WO2013183292A1 - 超音波送受波器およびそれを備えた超音波流量計 - Google Patents

超音波送受波器およびそれを備えた超音波流量計 Download PDF

Info

Publication number
WO2013183292A1
WO2013183292A1 PCT/JP2013/003535 JP2013003535W WO2013183292A1 WO 2013183292 A1 WO2013183292 A1 WO 2013183292A1 JP 2013003535 W JP2013003535 W JP 2013003535W WO 2013183292 A1 WO2013183292 A1 WO 2013183292A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
piezoelectric body
metal plate
fixed
back surface
Prior art date
Application number
PCT/JP2013/003535
Other languages
English (en)
French (fr)
Inventor
佐藤 真人
永原 英知
藤井 裕史
足立 明久
葵 渡辺
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380028344.7A priority Critical patent/CN104365118B/zh
Priority to JP2014519842A priority patent/JP6172533B2/ja
Priority to US14/405,362 priority patent/US9378725B2/en
Priority to EP13801304.0A priority patent/EP2858378B1/en
Publication of WO2013183292A1 publication Critical patent/WO2013183292A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0681Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure
    • B06B1/0685Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure on the back only of piezoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the present invention relates to an ultrasonic transducer that transmits and receives an ultrasonic pulse, and an ultrasonic flowmeter including the ultrasonic transducer.
  • the acoustic matching layer 71 is fixed to one surface of the piezoelectric element 70.
  • a cylindrical case 72 is fixed to the acoustic matching layer 71 so as to surround the piezoelectric element 70.
  • An elastic resin 74 is filled in the cylindrical case 72 so as to fill the piezoelectric element 70.
  • the mechanical vibration generated in the piezoelectric element 70 propagates to the acoustic matching layer 71 and is irradiated from the acoustic matching layer 71 as ultrasonic waves. However, this mechanical vibration is also transmitted from the piezoelectric element 70 to the elastic resin 74 and propagates through the elastic resin 74. When mechanical vibration is reflected by the end face of the elastic resin 74 and amplified by interference, reverberation noise and propagation noise are generated. Due to these noises, the ultrasonic sensor 73 cannot radiate accurately.
  • the prevention of this interference is realized by increasing the thickness dimension of the elastic resin 74 to attenuate the reflected mechanical vibration. However, the size of the ultrasonic sensor 73 is increased.
  • the present invention has been made to solve such a problem, and provides a small-sized ultrasonic transducer capable of accurately radiating ultrasonic pulses, and an ultrasonic flowmeter including the same.
  • the purpose is that.
  • An ultrasonic transducer includes a metal plate, an acoustic matching body fixed to one surface of the metal plate, and a piezoelectric body fixed to the other surface of the metal plate and generating vibrations. And an insulating vibration-damping member that covers the back surface of the piezoelectric body on the side opposite to the fixed surface to the metal plate, and a thickness dimension of the insulating vibration-damping member propagates through the insulating vibration-damping member The length is set to n / 2 of the wavelength of the vibration.
  • the present invention has the above-described configuration, and is capable of providing a small-sized ultrasonic transducer and an ultrasonic flowmeter including the same that can emit ultrasonic pulses with high accuracy. Play.
  • An ultrasonic transducer includes a metal plate, an acoustic matching body fixed to one surface of the metal plate, a piezoelectric body fixed to the other surface of the metal plate, and generating vibrations.
  • An insulating vibration-damping member that covers a back surface of the piezoelectric body opposite to the fixed surface to the metal plate, and a thickness dimension of the insulating vibration-damping member propagates through the insulating vibration-damping member The length is set to n / 2 of the vibration wavelength.
  • An ultrasonic transducer includes a metal plate, an acoustic matching body fixed to one surface of the metal plate, and a piezoelectric body fixed to the other surface of the metal plate and generating vibrations.
  • An insulating vibration-damping member that covers the back surface of the piezoelectric body that is opposite to the fixed surface to the metal plate; and a density that is greater than that of the piezoelectric body and that is opposite to the surface that covers the piezoelectric body.
  • a support portion in contact with the back surface of the insulating damping member, and the thickness dimension of the insulating damping member is a length of (2n-1) / 4 of the wavelength of the vibration propagating through the insulating damping member. The dimension is set.
  • the metal plate in the first or second aspect, may be formed in a flat plate shape.
  • An ultrasonic transducer is the ultrasonic transducer according to the first or second aspect, wherein the metal plate includes a cylindrical side wall, a top portion covering an opening at one end of the side wall, and the side wall.
  • a hooked container shape including a flange portion projecting outward from the other end of the portion, the acoustic matching body is fixed to one surface of the ceiling portion, and the other surface of the ceiling portion in the internal space of the side wall portion
  • the piezoelectric body may be fixed, and the insulating vibration damping member may cover the surface of the piezoelectric body opposite to the surface fixed to the top.
  • An ultrasonic transducer is the ultrasonic transducer according to any one of the first to fourth aspects, wherein the insulating vibration damping member includes a side surface of the piezoelectric body in addition to the back surface of the piezoelectric body, and A portion of the metal plate excluding a fixed portion with the acoustic matching body and a fixed portion with the piezoelectric body may be integrally covered.
  • the ultrasonic flowmeter is such that any one of the first to fifth ultrasonic transducers for transmitting and receiving ultrasonic pulses to each other and the pair of ultrasonic transducers are separated from each other. Based on the time measured by the propagation time measuring unit and the propagation time measuring unit that measures the time for the ultrasonic pulse to propagate between the pair of ultrasonic transducers A calculation unit that calculates a flow rate of the fluid to be measured.
  • FIG. 1 is a cross-sectional view schematically showing an ultrasonic flow meter 100 equipped with ultrasonic transducers 5 and 6.
  • the ultrasonic flowmeter 100 is a device that measures the flow rate of the fluid to be measured flowing through the flow path, and is attached to the flow path member 3.
  • the flow path member 3 is formed of a cylindrical tube, for example, and has one opening 1 and the other opening 2 at both ends thereof.
  • the internal space of the flow path member 3 is used as a flow path, and this flow path communicates with the one opening 1 and the other opening 2.
  • the flow path member 3 is provided with one opening 4 and the other opening 4 penetrating the tube wall.
  • Each opening 4 protrudes to the outside of the flow path member 3 and has a cylindrical internal space, for example.
  • the opening 4 is provided on the one opening 1 side, and the other opening 4 is provided on the other opening 2 side. For this reason, the central axes of these openings 4 coincide and are inclined at an angle ⁇ formed with respect to the central axis of the flow path member 3.
  • the pair of ultrasonic transducers 5 and 6 is fixed in contact with the flow path member 3 at a position where ultrasonic pulses are transmitted and received with each other. That is, one ultrasonic transducer 5 is attached to one opening 4 and the other ultrasonic transducer 6 is attached to the other opening 4.
  • These ultrasonic transducers 5 and 6 are arranged such that the acoustic matching bodies 15 face each other and the radiation surface of each acoustic matching body 15 is perpendicular to the central axis of the opening 4. Therefore, each of the ultrasonic transducers 5 and 6 emits an ultrasonic pulse obliquely along the central axis of the opening 4, that is, at an angle ⁇ formed with respect to the central axis of the flow path member 3.
  • the ultrasonic transducers 5 and 6 receive ultrasonic pulses incident obliquely along the central axis of the opening 4, that is, at an angle ⁇ formed with respect to the flow path member 3.
  • the ultrasonic propagation time measurement unit (hereinafter referred to as “propagation time measurement unit”) 7 and the calculation unit 8 are configured by a control device such as a microcomputer.
  • the microcomputer includes a processing unit such as a CPU and a storage unit such as a ROM and a RAM.
  • the propagation time measurement unit 7 and the calculation unit 8 may be configured by a single control device or may be configured by separate control devices.
  • the propagation time measuring unit 7 measures the time during which the ultrasonic pulse propagates between the pair of ultrasonic transducers 5 and 6.
  • the computing unit 8 calculates the flow rate of the fluid to be measured based on the time measured by the propagation time measuring unit 7.
  • FIG. 2 is a cross-sectional view showing the ultrasonic transducer 5 according to the first embodiment.
  • the ultrasonic transducer 5 includes a piezoelectric body 17, an acoustic matching body 15, a metal plate 16, two lead wires 18, and an insulating damping member 11. Yes.
  • the piezoelectric body 17 is an element that expands and contracts in the thickness direction when a voltage is applied, thereby converting electrical vibration into mechanical vibration.
  • the piezoelectric body 17 is formed in a columnar shape such as a rectangular parallelepiped shape or a cylindrical shape, and in this embodiment, for example, in a short rectangular column shape.
  • the piezoelectric body 17 has a pair of electrodes and a piezoelectric portion sandwiched between them in the thickness direction.
  • a material exhibiting piezoelectricity for example, barium titanate, lead zirconate titanate, or the like is preferably used.
  • One electrode is joined to the metal plate 16 by a conductive material such as an adhesive or a conductive paste.
  • the other electrode is joined to one lead 18 by a conductive material such as conductive paste or solder.
  • the acoustic matching body 15 is an element that matches the acoustic impedance of the piezoelectric body 17 and the acoustic impedance of the fluid to be measured in order to radiate the mechanical vibration generated by the piezoelectric body 17 to the fluid to be measured as an ultrasonic pulse.
  • the acoustic matching body 15 has, for example, a cylindrical shape, and the thickness dimension thereof is set to a length dimension that is 1 ⁇ 4 of the wavelength ⁇ of the mechanical vibration propagating through the acoustic matching body 15.
  • the acoustic matching body 15 is formed by filling a space between the hollow sphere-shaped glasses with a thermosetting resin and curing, or by providing an acoustic film on the sound wave emitting surface of the ceramic porous body.
