず、水切りが適切に行われなかった。
比較例23は、水切りノズル22と熱延鋼板10の表面との距離Lが2000mmよりも大きくて、条件(3)を満たしておらず、水切りが適切に行われなかった。また、この場合、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
これに対して、実施例6~10は、条件(1)~(3)のいずれも満たしており、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りすることができた。
 同様に、冷却水の水量(水量密度)Qが、8.0m/m/minの大水量密度である実施例11~15及び比較例24~29について検討する。
比較例24は、条件(2)及び(3)を満たし、且つ水切り水の運動量Fが冷却水の運動量Fの1.5倍より大きいので水切り性は良いが、水切り水の運動量Fが大き過ぎるため、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
比較例25~27は、水切り水の運動量Fが冷却水の運動量Fより小さいので、冷却水による熱延鋼板10の冷却能力は低下しなかったが、条件(1)を満たしておらず、水切りが適切に行われなかった。
比較例28は、条件(1)を満たしており、冷却水による熱延鋼板10の冷却能力は低下しなかったが、隣り合う水切り水の噴流が合流する高さHが400mm以下であり、条件(2)を満たしておらず、水切りが適切に行われなかった。
比較例29は、水切りノズル22と熱延鋼板10の表面との距離Lが2000mmよりも大きくて、条件(3)を満たしておらず、水切りが適切に行われなかった。また、この場合、水切り水が冷却水の下方に潜り込み、冷却水による熱延鋼板10の冷却能力が低下した。
これに対して、実施例11~15は、条件(1)~(3)のいずれも満たしており、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りすることができた。
以上の検証結果により、冷却水の水量密度が、4m/m/min超から10m/m/min以下の大水量密度であり、且つ本発明の水切り装置と水切り方法を用いた場合、すなわち条件(1)~(3)をすべて満たす場合、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りできることが確認された。一方、冷却水の水量密度が、4m/m/min以下の小水量密度であるか、或いは条件(1)~(3)のいずれか1つでも満たさない場合、冷却水による熱延鋼板10の冷却を適切に行いつつ、冷却水を適切に水切りできないことが確認された。
 なお、上述した実施例1~15において、「水切り性」が「A」となる実施例2、7及び12が最良の実施例である。すなわち、水切り水の噴射角度θが50度であり、水切り水の迎え角度θが30度であり、水切りノズル22、22間の間隔Pが225mmとする条件が、最良の条件である。
 この条件に比べて、水切り水の噴射角度θが50度より大きくなると、冷却水の運動量Fが小さくなる。一方、水切り水の噴射角度θが50度より小さくなると、隣り合う水切り水の噴流が合流する高さHが低くなる。
 また、水切り水の迎え角度θが30度より大きくなると、水切りノズル22と熱延鋼板10の表面との距離Lが長くなる。一方、水切り水の迎え角度θが30度より小さくなると、冷却水の運動量Fが小さくなる。
 また、水切りノズル22、22間の間隔Pが225mmより大きくなると、冷却水の運動量Fが小さくなる。一方、水切りノズル22、22間の間隔Pが225mmより小さくなると、多数の水切りノズル22を設ける必要があり、装置のコストが高額化する。
Figure JPOXMLDOC01-appb-T000001
本発明は、熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に当該熱延鋼板に対して噴射された冷却水を水切りする際に有用である。

1  熱間圧延設備
 10 熱延鋼板
 11 加熱炉
 12 幅方向圧延機
 13 粗圧延機
 13a ワークロール
 13b 4重圧延機
 14 仕上圧延機
 14a 仕上圧延ロール
 15 冷却装置
 16 水切り装置
 17 巻取装置
 18 搬送ロール
 20 冷却水ノズル
 21 他の冷却水ノズル
 22 水切りノズル
30 衝突領域

Claims (14)

