WO2013183668A1 - 触媒を用いた炭素材料の製造方法および炭素材料 - Google Patents

触媒を用いた炭素材料の製造方法および炭素材料 Download PDF

Info

Publication number
WO2013183668A1
WO2013183668A1 PCT/JP2013/065579 JP2013065579W WO2013183668A1 WO 2013183668 A1 WO2013183668 A1 WO 2013183668A1 JP 2013065579 W JP2013065579 W JP 2013065579W WO 2013183668 A1 WO2013183668 A1 WO 2013183668A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
cellulosic material
carbon material
carbon
cellulose
Prior art date
Application number
PCT/JP2013/065579
Other languages
English (en)
French (fr)
Inventor
京谷 陸征
赤木 和夫
木村 伸一
Original Assignee
国立大学法人筑波大学
地方独立行政法人鳥取県産業技術センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学, 地方独立行政法人鳥取県産業技術センター filed Critical 国立大学法人筑波大学
Priority to CN201380029853.1A priority Critical patent/CN104428243B/zh
Priority to KR1020147035288A priority patent/KR102057134B1/ko
Priority to US14/405,650 priority patent/US9523163B2/en
Priority to CA2875607A priority patent/CA2875607C/en
Priority to JP2014520027A priority patent/JP6156828B2/ja
Priority to EP13801452.7A priority patent/EP2857355B1/en
Priority to NO13801452A priority patent/NO2857355T3/no
Publication of WO2013183668A1 publication Critical patent/WO2013183668A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a carbon material production method and a carbon material, and more specifically, a carbon material in which the cellulosic material and / or the regenerated cellulosic material is maintained using the cellulosic material and / or the regenerated cellulosic material.
  • the present invention relates to a method for producing at a high yield, and a carbon material obtained by the production method and maintaining the form of a raw material.
  • Carbon materials made from cellulose-based materials and / or regenerated cellulose-based materials are used in a wide range of fields. Such carbon materials are often used in the form of fibers, particles or lumps, and there are very few applications of carbon materials in the form of thin flat films such as films or films. is there.
  • An example of such a planar carbon material is a conductive carbon paper or cloth made from carbon fiber in the gas diffusion layer of the electrode of the fuel cell, which is quite expensive.
  • Non-Patent Documents 1 and 2 When cellulosic materials are heated at high temperatures in an inert gas, dehydration and depolymerization occur due to thermal decomposition, generating CO, CO 2 , H 2 O, and other volatile gases, and low molecular weight substances such as levoglucosan. It is considered that a complicated decomposition reaction such as the formation of sucrose occurs, and eventually a black substance mainly composed of carbon remains (Non-Patent Documents 1 and 2).
  • Patent Document 1 In recent years, taking advantage of the characteristics of cellulosic materials, network-like carbon materials and sheet-like materials with a large specific surface area can be obtained from gel-like bacterial cellulose produced by bacteria with good yield and with a variable graphitization rate. A technique that can be obtained in this manner has been reported (Patent Document 1). In addition, recently, the present inventors have reported that a carbon material in which the cellulosic material is maintained can be provided by performing a heat treatment after doping the cellulosic material with a halogen or a halide. (Patent Document 2).
  • Patent Document 1 it is reported that a carbon material can be satisfactorily obtained from a bacterial cellulose-based substance.
  • the bacterial cellulose-based substance is a gel-like substance, a step of drying while maintaining the network structure of the bacterial cellulose is performed. In addition, this drying step has a problem that the shrinkage rate needs to be controlled within a predetermined range.
  • the production method of Patent Document 2 uses a halogen gas, it has a feature that a halogen molecule is adsorbed to cellulose in a gas phase, but there is room for improvement in that it requires some care in handling the halogen. .
  • an object of the present invention is to produce a carbon material in which the cellulosic material and / or the regenerated cellulosic material is maintained in a high yield using the cellulosic material and / or the regenerated cellulosic material. It is to provide a method.
  • the method for producing a carbon material according to the present invention includes a step of adsorbing a sulfonic acid to a cellulosic material and / or a regenerated cellulose material, and a cellulosic material and / or a regenerated cellulose adsorbed with the sulfonic acid. And a step of heat-treating the system material at a temperature of 600 to 2800 ° C., preferably 600 to 1000 ° C. in an inert gas atmosphere.
  • the carbon material production method of the present invention includes a step of adsorbing a sulfonic acid to a cellulose material and / or a regenerated cellulose material, a cellulose material and / or a regenerated cellulose material to which the sulfonic acid is adsorbed.
  • a sulfonic acid to a cellulose material and / or a regenerated cellulose material, a cellulose material and / or a regenerated cellulose material to which the sulfonic acid is adsorbed.
  • the step of adsorbing the sulfonic acid is preferably performed by immersing the cellulose material and / or the regenerated cellulose material in an aqueous sulfonic acid solution at room temperature.
  • the concentration of the sulfonic acid aqueous solution is preferably 0.1 to 2.0 mol / L.
  • the sulfonic acid may be either aliphatic or aromatic sulfonic acid.
  • water-soluble sulfonic acids such as methanesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, benzenesulfonic acid and camphorsulfone alone.
  • the cellulosic material and / or the regenerated cellulosic material is selected from the group consisting of spun yarn, monofilament, paper, film, sheet, woven fabric, and knitted fabric. It is preferable.
  • the carbon material of the present invention is obtained by any one of the above carbon material production methods, and is characterized in that the form of the cellulose material and / or the regenerated cellulose material used as a raw material is maintained.
  • the cellulose adsorbed with sulfonic acid removes water (H 2 O) from the cellulose molecule due to the dehydration function of the sulfonic acid as the temperature rises, there is almost no thermal decomposition reaction, and much cellulose in the cellulose molecule. Therefore, the carbonization in which the shape is maintained can be achieved with a high carbonization yield.
  • the carbonization in which the shape is maintained can be achieved with a high carbonization yield.
  • the method for producing a carbon material of the present invention includes a step of adsorbing sulfonic acid to a cellulose material and / or a regenerated cellulose material, a cellulose material and / or a regenerated cellulose material to which the sulfonic acid is adsorbed, And a step of heat treatment in an inert gas atmosphere at a temperature of 600 to 2800 ° C., preferably 600 to 1000 ° C.