  • the metal plate 16 is a flat plate that supports the acoustic matching body 15 and the piezoelectric body 17 and has, for example, a disk shape.
  • the metal plate 16 is formed of a conductive material, for example, a metal such as iron, stainless steel, brass, copper, aluminum, or a nickel-plated steel plate.
  • the metal plate 16 has an acoustic matching body 15 fixed to one main surface and a piezoelectric body 17 fixed to the other main surface.
  • the metal plate 16 is larger than the acoustic matching body 15 and the piezoelectric body 17 in a direction perpendicular to the thickness thereof.
  • the outer peripheral part of the metal plate 16 protrudes from the acoustic matching body 15 and the piezoelectric body 17 in a direction perpendicular to these thicknesses.
  • the other lead wire 18 is connected to the other main surface of the outer peripheral portion by solder or the like.
  • the metal plate 16 is electrically connected to one electrode of the piezoelectric body 17 by an ohmic contact with a conductive material. Therefore, one electrode of the piezoelectric body 17 and the other lead wire 18 are electrically connected via the metal plate 16.
  • One of the two lead wires 18 connects the other electrode of the piezoelectric body 17 to the propagation time measuring unit 7 (FIG. 1).
  • the other lead wire 18 connects the one electrode of the piezoelectric body 17 and the propagation time measuring unit 7 via the metal plate 16.
  • a conductive material such as solder or conductive paste is used.
  • the insulating damping member 11 integrally covers the outer peripheral portion of the metal plate 16, the outer surface of the piezoelectric body 17, and the two lead wires 18.
  • “integral” means that the insulating vibration damping member 11 is one member made of a continuous material.
  • the outer peripheral portion of the metal plate 16 includes a portion of the metal plate 16 excluding a fixed portion with the acoustic matching body 15 and a fixed portion with the piezoelectric body 17.
  • the outer surface of the piezoelectric body 17 is specifically configured by a surface (back surface) opposite to the bonding surface with the metal plate 16 and a side surface between the bonding surface and the back surface. .
  • the thickness M of the insulating damping member 11 (back load portion 20) that covers the back surface of the piezoelectric body 17 is set to a length that is 1 ⁇ 2 of the wavelength ⁇ of the mechanical vibration propagating through the insulating damping member 11.
  • the back surface load unit 20 may cover the entire back surface of the piezoelectric body 17 or may cover a part of the back surface.
  • the insulating damping member 11 is made of a thermoplastic resin having a low glass transition point, such as a thermoplastic elastomer material or crystalline polyester.
  • the thermoplastic elastomer material include a styrene elastomer, an olefin elastomer, and a polyester elastomer.
  • the glass transition point of the thermoplastic resin is preferably, for example, not more than ⁇ 30 ° C., which is the lowest temperature for measuring the flow rate, for example, ⁇ 50 to ⁇ 90 ° C. Thereby, at the time of flow rate measurement, the insulating damping member 11 has rubber elasticity and can exhibit a damping function.
  • the melting point of the thermoplastic resin is preferably 80 ° C.
  • the insulating damping member 11 can sufficiently absorb vibrations of the metal plate 16 and the piezoelectric body 17 when measuring the flow rate.
  • each ultrasonic transducer 5 is fixed to the flow path member 3 by an annular fixing member 12 so as to be pressed against the flow path member 3 side.
  • the surface on the acoustic matching body 15 side in the outer peripheral portion of the metal plate 16 contacts the contact surface 10 a of the flow path member 3 via the insulating vibration damping member 11.
  • the end surface of the metal plate 16 contacts the contact surface 10 b of the flow path member 3 via the insulating vibration damping member 11.
  • the surface on the piezoelectric body 17 side in the outer peripheral portion of the metal plate 16 is in contact with the fixing member 12 via the insulating vibration damping member 11. For this reason, each ultrasonic transducer 5 is fixed to the flow path member 3 via the insulating damping member 11.
  • the propagation time measuring unit 7 transmits an electrical (voltage) signal to the ultrasonic transducer via the lead wire 18 as shown in FIGS. 1 and 2.
  • the piezoelectric body 17 of the vessel 5 Since this electrical signal is formed by a rectangular wave having a frequency close to the resonance frequency of the piezoelectric body 17, the piezoelectric body 17 converts the electrical signal into mechanical vibration and vibrates in the thickness direction. Mechanical vibration is applied from the piezoelectric body 17 to the acoustic matching body 15 via the metal plate 16, and the acoustic matching body 15 resonates with the piezoelectric body 17. As a result, the mechanical vibration having an increased amplitude is radiated from the radiation surface of the acoustic matching body 15 as an ultrasonic pulse.
  • the ultrasonic pulse radiated from the ultrasonic transducer 5 propagates through the propagation path L1 and reaches the acoustic matching body 15 of the ultrasonic transducer 6 as shown in FIG.
  • This ultrasonic pulse mechanically vibrates the piezoelectric body 17 via the acoustic matching body 15.
  • the piezoelectric body 17 converts this mechanical vibration into an electrical signal and outputs the electrical signal to the propagation time measuring unit 7. For this reason, the propagation time measuring unit 7 determines the difference between the time when the electrical signal is output to the piezoelectric body 17 of the ultrasonic transducer 5 and the time when the electrical signal is input from the piezoelectric body 17 of the ultrasonic transducer 6. Based on the above, the propagation time t1 of the ultrasonic pulse is obtained.
  • an ultrasonic pulse is transmitted from the ultrasonic transducer 6 and the ultrasonic transducer 5 receives the ultrasonic pulse propagated through the propagation path L2.
  • the propagation time measuring unit 7 determines the difference between the time when the electrical signal is output to the piezoelectric body 17 of the ultrasonic transducer 6 and the time when the electrical signal is input from the piezoelectric body 17 of the ultrasonic transducer 5. Based on this, the propagation time t2 of the ultrasonic pulse is obtained. Also in this case, since it is the same as the case where an ultrasonic pulse is transmitted from the ultrasonic transducer 5 described above, the description thereof is omitted. Note that, in the reverse order of transmitting the ultrasonic pulses, the ultrasonic transducer 6 may transmit the ultrasonic pulses first, and then the ultrasonic transducer 5 may transmit the ultrasonic pulses.
  • the computing unit 8 calculates the flow rate of the fluid to be measured based on the propagation times t1 and t2 of the ultrasonic pulses obtained by the propagation time measuring unit 7. Specifically, the fluid to be measured flows from the one opening 1 toward the other opening 2 at the flow velocity V in the flow path of the flow path member 3.
  • the central axis of the opening 4 is inclined at an angle ⁇ formed with respect to the central axis of the flow path member 3. For this reason, the propagation time t1 of the ultrasonic pulse propagating through the propagation path L1 at the speed C is different from the propagation time t2 of the ultrasonic pulse propagating through the propagation path L2 at the speed C.
  • the distance between the propagation paths L1 and L2 is the distance L between the ultrasonic transducer 5 and the ultrasonic transducer 6. Further, the angle ⁇ is an angle formed by the direction in which the fluid to be measured flows (the central axis of the flow path member 3) and the propagation direction of the ultrasonic pulse (the central axis of the opening 4).
  • the propagation time t1 of the ultrasonic pulse reaching the ultrasonic transmitter / receiver 6 from the ultrasonic transmitter / receiver 5 along the propagation path L1 is expressed by the following equation (1).
  • V L / 2 cos ⁇ (1 / t1-1 / t2) (3)
  • the distance L between the propagation paths L1 and L2 of the ultrasonic pulse and the angle ⁇ between the direction in which the fluid to be measured flows and the propagation direction of the ultrasonic pulse are known.
  • the propagation times t1 and t2 of the ultrasonic pulse are measured by the propagation time measuring unit 7.
  • the calculating part 8 can obtain
  • the calculation unit 8 can obtain the flow rate Q by multiplying the flow velocity V by the cross-sectional area S of the flow path member 3 and the correction coefficient K.
  • the mechanical vibration generated in the piezoelectric body 17 is transmitted to the acoustic matching body 15 via the metal plate 16 and is emitted as an ultrasonic pulse from the radiation surface of the acoustic matching body 15.
  • the mechanical vibration generated in the piezoelectric body 17 is transmitted to the back surface load portion 20 and propagates toward the surface opposite to the bonding surface with the piezoelectric body 17 (the back surface of the back surface load portion 20).
  • the mechanical vibration is reflected on the back surface of the back surface load unit 20 and returns to the side of the bonding surface with the piezoelectric body 17.
  • the ultrasonic flowmeter 100 accurately determines the fluid to be measured. It becomes difficult to weigh.
  • the ultrasonic transducer 6 when the mechanical vibration amplified in the ultrasonic transducer 5 propagates to the ultrasonic transducer 6 through the flow path member 3 or the like, it becomes propagation noise. For this reason, when the ultrasonic transducer 6 radiates an ultrasonic pulse, the propagation noise affects the mechanical vibration propagating through the piezoelectric body 17 and / or the acoustic matching body 15. As a result, the ultrasonic transducer 6 cannot accurately radiate this mechanical vibration as an ultrasonic pulse.
  • the ultrasonic transducer 5 transmits an ultrasonic pulse and the ultrasonic transducer 6 receives the ultrasonic pulse has been described.
  • FIG. 3 is a graph schematically showing the relationship between the back surface load portion (thickness) and the ultrasonic intensity.
  • This back surface load portion (thickness) indicates the thickness dimension M of the back surface load portion 20 of the ultrasonic transducers 5 and 6.
  • the ultrasonic intensity indicates the magnitude of the ultrasonic pulse emitted by the ultrasonic transducers 5 and 6.
  • the back surface load portion 20 has one surface (bonding surface with the piezoelectric body 17) in contact with the piezoelectric body 17 and the other surface (back surface) in contact with air.
  • the piezoelectric body 17, the back surface load part 20, and air are arranged in this order, and these densities are small in this order. Therefore, the acoustic impedance defined by the product of density and sound speed also decreases in this order.