  1.  熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に、前記熱延鋼板に対して4m/m/min超から10m/m/min以下の水量密度で噴射された冷却水を水切りする水切り装置であって、
    前記熱延鋼板に水切り水を噴射する複数の水切りノズルを備え、
    前記熱延鋼板の表面において、前記水切りノズルの各々から噴射される前記水切り水の衝突領域が前記熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う前記衝突領域の一部が重なり合う
    ことを特徴とする、熱延鋼板用冷却水の水切り装置。
  2.  前記熱延鋼板の幅方向に互いに隣り合う前記水切り水の噴流が合流する高さが、前記熱延鋼板の通板方向から見た側面視において前記熱延鋼板の表面から400mmより高いことを特徴とする請求項1に記載の熱延鋼板用冷却水の水切り装置。
  3. 前記熱延鋼板の表面において、前記熱延鋼板の通板方向に流れる前記水切り水の運動量Fが、前記熱延鋼板の通板方向に流れる前記冷却水の運動量Fの1.0~1.5倍であることを特徴とする請求項1または2に記載の熱延鋼板用冷却水の水切り装置。
  4. 前記複数の水切りノズルは、前記水切り水の噴射方向における前記水切りノズルと前記熱延鋼板の表面との距離が2000mm以内となるように、前記熱延鋼板の幅方向に並べて配置されていることを特徴とする請求項1~3のいずれか一項に記載の熱延鋼板用冷却水の水切り装置。
  5. 前記水切りノズルから噴射される水切り水の鉛直方向からの噴射角度は、20~65度であることを特徴とする、請求項1~4のいずれか一項に記載の熱延鋼板用冷却水の水切り装置。
  6. 前記複数の水切りノズルは、前記熱延鋼板に冷却水を噴射する冷却水ノズルの上流側と下流側にそれぞれ配置されていることを特徴とする、請求項1~5のいずれか一項に記載の熱延鋼板用冷却水の水切り装置。
  7. 前記複数の水切りノズルは、フラットスプレーノズルであることを特徴とする請求項1~6のいずれか一項に記載の熱延鋼板用冷却水の水切り装置。
  8. 熱間圧延工程の仕上げ圧延後の熱延鋼板を冷却する際に、前記熱延鋼板に対して4m/m/min超から10m/m/min以下の水量密度で噴射された冷却水を水切りする水切り方法であって、
    前記熱延鋼板の表面において複数の水切り水の衝突領域が前記熱延鋼板の幅方向に直線状に連続して並び、且つ互いに隣り合う前記衝突領域の一部が重なり合うように、複数の水切りノズルから前記水切り水を前記熱延鋼板に噴射する工程を含むことを特徴とする、熱延鋼板用冷却水の水切り方法。
  9.  前記熱延鋼板の幅方向に互いに隣り合う前記水切り水の噴流が合流する高さが、前記熱延鋼板の通板方向から見た側面視において前記熱延鋼板の表面から400mmより高いことを特徴とする請求項8に記載の熱延鋼板用冷却水の水切り方法。
  10. 前記熱延鋼板の表面において、前記熱延鋼板の通板方向に流れる前記水切り水の運動量Fが、前記熱延鋼板の通板方向に流れる前記冷却水の運動量Fの1.0~1.5倍であることを特徴とする請求項8または9に記載の熱延鋼板用冷却水の水切り方法。
  11. 前記複数の水切りノズルは、前記水切り水の噴射方向における前記水切りノズルと前記熱延鋼板の表面との距離が2000mm以内となるように、前記熱延鋼板の幅方向に並べて配置されていることを特徴とする請求項8~10のいずれか一項に記載の熱延鋼板用冷却水の水切り方法。
  12. 前記水切りノズルから噴射される水切り水の鉛直方向からの噴射角度は、20~65度であることを特徴とする、請求項8~11のいずれか一項に記載の熱延鋼板用冷却水の水切り方法。
  13. 前記複数の水切りノズルは、前記熱延鋼板に冷却水を噴射する冷却水ノズルの上流側と下流側にそれぞれ配置されており、前記冷却水ノズルの上流側及び下流側に配置された前記水切りノズルから噴射される前記水切り水によって、前記冷却水ノズルの上流側と下流側における冷却水を水切りすることを特徴とする、請求項8~12のいずれか一項に記載の熱延鋼板用冷却水の水切り方法。
  14. 前記複数の水切りノズルは、フラットスプレーノズルであることを特徴とする請求項8~13のいずれか一項に記載の熱延鋼板用冷却水の水切り方法。
PCT/JP2013/065647 2012-06-08 2013-06-06 熱延鋼板用冷却水の水切り装置及び水切り方法 WO2013183694A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN9187DEN2014 IN2014DN09187A (ja) 2012-06-08 2013-06-06
KR1020147002268A KR101490663B1 (ko) 2012-06-08 2013-06-06 열연 강판용 냉각수 제거 장치 및 제거 방법
CN201380002508.9A CN103747888B (zh) 2012-06-08 2013-06-06 热轧钢板用冷却水的挡水装置以及挡水方法
US14/395,154 US9649679B2 (en) 2012-06-08 2013-06-06 Water-blocking apparatus and water-blocking method for cooling water for hot-rolled steel sheet
BR112014027788-5A BR112014027788B1 (pt) 2012-06-08 2013-06-06 Dispositivo de bloqueio de água e método de bloqueio de água para água de arrefecimento para chapa de aço laminada a quente
JP2013547760A JP5549786B2 (ja) 2012-06-08 2013-06-06 熱延鋼板用冷却水の水切り装置及び水切り方法
EP13801187.9A EP2859964B2 (en) 2012-06-08 2013-06-06 Dewatering device and dewatering method for cooling water for hot rolled steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012130630 2012-06-08
JP2012-130630 2012-06-08
JP2012196536 2012-09-06
JP2012-196536 2012-09-06

Publications (1)

Publication Number Publication Date
WO2013183694A1 true WO2013183694A1 (ja) 2013-12-12

Family

ID=49712083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065647 WO2013183694A1 (ja) 2012-06-08 2013-06-06 熱延鋼板用冷却水の水切り装置及び水切り方法

Country Status (9)

Country Link
US (1) US9649679B2 (ja)
EP (1) EP2859964B2 (ja)
JP (1) JP5549786B2 (ja)
KR (1) KR101490663B1 (ja)
CN (1) CN103747888B (ja)
BR (1) BR112014027788B1 (ja)
IN (1) IN2014DN09187A (ja)
TW (1) TWI524951B (ja)
WO (1) WO2013183694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167967A4 (en) * 2014-07-10 2018-02-28 Nippon Steel & Sumitomo Metal Corporation Water deflecting device and water deflecting method for steel plate cooling water in hot rolling step
JP2019177387A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 熱延鋼板用冷却水の水切り装置及び水切り方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568567B1 (ko) * 2014-01-27 2015-11-11 주식회사 포스코 도금강판 냉각장치
WO2018055918A1 (ja) * 2016-09-23 2018-03-29 新日鐵住金株式会社 熱延鋼板の冷却装置及び冷却方法
WO2020059577A1 (ja) * 2018-09-19 2020-03-26 日本製鉄株式会社 熱延鋼板の冷却装置および熱延鋼板の冷却方法
CN110899347B (zh) * 2019-11-22 2021-05-07 常州新武轨道交通新材料有限公司 一种热轧钢板的冷却装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231125A (ja) * 1985-04-03 1986-10-15 Kawasaki Steel Corp 熱間鋼板冷却装置の水切り方法
JPH11123439A (ja) * 1997-10-22 1999-05-11 Sumitomo Metal Ind Ltd 鋼板上の水切りスプレー装置
JP2007152429A (ja) 2005-11-11 2007-06-21 Jfe Steel Kk 熱延鋼帯の冷却装置および冷却方法
JP2010227966A (ja) 2009-03-27 2010-10-14 Jfe Steel Corp 熱延鋼板の通板時水切り方法および装置
JP2012051013A (ja) 2010-09-02 2012-03-15 Jfe Steel Corp 熱鋼板の水切り装置および水切り方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177419A (ja) 1982-04-09 1983-10-18 Nippon Steel Corp 鋼板上の水切り方法
CN1049303A (zh) 1989-09-15 1991-02-20 沃洛格达综合技术学院 冷却热轧板材的方法
JP3911952B2 (ja) 2000-03-01 2007-05-09 Jfeスチール株式会社 極低炭素熱延鋼帯の製造方法
JP2001276923A (ja) 2000-03-29 2001-10-09 Sumitomo Metal Ind Ltd 鋼材のデスケーリング方法
JP2001353515A (ja) 2000-06-14 2001-12-25 Nkk Corp 高温鋼板の水切り方法及びその装置
JP3844279B2 (ja) 2000-10-17 2006-11-08 新日本製鐵株式会社 デスケーリング装置及び方法
JP3801145B2 (ja) * 2003-04-04 2006-07-26 住友金属工業株式会社 高温鋼板の冷却装置
JP4765344B2 (ja) 2005-03-11 2011-09-07 Jfeスチール株式会社 熱間圧延材のデスケーリング方法およびその装置
WO2006137187A1 (ja) * 2005-06-23 2006-12-28 Nippon Steel Corporation 厚鋼板の冷却装置
CA2625062C (en) 2005-11-11 2011-04-26 Jfe Steel Corporation Device and method for cooling hot strip
JP4449991B2 (ja) * 2007-02-26 2010-04-14 Jfeスチール株式会社 熱延鋼帯の冷却装置及び方法
KR101039174B1 (ko) 2007-07-30 2011-06-03 신닛뽄세이테쯔 카부시키카이샤 열 강판의 냉각 장치, 열 강판의 냉각 방법 및 프로그램
JP5206156B2 (ja) 2008-06-30 2013-06-12 Jfeスチール株式会社 熱間圧延における近赤外線カメラを用いた熱延金属帯の冷却制御方法および熱延金属帯の製造方法
CN201375987Y (zh) 2009-03-12 2010-01-06 宝山钢铁股份有限公司 一种热连轧机的侧向挡水装置
JP5469366B2 (ja) 2009-04-27 2014-04-16 株式会社共立合金製作所 スプレーノズル
JP5672664B2 (ja) 2009-05-18 2015-02-18 Jfeスチール株式会社 鋼板のデスケーリング方法およびその装置
CN201760451U (zh) 2010-06-25 2011-03-16 鞍钢股份有限公司 带钢表面残水清除装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231125A (ja) * 1985-04-03 1986-10-15 Kawasaki Steel Corp 熱間鋼板冷却装置の水切り方法
JPH11123439A (ja) * 1997-10-22 1999-05-11 Sumitomo Metal Ind Ltd 鋼板上の水切りスプレー装置
JP2007152429A (ja) 2005-11-11 2007-06-21 Jfe Steel Kk 熱延鋼帯の冷却装置および冷却方法
JP2010227966A (ja) 2009-03-27 2010-10-14 Jfe Steel Corp 熱延鋼板の通板時水切り方法および装置
JP2012051013A (ja) 2010-09-02 2012-03-15 Jfe Steel Corp 熱鋼板の水切り装置および水切り方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167967A4 (en) * 2014-07-10 2018-02-28 Nippon Steel & Sumitomo Metal Corporation Water deflecting device and water deflecting method for steel plate cooling water in hot rolling step
US10512958B2 (en) 2014-07-10 2019-12-24 Nippon Steel Corporation Water removing apparatus and water removing method for steel sheet cooling water in hot rolling process
JP2019177387A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 熱延鋼板用冷却水の水切り装置及び水切り方法

Also Published As

Publication number Publication date
IN2014DN09187A (ja) 2015-07-10
TW201416145A (zh) 2014-05-01
EP2859964B1 (en) 2017-08-02
EP2859964A4 (en) 2016-01-13
CN103747888B (zh) 2017-09-29
JPWO2013183694A1 (ja) 2016-02-01
EP2859964B2 (en) 2020-04-08
US9649679B2 (en) 2017-05-16
BR112014027788B1 (pt) 2021-08-31
CN103747888A (zh) 2014-04-23
TWI524951B (zh) 2016-03-11
US20150101386A1 (en) 2015-04-16
BR112014027788A2 (pt) 2017-06-27
KR20140024474A (ko) 2014-02-28
EP2859964A1 (en) 2015-04-15
KR101490663B1 (ko) 2015-02-05
JP5549786B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549786B2 (ja) 熱延鋼板用冷却水の水切り装置及び水切り方法
JP4586791B2 (ja) 熱延鋼帯の冷却方法
JP4586682B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
KR101209355B1 (ko) 열연 강판의 냉각 방법
TW201107052A (en) Cooling system, cooling method, manufacturing apparatus, and manufacturing method of hot-rolled steel sheet
JP4876782B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
JP2016193446A (ja) 熱延鋼板の冷却方法及び冷却装置
JP2011073054A (ja) 熱延鋼板の冷却方法及び冷却装置
JP5685861B2 (ja) 熱鋼板の水切り装置、水切り方法および冷却設備
WO2016006402A1 (ja) 熱間圧延工程の鋼板冷却水の水切り装置及び水切り方法
KR20180098542A (ko) 금속 기판을 냉각하기 위한 프로세스 및 기기
JP2008221328A (ja) 鋼片のスケール除去装置
JP2005342767A (ja) 熱延鋼板の製造設備及び熱延鋼板の製造方法
TWI446975B (zh) 鋼板之冷卻裝置、熱軋鋼板之製造裝置以及鋼板之製造方法
JP5910597B2 (ja) 熱延鋼板の冷却装置
JP2019177387A (ja) 熱延鋼板用冷却水の水切り装置及び水切り方法
WO2018073973A1 (ja) 熱延鋼板の冷却方法及び冷却装置
JP5741165B2 (ja) 熱鋼板の下面冷却装置
JP6787096B2 (ja) 熱間圧延方法
JP6179691B1 (ja) 熱延鋼板の冷却方法及び冷却装置
JP5228720B2 (ja) 厚鋼板の冷却設備

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547760

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147002268

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801187

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013801187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013801187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14395154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014027788

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014027788

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141107