  • the method of immersing in the sulfonic acid aqueous solution is not particularly limited. Examples thereof include a method of bringing into contact with a sulfonic acid vapor, and a method of making a paper by mixing fibers of a cellulose material and / or a regenerated cellulose material in an aqueous sulfonic acid solution.
  • a method of immersing a cellulosic material in a sulfonic acid aqueous solution is preferable.
  • the immersion time is preferably 5 to 120 minutes, more preferably 5 to 30 minutes.
  • 1 to 150 mass%, preferably 5 to 60 mass% of sulfonic acid is adsorbed in the cellulosic material.
  • any method may be employed such as standing at room temperature or introducing into a dryer. Drying may be performed after removing from the sulfonic acid aqueous solution until the excess moisture evaporates and the sample weight does not change. For example, in room temperature drying, the drying time may be left for 0.5 days or longer. After almost no mass change due to drying, the cellulosic material is subjected to a heat treatment step.
  • the cellulose material and / or the regenerated cellulose material used as a raw material is a material composed mainly of a cellulose derivative.
  • Cellulose and cellulose derivatives may be of any origin such as chemically synthesized products, plant-derived, regenerated cellulose, and cellulose produced by bacteria.
  • general plant cellulosic materials produced by higher plants such as so-called trees, and long fibrous regenerated cellulosic materials obtained by chemical treatment of short fibrous cellulose collected from cotton and pulp Is mentioned.
  • the cellulosic material and / or the regenerated cellulosic material have a form of fiber, film, or three-dimensional structure having various shapes ranging from one dimension to three dimensions.
  • Preferred cellulose-based materials for obtaining such effects include spun yarn, monofilament, paper, film, sheet, woven fabric, knitted fabric, and absorbent cotton.
  • the sulfonic acid various aliphatic and aromatic compounds having various sulfo groups can be used.
  • Cellulose molecules constituting cellulosic materials and / or regenerated cellulosic materials are sometimes expressed as (C 6 (H 2 O) 5 ) n in chemical formulas, and are also considered molecules made of carbon and water.
  • the sulfonic acid removes only water (H 2 O) from the cellulose molecules during the heat treatment of the cellulosic material due to its dehydrating function, so that generation of hydrocarbon gas accompanying normal thermal decomposition occurs. It is considered that almost no carbon component in the cellulose molecule is almost lost, so that it is possible to prevent a decrease in the amount of the carbon material finally remaining.
  • the sulfonic acid usable in the present invention may be any organic compound in which a sulfo group (—SO 3 H) is bonded to the carbon skeleton, and is preferably a low molecular weight compound that can be easily handled.
  • the number of sulfo groups may be one or plural.
  • sulfonic acid examples include, for example, R—SO 3 H (wherein R is a linear / branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or Represents an aryl group having 6 to 20 carbon atoms, and the alkyl group, cycloalkyl group and aryl group may be substituted with an alkyl group, a hydroxyl group and a halogen atom, respectively.
  • R—SO 3 H wherein R is a linear / branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or Represents an aryl group having 6 to 20 carbon atoms, and the alkyl group, cycloalkyl group and aryl group may be substituted with an alkyl group, a hydroxyl group and a halogen atom, respectively.
  • sulfonic acid examples include, for example, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, 1-hexanesulfonic acid, vinylsulfonic acid, cyclohexanesulfonic acid, p-toluenesulfonic acid, p-phenolsulfonic acid, Naphthalene sulfonic acid, benzene sulfonic acid, camphor sulfonic acid and the like can be mentioned.
  • it is at least one selected from the group consisting of methanesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, benzenesulfonic acid and camphorsulfonic acid.
  • a sulfonic acid may be used individually by 1 type, and may use 2 or more types together.
  • the preferred concentration is 0.1 to 2.0 mol / L, more preferably 0.5 to 1.0 mol / L.
  • the cellulosic material and / or the regenerated cellulosic material that has been subjected to the adsorption step with the sulfonic acid is 600 ° C. to 2800 ° C. in an inert gas atmosphere.
  • Carbonization is preferably performed at a heat treatment temperature of 600 ° C. to 1000 ° C. Thereby, a carbon material whose form is maintained as it is can be obtained.
  • the heat treatment temperature is less than 600 ° C., the carbon content of the carbonized product is 80% by mass or less and the carbonization is insufficient.
  • the temperature exceeds 2800 ° C. the carbonization state almost no longer changes.
  • Heat treatment within the range.
  • the heat treatment time is preferably 0.5 to 1 hour although it depends on the heat treatment temperature.
  • the rate of temperature increase from room temperature to the predetermined heat treatment temperature is preferably 3 to 8 ° C./min.
  • a high-temperature furnace having an inert gas atmosphere such as a tubular furnace or an electric furnace can be used.
  • an inert gas exhaust pipe is filled with an adsorbent such as activated carbon, and sulfonic acid is used. It is preferable to perform a desulfurization treatment of a small amount of sulfur-based gas generated from the gas.
  • the carbon material can be obtained by the carbon material production method of the present invention while maintaining the form of the cellulose material and / or the regenerated cellulose material as a raw material. Theoretically, assuming that all the carbon contained in cellulose remains as a carbonized product, the carbonization yield is 44.4% by mass. According to the present invention, it is possible to produce a carbon material having a high carbonization yield of preferably 30% by mass or more, and in some cases 40% by mass or more.
  • Another carbon material production method of the present invention includes a step of adsorbing a sulfonic acid to a cellulosic material and / or a regenerated cellulosic material, a cellulosic material and / or a regenerated cellulosic material adsorbed with the sulfonic acid.
  • the cellulose material and / or the regenerated cellulosic material that has undergone the adsorption step with sulfonic acid is first treated with carbon at a heat treatment temperature of 600 ° C. or higher and 2800 ° C. or lower in an inert gas atmosphere. Turn into. At this time, the heat treatment time is preferably 0.5 to 1 hour although it depends on the heat treatment temperature. Thereby, the carbon material with which the form of the cellulosic material was maintained as it is is obtained.