  • the thickness dimension M of the back surface load part 20 can be set to a length dimension satisfying (Equation 12) other than ⁇ / 2. In this case, the thickness dimension M is larger than when ⁇ / 2. However, the thickness dimension M is smaller than the thickness dimension capable of reducing the propagation vibration by attenuation. For this reason, the ultrasonic transducers 5 and 6 can be reduced in size. Further, with respect to the intensity of the ultrasonic pulse, when the thickness dimension M of the back surface load portion 20 is set to a length that satisfies (Equation 12) other than ⁇ / 2, the same effects as when ⁇ / 2 are exhibited. be able to.
  • the insulating damping member 11 is integrally formed with the metal plate 16 and the piezoelectric body 17, respectively. For this reason, there is no need to attach the insulating damping member 11, and the ultrasonic transducers 5 and 6 are excellent in mass productivity.
  • the metal plate 16 has higher dimensional accuracy than the resin plate, and the ultrasonic transducers 5 and 6 can be attached to the flow path 3 with high accuracy. For this reason, since the transmission / reception loss of the ultrasonic pulse at the time of measurement can be reduced, highly accurate flow measurement can be realized.
  • FIG. 4 is a cross-sectional view showing the ultrasonic transducer 30 according to the second embodiment.
  • the metal plate 31 is formed in a brazed container shape including a side wall portion 33, a top portion 32, and a flange portion 34.
  • the side wall portion 33 has a cylindrical shape, and one end thereof is connected to the top portion 32 and the other end is connected to the flange portion 34.
  • the top portion 32 has a disk shape and covers one end opening of the side wall portion 33.
  • the collar portion 34 has an annular shape and extends from the side wall portion 33 outward in the radial direction.
  • the acoustic matching body 15 is fixed to the top surface of the top portion 32, and the piezoelectric body 17 is fixed to the back surface of the top portion 32. Since the inner diameter dimension of the side wall portion 33 is larger than the length dimension of the piezoelectric body 17, the piezoelectric body 17 is located in the internal space of the cylindrical side wall section 33, and the gap 35 is provided between the piezoelectric body 17 and the inner surface of the side wall section 33. Is formed.
  • the metal plate 31 is formed by deep drawing with a conductive material, for example, a metal such as iron, stainless steel, brass, copper, aluminum, nickel-plated steel plate or the like. For this reason, the top part 32 of the metal plate 31 is electrically connected to the electrode of the piezoelectric body 17 by an ohmic contact using a conductive material. Further, the flange portion 34 of the metal plate 31 is connected to the lead wire 18 by a conductive material such as solder. Thereby, the electrode of the piezoelectric body 17 and the lead wire 18 are electrically connected via the metal plate 31.
  • a conductive material for example, a metal such as iron, stainless steel, brass, copper, aluminum, nickel-plated steel plate or the like.
  • the insulating damping member 11 includes an outer surface of the side wall 33 of the metal plate 31, a flange 34 of the metal plate 31, a gap 35 between the piezoelectric body 17 and the inner surface of the side wall 33, a back surface of the piezoelectric body 17, and two The lead wire 18 is integrally covered.
  • the thickness M of the insulating damping member 11 (back load portion 20) covering the back surface of the piezoelectric body 17 is 1 of the wavelength ⁇ of mechanical vibration generated in the piezoelectric body 17 and propagating through the insulating damping member 11.
  • the length dimension is set to / 2.
  • the back surface load unit 20 may cover the entire back surface of the piezoelectric body 17 or may cover a part of the back surface.
  • Such an ultrasonic transducer 30 is fixed to the flow path member 3 by the annular fixing member 12 so that the acoustic matching body 15 is positioned on the opening 4 side and is pressed against the flow path member 3.
  • the surface on the acoustic matching body 15 side of the flange portion 34 of the metal plate 31 contacts the contact surface 10 a of the flow path member 3 through the insulating vibration damping member 11.
  • the end surface of the flange portion 34 of the metal plate 31 contacts the contact surface 10 b of the flow path member 3 through the insulating vibration damping member 11.
  • the surface on the piezoelectric body 17 side of the flange portion 34 of the metal plate 31 is in contact with the fixing member 12 through the insulating vibration damping member 11. For this reason, each ultrasonic transducer 30 is fixed to the flow path member 3 via the insulating damping member 11.
  • the thickness dimension M of the back surface load portion 20 is set to a length of 1/2 or n / 2 of the wavelength ⁇ of the mechanical vibration propagating through the back surface load portion 20. For this reason, it has the same operation effect as Embodiment 1.
  • FIG. 5 is a cross-sectional view showing an ultrasonic transducer 5 according to the third embodiment.
  • the structure of the ultrasonic transducer 6 is the same as that of the ultrasonic transducer 5, the description is abbreviate
  • the fixing member 112 is formed in a brazed container shape including an outer peripheral portion, a support portion 112a, and an attachment portion.
  • the outer peripheral portion has a rectangular cross section with respect to the short rectangular columnar piezoelectric body 17.
  • the support portion 112a has a rectangular flat plate shape with respect to the short rectangular columnar piezoelectric body 17, and covers one end opening of the outer peripheral portion.
  • the attachment portion has an annular shape and extends radially outward from the other end of the outer peripheral portion.
  • the fixing member 112 is formed of a metal such as aluminum.
  • the mounting portion is attached to the flow path member 3 such that the outer peripheral portion of the metal plate 16 of the ultrasonic transducer 5 is pressed against the flow path member 3 by the mounting portion of the fixing member 112. Thereby, the ultrasonic transducer 5 is fixed to the flow path member 3. Further, the inner surface of the support portion 112 a is in contact with the back surface of the back surface load portion 20, and the support portion 112 a supports the piezoelectric body 17 via the back surface load portion 20. For this reason, the piezoelectric body 17 is protected by the support portion 112a.
  • the piezoelectric body 17, the back load portion 20, and the support portion 112a of the fixing member 112 are laminated in this order. Since the piezoelectric body 17 and the support portion 112 a have a higher density than the back surface load portion 20, the piezoelectric body 17 and the support portion 112 a have an acoustic impedance larger than that of the back surface load portion 20.
  • the thickness dimension M of the back surface load portion 20 can be set to a length dimension satisfying (Expression 14) other than ⁇ / 4. In this case, the thickness dimension M is larger than when ⁇ / 4. However, the thickness dimension M is smaller than the thickness dimension capable of reducing the propagation vibration by attenuation. For this reason, the ultrasonic transducers 5 and 6 can be reduced in size. Further, with respect to the intensity of the ultrasonic pulse, when the thickness dimension M of the back surface load portion 20 is set to a length dimension satisfying (Equation 14) other than ⁇ / 4, the same effects as when ⁇ / 4 are exhibited. be able to.
  • the propagation vibration in the back load part 20 can be reduced even if the thickness dimension M of the back load part 20 is smaller than ⁇ / 4. In this case, since the back load part 20 becomes thin, the ultrasonic transducers 5 and 6 can be further downsized.
  • FIG. 6 is a cross-sectional view showing an ultrasonic transducer 30 according to the fourth embodiment.
  • the fixing member 212 is formed in a flat plate shape that covers the flange portion 34 of the metal plate 31 and the piezoelectric body 17.
  • the support portion 212a of the solid member 212 is recessed from the outer peripheral portion according to the protruding amount.
  • the fixing member 212 is formed of a metal such as aluminum.
  • the outer peripheral part of the fixing member 212 is attached to the flow path member 3 so that the flange part 34 of the metal plate 31 is pressed against the flow path member 3 side by the outer peripheral part of the fixing member 212. Thereby, the ultrasonic transducer 30 is fixed to the flow path member 3. Further, the surface of the support portion 212 a of the fixing member 212 is in contact with the back surface of the back load portion 20, and the support portion 212 a supports the piezoelectric body 17 via the back load portion 20. For this reason, the piezoelectric body 17 is protected by the support portion 212a.
  • the piezoelectric body 17, the rear load portion 20, and the fixing member 212 are laminated in this order. Since the piezoelectric body 17 and the fixing member 212 have a higher density than the back surface load portion 20, the piezoelectric body 17 and the fixing member 212 have an acoustic impedance larger than that of the back surface load portion 20.
  • the propagation vibration is reflected while the phase is changed on the joint surface of the back surface load portion 20 with the piezoelectric body 17 and the back surface of the back surface load portion 20.
  • the thickness dimension M of the back surface load portion 20 satisfies the relationship of (Expression 14)
  • the propagation vibration in the back surface load portion 20 is minimized, and reverberation noise and radio wave noise can be reduced.
  • the ultrasonic transducer 30 can radiate ultrasonic pulses with high accuracy while suppressing the increase in size and suppressing the influence of noise.
  • the thickness dimension M of the back surface load portion 20 can be set to a length dimension satisfying (Expression 14) other than ⁇ / 4. In this case, the thickness dimension M is larger than when ⁇ / 4. However, the thickness dimension M is smaller than the thickness dimension capable of reducing the propagation vibration by attenuation. For this reason, the ultrasonic transducers 5 and 6 can be reduced in size. Further, with respect to the intensity of the ultrasonic pulse, when the thickness dimension M of the back surface load portion 20 is set to a length dimension satisfying (Equation 14) other than ⁇ / 4, the same effects as when ⁇ / 4 are exhibited. be able to.
  • the propagation vibration in the back load part 20 can be reduced even if the thickness dimension M of the back load part 20 is smaller than ⁇ / 4. In this case, since the back load part 20 becomes thin, the ultrasonic transducer 30 can be further downsized.
  • the ultrasonic transducer according to the present invention and the ultrasonic meter provided therewith are small ultrasonic transducers capable of emitting ultrasonic pulses with higher accuracy than in the prior art, ultrasonic flowmeters including the same, and the like. Useful as.