  • the temperature of the carbon material heat-treated in the above step is preferably returned to room temperature, and then in an inert gas atmosphere, 1800 ° C. to 3000 ° C., preferably 1800 ° C. to 2800 Re-heat treatment at a temperature of ° C.
  • a partially graphitized carbon material can be obtained in a state where the initial form of the cellulosic material is maintained.
  • the reheating temperature is less than 1800 ° C., the progress of graphitization (crystallization) hardly occurs.
  • the temperature exceeds 3000 ° C. the degree of graphitization hardly changes.
  • the carbon material obtained in the carbonization step is heat-treated in the above temperature range in an argon gas atmosphere using an electric furnace while maintaining the shape.
  • the heat treatment time is preferably 0.5 to 1 hour although it depends on the heat treatment temperature.
  • the carbon material obtained by carbonization at 600 ° C. to 1000 ° C. may be once cooled to room temperature and further heat treated at 1800 ° C. to 3000 ° C. to be partially graphitized.
  • the same effect can be obtained even if the carbon material obtained by carbonization at 600 ° C. to 1000 ° C. is continuously heated again to 1800 ° C. to 3000 ° C. and graphitized.
  • the carbon material obtained in the first carbonization step is a material having an electric conductivity of about several S / cm while maintaining the shape, though the size shrinks.
  • graphitization proceeds, and as a result, the conductivity is improved and becomes several tens S / cm or more.
  • Example 1 A sample Japanese paper / sisal paper (60 ⁇ 80 mm, thickness 0.5 mm) was immersed in a 0.1 mol / L aqueous solution of p-toluenesulfonic acid for 10 minutes at room temperature. Thereafter, Japanese paper and sisal paper were removed from the aqueous solution and dried at room temperature for 12 hours. The adsorption amount of sulfonic acid was 9% by mass.
  • This sample was sandwiched between two carbon plates and carbonized by heating at 800 ° C. for 60 minutes in an argon atmosphere in an electric furnace. At this time, a small amount of activated carbon was put in an argon gas exhaust pipe for desulfurization. After carbonization, the inside of the electric furnace was brought to room temperature, and a carbonized sample (carbonized paper) was taken out. When the carbonization yield was confirmed, the carbonization yield was 32% by mass.
  • Example 2 Carbonized paper was prepared in the same manner as in Example 1 except that 1.0 mol / L of methanesulfonic acid was used instead of p-toluenesulfonic acid. The absorbed amount of methanesulfonic acid was 60% by mass. The carbonization yield of the obtained carbonized paper was 38% by mass.
  • Example 1 The Japanese paper and sisal paper used in Example 1 were carbonized by heating in an electric furnace at 800 ° C. for 60 minutes in an argon gas atmosphere without being immersed in p-toluenesulfonic acid. After carbonization, the inside of the electric furnace was brought to room temperature and a carbonized sample was taken out. When the carbonization yield was confirmed, the carbonization yield was 17% by mass.
  • Example 3 A sample Japanese paper / paste paper (80 ⁇ 100 mm, thickness 0.3 mm) was immersed in a 0.1 mol / L aqueous solution of p-toluenesulfonic acid for 20 minutes at room temperature. Thereafter, the Japanese paper / paste paper was removed from the aqueous solution and dried at room temperature for 36 hours. The adsorption amount of sulfonic acid was 6% by mass. This sample was heat-treated in exactly the same manner as in Example 1 to produce carbonized paper. When the carbonization yield was confirmed, the carbonization yield was 32% by mass.
  • Example 4 Carbonization was carried out in the same manner as in Example 3 except that 1.0 mol / L of methanesulfonic acid was used instead of p-toluenesulfonic acid. The absorption amount of methanesulfonic acid was 61% by mass. The carbonized yield of the obtained carbonized paper was 35% by mass.
  • Example 2 The Japanese paper and cinnamon paper used in Example 3 were carbonized by heating in an electric furnace at 800 ° C. for 60 minutes in an argon gas atmosphere without being immersed in p-toluenesulfonic acid. After carbonization, the inside of the electric furnace was brought to room temperature and a carbonized sample was taken out. When the carbonization yield was confirmed, the carbonization yield was 18% by mass.
  • Example 5 A regenerated cellulose paper (60 ⁇ 67 mm, thickness 0.53 mm) as a sample was immersed in a 0.1 mol / L aqueous solution of p-toluenesulfonic acid for 10 minutes at room temperature. The sample was then removed from the aqueous solution and dried at room temperature for 36 hours. The adsorption amount of sulfonic acid was 14% by mass. This sample was heat-treated in exactly the same manner as in Example 1 to produce carbonized paper. When the carbonization yield was confirmed, the carbonization yield was 33% by mass.
  • Example 6 A filter paper (80 ⁇ 100 mm, thickness 0.34 mm) as a sample was immersed in a 1.0 mol / L aqueous solution of methanesulfonic acid for 20 minutes at room temperature. The sample was then removed from the aqueous solution and dried at room temperature for 36 hours. The adsorption amount of sulfonic acid was 38% by mass. This sample was heat-treated in exactly the same manner as in Example 1 to produce carbonized paper. When the carbonization yield was confirmed, the carbonization yield was 35% by mass.
  • Example 7 A cotton yarn (spun yarn, thickness 1 mm) as a sample was immersed in a 2.0 mol / L aqueous solution of methanesulfonic acid for 120 minutes at room temperature. Thereafter, the sample was taken out from the aqueous solution and dried at room temperature for 12 hours. The adsorption amount of sulfonic acid was 43% by mass. This sample was carbonized by heat treatment in exactly the same manner as in Example 1 to produce carbon fibers. When the carbonization yield was confirmed, the carbonization yield was 38% by mass.
  • Example 8 A sample commercially available absorbent cotton was immersed in a 0.1 mol / L aqueous solution of p-toluenesulfonic acid for 10 minutes at room temperature. The sample was then removed from the aqueous solution and dried at room temperature for 36 hours. The adsorption amount of sulfonic acid was 46% by mass. This sample was heat-treated in the same manner as in Example 1 to produce carbonized absorbent cotton. When the carbonization yield was confirmed, the carbonization yield was 40% by mass.
  • the carbon material obtained by the production method of the present invention includes various electronic device materials such as carbon films, carbon fibers, and nanoconductive materials, various battery electrode materials, various gas storage materials, various gas storage / adsorption materials, thermal conductivity / release. It is extremely useful for materials, catalyst carriers, filter media, electron emission materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

 セルロース系材料を用いて、セルロース系材料の形態が維持された炭素材料を高収率で製造することのできる炭素材料の製造方法を提供する セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、および、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度により加熱処理する工程を備えることを特徴とする炭素材料の製造方法である。

Description

触媒を用いた炭素材料の製造方法および炭素材料
 本発明は、炭素材料の製造方法および炭素材料に関し、詳しくは、セルロース系材料及び/又は再生セルロース系材料を用いて、セルロース系材料及び/又は再生セルロース系材料の形態が維持された炭素材料を高収率で製造する方法、および、該製造方法により得られ、原料の形態を維持した炭素材料に関する。
 セルロース系材料及び/又は再生セルロース系材料を原料とした炭素材料は広い分野で利用されている。そのような炭素材料は、多くの場合、繊維状、粒子状或いは塊状の形態で使用されており、フィルム或いは膜状の薄い平面的な形態の炭素材料の応用例は非常に少ないのが現状である。かかる平面的な形態の炭素材料の例としては、燃料電池の電極のガス拡散層に炭素繊維を原料とした導電性のカーボンペーパーまたはクロスがあるが、かなり高価である。
 セルロース系材料を不活性ガス中、高温で加熱すると、熱分解により脱水反応と解重合が生じ、CO、CO、HO、その他の揮発性ガスを発生するとともにレボグルコサンのような低分子量物の生成等、複雑な分解反応が生じ、最終的には炭素を主成分とする黒色物質が残ると考えられている(非特許文献1、2)。
 このような熱分解のため、例えば、フィルム状の形態を有するセルロース系物質においては、その形態維持がかなり困難であり、得られる炭素材料は非常に脆いものとなる。
 近年、セルロース系物質の特性を活かし、バクテリアが産生したゲル状のバクテリアセルロースから、比表面積の大きな新規な構成のネットワーク状炭素材料およびシート状物を収率良く、かつ、黒鉛化率を変動させて得ることができる技術が報告されている(特許文献1)。また、最近、本発明者等は、セルロース系物質に対して、ハロゲンまたはハロゲン化物をドーピングした後に、加熱処理を行うことでセルロース系物質の形態が維持された炭素材料を提供しうることを報告している(特許文献2)。
特開2007-55865号公報 特開2009-292676号公報
Thermal Degradation of Polymeric Materials, by K.PielichowskiandJ.Njuguna, Rapra, Shawbury, UK, 2005 Thermal Biomass Conversion, by A.V.Bridgwater, H.Hofbauer, S.VanLoo,CPL Press, London, UK, 2009
 上記特許文献1においてバクテリアセルロース系物質から良好に炭素材料が得られることが報告されているが、バクテリアセルロース系物質はゲル状物質であるため、バクテリアセルロースのネットワーク構造を維持しながら乾燥する工程が必須であり、さらに、この乾燥工程では収縮率を所定の範囲内に制御する必要があるなどの問題があった。また、特許文献2の製造方法はハロゲンのガスを使用するので、気相でハロゲン分子をセルロースに吸着させるという特徴を有するが、ハロゲンの取り扱いにいくらか注意を要するという点において改善の余地があった。
 そこで本発明の目的は、セルロース系材料及び/又は再生セルロース系材料を用いて、セルロース系材料及び/又は再生セルロース系材料の形態が維持された炭素材料を高収率で製造する炭素材料の製造方法を提供することにある。
 本発明者らは、鋭意検討した結果、炭素化の触媒として比較的取り扱いやすいスルホン酸を用いることで上記課題を解決しうることを見出し、本発明を完成するに至った。
 即ち、本発明の炭素材料の製造方法は、セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、および、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃、好ましくは600~1000℃の温度により加熱処理する工程、を備えることを特徴とするものである。
 また、本発明の炭素材料の製造方法は、セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度、好ましくは600~1000℃により加熱処理する工程、および、前記加熱処理したセルロース系材料及び/又は再生セルロース系材料を室温まで冷却した後、不活性ガス雰囲気中、1800~3000℃の温度での再加熱処理を行う工程、を備えることを特徴とするものである。
 本発明の炭素材料の製造方法においては、前記スルホン酸を吸着させる工程が、室温でスルホン酸水溶液にセルロース系材料及び/又は再生セルロース系材料を浸漬させることにより行われることが好ましい。
 また、本発明の炭素材料の製造方法においては、前記スルホン酸水溶液の濃度が、0.1~2.0モル/Lであることが好ましい。
 また、本発明の炭素材料の製造方法においては、前記スルホン酸は脂肪族系、芳香族系のいずれの系のスルホン酸でもよい。具体的には、メタンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、ベンゼンスルホン酸およびカンファースルホン等の水溶性スルホン酸等のいずれか1種で単独に使用するのが好ましい。
 また、本発明の炭素材料の製造方法においては、前記セルロース系材料及び/又は再生セルロース系材料が、紡績糸、モノフィラメント、紙、フィルム、シート、織物及び編み物からなる群から選択される形態であることが好ましい。
 本発明の炭素材料は、上記いずれかの炭素材料の製造方法により得られ、原料として用いたセルロース系材料及び/又は再生セルロース系材料の形態が維持されていることを特徴とするものである。
 本発明によれば、スルホン酸を吸着したセルロースが温度上昇とともに、スルホン酸の脱水機能により、セルロース分子から水(HO)を除去するので、熱分解反応が殆ど無くなり、セルロース分子内の多くの炭素が炭素化物として残るため、高炭素化収率で、形態保持された炭素化が可能となる。このようにセルロース系材料の形態が保持されて炭素化される結果、例えば、和紙から導電性を有する炭素フィルムを高炭素化収率で作製することも可能となる。