Abstract

超音波送受波器(5,6,30)は、金属板(16,31)と、前記金属板の一方面に固定された音響整合体(15)と、前記金属板の他方面に固定され、振動を発生する圧電体(17)と、前記金属板との固定面とは反対側の前記圧電体の面を覆う絶縁性制振部材(11,20)と、を備え前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長のn/2の長さ寸法に設定されている。

Description

超音波送受波器およびそれを備えた超音波流量計
 本発明は、超音波パルスを送受信する超音波送受波器、およびそれを備えた超音波流量計に関する。
 従来、圧電素子を用いて超音波を送受信する超音波送受波器において、制振部材により圧電素子における不要振動を抑制することが知られている。たとえば、図7に示す特許文献1の超音波センサ73では、圧電素子70の片面に音響整合層71が固定されている。この圧電素子70を囲むように筒状ケース72が音響整合層71に固定されている。そして、圧電素子70を埋めるように、筒状ケース72内に弾性樹脂74が充填されている。
特開平10-224895号公報
 上記超音波センサ73では、圧電素子70で発生した機械振動は、音響整合層71に伝搬し、音響整合層71から超音波として照射される。しかし、この機械振動は、圧電素子70から弾性樹脂74にも伝わり、弾性樹脂74を伝搬する。そして、機械振動が弾性樹脂74の端面で反射して干渉により増幅すると、残響ノイズや伝搬ノイズが発生する。これらのノイズにより、超音波センサ73が精度よく放射することができなくなる。
 この干渉の防止は、弾性樹脂74の厚み寸法を大きくして、反射した機械振動を減衰させることにより実現される。しかしながら、超音波センサ73のサイズが大型化してしまう。
 本発明はこのような課題を解決するためになされたものであり、超音波パルスを精度良く放射することができる、小型の超音波送受波器、およびそれを備えた超音波流量計を提供することを目的としている。
 本発明のある態様に係る、超音波送受波器は、金属板と、前記金属板の一方面に固定された音響整合体と、前記金属板の他方面に固定され、振動を発生する圧電体と、前記金属板との固定面とは反対側の前記圧電体の背面を覆う絶縁性制振部材と、を備え、前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長のn/2の長さ寸法に設定されている。
 本発明は、以上に説明した構成を有し、超音波パルスを精度良く放射することができる、小型の超音波送受波器およびそれを備えた超音波流量計を提供することができるという効果を奏する。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施の形態1に係る超音波流量計を示す断面図である。 図1の超音波流量計の超音波送受波器を流路部材に取り付けた状態を示す断面図である。 図2の超音波送受波器の背面負荷部の厚みと超音波強さとの関係を模式的に表したグラフである。 本発明の実施の形態2に係る超音波送受波器を流路部材に取り付けた状態を示す断面図である。 本発明の実施の形態3に係る超音波送受波器を流路部材に取り付けた状態を示す断面図である。 本発明の実施の形態4に係る超音波送受波器を流路部材に取り付けた状態を示す断面図である。 従来の超音波センサを示す断面図である。
 第1の本発明に係る超音波送受波器は、金属板と、前記金属板の一方面に固定された音響整合体と、前記金属板の他方面に固定され、振動を発生する圧電体と、前記金属板との固定面とは反対側の前記圧電体の背面を覆う絶縁性制振部材と、を備え、前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長のn/2の長さ寸法に設定されている。
 第2の本発明に係る超音波送受波器は、金属板と、前記金属板の一方面に固定された音響整合体と、前記金属板の他方面に固定され、振動を発生する圧電体と、前記金属板との固定面とは反対側の前記圧電体の背面を覆う絶縁性制振部材と、前記圧電体より大きな密度を有し、前記圧電体を被覆する面とは反対側の前記絶縁性制振部材の背面に接する支持部と、を備え、前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長の(2n-1)/4の長さ寸法に設定されている。
 第3の本発明に係る超音波送受波器は、第1または第2の発明において、前記金属板は、平板状に形成されていてもよい。
 第4の本発明に係る超音波送受波器は、第1または第2の発明において、前記金属板は、筒状の側壁部と、前記側壁部の一端の開口を覆う天部と、前記側壁部の他端から外側に張り出す鍔部とを含む鍔付容器形状に形成され、前記天部の一方面に前記音響整合体が固定され、前記側壁部の内部空間において前記天部の他方面に前記圧電体が固定され、前記絶縁性制振部材は、前記天部との固定面とは反対側の前記圧電体の面を覆っていてもよい。
 第5の本発明に係る超音波送受波器は、第1~第4のいずれかの発明において、前記絶縁性制振部材は、前記圧電体の背面に加え、前記圧電体の側面、および、前記音響整合体との固定部分および前記圧電体との固定部分を除く前記金属板の部分を一体的に覆っていてもよい。
 第6の本発明に係る超音波流量計は、相互に超音波パルスを送受信する第1~第5のいずれかの一対の超音波送受波器と、前記一対の超音波送受波器が互いに離れて配置された流路部材と、前記一対の超音波送受波器の間を前記超音波パルスが伝搬する時間を計測する伝搬時間計測部と、前記伝搬時間計測部により計測された時間に基づいて前記被測定流体の流量を算出する演算部と、を備える。
 (実施の形態1)
  (超音波流量計の構成)
 図1は、超音波送受波器5、6を装着した超音波流量計100を模式的に示す断面図である。超音波流量計100は、図1に示すように、流路を流れる被測定流体の流量を計測する装置であって、流路部材3に取り付けられている。流路部材3は、たとえば、円筒形状の管で形成され、その両端のそれぞれに一方開口1および他方開口2を有している。流路部材3の内部空間が流路として用いられ、この流路は一方開口1および他方開口2と連通している。また、流路部材3には、その管壁を貫通する一方開口部4および他方開口部4が設けられている。各開口部4は、たとえば、流路部材3の外側へ突出し、円柱形状の内部空間を有している。一方開口部4は一方開口1側に設けられ、他方開口部4は他方開口2側に設けられ、これらは対向している。このため、これらの開口部4の中心軸は一致し、流路部材3の中心軸に対して成す角θで傾斜している。
 一対の超音波送受波器5、6は、相互に超音波パルスを送受信する位置において流路部材3に当接して固定されている。つまり、一方の超音波送受波器5は一方開口部4に取り付けられ、他方の超音波送受波器6は他方開口部4に取り付けられている。そして、これらの超音波送受波器5、6は、各音響整合体15が向き合い、各音響整合体15の放射面が開口部4の中心軸に対して垂直になるように配置されている。このため、各超音波送受波器5、6は、開口部4の中心軸に沿って、つまり、流路部材3の中心軸に対して成す角θで斜めに超音波パルスを発する。また、各超音波送受波器5、6は、開口部4の中心軸に沿って、つまり、流路部材3に対して成す角θで斜めに入射する超音波パルスを受ける。
 超音波伝搬時間計測部(以下、「伝搬時間計測部」と言う。)7および演算部8は、マイクロコンピュータなどの制御装置により構成されている。マイクロコンピュータは、CPUなどの処理部と、ROMやRAMなどの記憶部とを備えている。なお、伝搬時間計測部7および演算部8は、単独の制御装置により構成されてもよいし、別々の制御装置により構成されてもよい。
 伝搬時間計測部7は、一対の超音波送受波器5、6の間を超音波パルスが伝搬する時間を計測する。演算部8は、伝搬時間計測部7により計測された時間に基づいて被測定流体の流量を算出する。
  (超音波送受波器の構成)
 図2は、実施の形態1に係る超音波送受波器5を示す断面図である。なお、超音波送受波器6の構成は、超音波送受波器5の構成と同様であるため、その説明を省略する。図2に示すように、超音波送受波器5は、圧電体17と、音響整合体15と、金属板16と、2本のリード線18と、絶縁性制振部材11と、を備えている。
 圧電体17は、電圧が印可されることによって厚み方向に伸縮し、それにより電気振動を機械振動に変換する素子である。圧電体17は、直方体状や円柱状などの柱状、この実施の形態では、たとえば、短四角柱状に形成される。圧電体17は、一対の電極と、これらにより厚み方向に挟まれる圧電部を有する。圧電体17の圧電部には、圧電性を示す材料、たとえば、チタン酸バリウム、チタン酸ジルコン酸鉛等が好適に用いられる。一方の電極は、接着剤や導電ペーストなどの導電性材料により金属板16に接合されている。また、他方の電極は、導電ペーストやはんだなどの導電性材料により一方のリード線18に接合されている。
 音響整合体15は、圧電体17で発生した機械振動を超音波パルスとして被測定流体に放射するために、圧電体17の音響インピーダンスと、被測定流体の音響インピーダンスとを整合する素子である。音響整合体15は、たとえば、円柱形状であって、その厚み寸法は、音響整合体15を伝搬する機械振動の波長λの1/4の長さ寸法に設定されている。音響整合体15は、中空球体形状のガラスの隙間に熱硬化樹脂を充填し硬化することによって、または、セラミック多孔体の音波放射面に音響膜を設けることによって形成される。
 金属板16は、音響整合体15および圧電体17を支持する平板であって、たとえば、円板形状である。金属板16は、導電性を有する材料、たとえば、鉄、ステンレス、黄銅、銅、アルミ、ニッケルめっき鋼板等の金属で形成される。金属板16は、その一方主面に音響整合体15が固定され、他方主面に圧電体17が固定されている。この金属板16は、その厚みに対して垂直な方向において音響整合体15および圧電体17より大きい。このため、金属板16の外周部は、音響整合体15および圧電体17からこれらの厚みに対して垂直な方向へ突出している。そして、この外周部の他方主面に、はんだなどにより他方のリード線18が接続されている。また、金属板16は、導電性材料によりオーミックコンタクトによって圧電体17の一方電極と電気的に接続されている。よって、金属板16を介して圧電体17の一方電極と他方のリード線18とが電気的に接続している。
 2本のリード線18のうち一方は圧電体17の他方電極と伝搬時間計測部7(図1)を接続している。また、他方のリード線18は、金属板16を介して圧電体17の一方電極と伝搬時間計測部7を接続している。これらの接続には、はんだや導電ペーストなどの導電性材料が用いられている。
 絶縁性制振部材11は、金属板16の外周部と、圧電体17の外面と、2本のリード線18とを一体的に覆う。ここで「一体的」とは、絶縁性制振部材11が連続した材料で構成される1つの部材であることを意味する。また、金属板16の外周部については、具体的には、音響整合体15との固定部分および圧電体17との固定部分を除く金属板16の部分は構成されている。さらに、圧電体17の外面については、具体的には、金属板16との接合面とは反対側の面(背面)、および、この接合面と背面との間にある側面で構成されている。この圧電体17の背面を覆う絶縁性制振部材11(背面負荷部20)の厚み寸法Mは、絶縁性制振部材11を伝搬する機械振動の波長λの1/2の長さ寸法に設定されている。背面負荷部20は、圧電体17の背面の全体を覆ってもよいし、背面の一部を覆ってもよい。
 絶縁性制振部材11は、ガラス転移点が低い熱可塑性樹脂、たとえば、熱可塑性エラストマー材料や結晶性ポリエステルなどで形成される。熱可塑性エラストマー材料には、たとえば、スチレン系エラストマー、オレフィン系エラストマー、ポリエステル系エラストマーなどが挙げられる。熱可塑性樹脂のガラス転移点は、たとえば、流量測定を行う最低温度の‐30℃以下、たとえば、-50~-90℃であることが好ましい。これにより、流量測定時には、絶縁性制振部材11はゴム弾性を有し、制振機能を発揮し得る。また、熱可塑性樹脂の融点は、流量測定の最高温度の80℃以上、たとえば、100~200℃であることが好ましい。さらに、熱可塑性樹脂のヤング率は、流量測定の最低温度から最高温度までの範囲において、たとえば、0.1~1.0GPaである。これにより、絶縁性制振部材11は、流量測定時に金属板16や圧電体17などの振動を十分に吸収することができる。
  (超音波送受波器の取付)
 図2に示すように、各超音波送受波器5は、流路部材3側に押さえ付けられるように環状の固定部材12により流路部材3に固定されている。このとき、金属板16の外周部における音響整合体15側の面が、絶縁性制振部材11を介して流路部材3の当接面10aに当接する。また、金属板16の端面が、絶縁性制振部材11を介して流路部材3の当接面10bに当接する。さらに、金属板16の外周部における圧電体17側の面が、絶縁性制振部材11を介して固定部材12に当接する。このため、各超音波送受波器5は、絶縁性制振部材11を介して流路部材3に固定される。
  (超音波流量計の動作)
 たとえば、超音波送受波器5から超音波パルスを送信する場合、図1および図2に示すように、伝搬時間計測部7は、リード線18を介して電気(電圧)信号を超音波送受波器5の圧電体17に与える。この電気信号は、圧電体17の共振周波数に近い周波数の矩形波で形成されているため、圧電体17は電気信号を機械振動に変換して厚み方向に振動する。そして、機械振動が圧電体17から金属板16を介して音響整合体15に与えられ、音響整合体15は圧電体17と共振する。これにより、振幅を増大した機械振動は、超音波パルスとして音響整合体15の放射面から放射される。
 超音波送受波器5から放射された超音波パルスは、図1に示すように、伝搬経路L1を伝搬し、超音波送受波器6の音響整合体15に到達する。この超音波パルスは音響整合体15を介して圧電体17を機械的に振動させる。そして、圧電体17は、この機械振動を電気信号に変換し、電気信号を伝搬時間計測部7に出力する。このため、伝搬時間計測部7は、超音波送受波器5の圧電体17へ電気信号を出力した時刻と、超音波送受波器6の圧電体17から電気信号が入力された時刻との差に基づいて、超音波パルスの伝搬時間t1を求める。
 次に、超音波送受波器6から超音波パルスを送信し、伝搬経路L2を伝搬した超音波パルスを超音波送受波器5が受信する。そして、伝搬時間計測部7は、超音波送受波器6の圧電体17へ電気信号を出力した時刻と、超音波送受波器5の圧電体17から電気信号が入力された時刻との差に基づいて、超音波パルスの伝搬時間t2を求める。この場合も、上記の超音波送受波器5から超音波パルスを送信する場合と同様であるため、その説明を省略する。なお、超音波パルスの送信する順序は、反対に、超音波送受波器6が超音波パルスを先に送信し、次に、超音波送受波器5が超音波パルスを送信してもよい。
 そして、演算部8は、伝搬時間計測部7により求められた超音波パルスの伝搬時間t1およびt2に基づいて、被測定流体の流量を算出する。具体的には、流路部材3の流路では被測定流体が流速Vで一方開口1から他方開口2に向かって流れている。また、開口部4の中心軸は、流路部材3の中心軸に対して成す角θで傾斜している。このため、伝搬経路L1を速度Cで伝搬する超音波パルスの伝搬時間t1と、伝搬経路L2を速度Cで伝搬する超音波パルスの伝搬時間t2とは異なる。なお、伝搬経路L1およびL2の距離は、超音波送受波器5と超音波送受波器6との間の距離Lである。また、角度θは、被測定流体の流れる方向(流路部材3の中心軸)と超音波パルスの伝搬方向(開口部4の中心軸)とのなす角である。
 伝搬経路L1に沿って超音波送受波器5から超音波送受波器6に到達する超音波パルスの伝搬時間t1は、下記式(1)で示される。
    t1 = L /(C+Vcosθ)      (1)
 また、伝搬経路L2に沿って超音波送受波器6から超音波送受波器5に到達する超音波パルスの伝搬時間t2は、下記式(2)で示される。
    t2 = L /(C-Vcosθ)      (2)
 これらの式(1)および式(2)から被測定流体の流速Vは、下記式(3)で示される。
    V = L /2cosθ(1/t1-1/t2)(3)
 超音波パルスの伝搬経路L1およびL2の距離Lと、被測定流体の流れる方向と超音波パルスの伝搬方向とのなす角度θとは、既知である。また、超音波パルスの伝搬時間t1およびt2は、伝搬時間計測部7によって計測されている。これにより、演算部8は、式(3)に基づいて被測定流体の流速Vを求めることができる。さらに、演算部8は、この流速Vに流路部材3の断面積Sと補正係数Kを乗じて、流量Qを求めることができる。
  (作用、効果)
 図2に示すように、圧電体17で発生した機械振動は、金属板16を介して音響整合体15に伝えられ、音響整合体15の放射面から超音波パルスとして放射される。これと共に、圧電体17で発生した機械振動は、背面負荷部20に伝わって伝播し、圧電体17との接合面との反対側の面(背面負荷部20の背面)に向かう。そして、機械振動は、背面負荷部20の背面で反射して、圧電体17との接合面側へ戻る。
 この反射した機械振動が圧電体17との接合面に達すると、その一部の機械振動は圧電体17内部へ伝搬する。また、残る機械振動は、再び圧電体17との接合面で反射して、背面負荷部20を背面方向へ伝播する。そして、背面負荷部20を背面方向へ伝播する機械振動が、圧電体17から背面負荷部20へ伝わる機械振動と干渉して、その振幅が増大すると、超音波流量計100は被測定流体を正確に計量することが難しくなる。
 すなわち、たとえば、超音波送受波器5が超音波パルスを放射した後、増幅した機械振動により圧電体17などが振動し続けると、残響ノイズになる。このため、次に、その超音波送受波器5が超音波パルスを放射する際、残響ノイズが圧電体17および/または音響整合体15を伝搬する機械振動に影響を与える。これにより、超音波送受波器5はこの機械振動を超音波パルスとして精度よく放射することができなくなる。
 また、超音波送受波器5において増幅した機械振動が流路部材3などを介して超音波送受波器6に伝播すると、伝搬ノイズになる。このため、超音波送受波器6が超音波パルスを放射する際、伝搬ノイズが圧電体17および/または音響整合体15を伝搬する機械振動に影響を与える。これにより、超音波送受波器6はこの機械振動を超音波パルスとして精度よく放射することができなくなる。
 なお、ここでは、超音波送受波器5が超音波パルスを送信し、その超音波パルスを超音波送受波器6が受信した場合について説明した。これに対して、超音波送受波器5と超音波送受波器6とを入れ替えた場合も同様である。
 これに対して、背面負荷部20の厚み寸法Mがλ/2に設定されているため、残響ノイズや伝搬ノイズによる影響を抑えている。この結果、図3に示すように、超音波送受波器5、6を大型化することなく、超音波パルスの強さの低減を防いでいる。図3は、背面負荷部(厚み)と超音波強さとの関係を模式的に表したグラフである。この背面負荷部(厚み)は、超音波送受波器5、6の背面負荷部20の厚み寸法Mを示している。また、超音波強さは、超音波送受波器5、6が放射した超音波パルスの大きさを示している。
 具体的には、図2に示すように、背面負荷部20は、その一方面(圧電体17との接合面)が圧電体17に接し、その他方面(背面)が空気と接している。このため、圧電体17、背面負荷部20および空気は、この順で並んでおり、これらの密度はこの順で小さくなっている。よって、密度と音速との積で定義される音響インピーダンスも、この順で小さくなっている。
 このような音響インピーダンスの関係にある場合、背面負荷部20を伝搬する機械振動(伝搬振動)は、圧電体17との接合面で反射する際、伝搬振動の位相がその半波長ずれる。一方、この伝搬振動が背面付加部20の背面で反射する際、伝搬振動の位相はずれない。よって、下記(数12)に示すように背面負荷部20の厚み寸法Mが半波長(λ/2)の整数倍となる時に、伝搬振動の振幅は干渉によって最小になる。なお、(数12)において、nは整数を表す。また、λは、背面負荷部20を伝搬する機械振動の波長を表す。
 M=n・λ/2     (数12)
 この結果、(数12)に示すように背面負荷部20の厚み寸法Mが半波長の整数倍である場合、伝搬振動の影響(残響ノイズや伝搬ノイズ)が抑えられる。このため、図3に示すように、超音波送受波器5、6が放射する超音波パルスの強さが伝搬振動の影響によって低減されることが抑制され、超音波パルスの強さを大きく確保することができる。
 特に、(数12)において、n=1の場合、背面負荷部20を伝搬する機械振動の大きさを低減しながら、背面負荷部20の厚み寸法Mを最も小さく抑えることができる。よって、背面負荷部20の厚み寸法Mをλ/2である場合、超音波送受波器5、6のサイズを最小化でき、かつ、超音波パルスの強さを大きく確保することができる。
 また、背面負荷部20の厚み寸法Mは、λ/2以外に、(数12)を満たす長さ寸法に設定することができる。この場合、厚み寸法Mは、λ/2のときより大きくなる。ただし、その厚み寸法Mは、伝搬振動を減衰によって低減することができる厚み寸法よりも小さい。このため、超音波送受波器5、6を小型化することができる。また、超音波パルスの強さについても、背面負荷部20の厚み寸法Mをλ/2以外で(数12)を満たす長さ寸法にした場合、λ/2のときと同様の作用効果を示すことができる。
 なお、背面負荷部20の厚み寸法Mが下記(数13)で示す関係を満たす時、背面負荷部20を伝搬する機械振動(伝搬振動)が干渉により増幅される。このため、厚み寸法Mが下記(数13)で示す関係を満たす時、図3に示すように、超音波送受波器5、6が放射する超音波パルスの強さが伝搬振動の影響によって低減する。これに対し、厚み寸法Mが大きくなるほど、伝搬振動が減衰するため、図3に示すように、超音波パルスの強さは大きくなる。しかしながら、厚み寸法Mが大きくなるほど、超音波送受波器5、6のサイズが大型化してしまう。