 以下、本発明の炭素材料を製造する方法について説明する。
 本発明の炭素材料の製造方法は、セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度、好ましくは600~1000℃の温度により加熱処理する工程、を備えることを特徴とするものである
 セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程において、スルホン酸水溶液に浸漬する方法は特に限定されず、スルホン酸水溶液をセルロース系材料に対して振りかける方法、気化したスルホン酸蒸気に接触させる方法、スルホン酸水溶液にセルロース系材料及び/又は再生セルロース系材料の繊維を混ぜて抄紙する方法などが挙げられる。好ましくは、スルホン酸水溶液にセルロース系材料を浸漬する方法である。スルホン酸水溶液の浸漬時の温度は特に制限されないが、室温が好ましい。浸漬時間は、好ましくは5~120分間、より好ましくは5~30分間である。浸漬により、セルロース系材料内に、例えば1~150質量%、好ましくは5~60質量%のスルホン酸が吸着する。浸漬後、セルロース系材料を取り出して、乾燥させることが好ましい。乾燥方法としては、例えば室温で放置、乾燥機に導入する、等いずれの方法であってもよい。乾燥は、スルホン酸水溶液から取り出した後、余分の水分が蒸発して試料重量の変化がなくなるまで行えばよい。例えば室温乾燥では、乾燥時間は0.5日以上放置すればよい。乾燥により質量変化が殆どなくなった後、セルロース系材料を加熱処理工程に供する。
 本発明の炭素材料の製造方法において、原料として用いられるセルロース系材料及び/又は再生セルロース系材料とは、セルロース誘導体を主成分として構成される材料である。セルロース、セルロース誘導体としては、化学合成品、植物由来、再生セルロース、バクテリアが産生したセルロースなど、その由来はいずれであってもよい。例えば、いわゆる樹木などの高等植物によって生産される一般的な植物セルロース系材料、綿やパルプから採取される短い繊維状セルロースに化学処理を施して溶解させて得られる長い繊維状の再生セルロース系材料が挙げられる。セルロース系材料及び/又は再生セルロース系材料は、一次元から三次元に至る種々の形状を有する繊維状、フィルム状又は三次元的構造の形態を有するものであり、本発明は、このような様々な形態を有するものであっても、高温での炭素化において形態破壊および炭素収率の低下を防ぐことを可能にしたものである。かかる効果を得る上で好ましいセルロース系材料として、紡績糸、モノフィラメント、紙、フィルム、シート、織物、編み物、脱脂綿等を挙げることができる。
 スルホン酸としては、脂肪族系、芳香族系の種々のスルホ基を有する化合物が利用可能である。セルロース系材料及び/又は再生セルロース系材料を構成するセルロース分子は化学式で(C(HO))nと記されることもあり、炭素と水から出来た分子とも考えられる。本発明の方法においてスルホン酸は、その脱水機能により、セルロース系材料の加熱処理時にセルロース分子から水(HO)のみを除去するので、通常の熱分解に伴う炭化水素系のガスの発生が殆ど無く、セルロース分子中の炭素成分が殆ど失われないので最終的に残存する炭素物質の量の低下を防止すると考えられる。本発明において使用可能なスルホン酸としては、炭素骨格にスルホ基(-SOH)が結合した有機化合物であればいずれであってもよく、好ましくは取り扱いが容易な低分子化合物である。スルホ基の数は1つであってもよく、複数であってもよい。使用可能なスルホン酸の具体例として、例えば、R-SOH(式中、Rは炭素原子数1~20の直鎖/分岐鎖アルキル基、炭素原子数3~20のシクロアルキル基、または、炭素原子数6~20のアリール基を表し、アルキル基、シクロアルキル基、アリール基は、それぞれアルキル基、水酸基、ハロゲン原子で置換されていてもよい。)で表される化合物が挙げられる。スルホン酸の具体的な化合物例として、例えば、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、1-ヘキサンスルホン酸、ビニルスルホン酸、シクロヘキサンスルホン酸、p-トルエンスルホン酸、p-フェノールスルホン酸、ナフタレンスルホン酸、ベンゼンスルホン酸、カンファースルホン酸等が挙げられる。好ましくは、メタンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、ベンゼンスルホン酸およびカンファースルホン酸からなる群から選ばれる1種以上である。スルホン酸は1種を単独で用いてもよく、2種以上を併用してもよい。
 スルホン酸を水溶液として用いる場合、好ましい濃度は、0.1~2.0モル/Lであり、より好ましくは、0.5~1.0モル/Lである。
 次に、本発明の加熱処理工程(炭素化工程)においては、上記のスルホン酸との吸着工程を経たセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600℃~2800℃、好ましくは600℃~1000℃の熱処理温度で炭素化する。これにより形態がそのまま維持された炭素材料を得ることができる。この熱処理温度が600℃未満であると炭素化物の炭素含有量が80質量%以下で炭素化が不十分であり、一方、2800℃を超えても、炭化状態はもはや殆ど変化しない。
 具体的には、例えば、まず、上記のスルホン酸との吸着工程を経たセルロース系材料及び/又は再生セルロース系材料をその形態を維持した状態で電気炉を用いて窒素又はアルゴンガス雰囲気下、上記範囲内で熱処理する。この際、熱処理時間は、熱処理温度にもよるが、好ましくは0.5~1時間である。また、室温から所定熱処理温度までの昇温速度は3~8℃/分が好ましい。加熱処理工程において管状炉や電気炉等の不活性ガス雰囲気にした高温炉を使用することができるが、この場合、不活性ガスの排気管に活性炭素のような吸着材を充填し、スルホン酸から発生する少量のイオウ系のガスの脱硫処理を行うことが好ましい。
 上記本発明の炭素材料の製造方法により、原料となるセルロース系材料及び/又は再生セルロース系材料の形態を維持したまま、炭素材料を得ることができる。理論上、セルロースに含まれる炭素が全て炭素化物として残存すると仮定すると、炭素化収率は44.4質量%となる。本発明により、好適には、30質量%以上、場合によっては40質量%以上という高い炭素化収率の炭素材料を製造することが可能となる。
 次に、本発明の他の製造方法につき以下に説明する。本発明の他の炭素材料の製造方法は、セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度により加熱処理する工程、前記加熱処理した試料を、不活性ガス雰囲気中、1800~3000℃の温度での再加熱処理を行う工程、を備えることを特徴とするものである。
 本発明の他の製造方法は、加熱処理工程までは上記炭素材料の製造方法と同様である。加熱処理工程は、上記と同様にして、先ず、スルホン酸との吸着工程を経たセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600℃以上2800℃以下の熱処理温度で炭素化する。この際、熱処理時間は、熱処理温度にもよるが、好ましくは0.5~1時間である。これにより、セルロース系材料の形態がそのまま維持された炭素材料を得る。
 次いで、再加熱工程(部分グラファイト化工程)として、好ましくは上記工程で熱処理された炭素材料の温度を室温まで戻した後、不活性ガス雰囲気中、1800℃~3000℃、好ましくは1800℃~2800℃の温度で再熱処理する。これにより、セルロース系物質の最初の形態が維持された状態で、部分的にグラファイト化した炭素材料を得ることができる。この再熱処理温度が1800℃未満であるとグラファイト化(結晶化)の進行が殆ど起こらず、一方、3000℃を超えても、もはやグラファイト化の程度は殆ど変わらなくなる。
 具体的には、例えば、炭素化工程と同様に、炭素化工程で得られた炭素材料をその形状を維持した状態で電気炉を用いてアルゴンガス雰囲気下、上記温度範囲内で熱処理する。熱処理時間は、熱処理温度にもよるが、好ましくは0.5~1時間である。
 なお、本発明の他の製造方法では、600℃~1000℃で炭素化して得られた炭素材料を、一旦室温まで冷却してからさらに1800℃~3000℃で熱処理し、部分グラファイト化してもよいし、600℃~1000℃で炭素化して得られた炭素材料を、そのまま連続して1800℃~3000℃まで再昇温して、グラファイト化しても同様の効果を得ることができる。
 最初の炭素化工程で得られた炭素材料は、サイズの収縮はあるものの、ほぼ形態を保持したままであり、電導度が数S/cm程度の材料である。この炭素材料を部分グラファイト工程において1800℃~3000℃で熱処理することにより、グラファイト化が進行し、その結果、電導度も向上し、数十S/cm以上になる。
[実施例1]
 p-トルエンスルホン酸の0.1モル/L水溶液に、試料である和紙・サイザル麻紙(60×80mm、厚さ0.5mm)を室温下、10分間浸漬した。その後、和紙・サイザル麻紙を水溶液から取り出し、室温で12時間、乾燥した。スルホン酸の吸着量は9質量%であった。この試料を、2枚の炭素板に挟み、電気炉でアルゴンガス雰囲気下、800℃で60分間加熱し、炭素化した。このとき、アルゴンガスの排気管に脱硫のために少量の活性炭を入れておいた。炭素化後、電気炉内を室温にし、炭素化試料(炭化紙)を取り出した。炭素化収率を確認したところ、炭素化収率は32質量%であった。
[実施例2]
 p-トルエンスルホン酸の代わりに、メタンスルホン酸1.0モル/Lを用いた以外は、実施例1と同様にして炭化紙を作製した。メタンスルホン酸の吸収量は、60質量%であった。得られた炭化紙の炭素化収率は38質量%であった。
[比較例1]
 実施例1で用いた和紙・サイザル麻紙を、p-トルエンスルホン酸への浸漬を行わず、そのまま電気炉でアルゴンガス雰囲気下、800℃で60分間加熱し、炭素化した。炭素化後、電気炉内を室温にし、炭素化試料を取り出した。炭素化収率を確認したところ、炭素化収率は17質量%であった。
[実施例3]
 p-トルエンスルホン酸の0.1モル/L水溶液に、試料である和紙・雁皮紙(80×100mm、厚さ0.3mm)を室温下、20分間浸漬した。その後、和紙・雁皮紙を水溶液から取り出し、室温で36時間、乾燥した。スルホン酸の吸着量は6質量%であった。この試料を、実施例1と全く同じ方法で加熱処理して炭化紙を作製した。炭素化収率を確認したところ、炭素化収率は32質量%であった。
[実施例4]
 p-トルエンスルホン酸の代わりに、メタンスルホン酸1.0モル/Lを用いた以外は、実施例3と同様にして炭素化した。メタンスルホン酸の吸収量は、61質量%であった。得られた炭化紙の炭素化収率は35質量%であった。
[比較例2]
 実施例3で用いた和紙・雁皮紙を、p-トルエンスルホン酸への浸漬を行わず、そのまま電気炉でアルゴンガス雰囲気下、800℃で60分間加熱し、炭素化した。炭素化後、電気炉内を室温にし、炭素化試料を取り出した。炭素化収率を確認したところ、炭素化収率は18質量%であった。
[実施例5]
 p-トルエンスルホン酸の0.1モル/L水溶液に、試料である再生セルロース紙(60×67mm、厚さ0.53mm)を室温下、10分間浸漬した。その後、試料を水溶液から取り出し、室温で36時間、乾燥した。スルホン酸の吸着量は14質量%であった。この試料を、実施例1と全く同じ方法で加熱処理して炭化紙を作製した。炭素化収率を確認したところ、炭素化収率は33質量%であった。
[実施例6]
 メタンスルホン酸の1.0モル/L水溶液に、試料であるろ紙(80×100mm、厚さ0.34mm)を室温下、20分間浸漬した。その後、試料を水溶液から取り出し、室温で36時間、乾燥した。スルホン酸の吸着量は38質量%であった。この試料を、実施例1と全く同じ方法で加熱処理して炭化紙を作製した。炭素化収率を確認したところ、炭素化収率は35質量%であった。
[実施例7]
 メタンスルホン酸の2.0モル/L水溶液に、試料である綿糸(紡績糸、太さ1mm)を室温下、120分間浸漬した。その後、試料を水溶液から取り出し、室温で12時間乾燥した。スルホン酸の吸着量は43質量%であった。この試料を、実施例1と全く同じ方法で加熱処理して炭素化し、炭素繊維を作製した。炭素化収率を確認したところ、炭素化収率は38質量%であった。
[実施例8]
 p-トルエンスルホン酸の0.1モル/L水溶液に、試料である市販脱脂綿を室温下、10分間浸漬した。その後、試料を水溶液から取り出し、室温で36時間、乾燥した。スルホン酸の吸着量は46質量%であった。この試料を、実施例1と全く同じ方法で加熱処理して炭化脱脂綿を作製した。炭素化収率を確認したところ、炭素化収率は40質量%であった。
 本発明の製造方法により得られる炭素材料は、炭素フィルム、炭素繊維、ナノ電導素材等の各種電子デバイス素材、各種電池用電極素材、各種ガス貯蔵素材、各種ガス吸蔵・吸着材、熱電導・放出材、触媒担体、ろ過材、電子放出素材等に極めて有用である。

Claims (7)

  1.  セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、および、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度により加熱処理する工程を備えることを特徴とする炭素材料の製造方法。
  2.  セルロース系材料及び/又は再生セルロース系材料に対して、スルホン酸を吸着させる工程、前記スルホン酸を吸着させたセルロース系材料及び/又は再生セルロース系材料を、不活性ガス雰囲気中、600~2800℃の温度により加熱処理する工程、および、前記加熱処理したセルロース系材料を、不活性ガス雰囲気中、1800~3000℃の温度での再加熱処理を行う工程、を備えることを特徴とする炭素材料の製造方法。
  3.  前記スルホン酸を吸着させる工程が、スルホン酸水溶液にセルロース系材料を浸漬させることにより行われる請求項1記載の炭素材料の製造方法。
  4.  前記スルホン酸水溶液の濃度が、0.1~2.0モル/Lである請求項3記載の炭素材料の製造方法。
  5.  前記スルホン酸が、メタンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、ベンゼンスルホン酸およびカンファースルホン酸からなる群から選ばれる1種以上である請求項1記載の炭素材料の製造方法。
  6.  前記セルロース系材料及び/又は再生セルロース系材料が、紡績糸、モノフィラメント、紙、フィルム、シート、織物及び編み物からなる群から選択される形態である請求項1記載の炭素材料の製造方法。
  7.  請求項1記載の炭素材料の製造方法により得られ、原料として用いたセルロース系材料及び/又は再生セルロース系材料の形態が維持されていることを特徴とする炭素材料。
PCT/JP2013/065579 2012-06-05 2013-06-05 触媒を用いた炭素材料の製造方法および炭素材料 WO2013183668A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380029853.1A CN104428243B (zh) 2012-06-05 2013-06-05 使用了催化剂的碳材料的制造方法以及碳材料
KR1020147035288A KR102057134B1 (ko) 2012-06-05 2013-06-05 촉매를 사용한 탄소 재료의 제조 방법 및 탄소 재료
US14/405,650 US9523163B2 (en) 2012-06-05 2013-06-05 Method for producing carbon material using catalyst, and carbon material
CA2875607A CA2875607C (en) 2012-06-05 2013-06-05 Method for producing carbon material using catalyst, and carbon material
JP2014520027A JP6156828B2 (ja) 2012-06-05 2013-06-05 触媒を用いた炭素材料の製造方法および炭素材料
EP13801452.7A EP2857355B1 (en) 2012-06-05 2013-06-05 Method for producing carbon material using catalyst, and carbon material
NO13801452A NO2857355T3 (ja) 2012-06-05 2013-06-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-128253 2012-06-05
JP2012128253 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183668A1 true WO2013183668A1 (ja) 2013-12-12

Family

ID=49712057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065579 WO2013183668A1 (ja) 2012-06-05 2013-06-05 触媒を用いた炭素材料の製造方法および炭素材料

Country Status (8)

Country Link
US (1) US9523163B2 (ja)
EP (1) EP2857355B1 (ja)
JP (1) JP6156828B2 (ja)
KR (1) KR102057134B1 (ja)
CN (1) CN104428243B (ja)
CA (1) CA2875607C (ja)
NO (1) NO2857355T3 (ja)
WO (1) WO2013183668A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193941A (ja) * 2014-03-31 2015-11-05 日本製紙株式会社 シート状炭素材料
JP2017066541A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維シートの製造方法
JP2017066540A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
JP2017066539A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
JP2017101350A (ja) * 2015-12-01 2017-06-08 旭化成株式会社 キュプラ繊維材料を用いた炭素材料の製造方法
JP2020050991A (ja) * 2018-09-27 2020-04-02 日本製紙株式会社 活性炭素繊維材料の製造方法
JP2020117824A (ja) * 2019-01-22 2020-08-06 日本製紙株式会社 活性炭素繊維材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234017B1 (ko) * 2016-12-29 2021-03-29 코오롱인더스트리 주식회사 펴짐성이 우수한 롤 타입 가스확산층의 제조방법
US20220162073A1 (en) * 2019-03-20 2022-05-26 Vitamin C60 Bioresearch Corporation A molding material for producing carbon clusters and a method for manufacturing thereof
CN114824343B (zh) * 2022-04-07 2023-09-15 北京氢沄新能源科技有限公司 一种碳基复合材料双极板的制备方法、双极板和燃料电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0144671B2 (ja) * 1981-05-11 1989-09-28 Mitsubishi Pencil Co
JPH04231314A (ja) * 1990-07-20 1992-08-20 Ucar Carbon Technol Corp 高表面積活性炭の製法
JP2007055865A (ja) 2005-08-26 2007-03-08 Ube Ind Ltd ネットワーク状炭素材料
JP2007529403A (ja) * 2004-03-18 2007-10-25 ティーディーエイ・リサーチ・インコーポレーテッド 炭水化物由来のポーラスカーボン
JP2009292676A (ja) 2008-06-04 2009-12-17 Kazuo Akagi 炭素材料の製造方法および炭素材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308670A (ja) * 1991-04-05 1992-10-30 Sanyo Electric Co Ltd 二次電池
KR100924214B1 (ko) * 2006-12-08 2009-10-29 주식회사 엘지화학 분무 건조 또는 분무 열분해를 이용한 중형 다공성 탄소구조체의 제조 방법 및 분무 건조용 조성물
CN101675002B (zh) * 2007-05-11 2013-11-06 新日本石油株式会社 含有磺酸基的碳质材料的制造方法、固体酸催化剂、烷基化反应产物的制造方法和烯烃聚合物的制造方法
CN101463578A (zh) * 2007-12-19 2009-06-24 逢甲大学 高强度碳化纸及其制备方法与用途
KR101045001B1 (ko) 2008-09-30 2011-06-29 한국과학기술원 녹말을 이용한 탄소나노튜브가 강화된 다공성 탄소섬유의 제조방법 및 전기화학용 전극소재 용도
JP5599029B2 (ja) * 2009-11-25 2014-10-01 国立大学法人 筑波大学 燃料電池用ガス拡散層

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0144671B2 (ja) * 1981-05-11 1989-09-28 Mitsubishi Pencil Co
JPH04231314A (ja) * 1990-07-20 1992-08-20 Ucar Carbon Technol Corp 高表面積活性炭の製法
JP2007529403A (ja) * 2004-03-18 2007-10-25 ティーディーエイ・リサーチ・インコーポレーテッド 炭水化物由来のポーラスカーボン
JP2007055865A (ja) 2005-08-26 2007-03-08 Ube Ind Ltd ネットワーク状炭素材料
JP2009292676A (ja) 2008-06-04 2009-12-17 Kazuo Akagi 炭素材料の製造方法および炭素材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRIDGWATER, A.V.; HOFBAUER, H.; VAN LOO; S. THERMAL: "Biomass Conversion", 2009, CPL PRESS
PIELICHOWSKI, K.; NJUGUNA, J., THERMAL DEGRADATION OF POLYMERIC MATERIALS, 2005

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193941A (ja) * 2014-03-31 2015-11-05 日本製紙株式会社 シート状炭素材料
JP2017066541A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維シートの製造方法
JP2017066540A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
JP2017066539A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
JP2017101350A (ja) * 2015-12-01 2017-06-08 旭化成株式会社 キュプラ繊維材料を用いた炭素材料の製造方法
JP2020050991A (ja) * 2018-09-27 2020-04-02 日本製紙株式会社 活性炭素繊維材料の製造方法
JP7107801B2 (ja) 2018-09-27 2022-07-27 日本製紙株式会社 活性炭素繊維材料の製造方法
JP2020117824A (ja) * 2019-01-22 2020-08-06 日本製紙株式会社 活性炭素繊維材料
JP7229788B2 (ja) 2019-01-22 2023-02-28 日本製紙株式会社 活性炭素繊維材料

Also Published As

Publication number Publication date
JP6156828B2 (ja) 2017-07-05
EP2857355A1 (en) 2015-04-08
CA2875607C (en) 2020-05-12
NO2857355T3 (ja) 2018-10-06
KR102057134B1 (ko) 2019-12-18
JPWO2013183668A1 (ja) 2016-02-01
EP2857355A4 (en) 2016-02-24
CN104428243B (zh) 2017-07-04
CA2875607A1 (en) 2013-12-12
US20150167200A1 (en) 2015-06-18
KR20150027757A (ko) 2015-03-12
EP2857355B1 (en) 2018-05-09
CN104428243A (zh) 2015-03-18
US9523163B2 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
JP6156828B2 (ja) 触媒を用いた炭素材料の製造方法および炭素材料
Xu et al. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4
Chen et al. Activated carbon powders from wool fibers
JP5528036B2 (ja) 炭素系固体酸及びその製造方法
CN110589827B (zh) 一种双活化法制备生物质碳气凝胶的方法及其应用
CN104009242A (zh) 一种金属/金属氧化物负载的氮掺杂的多孔碳网络结构材料制备方法
KR101538639B1 (ko) 탄소기반 이산화탄소 흡착제의 제조방법
Shen et al. Hollow porous carbon fiber from cotton with nitrogen doping
CN103496688A (zh) 一种制备碳系三元网络复合材料的方法
KR20090055299A (ko) 다공성 탄소 재료 및 이의 제조방법
JP7229788B2 (ja) 活性炭素繊維材料
JP2002038334A (ja) 微細活性炭繊維の製造方法とその微細活性炭繊維
KR101005115B1 (ko) 표면에 그라파이트 나노 구조층을 갖는 셀룰로오스 탄화물 구조체의 합성방법
Minh Tu et al. Effects of activation conditions on the characteristics, adsorption capacity, and energy sorage of carbon aerogel from watermelon rind
JP6604118B2 (ja) 炭素繊維シートの製造方法
JP2009292676A (ja) 炭素材料の製造方法および炭素材料
JP2008169490A (ja) 炭素化布帛の製造方法およびこれにより得られた炭素化布帛
Chen et al. Controlled fabrication of interconnected porous carbon nanosheets for supercapacitors with a long cycle life
CN115403042A (zh) 一种高效捕获碘的分级多孔碳材料及其制备方法和应用
JP2017101350A (ja) キュプラ繊維材料を用いた炭素材料の製造方法
Kyotani et al. Preparation of 2D Carbon Materials by Chemical Carbonization of Cellulosic Materials to Avoid Thermal Decomposition
CN107369842A (zh) 周期性介孔有机硅材料及其与聚合物复合材料的制备方法
KR20150014047A (ko) 폴리아믹산을 이용한 다공성 탄소재료 및 그 제조방법
KR20220134922A (ko) 라이오셀 섬유를 이용한 탄소섬유 제조방법
KR20220096890A (ko) 식물성 바이오매스를 이용한 다공성 탄소 재료의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801452

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2875607

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14405650

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014520027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013801452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147035288

Country of ref document: KR

Kind code of ref document: A