 M=(2n-1)λ/4   (数13)
 また、背面負荷部20が伝搬振動を減衰する機能に優れる場合、背面負荷部20の厚み寸法Mをλ/2より小さくしても、背面負荷部20における伝播振動が小さくすることができる。この場合、背面負荷部20が薄くなるため、超音波送受波器5、6の小型化がさらに図られる。
 また、絶縁性制振部材11が金属板16および圧電体17にそれぞれ一体的に形成されている。このため、絶縁性制振部材11を取り付ける手間が必要なく、超音波送受波器5、6の量産性に優れる。
 さらに、金属板16は樹脂板に比べて寸法精度が高く、超音波送受波器5、6を精度よく流路3に取り付けすることができる。このため、計測時の超音波パルスの送受信ロスを低減することができるため、高精度の流量計測を実現することができる。
 (実施の形態2)
 実施の形態1に係る超音波送受波器5、6では平板状の金属板16が用いられていたが、実施の形態2に係る超音波送受波器30では、鍔付容器形状の金属板31が金属板として用いられる。図4は、実施の形態2に係る超音波送受波器30を示す断面図である。
 金属板31は、図4に示すように、側壁部33、天部32および鍔部34を含む鍔付容器形状に形成されている。側壁部33は、円筒形状であって、その一端が天部32に接続し、他端が鍔部34に接続する。天部32は、円板形状であって、側壁部33の一端開口を覆う。鍔部34は、環形状であって、側壁部33から径方向の外側へ延びる。
 金属板31において、天部32の天面に音響整合体15が固定され、天部32の背面に圧電体17が固定されている。側壁部33の内径寸法は圧電体17の長さ寸法より大きいため、圧電体17は筒状の側壁部33の内部空間に位置し、圧電体17と側壁部33の内面との間に間隙35が形成されている。
 金属板31は、導電性を有する材料、たとえば、鉄、ステンレス、黄銅、銅、アルミ、ニッケルめっき鋼板等の金属で深絞り加工によって形成される。このため、金属板31の天部32は、導電性材料を用いてオーミックコンタクトによって圧電体17の電極と電気的に接続されている。また、金属板31の鍔部34は、はんだなどの導電性材料によりリード線18と接続されている。これにより、圧電体17の電極とリード線18とは、金属板31を介して電気的に接続している。
 絶縁性制振部材11は、金属板31の側壁部33の外面、金属板31の鍔部34、圧電体17と側壁部33の内面との間隙35、圧電体17の背面、および、2本のリード線18を一体的に覆っている。また、圧電体17の背面を覆う絶縁性制振部材11(背面負荷部20)の厚み寸法Mは、圧電体17で発生して絶縁性制振部材11を伝搬する機械振動の波長λの1/2の長さ寸法に設定されている。背面負荷部20は、圧電体17の背面の全体を覆ってもよいし、背面の一部を覆ってもよい。
 このような超音波送受波器30は、音響整合体15が開口部4側に位置し、流路部材3に押さえ付けられるように環状の固定部材12により流路部材3に固定されている。このとき、金属板31の鍔部34における音響整合体15側の面が、絶縁性制振部材11を介して流路部材3の当接面10aに当接する。また、金属板31の鍔部34における端面が、絶縁性制振部材11を介して流路部材3の当接面10bに当接する。さらに、金属板31の鍔部34における圧電体17側の面が、絶縁性制振部材11を介して固定部材12に当接する。このため、各超音波送受波器30は、絶縁性制振部材11を介して流路部材3に固定される。
 上記構成によれば、背面負荷部20の厚み寸法Mは、背面負荷部20を伝搬する機械振動の波長λの1/2またはn/2の長さ寸法に設定されている。このため、実施の形態1と同様の作用効果を有する。
 (実施の形態3)
 実施の形態1に係る超音波送受波器5、6では金属板16の外周部を環状の固定部材12で固定していた。これに対して、実施の形態3に係る超音波送受波器5、6では、図5に示すように、金属板16の外周部および圧電体17を鍔付容器形状の固定部材112で固定している。図5は、実施の形態3に係る超音波送受波器5を示す断面図である。なお、超音波送受波器6の構成は、超音波送受波器5の構成と同様であるため、その説明を省略する。
 固定部材112は、図5に示すように、外周部、支持部112aおよび取付部を含む鍔付容器形状に形成されている。外周部は、短四角柱状の圧電体17に対しては断面が四角形の筒形状である。支持部112aは、短四角柱状の圧電体17に対しては四角形の平板形状であって、外周部の一端開口を覆う。取付部は、環形状であって、外周部の他端から径方向の外側へ延びる。固定部材112は、アルミニウムなどの金属により形成される。
 固定部材112の取付部により超音波送受波器5の金属板16の外周部を流路部材3側に押さえ付けるようにして、取付部を流路部材3に取り付ける。これにより、超音波送受波器5は流路部材3に固定される。また、支持部112aの内面は背面負荷部20の背面に接し、支持部112aは背面負荷部20を介して圧電体17を支持している。このため、支持部112aにより圧電体17が保護される。
 この場合、圧電体17、背面負荷部20および固定部材112の支持部112aがこの順で積層される。この圧電体17および支持部112aは背面負荷部20より密度が大きいため、圧電体17および支持部112aは背面負荷部20より音響インピーダンスが大きくなる。
 このような音響インピーダンスの関係にある場合、背面負荷部20を伝搬する機械振動(伝搬振動)は、圧電体17との接合面、および、背面付加部20の背面で反射するいずれの場合も、伝搬振動の位相がその半波長ずれる。よって、下記(数14)に示す関係を満たす時に、伝搬振動の振幅は干渉によって最小になる。なお、(数14)において、nは整数を表す。また、λは、背面負荷部20を伝搬する機械振動の波長を表す。
 M=(2n-1)・λ/4     (数14)
 この結果、背面負荷部20の厚み寸法Mが(数14)に示す関係を満たす場合、伝搬振動の影響(残響ノイズや伝搬ノイズ)が抑えられる。このため、超音波送受波器5、6が放射する超音波パルスの強さが伝搬振動の影響によって低減されることが抑制され、超音波パルスの強さを大きく確保することができる。
 特に、(数14)において、n=1の場合、背面負荷部20を伝搬する機械振動の大きさを低減しながら、背面負荷部20の厚み寸法Mを最も小さく抑えることができる。よって、背面負荷部20の厚み寸法Mをλ/4である場合、超音波送受波器5、6のサイズを最小化でき、かつ、超音波パルスの強さを大きく確保することができる。
 また、背面負荷部20の厚み寸法Mは、λ/4以外に、(数14)を満たす長さ寸法に設定することができる。この場合、厚み寸法Mは、λ/4のときより大きくなる。ただし、その厚み寸法Mは、伝搬振動を減衰によって低減することができる厚み寸法よりも小さい。このため、超音波送受波器5、6を小型化することができる。また、超音波パルスの強さについても、背面負荷部20の厚み寸法Mをλ/4以外で(数14)を満たす長さ寸法にした場合、λ/4のときと同様の作用効果を示すことができる。
 さらに、背面負荷部20が伝搬振動を減衰する機能に優れる場合、背面負荷部20の厚み寸法Mをλ/4より小さくしても、背面負荷部20における伝播振動が小さくすることができる。この場合、背面負荷部20が薄くなるため、超音波送受波器5、6の小型化がさらに図られる。
 (実施の形態4)
 実施の形態2に係る超音波送受波器30では金属板31の鍔部34を環状の固定部材12で固定していた。これに対して、実施の形態4に係る超音波送受波器30では、図6に示すように、鍔部34および圧電体17を平板状の固定部材212で固定している。図6は、実施の形態4に係る超音波送受波器30を示す断面図である。
 固定部材212は、図6に示すように、金属板31の鍔部34および圧電体17を覆う、平板形状に形成されている。圧電体17が鍔部34より背面側へ突出している場合、その突出量に応じて固体部材212の支持部212aはその外周部から窪んでいる。固定部材212は、アルミニウムなどの金属により形成される。
 固定部材212の外周部により金属板31の鍔部34を流路部材3側に押さえ付けるようにして、固定部材212の外周部を流路部材3に取り付ける。これにより、超音波送受波器30は流路部材3に固定される。また、固定部材212の支持部212aの表面は背面負荷部20の背面に接し、支持部212aは背面負荷部20を介して圧電体17を支持している。このため、支持部212aにより圧電体17が保護される。
 この場合、圧電体17、背面負荷部20および固定部材212がこの順で積層される。この圧電体17および固定部材212は背面負荷部20より密度が大きいため、圧電体17および固定部材212は背面負荷部20より音響インピーダンスが大きくなる。
 よって、実施の形態3と同様に、背面負荷部20における圧電体17との接合面、および、背面負荷部20の背面で位相が変化しながら伝搬振動が反射する。上記(数14)の関係を背面負荷部20の厚み寸法Mが満たすとき、背面負荷部20における伝播振動が最少になり、残響ノイズおよび電波ノイズを低減することができる。これにより、超音波送受波器30は、大型化を防ぎながら、ノイズによる影響を抑えて、精度良く超音波パルスを放射することができる。
 また、背面負荷部20の厚み寸法Mは、λ/4以外に、(数14)を満たす長さ寸法に設定することができる。この場合、厚み寸法Mは、λ/4のときより大きくなる。ただし、その厚み寸法Mは、伝搬振動を減衰によって低減することができる厚み寸法よりも小さい。このため、超音波送受波器5、6を小型化することができる。また、超音波パルスの強さについても、背面負荷部20の厚み寸法Mをλ/4以外で(数14)を満たす長さ寸法にした場合、λ/4のときと同様の作用効果を示すことができる。
 さらに、背面負荷部20が伝搬振動を減衰する機能に優れる場合、背面負荷部20の厚み寸法Mをλ/4より小さくしても、背面負荷部20における伝播振動が小さくすることができる。この場合、背面負荷部20が薄くなるため、超音波送受波器30の小型化がさらに図られる。
 なお、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の超音波送受波器およびその備えた超音波計量計は、従来技術に比べて超音波パルスを精度良く放射することができる小型の超音波送受波器およびそれを備える超音波流量計等として有用である。
 3 流路部材
 5、6、30 超音波送受波器
 7 超音波伝搬時間計測部(伝搬時間計測部)
 8 演算部
 11 絶縁性制振部材
 15 音響整合体
 16 金属板
 17 圧電体
 20 背面負荷部(絶縁性制振部材)
 31 金属板
 32 天部
 33 側壁部
 34 鍔部
 100 超音波流量計
 112a 支持部
 212a 支持部

Claims (6)

  1.  金属板と、
     前記金属板の一方面に固定された音響整合体と、
     前記金属板の他方面に固定され、振動を発生する圧電体と、
     前記金属板との固定面とは反対側の前記圧電体の背面を覆う絶縁性制振部材と、を備え、
     前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長のn/2の長さ寸法に設定されている、超音波送受波器。
  2.  金属板と、
     前記金属板の一方面に固定された音響整合体と、
     前記金属板の他方面に固定され、振動を発生する圧電体と、
     前記金属板との固定面とは反対側の前記圧電体の背面を覆う絶縁性制振部材と、
     前記圧電体より大きな密度を有し、前記圧電体を被覆する面とは反対側の前記絶縁性制振部材の背面に接する支持部と、を備え、
     前記絶縁性制振部材の厚み寸法が、前記絶縁性制振部材を伝播する前記振動の波長の(2n-1)/4の長さ寸法に設定されている、超音波送受波器。
  3.  前記金属板は、平板状に形成されている、請求項1または2に記載の超音波送受波器。
  4.  前記金属板は、筒状の側壁部と、前記側壁部の一端の開口を覆う天部と、前記側壁部の他端から外側に張り出す鍔部とを含む鍔付容器形状に形成され、
     前記天部の一方面に前記音響整合体が固定され、
     前記側壁部の内部空間において前記天部の他方面に前記圧電体が固定され、
     前記絶縁性制振部材は、前記天部との固定面とは反対側の前記圧電体の背面を覆っている、請求項1または2に記載の超音波送受波器。
  5.  前記絶縁性制振部材は、前記圧電体の背面に加え、前記圧電体の側面、および、前記音響整合体との固定部分および前記圧電体との固定部分を除く前記金属板の部分を一体的に覆っている、請求項1~4のいずれか一項に記載の超音波送受波器。
  6.  相互に超音波パルスを送受信する請求項1~5のいずれか一項に記載の一対の超音波送受波器と、
     前記一対の超音波送受波器が互いに離れて配置された流路部材と、
     前記一対の超音波送受波器の間を前記超音波パルスが伝搬する時間を計測する伝搬時間計測部と、
     前記伝搬時間計測部により計測された時間に基づいて前記被測定流体の流量を算出する演算部と、を備える超音波流量計。 
PCT/JP2013/003535 2012-06-05 2013-06-05 超音波送受波器およびそれを備えた超音波流量計 WO2013183292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380028344.7A CN104365118B (zh) 2012-06-05 2013-06-05 超声波发送接收器以及具备该超声波发送接收器的超声波流量计
JP2014519842A JP6172533B2 (ja) 2012-06-05 2013-06-05 超音波送受波器およびそれを備えた超音波流量計
US14/405,362 US9378725B2 (en) 2012-06-05 2013-06-05 Ultrasonic transducer and ultrasonic flow meter including ultrasonic transducer
EP13801304.0A EP2858378B1 (en) 2012-06-05 2013-06-05 Ultrasonic echo sounder transducer and ultrasonic flow meter equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127766 2012-06-05
JP2012127766 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183292A1 true WO2013183292A1 (ja) 2013-12-12

Family

ID=49711698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003535 WO2013183292A1 (ja) 2012-06-05 2013-06-05 超音波送受波器およびそれを備えた超音波流量計

Country Status (5)

Country Link
US (1) US9378725B2 (ja)
EP (1) EP2858378B1 (ja)
JP (1) JP6172533B2 (ja)
CN (1) CN104365118B (ja)
WO (1) WO2013183292A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363583A1 (en) * 2014-12-29 2017-12-21 Röntgen Technische Dienst B.V. Flexible ultrasonic transducer and a transducer block
JP2020039051A (ja) * 2018-09-04 2020-03-12 株式会社ディスコ 超音波音圧計
EP4342592A1 (en) 2022-09-22 2024-03-27 FUJIFILM Corporation Ultrasound probe and ultrasound diagnostic apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101922B2 (ja) * 2012-06-05 2017-03-29 パナソニックIpマネジメント株式会社 超音波流量計測ユニット及びその製造方法
US9696216B2 (en) * 2013-09-04 2017-07-04 Siemens Energy, Inc. Acoustic transducer in system for gas temperature measurement in gas turbine engine
US9709448B2 (en) 2013-12-18 2017-07-18 Siemens Energy, Inc. Active measurement of gas flow temperature, including in gas turbine combustors
US9453767B2 (en) * 2013-12-18 2016-09-27 Siemens Energy, Inc. Active temperature monitoring in gas turbine combustors
US9752959B2 (en) * 2014-03-13 2017-09-05 Siemens Energy, Inc. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor
US9746360B2 (en) 2014-03-13 2017-08-29 Siemens Energy, Inc. Nonintrusive performance measurement of a gas turbine engine in real time
US9945737B2 (en) 2014-03-13 2018-04-17 Siemens Energy, Inc. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine
US20200253584A1 (en) * 2017-08-09 2020-08-13 Sony Corporation Ultrasonic transducer, diagnostic ultrasonic probe, surgical instrument, sheet-type ultrasonic probe, and electronic apparatus
DE102017221618A1 (de) * 2017-10-27 2019-05-02 Continental Automotive Gmbh Ultraschallwandler mit zumindest einem piezo-elektrischen Oszillator
US20230288378A1 (en) * 2021-10-05 2023-09-14 Baker Hughes Oilfield Operations Llc Buffer rod, device and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489894A (en) * 1987-09-30 1989-04-05 Nec Corp Ultrasonic wave transmitter-receiver
JPH09307998A (ja) * 1996-05-17 1997-11-28 Toray Techno Kk 斜角センサ
JPH10224895A (ja) 1997-02-04 1998-08-21 Murata Mfg Co Ltd 超音波センサ
JP2001159551A (ja) * 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd 超音波振動子の支持構成およびこれを用いた超音波流量計測装置
JP2002336258A (ja) * 2001-05-14 2002-11-26 Hitachi Medical Corp 超音波探触子
JP2005286701A (ja) * 2004-03-30 2005-10-13 Aloka Co Ltd 超音波探触子及び超音波診断装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011473A (en) * 1974-08-26 1977-03-08 Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees Of The Stoneleigh Trust Ultrasonic transducer with improved transient response and method for utilizing transducer to increase accuracy of measurement of an ultrasonic flow meter
US5166573A (en) 1989-09-26 1992-11-24 Atochem North America, Inc. Ultrasonic contact transducer and array
JPH07248318A (ja) * 1994-03-10 1995-09-26 Tokimec Inc 超音波探触子用ダンパー
JP3175632B2 (ja) * 1997-04-18 2001-06-11 松下電器産業株式会社 シーンチェンジ検出方法およびシーンチェンジ検出装置
DK200101780A (da) * 2001-11-30 2002-11-27 Danfoss As Ultralydstransducer
KR20040086503A (ko) * 2002-01-28 2004-10-11 마츠시타 덴끼 산교 가부시키가이샤 음향 정합층, 초음파 송수파기 및 초음파 유량계
US8085621B2 (en) * 2008-07-24 2011-12-27 Massa Products Corporation Ultrasonic transducer with improved method of beam angle control
US8320218B2 (en) * 2008-07-24 2012-11-27 Massa Products Corporation Hidden ultrasonic transducer with beam angle control for non-contact target detection systems
DE102011090082A1 (de) * 2011-12-29 2013-07-04 Endress + Hauser Flowtec Ag Ultraschallwandler für ein Durchflussmessgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489894A (en) * 1987-09-30 1989-04-05 Nec Corp Ultrasonic wave transmitter-receiver
JPH09307998A (ja) * 1996-05-17 1997-11-28 Toray Techno Kk 斜角センサ
JPH10224895A (ja) 1997-02-04 1998-08-21 Murata Mfg Co Ltd 超音波センサ
JP2001159551A (ja) * 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd 超音波振動子の支持構成およびこれを用いた超音波流量計測装置
JP2002336258A (ja) * 2001-05-14 2002-11-26 Hitachi Medical Corp 超音波探触子
JP2005286701A (ja) * 2004-03-30 2005-10-13 Aloka Co Ltd 超音波探触子及び超音波診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363583A1 (en) * 2014-12-29 2017-12-21 Röntgen Technische Dienst B.V. Flexible ultrasonic transducer and a transducer block
AU2015372673B2 (en) * 2014-12-29 2020-10-15 Rontgen Technische Dienst B.V. Flexible ultrasonic transducer and a transducer block
JP2020039051A (ja) * 2018-09-04 2020-03-12 株式会社ディスコ 超音波音圧計
EP4342592A1 (en) 2022-09-22 2024-03-27 FUJIFILM Corporation Ultrasound probe and ultrasound diagnostic apparatus

Also Published As

Publication number Publication date
EP2858378B1 (en) 2020-12-02
EP2858378A1 (en) 2015-04-08
JP6172533B2 (ja) 2017-08-02
CN104365118A (zh) 2015-02-18
CN104365118B (zh) 2018-02-13
US20150128723A1 (en) 2015-05-14
US9378725B2 (en) 2016-06-28
EP2858378A4 (en) 2015-07-22
JPWO2013183292A1 (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6172533B2 (ja) 超音波送受波器およびそれを備えた超音波流量計
JP5659956B2 (ja) 超音波送受波器及び超音波流量計
JP5919479B2 (ja) 超音波流量計
JP4233445B2 (ja) 超音波流量計
RU2760517C1 (ru) Ультразвуковой расходомер с комбинацией линз
JP5979501B2 (ja) 超音波送受波器およびその製造方法、ならびに超音波流量計
WO2012008151A1 (ja) 超音波流量計測ユニット、および、これを用いた超音波流量計
US11426764B2 (en) Ultrasound transducer
CN107306372B (zh) 具有放射元件的超声波换能器
RU169297U1 (ru) Накладной преобразователь электроакустический к ультразвуковым расходомерам
JP2008275607A (ja) 超音波流量計
JPWO2005009075A1 (ja) 超音波送受波器
JP2007208381A (ja) 超音波振動子およびそれを用いた流体の流れ計測装置
JP6149250B2 (ja) 超音波流量計
WO2021024846A1 (ja) 超音波送受信器、および超音波流量計
JP5533332B2 (ja) 超音波流速流量計
JP2012018030A (ja) 超音波センサの取り付け構造およびそれを用いた超音波流量計測装置
JP2023116035A (ja) 圧電トランスデューサ
JPS61147112A (ja) 超音波流量計の送受波器
JP2023116033A (ja) 圧電トランスデューサ
JP2007194896A (ja) 超音波振動子およびそれを用いた流体の流れ計測装置
JP2021015024A (ja) 螺旋式超音波流量計
JP2004045439A (ja) 超音波振動子およびこれを用いた超音波流量計
JP2007194895A (ja) 超音波振動子およびそれを用いた流体の流れ計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519842

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013801304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14405362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE