WO2013183175A1 - ガス発生材及びマイクロポンプ - Google Patents

ガス発生材及びマイクロポンプ Download PDF

Info

Publication number
WO2013183175A1
WO2013183175A1 PCT/JP2012/074511 JP2012074511W WO2013183175A1 WO 2013183175 A1 WO2013183175 A1 WO 2013183175A1 JP 2012074511 W JP2012074511 W JP 2012074511W WO 2013183175 A1 WO2013183175 A1 WO 2013183175A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
generating material
mass
parts
compound
Prior art date
Application number
PCT/JP2012/074511
Other languages
English (en)
French (fr)
Inventor
良教 赤木
野村 茂
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201280001957.7A priority Critical patent/CN103717553B/zh
Priority to US13/822,634 priority patent/US8986630B2/en
Priority to JP2012543404A priority patent/JP5162731B1/ja
Priority to EP12878533.4A priority patent/EP2860167B1/en
Publication of WO2013183175A1 publication Critical patent/WO2013183175A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B43/00Compositions characterised by explosive or thermic constituents not provided for in groups C06B25/00 - C06B41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/04Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by auto-decomposition of single substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/046Chemical or electrochemical formation of bubbles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control

Definitions

  • the present invention relates to a gas generating material and a micro pump provided with the same.
  • analyzers using microfluidic devices have come to be used as analyzers that are small and have excellent portability.
  • the analysis apparatus using this microfluidic device it is possible to send, dilute, concentrate, and analyze a sample in the microchannel.
  • Patent Document 1 discloses a micropump using a photoresponsive gas generating material.
  • Patent Document 2 discloses a gas generating agent containing an aliphatic polyether having an azidomethyl group and a hydroxyl group in the side chain.
  • Patent Document 3 discloses a composition containing a glycidyl azide polymer.
  • Non-Patent Document 1 discloses a glycidyl azide polymer (GAP) having a methyl azide group in the side chain and a method for producing the terminal hydroxyl polyether.
  • GAP glycidyl azide polymer
  • Patent Documents 4 and 5 do not disclose the use of the micropump, but disclose a composition containing a gas generating agent.
  • Patent Document 4 describes that the surface of a glass plate to which a layer containing a gas generating agent is attached is surface-treated with a silane coupling agent.
  • the silane coupling agent is not mix
  • Patent Document 5 discloses a multilayer sheet including a layer containing a gas generating agent and a layer containing an amino silane coupling agent.
  • each layer of the multilayer sheet is formed using different compositions, and the gas generating agent and the amino silane coupling agent are used separately in different layers.
  • the main object of the present invention is to provide a gas generating material that generates a large amount of gas per unit time and has high storage stability. Moreover, this invention provides a micropump provided with the said gas generating material.
  • the gas generating material of the present invention includes a gas generating agent that is an azo compound or an azide compound, a tertiary amine, a photosensitizer, and a binder resin.
  • the tertiary amine preferably contains at least one selected from the group consisting of cyclic amines, trialkylamines, and aromatic amines.
  • the content of the tertiary amine is preferably 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the gas generating agent.
  • the azide compound preferably has a sulfonyl azide group or an azidomethyl group.
  • the content of the photosensitizer is preferably 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the gas generating agent.
  • the photosensitizer preferably contains at least one selected from the group consisting of thioxanthone compounds, phenothiazine compounds, anthracene compounds, and acridone compounds.
  • the gas generating material of the present invention preferably further contains a silane coupling agent.
  • the micropump of the present invention includes the gas generating material and a base material on which a microchannel is formed.
  • the gas generating material is arranged so that the gas generated in the gas generating material is supplied to the microchannel.
  • a gas generating material having a large amount of gas generation per unit time and high storage stability can be provided.
  • FIG. 1 is a schematic cross-sectional view of a micropump according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a micropump according to a modification.
  • FIG. 3 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 19 and Comparative Examples 3 to 5.
  • FIG. 4 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 20 and Comparative Example 6.
  • FIG. 5 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 21 and Comparative Example 7.
  • FIG. 6 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 22 and Comparative Example 8.
  • FIG. 1 is a schematic cross-sectional view of a micropump according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a micropump according to a modification.
  • FIG. 3 is a
  • FIG. 7 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 23 and Comparative Example 9.
  • FIG. 8 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 24 and Comparative Example 10.
  • FIG. 9 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 25 and Comparative Example 11.
  • FIG. 10 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 26 and Comparative Example 12.
  • FIG. 11 is a graph showing the gas generation amount (integrated value) of the micropumps produced in Example 27 and Comparative Examples 13-15.
  • FIG. 1 is a schematic cross-sectional view of a micropump according to a first embodiment.
  • the micropump 1 includes a plate-like base material 10.
  • the base material 10 can be comprised by resin, glass, ceramics etc., for example.
  • resin which comprises the base material 10 an organic siloxane compound, polymethacrylate resin, cyclic polyolefin resin etc. are mentioned, for example.
  • Specific examples of the organosiloxane compound include polydimethylsiloxane (PDMS) and polymethylhydrogensiloxane.
  • the base 10 is formed with a microchannel 10b that is open to the main surface 10a.
  • Micro channel refers to a channel formed in a shape and dimension in which a so-called micro effect is manifested in the liquid flowing through the micro channel.
  • microchannel means that the liquid flowing through a microchannel is strongly affected by surface tension and capillary action, and has a different shape from that of a liquid flowing through a normal channel. It refers to the flow path that is formed.
  • a film-like gas generating material 11a is affixed on the main surface 10a.
  • the opening of the microchannel 10b is covered with the gas generating material 11a. For this reason, the gas generated from the gas generating material 11a when an external stimulus such as light or heat is applied to the gas generating material 11a is guided to the microchannel 10b.
  • the thickness of the gas generating material 11a is not particularly limited and is, for example, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 5 mm or less, more preferably 500 ⁇ m or less.
  • the gas generating material 11 a is covered with a gas barrier layer 12.
  • the gas barrier layer 12 suppresses the gas generated in the gas generating material 11a from flowing out to the side opposite to the main surface 10a, and is efficiently supplied to the microchannel 10b. For this reason, it is preferable that the gas barrier layer 12 is a layer with low permeability of the gas generated in the gas generating material 11a.
  • the gas barrier layer 12 can be made of, for example, polyacrylic resin, polyolefin resin, polycarbonate resin, vinyl chloride resin, ABS resin, polyethylene terephthalate (PET) resin, nylon resin, urethane resin, polyimide resin, and glass.
  • the thickness of the gas barrier layer 12 varies depending on the material of the gas barrier layer 12 and is, for example, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, preferably 1 mm or less, more preferably 100 ⁇ m or less.
  • the gas barrier layer 12 is preferably a layer in which attenuation of light in the ultraviolet region hardly occurs when light is transmitted.
  • the gas generating material 11a includes a gas generating agent.
  • the gas generating agent is an azo compound or an azide compound.
  • the gas generating agent generates gas when an external stimulus such as heat or light is applied.
  • the azo compound or the azide compound is not particularly limited, and may be a known azo compound or azide compound.
  • the gas generating agent is preferably the azo compound, and is preferably the azide compound.
  • the gas generating agent may be used alone or in combination of two or more.
  • the azo compound used as the gas generating agent include, for example, 2,2′-azobis (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [N- (2-methylpropyl). ) -2-Methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis [N- (2-methylethyl) -2-methylpropionamide], 2,2′-azobis (N-hexyl-2-methylpropionamide), 2,2′-azobis (N-propyl-2-methylpropionamide), 2,2′-azobis (N-ethyl-2-methyl) Propionamide), 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2, '-Azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxy)]
  • the azo compound is extremely easy to handle because it does not generate gas upon impact. Moreover, the azo compound does not cause a chain reaction and generate gas explosively. If the said azo compound is used, generation
  • Examples of the azide compound used as the gas generating agent include an azide compound having a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group or an azidomethyl group.
  • the azide compound preferably has a sulfonyl azide group, and preferably has an azidomethyl group.
  • Preferred examples of the compound having a sulfonyl azide group include a compound represented by the following formula (1).
  • R 1 to R 5 are each a hydrogen atom, a halogen atom, an amino group, an amide group, a hydrocarbon group, a group in which a substituent is bonded to a hydrocarbon group, or an alkoxy group.
  • R 1 to R 5 in the above formula (1) may be the same or different.
  • the hydrocarbon group may be linear, branched, or cyclic.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the alkoxy group may have a substituent, may be linear, or may be branched.
  • At least one group of R 1 to R 5 is preferably a hydrocarbon group or a group having a substituent bonded to a hydrocarbon group, and more preferably a hydrocarbon group.
  • the hydrocarbon group has 1 or more, preferably 3 or more, more preferably 6 or more, preferably 30 or less. More preferably, it is 20 or less, More preferably, it is 18 or less.
  • the substituent in the group in which the substituent is bonded to the hydrocarbon group include a halogen atom.
  • the alkoxy group has 1 or more carbon atoms, preferably 3 or more, more preferably 6 or more, preferably 20 or less, more preferably 16 or less, still more preferably 12 or less. It is.
  • examples of the substituent include a halogen atom.
  • R 3 is preferably an amide group, a hydrocarbon group, a group in which a substituent is bonded to a hydrocarbon group, or an alkoxy group.
  • R 1 , R 2 , R 4 and R 5 are each preferably a hydrogen atom.
  • Examples of the azide compound having an azidomethyl group include glycidyl azide polymer.
  • the glycidyl azide polymer is preferably an aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal.
  • Preferred examples of the aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-1).
  • aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-2).
  • m is an integer of 1 to 20, and l + n is an integer of 7 to 50.
  • m is preferably 3 or more, and preferably 15 or less.
  • l + n is preferably 10 or more, and preferably 30 or less.
  • aliphatic polyether having an azidomethyl group in the side chain and a hydroxyl group at the terminal include an azide compound represented by the following formula (2-3).
  • n1, n2 and n3 are each an integer from 1 to 20.
  • the azide compound is preferably an azide compound represented by the above formula (1), (2-1), (2-2) or (2-3).
  • the azide compound is preferably an azide compound represented by the above formula (1), and is an azide compound represented by the above formula (2-1), (2-2) or (2-3). Is also preferable.
  • the above-mentioned azide compound is decomposed by receiving an external stimulus such as light, heat, ultrasonic waves or impact in a specific wavelength range, and generates nitrogen gas.
  • the content of the gas generating agent is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, preferably 90% by mass or less, more preferably 70% by mass. % Or less, more preferably 60% by mass or less.
  • the content of the gas generating agent is not less than the above lower limit, a sufficient gas generating amount can be obtained. Since the gas generating material 11a needs to contain a tertiary amine, a photosensitizer, and a binder resin, a preferable upper limit of the gas generating agent is about 90% by mass.
  • the above-described generation of nitrogen gas can be performed smoothly, and the amount of gas generated can be increased.
  • the gas generating material 11a contains a tertiary amine.
  • the kind of said tertiary amine is not specifically limited.
  • Examples of the tertiary amine include cyclic amines, trialkylamines, and aromatic amines. Each of the cyclic amine and the aromatic amine has a tertiary amine structure.
  • the above tertiary amine may be included in only one kind or in plural kinds.
  • the gas generating material 11a preferably contains at least one selected from the group consisting of cyclic amines, trialkylamines, and aromatic amines.
  • the tertiary amine is preferably a cyclic amine, preferably a trialkylamine, and preferably an aromatic amine.
  • the cyclic amine has a cyclic skeleton excluding an aromatic skeleton and does not have an aromatic skeleton.
  • the trialkylamine does not have a cyclic skeleton and an aromatic skeleton.
  • the aromatic amine has an aromatic skeleton and does not have a cyclic skeleton excluding the aromatic skeleton.
  • the carbon number of the cyclic amine is preferably 6 or more, preferably 20 or less.
  • Specific examples of the cyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO), diazabicycloundecene (DBU), and diazabicyclononene (DBN).
  • the three alkyl groups of the trialkylamine may be the same or different.
  • the carbon number of the three alkyl groups of the trialkylamine is 1 or more, preferably 2 or more, preferably 20 or less, more preferably 6 or less.
  • Specific examples of the trialkylamine include trimethylamine, N, N-diethylmethylamine, N, N-dimethylethylamine, triethylamine, N, N-dimethylpropylamine, tripropylamine and tributylamine.
  • aromatic amine examples include N, N-dimethylaminotoluidine, N, N-diethylaminotoluidine, N, N-dimethylaminobenzene, N, N-diethylaminobenzene, and N, N, N′N′—. And tetramethyl-p-phenylenediamine.
  • the tertiary amine is at 23 ° C. It is preferably liquid.
  • the content of the tertiary amine is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, further preferably 1 part by mass or more, preferably 100 parts by mass of the gas generating agent. 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • the content of the tertiary amine is not less than the above lower limit and not more than the above upper limit, the gas generation amount per unit time in the gas generating material 11a is effectively increased, and the storage stability is effectively increased.
  • the gas generating material 11a contains a photosensitizer.
  • the photosensitizer has an effect of amplifying light stimulation to the gas generating agent. Therefore, when the gas generating material 11a contains the photosensitizer, the gas can be generated and released with a small amount of light irradiation. Further, gas can be generated and emitted by light in a wider wavelength region.
  • the said photosensitizer may be used independently and may be used together 2 or more types.
  • the type of the photosensitizer is not particularly limited.
  • a known photosensitizer can be used as the photosensitizer.
  • Examples of the photosensitizer include thioxanthone compounds, phenothiazine compounds, anthracene compounds, and acridone compounds.
  • the thioxanthone compound has a thioxanthone skeleton.
  • the phenothiazine compound has a phenothiazine skeleton.
  • the anthracene compound has an anthracene skeleton.
  • the acridone compound has an acridone skeleton.
  • thioxanthone compound examples include thioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, and 2,4-diethylthioxanthone. Is mentioned.
  • phenothiazine compound examples include phenothiazine, 2-chlorophenothiazine, 2-methylthiophenothiazine, 2-methoxyphenothiazine, and 2- (trifluoromethyl) phenothiazine.
  • anthracene compound examples include anthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxyanthracene, 9-carboxyanthracene, 2-anthracenecarboxylic acid, and 1-anthracenecarboxylic acid.
  • acridone compound examples include 10-methyl-9 (10H) acridone, 9 (10H) -acridone, and 10-butyl-2-chloro-9 (10H) -acridone.
  • the photosensitizer preferably contains at least one selected from the group consisting of a thioxanthone compound, a phenothiazine compound, an anthracene compound, and an acridone compound.
  • the photosensitizer is preferably a thioxanthone compound, is preferably a phenothiazine compound, is preferably an anthracene compound, and is preferably an acridone compound.
  • examples of the photosensitizer include polycyclic aromatic compounds having an alkoxy group.
  • the polycyclic aromatic compound may have two or more alkoxy groups.
  • polycyclic aromatic compounds having an alkoxy group containing a glycidyl group or a hydroxyl group are preferred.
  • This polycyclic aromatic compound is preferably a substituted alkoxy polycyclic aromatic compound having an alkoxy group in which a part of the alkoxy group is substituted with a glycidyl group or a hydroxyl group.
  • Such a photosensitizer has high sublimation resistance and can be used at high temperatures.
  • the solubility in the gas generating material 11a is increased, and bleeding out can be suppressed.
  • Preferred examples of the polycyclic aromatic compound used as the photosensitizer include polycyclic aromatic compounds having an anthracene skeleton.
  • the polycyclic aromatic compound having an anthracene skeleton is an anthracene compound having an alkoxy group, such as an anthracene derivative.
  • the carbon number of the alkoxy group of the polycyclic aromatic compound having an alkoxy group is 1 or more, preferably 18 or less, more preferably 8 or less.
  • polycyclic aromatic compound having an alkoxy group examples include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 2-t-butyl-9,10-dimethoxyanthracene, 2,3 -Dimethyl-9,10-dimethoxyanthracene, 9-methoxy-10-methylanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 2-t-butyl-9,10-di Ethoxyanthracene, 2,3-dimethyl-9,10-diethoxyanthracene, 9-ethoxy-10-methylanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene, 2-t- Butyl-9,10-dipropoxyanthracene, 2,3-dimethyl-9,10 Dipropoxyanthracen
  • polycyclic aromatic compound having a glycidyl group or an alkoxy group containing a hydroxyl group examples include 9,10-di (glycidyloxy) anthracene, 2-ethyl-9,10-di (glycidyloxy) anthracene, 2- t-butyl-9,10-di (glycidyloxy) anthracene, 2,3-dimethyl-9,10-di (glycidyloxy) anthracene, 9- (glycidyloxy) -10-methylanthracene, 9,10-di ( 2-vinyloxyethoxy) anthracene, 2-ethyl-9,10-di (2-vinyloxyethoxy) anthracene, 2-t-butyl-9,10-di (2-vinyloxyethoxy) anthracene, 2,3- Dimethyl-9,10-di (2-vinyloxyethoxy) anthracene, 9
  • the photosensitizer may be a material generally known as a photopolymerization initiator.
  • Examples of such photosensitizers include compounds that are activated by irradiation with light having a wavelength of 250 to 800 nm.
  • Specific examples of such photosensitizers include acetophenone compounds such as methoxyacetophenone; benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether; ketal compounds such as benzyldimethyl ketal and acetophenone diethyl ketal; phosphine oxide compounds;
  • Examples include titanocene compounds such as bis ( ⁇ 5-cyclopentadienyl) titanocene; benzophenone; Michler ketone; chlorothioxanthone; dodecylthioxanthone; dimethylthioxanthone; diethylthioxanthone; ⁇ -hydroxycyclohexylphenylket
  • the content of the photosensitizer is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, preferably 50 parts by mass or less, more preferably 100 parts by mass of the gas generating agent. 30 parts by mass or less.
  • the content of the photosensitizer is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 30 parts by mass or less, more preferably 100 parts by mass of the binder resin described later. 15 parts by mass or less.
  • the blending amount of the tertiary amine and the photosensitizer it is preferable to blend so that the tertiary amine is equimolar with respect to the photosensitizer. Moreover, since it is thought that the said tertiary amine is not consumed at the time of gas generation
  • the molar equivalent of the tertiary amine is preferably not more than the molar equivalent of the gas generating material.
  • the equivalent here means that one nitrogen atom in the amine is one equivalent, and one molecule of the photosensitizer is one equivalent.
  • the gas generating material 11a may further contain a binder resin.
  • the gas generating material 11a includes a binder resin, the gas generating material 11a can be easily formed into a tablet shape, a fine particle shape, a film shape, or the like. Further, the gas generating agent can be firmly held in the gas generating material 11a.
  • the said binder resin may be used independently and may be used together 2 or more types.
  • the bainter resin is not particularly limited.
  • the binder resin an appropriate binder resin that can hold the gas generating agent, the tertiary amine, and the photosensitizer in the gas generating material 11a is used.
  • the binder resin for example, polymer materials such as poly (meth) acrylate, polyester, polyethylene, polypropylene, polystyrene, polyether, polyurethane, polycarbonate, polyamide, and polyimide can be used.
  • the copolymer of the monomer which comprises these polymer materials may be used, and these polymer materials may be used together.
  • the said poly (meth) acrylate is preferable as binder resin, in order to improve the generation efficiency of gas further. That is, the binder resin is preferably a (meth) acrylic polymer.
  • the (meth) acrylic polymer includes a (meth) acrylic copolymer.
  • the SP value of the binder resin is preferably 7 or more, preferably 10.5 or less.
  • the SP value of the binder resin is not less than the above lower limit and not more than the above upper limit, the compatibility is further improved.
  • the SP value (solubility parameter) can be calculated using the Fedors method (R. F. Fedors, Polym. Eng. Sci., 14, 147 (1974)).
  • the (meth) acrylate monomer constituting the poly (meth) acrylate may be a chain compound or a cyclic compound.
  • the chain compound include methyl (meth) acrylate, ethyl acrylate, butyl (meth) acrylate, 2-methylhexyl (meth) acrylate, and lauryl (meth) acrylate.
  • the cyclic compound include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate. Among these, methyl (meth) acrylate is preferable.
  • the poly (meth) acrylate may be, for example, a copolymer of a (meth) acrylate monomer and a vinyl monomer copolymerizable with the (meth) acrylate monomer.
  • the vinyl monomer is not particularly limited.
  • vinyl monomer Containing vinyl monomer: (meth) acrylonitrile, N-vinyl pyrrolidone, N-vinyl caprolactam, N-vinyl lauryl lactam, (meth) acryloylmorpholine, (meth) acrylamide, dimethyl (meth) actyl Ruamido, N- methylol (meth) acrylamide, N- butoxymethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, such as nitrogen-containing vinyl monomers such as dimethylaminomethyl (meth) acrylate.
  • the said vinyl monomer may be used independently and may be used together with 2 or more types.
  • the combination of the (meth) acrylate monomer and the vinyl monomer is not particularly limited.
  • butyl (meth) acrylate and (meth) acrylic acid butyl (meth) acrylate and (meth) acrylamide, and (meth) ) A combination of acrylic acid and N-isopropyl (meth) acrylamide.
  • the copolymerization ratio (mass ratio) of the (meth) acrylate monomer and the vinyl monomer is preferably in the range of 98: 2 to 51:49.
  • the poly (meth) acrylate includes polymethyl (meth) acrylate, butyl (meth) acrylate / (meth) acrylic acid copolymer, and butyl (meth) acrylate / At least one selected from the group consisting of (meth) acrylamide copolymers is preferred.
  • the poly (meth) acrylate preferably has an amino group or a carbonyl group.
  • the binder resin preferably has an ultraviolet light absorption band.
  • the ultraviolet light absorption band of the binder resin preferably has a shorter wavelength than the ultraviolet light absorption bands of the gas generating agent and the photosensitizer.
  • the binder resin may have photodegradability.
  • the weight average molecular weight of the binder resin is preferably 50,000 or more, more preferably 600,000 or more, preferably 2 million or less, more preferably 1.6 million or less.
  • the weight average molecular weight of the binder resin is equal to or more than the lower limit, a decrease in the cohesive force of the binder resin itself is suppressed, and the gas generating agent, the tertiary amine, and the photosensitizer are contained in the gas generating material 11a. Can be held firmly.
  • the weight average molecular weight of the binder resin is not more than the above upper limit, the gas generating material 11a can be easily processed into various forms.
  • the binder resin preferably has adhesiveness.
  • adhesiveness can be provided to the gas generating material 11a.
  • the gas generating material 11 a can be easily disposed in the micropump 1.
  • the film-like gas generating material 11 a having adhesiveness can be easily attached to the substrate surface of the micropump 1 or the wall surface inside the substrate.
  • the content of the binder resin is, for example, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably with respect to 100 parts by mass of the gas generating agent. Is 30 parts by mass or more, preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 150 parts by mass or less.
  • the gas generating material 11a includes 100 parts by mass of the gas generating agent and 0.1 parts by mass or more and 50 parts by mass or less of the tertiary amine with respect to 100 parts by mass of the gas generating agent. 1 part by mass or more and 50 parts by mass or less, 11 parts by mass or more and 300 parts by mass or less of the binder resin, and the gas generating material 11a is 10% by mass of the gas generating agent in 100% by mass of the gas generating material 11a. % Or more and 90% by mass or less.
  • the gas generating material 11a preferably contains a silane coupling agent.
  • silane coupling agent By using the silane coupling agent, the adhesion of the gas generating material 11a to the member to be bonded is further increased.
  • the said silane coupling agent only 1 type may be used and 2 or more types may be used together.
  • the gas generating material 11a contains a silane coupling agent having an amino group.
  • the silane coupling agent having an amino group By using the silane coupling agent having an amino group, not only the adhesion of the gas generating material 11a to the member to be bonded is further increased, but also the gas generating material 11a is generated by using the silane coupling agent. A decrease in the amount of gas generated can also be suppressed. That is, when the silane coupling agent having an amino group is used, the adhesive force of the gas generating material 11a to the member to be bonded is more effective than when the silane coupling agent having no amino group is used. In addition, a decrease in the amount of gas generated from the gas generating material 11a can be effectively suppressed.
  • the tertiary amine preferably does not contain a silicon atom, and is preferably not a silane coupling agent.
  • the silane coupling agent having an amino group is preferably not the tertiary amine.
  • silane coupling agent having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (aminoethyl) -3-aminopropyltriethoxysilane, N, N′-bis [(3-trimethoxysilyl) propyl] ethylenediamine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane and the like can be mentioned.
  • Silane coupling agents having amino groups other than these may be used.
  • the said silane coupling agent which has an amino group may be used independently, and 2 or more types may be used together.
  • silane coupling agent having no amino group examples include epoxy groups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • the content of the silane coupling agent and the content of the silane coupling agent having an amino group are preferably 0.0001 parts by mass or more with respect to 100 parts by mass of the gas generating agent. More preferably, it is 0.0003 mass part or more, Preferably it is 1 mass part or less, More preferably, it is 0.3 mass part or less.
  • the adhesive force of the gas generating material 11a to the bonding target member is further increased.
  • the content of the silane coupling agent and the amino group-containing silane coupling agent is less than or equal to the upper limit, the amount of gas generated by the excess silane coupling agent and the amino group-containing silane coupling agent is reduced. It is further suppressed.
  • the gas generating material 11a may contain a crosslinking agent, an adhesive, an inorganic filler, and the like. It is more preferable that the gas generating material 11a contains the crosslinking agent. However, the gas generating material 11a may not contain the crosslinking agent. By using the crosslinking agent, the adhesiveness of the gas generating material 11a is further increased.
  • FIG. 2 is a schematic cross-sectional view of a micropump according to a modification of the above embodiment.
  • the micropump 2 according to this modification is different from the micropump 1 according to the above embodiment in the shape of the gas generating material 11b and the shape of the base material 10.
  • the micro flow path 10b is connected to a pump chamber 10c formed in the base material 10.
  • the gas generating material 11b is formed in a block shape and is arranged in the pump chamber 10c.
  • micropump 2 As in the micropump 1, a high output and a long drive time can be realized.
  • Binder resin synthesis example The binder resin used in the examples and comparative examples was synthesized as follows. 97 parts by mass of n-butyl acrylate (manufactured by Nippon Shokubai Co., Ltd.), 3 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.), 0.05 part by mass of Irgacure 907 (manufactured by Nagase Sangyo Co., Ltd.), and 200 parts by mass of ethyl acetate Mixed to obtain a mixture. Next, this mixture was irradiated with ultraviolet rays for 4 hours to produce a binder resin A which was an acrylic copolymer. The weight average molecular weight of the binder resin A was about 700,000. The SP value of the obtained binder resin A is in the range of 7 or more and 10.5 or less.
  • Example 1 190 parts by weight of binder resin A and 380 parts by weight of ethyl acetate as a solvent were blended.
  • binder resin A (however, 380 parts by weight of ethyl acetate as a solvent is blended with binder resin A)
  • GAP4006 glycol azide polymer, manufactured by NOF Corporation
  • tripropylamine tri-n-propylamine
  • tertiary amine 3.5 parts by mass of 2,4-diethylthioxanthone
  • DETX-S 2,4-diethylthioxanthone
  • Example 1 the tetrad X used as a crosslinking agent in Example 1 is represented by the following formula (X).
  • a micropump having a configuration substantially similar to the micropump 1 of the first embodiment was manufactured.
  • the cross-sectional shape of the microchannel 10b was a 0.5 mm square shape.
  • the length of the microchannel 10b was 800 mm.
  • the tip of the microchannel 10b was open to the atmosphere.
  • the gas generating material was a film having a diameter of 0.6 cm and a thickness of 50 ⁇ m.
  • the gas generation amount ( ⁇ L) after 24 hours and after 10 days were measured, respectively. Based on the gas generation amount ( ⁇ L) after 24 hours, the relative gas generation amount (increase / decrease in gas generation amount) (%) after 10 days was determined. The same evaluation was performed in Examples and Comparative Examples described later.
  • the amount of gas generated when irradiated with an ultraviolet LED of 380 nm (NS375L-5RFS manufactured by Nitride Semiconductor Co., Ltd.) for 2 minutes was measured.
  • the gas generation amount is measured by connecting the micro flow path 10b and the measuring pipette with a silicon tube, filling the inside with water, and then irradiating the gas generating material with ultraviolet rays, and changing the volume of the measuring pipette by the generated gas. It was set as the method of reading.
  • Example 2 to 18 and Comparative Examples 1 and 2 A micropump was produced in the same manner as in Example 1 except that the type and blending amount (unit: parts by mass) of the blending components were changed as shown in Tables 1 and 2 below.
  • Comparative Example 1 no tertiary amine was used.
  • Comparative Example 2 a tertiary amine and a crosslinking agent were not used.
  • tertiary amine Tripropylamine (tri-n-propylamine) 1,4-diazabicyclo [2.2.2] octane (DABCO) Diazabicycloundecene (DBU) Diazabicyclononene (DBN) N, N-diethylamino-p-toluidine
  • Example 19 In a micropump manufactured in the same manner as in Example 1, light of 380 nm was irradiated from an ultraviolet LED (NS375L-5RFS manufactured by Nitride Semiconductor Co., Ltd.), and a gas generation amount ( ⁇ L) was measured.
  • an ultraviolet LED N375L-5RFS manufactured by Nitride Semiconductor Co., Ltd.
  • Comparative Example 3 A micropump produced in the same manner as in Comparative Example 1 was irradiated with 380 nm light from an ultraviolet LED in the same manner as in Example 19 to measure the amount of gas generated ( ⁇ L).
  • Example 20 to 26 and Comparative Examples 4 and 5 In the micropump produced in the same manner as in Example 19 except that the photosensitizers and amines of the types shown in Tables 3 and 4 below were used, the light of 380 nm from the ultraviolet LED was obtained in the same manner as in Example 19. The amount of gas generation ( ⁇ L) was measured.
  • Example 19 to 26 are shown in Table 3 below, and the results of Comparative Examples 3 to 12 are shown in Table 4 below. Further, the results of Example 19 and Comparative Examples 3, 4, and 5 are shown in FIG. 3, the results of Example 20 and Comparative Example 6 are shown in FIG. 4, and the results of Example 21 and Comparative Example 7 are shown in FIG. The results of Example 22 and Comparative Example 8 are shown in FIG. 6, the results of Example 23 and Comparative Example 9 are shown in FIG. 7, the results of Example 24 and Comparative Example 10 are shown in FIG. The results of Comparative Example 11 are shown in FIG. 9, and the results of Example 26 and Comparative Example 12 are shown in FIG. The gas generation amounts shown in Tables 3 and 4 and FIGS. 3 to 10 are integrated values.
  • Example 27 About 6 micropumps produced in the same manner as in Example 1, 1 day after production, 3 days, 6 days, 9 days, 16 days, and 30 days from UV LED The amount of gas generated ( ⁇ L) when irradiated with light of 380 nm for 2 minutes was measured.
  • Comparative Example 13 Six micropumps produced in the same manner as in Comparative Example 4 were each irradiated with 380 nm light from an ultraviolet LED for 2 minutes after 1 day, 3 days, 6 days, and 9 days after production. The amount of gas generated ( ⁇ L) was measured.
  • Comparative Example 14 Six micropumps produced in the same manner as in Comparative Example 5 were each irradiated with 380 nm light from an ultraviolet LED for 2 minutes after 1 day, 3 days, 6 days, and 9 days after production. The amount of gas generated ( ⁇ L) was measured.
  • Example 15 6 micropumps produced in the same manner as in Example 1 except that dodecylamine was used instead of tripropylamine, respectively, 1 day after the production, 3 days, 6 days, and 9 days Later, the amount of gas generated ( ⁇ L) when irradiated with light of 380 nm from an ultraviolet LED for 2 minutes was measured.
  • Example 27 and Comparative Examples 13, 14, and 15 are shown in Table 5 and FIG.
  • the gas generation amounts shown in Tables 5 and 11 are integrated values.
  • the gas generating material containing a tertiary amine is more stable than the gas generating material containing a primary amine and a secondary amine. It turns out that it is excellent.
  • Example 28 100 parts by weight of binder resin A and 567 parts by weight of ethyl acetate as a solvent were blended. 100 parts by weight of binder resin A (provided that 567 parts by weight of ethyl acetate as a solvent is blended together with binder resin A), 50 parts by weight of DBSN (4-dodecylbenzenesulfonyl azide manufactured by Toyobo Co., Ltd.) as a gas generating agent, Tertiary amine tripropylamine (tri-n-propylamine) 3.5 parts by mass, photosensitizer (IPX made by DKSH Japan) 2 parts by mass, and crosslinking agent (Soken Chemical Co., Ltd.) 0.5 parts by mass of E-AX Toluene 5% solution) was mixed and processed into a film.
  • DBSN 4-dodecylbenzenesulfonyl azide manufactured by Toyobo Co., Ltd.
  • This film was heated at 110 ° C. for 5 minutes to remove ethyl acetate as a solvent. This was protected with a release PET film and stored at room temperature for one day (24 hours) to obtain a film-like gas generating material. Using the obtained gas generating material, a micropump was obtained in the same manner as in Example 1.
  • Example 29 to 31 A gas generating material was obtained and a micropump was produced in the same manner as in Example 28 except that the type and amount of the blending component (unit: parts by mass) were changed as shown in Table 6 below.
  • GAP5003 glycol azide polymer, manufactured by NOF Corporation was used as a gas generating agent.
  • Example 2 The same evaluation as in Example 1 was performed on the micropumps obtained in Examples 28 to 31.
  • the evaluation results are shown in Table 6 below. Since the gas generating materials of Examples 28 to 31 also use a tertiary amine as in Examples 1 to 27, the decrease in the amount of gas generated is not limited even after 24 hours and after 10 days. Less, and relative to the amount of gas generated after 24 hours ( ⁇ L) ( ⁇ L) (100%), the relative amount of gas generated after 10 days (increase / decrease in gas generation) (%) is 95% or more and 105% or less The storage stability was excellent.
  • Example 32 100 parts by weight of binder resin A and 567 parts by weight of ethyl acetate as a solvent were blended. 100 parts by weight of binder resin A (provided that 567 parts by weight of ethyl acetate as a solvent is blended with binder resin A), 110 parts by weight of GAP4006 (glycidyl azide polymer, manufactured by NOF Corporation) as a gas generating agent, and amino N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.) which is a silane coupling agent having a group, and triamine which is a tertiary amine 2 parts by mass of propylamine (tri-n-propylamine), 3.5 parts by mass of photosensitizer (IPX made by DKSH Japan), and a crosslinking agent (E-AX toluene 5 made by Soken Chemical Co.,
  • This film was heated at 110 ° C. for 5 minutes to remove ethyl acetate as a solvent. This was protected with a release PET film and stored at room temperature for one day (24 hours) to obtain a film-like gas generating material. Using the obtained gas generating material, a micropump was obtained in the same manner as in Example 1.
  • Example 33 to 38 A gas generating material was obtained and a micropump was produced in the same manner as in Example 32 except that the type and blending amount (unit: parts by mass) of the blending components were changed as shown in Table 7 below.
  • a silane coupling agent having an amino group was used in Examples 33 to 35.
  • a silane coupling agent having no amino group was used in Examples 36 and 37.
  • no silane coupling agent was used in Example 38.
  • silane coupling agent used is as follows. N, N-bis [(3-trimethoxysilyl) propyl] ethylenediamine (manufactured by Gelest) 3-Aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) 3-Aminopropyltriethoxysilane (KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd.) 3-Glycidoxypropyltriethoxysilane (KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 3-Methacryloxypropylmethyldiethoxysilane (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Adhesive strength Using a tensile tester (manufactured by Shimadzu Corporation: AG-IS), the adhesive strength was evaluated by peeling off 180 degrees.
  • the measurement conditions are a peel rate of 300 mm / min, a peel width of 25 mm, and a measurement temperature of 23 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Micromachines (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 単位時間あたりのガス発生量が多く、保存安定性が高いガス発生材を提供する。 本発明に係るガス発生材11aは、アゾ化合物またはアジド化合物であるガス発生剤、第三級アミン、光増感剤、及びバインダー樹脂を含む。

Description

ガス発生材及びマイクロポンプ
 本発明は、ガス発生材及びそれを備えるマイクロポンプに関する。
 近年、小型であり、かつ携帯性に優れる分析装置として、マイクロ流体デバイスを用いた分析装置が用いられるようになってきている。このマイクロ流体デバイスを用いた分析装置では、マイクロ流路内でサンプルの送液、希釈、濃縮及び分析などを行うことができる。
 上記マイクロ流体デバイスでは、マイクロ流路内におけるサンプルの送液などのために、マイクロポンプが設けられている。例えば、特許文献1には、光応答性ガス発生材料を用いたマイクロポンプが開示されている。
 また、特許文献2には、側鎖にアジドメチル基及び水酸基を有する脂肪族ポリエーテルを含むガス発生剤が開示されている。特許文献3には、グリシジルアジドポリマーを含む組成物が開示されている。非特許文献1には、末端水酸基ポリエーテルに関して、側鎖にメチルアジド基を有するグリシジルアジドポリマー(GAP)及びその製造方法が開示されている。
 また、特許文献4,5には、マイクロポンプの用途を開示していないが、気体発生剤を含む組成物が開示されている。
 特許文献4には、気体発生剤を含む層が貼り付けられるガラス板の表面を、シランカップリング剤により表面処理することが記載されている。特許文献4では、ガス発生剤を含む層に、シランカップリング剤は配合されていない。
 特許文献5には、気体発生剤を含む層と、アミノ系シランカップリング剤を含む層とを備える多層シートが開示されている。特許文献5では、多層シートの各層は異なる組成物を用いて形成されており、ガス発生剤とアミノ系シランカップリング剤とは異なる層において別々に用いられている。
特開2010-89259号公報 特開平8-310888号公報 特開平8-109093号公報 特開2005-197630号公報 特開2006-128621号公報
工業火薬 Vol.51,No.4,1990,P.216-217
 近年、マイクロ流体デバイスの複雑化などに伴って、マイクロポンプの構造の簡略化及び小型化を進め、マイクロポンプを高密度に実装したいという要望がある。
 本発明は、単位時間あたりのガス発生量が多く、保存安定性が高いガス発生材を提供することを主な目的とする。また、本発明は、上記ガス発生材を備えるマイクロポンプを提供する。
 本発明のガス発生材は、アゾ化合物またはアジド化合物であるガス発生剤、第三級アミン、光増感剤、及びバインダー樹脂を含む。
 上記第三級アミンは、環状アミン、トリアルキルアミン、及び芳香族アミンからなる群から選択された少なくとも1種を含むことが好ましい。
 上記第三級アミンの含有量は、上記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下であることが好ましい。
 上記アジド化合物は、スルフォニルアジド基またはアジドメチル基を有することが好ましい。
 上記光増感剤の含有量は、上記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下であることが好ましい。
 上記光増感剤は、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含むことが好ましい。
 本発明のガス発生材は、シランカップリング剤をさらに含むことが好ましい。
 本発明のマイクロポンプは、上記ガス発生材と、マイクロ流路が形成された基材とを備える。上記ガス発生材は、上記ガス発生材において発生した上記ガスがマイクロ流路に供給されるように配されている。
 本発明によれば、単位時間あたりのガス発生量が多く、保存安定性が高いガス発生材を提供することができる。
図1は、本発明の第1の実施形態に係るマイクロポンプの略図的断面図である。 図2は、変形例に係るマイクロポンプの略図的断面図である。 図3は、実施例19及び比較例3~5で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図4は、実施例20及び比較例6で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図5は、実施例21及び比較例7で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図6は、実施例22及び比較例8で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図7は、実施例23及び比較例9で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図8は、実施例24及び比較例10で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図9は、実施例25及び比較例11で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図10は、実施例26及び比較例12で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。 図11は、実施例27及び比較例13~15で作製したマイクロポンプのガス発生量(積算値)を示すグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態において参照する図面は、模式的に記載されており、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。具体的な物体の寸法の比率などは、以下の説明を参酌して判断されるべきである。
 図1は、第1の実施形態に係るマイクロポンプの略図的断面図である。図1に示すように、マイクロポンプ1は、板状の基材10を備えている。基材10は、例えば、樹脂、ガラス及びセラミックスなどにより構成することができる。基材10を構成する樹脂としては、例えば、有機シロキサン化合物、ポリメタクリレート樹脂及び環状ポリオレフィン樹脂などが挙げられる。上記有機シロキサン化合物の具体例としては、ポリジメチルシロキサン(PDMS)及びポリメチル水素シロキサンなどが挙げられる。
 基材10には、主面10aに開口しているマイクロ流路10bが形成されている。
 「マイクロ流路」とは、マイクロ流路を流れる液体に所謂マイクロ効果が発現する形状寸法に形成されている流路をいう。具体的には、「マイクロ流路」とは、マイクロ流路を流れる液体が、表面張力と毛細管現象との影響を強く受け、通常の寸法の流路を流れる液体とは異なる挙動を示す形状寸法に形成されている流路をいう。
 主面10aの上には、フィルム状のガス発生材11aが貼り付けられている。マイクロ流路10bの開口は、このガス発生材11aにより覆われている。このため、ガス発生材11aに光又は熱などの外部刺激が加わることによりガス発生材11aから発生したガスは、マイクロ流路10bに導かれる。
 ガス発生材11aの厚みは、特に限定されず、例えば、好ましくは5μm以上、より好ましくは10μm以上、好ましくは5mm以下、より好ましくは500μm以下である。
 ガス発生材11aは、ガスバリア層12により覆われている。このガスバリア層12により、ガス発生材11aにおいて発生したガスが、主面10aとは反対側に流出することが抑制され、マイクロ流路10bに効率的に供給される。このため、ガスバリア層12は、ガス発生材11aにおいて発生したガスの透過性が低い層であることが好ましい。
 ガスバリア層12は、例えば、ポリアクリル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ABS樹脂、ポリエチレンテレフタレート(PET)樹脂、ナイロン樹脂、ウレタン樹脂、ポリイミド樹脂及びガラスなどにより構成することができる。
 なお、ガスバリア層12の厚みは、ガスバリア層12の材質などによって異なるが、例えば、好ましくは10μm以上、より好ましくは25μm以上、好ましくは1mm以下、より好ましくは100μm以下である。ガスバリア層12は、光を透過させる場合に、紫外線領域の光の減衰が起きにくい層であることが好ましい。
 ガス発生材11aは、ガス発生剤を含む。上記ガス発生剤は、アゾ化合物またはアジド化合物である。上記ガス発生剤は、熱又は光などの外部刺激が加わった際にガスを発生させる。上記アゾ化合物または上記アジド化合物は、特に限定されず、公知のアゾ化合物またはアジド化合物であってもよい。上記ガス発生剤は、上記アゾ化合物であることが好ましく、上記アジド化合物であることも好ましい。上記ガス発生剤は、単独で用いられてもよく、2種以上併用されてもよい。
 上記ガス発生剤として用いられる上記アゾ化合物の具体例としては、例えば、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス[N-(2-メチルプロピル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス[N-(2-メチルエチル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-プロピル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-エチル-2-メチルプロピオンアミド)、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス[2-(5-メチル-2-イミダゾイリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]ジサルフェイトジハイドロレート、2,2’-アゾビス[2-(3,4,5,6-テトラハイドロピリミジン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾイリン-2-イル]プロパン}ジハイドロクロライド、2,2’-アゾビス[2-(2-イミダゾイリン-2-イル)プロパン]、2,2’-アゾビス(2-メチルプロピオンアミダイン)ハイドロクロライド、2,2’-アゾビス(2-アミノプロパン)ジハイドロクロライド、2,2’-アゾビス[N-(2-カルボキシアシル)-2-メチル-プロピオンアミダイン]、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミダイン]プロパン}、2,2’-アゾビス(2-メチルプロピオンアミドオキシム)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス(4-シアンカルボニックアシッド)、4,4’-アゾビス(4-シアノペンタノイックアシッド)、及び2,2’-アゾビス(2,4,4-トリメチルペンタン)などが挙げられる。これらのアゾ化合物は、特定の波長域の光又は熱などの外部刺激を受けることにより窒素ガスを発生させる。
 なお、上記アゾ化合物は、衝撃によっては気体を発生しないことから、取り扱いが極めて容易である。また、上記アゾ化合物は、連鎖反応を起こして爆発的に気体を発生させることもない。上記アゾ化合物を用いれば、光の照射を中断することで気体の発生を中断させることもできる。このため、上記アゾ化合物を上記ガス発生剤として用いることによりガス発生量の制御が容易となる。
 上記ガス発生剤として用いられる上記アジド化合物としては、例えば、スルフォニルアジド基またはアジドメチル基を有するアジド化合物が挙げられる。上記アジド化合物は、スルフォニルアジド基またはアジドメチル基を有することが好ましい。上記アジド化合物は、スルフォニルアジド基を有することが好ましく、アジドメチル基を有することも好ましい。
 上記スルフォニルアジド基を有する化合物の好ましい例としては、例えば、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、R~Rはそれぞれ、水素原子、ハロゲン原子、アミノ基、アミド基、炭化水素基、炭化水素基に置換基が結合した基又はアルコキシ基である。上記式(1)中のR~Rは同一であってもよく、異なっていてもよい。上記炭化水素基は、直鎖状であってもよく、分岐状であってもよく、環状であってもよい。上記炭化水素基は、飽和の炭化水素基であってもよく、不飽和の炭化水素基であってもよい。上記アルコキシ基は、置換基を有していてもよく、直鎖状であってもよく、分岐状であってもよい。
 上記式(1)において、R~Rの内の少なくとも1つの基は、炭化水素基又は炭化水素基に置換基が結合した基であることが好ましく、炭化水素基であることがより好ましい。R~Rが炭化水素基又は炭化水素基に置換基が結合した基である場合に、該炭化水素基の炭素数は1以上、好ましく3以上、より好ましくは6以上、好ましくは30以下、より好ましくは20以下、更に好ましくは18以下である。また、上記炭化水素基に置換基が結合した基における置換基としては、ハロゲン原子などが挙げられる。
 上記式(1)のR~Rにおいて、上記アルコキシ基の炭素数は1以上、好ましくは3以上、より好ましくは6以上、好ましくは20以下、より好ましくは16以下、更に好ましくは12以下である。また、上記アルコキシ基が置換基を有する場合に、該置換基としては、ハロゲン原子などが挙げられる。
 上記式(1)において、Rは、アミド基、炭化水素基、炭化水素基に置換基が結合した基又はアルコキシ基であることが好ましい。また、上記式(1)において、R,R,R及びRはそれぞれ、水素原子であることが好ましい。
 アジドメチル基を有するアジド化合物としては、例えば、グリシジルアジドポリマーが挙げられる。上記グリシジルアジドポリマーとしては、側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルが好ましい。
 側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい例としては、例えば、下記式(2-1)で表されるアジド化合物が挙げられる。
 H(B)(A)ORO(A)(B)H   (2-1)
 上記式(2-1)中、m+n=2~20、m≧1、n≧1、q+r=10~35、q≧5、r≧5であり、Aは、-OCHCHCHCH-、-OCHCH-、または-OCHCH(CH)-であり、Bは、-CHCH(CH)O-であり、Rは、-CHCH-、-CHCHCHCH-、-CHCH(CH)-、-[(CHCHO)CHCH]-、または-[(CHCHCHCHO)CHCHCHCH]-である。上記Rにおけるxは10~25、yは5~20である。
 また、側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい他の例としては、例えば、下記式(2-2)で表されるアジド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式(2-2)において、mは、1~20の整数、l+nは、7~50の整数である。mは、好ましくは3以上、好ましくは15以下である。l+nは、好ましくは10以上、好ましくは30以下である。
 また、側鎖にアジドメチル基を有し、かつ末端に水酸基を有する脂肪族ポリエーテルの好ましい他の例としては、例えば、下記式(2-3)で表されるアジド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(2-3)において、m1、m2及びm3はそれぞれ、1~20の整数であり、n1、n2及びn3はそれぞれ、1~20の整数である。
 上記アジド化合物は、上記式(1)、(2-1)、(2-2)又は(2-3)で表されるアジド化合物であることが好ましい。上記アジド化合物は、上記式(1)で表されるアジド化合物であることが好ましく、上記式(2-1)、(2-2)又は(2-3)で表されるアジド化合物であることも好ましい。
 上述したアジド化合物は、特定の波長域の光、熱、超音波又は衝撃などの外部刺激を受けることにより分解して、窒素ガスを発生させる。
 ガス発生材11aにおいて、上記ガス発生剤の含有量は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。上記ガス発生剤の含有量が上記下限以上であると十分なガス発生量を得ることが可能となる。ガス発生材11aは、第三級アミン、光増感剤、及びバインダー樹脂を含む必要があるため、上記ガス発生剤の好ましい上限は、90質量%程度である。
 ガス発生材11aでは、上記第三級アミンと上記光増感剤とを含むことにより、上述の窒素ガスの発生がスムーズに行われ、ガス発生量を増加させることが可能となる。
 ガス発生材11aは、第三級アミンを含む。上記第三級アミンの種類は、特に限定されない。上記第三級アミンとしては、環状アミン、トリアルキルアミン及び芳香族アミンなどが挙げられる。上記環状アミン及び上記芳香族アミンはそれぞれ、第三級アミンの構造を有する。
 上記第三級アミンは、1種類のみ含まれていてもよいし、複数種類含まれていてもよい。ガス発生材11aは、環状アミン、トリアルキルアミン、及び芳香族アミンからなる群から選択された少なくとも1種を含むことが好ましい。上記第三級アミンは、環状アミンであることが好ましく、トリアルキルアミンであることが好ましく、芳香族アミンであることも好ましい。上記環状アミンは、芳香族骨格を除く環状骨格を有し、芳香族骨格を有さない。上記トリアルキルアミンは、環状骨格及び芳香族骨格を有さない。上記芳香族アミンは、芳香族骨格を有し、芳香族骨格を除く環状骨格を有さない。
 上記環状アミンの炭素数は、好ましくは6以上、好ましくは20以下である。上記環状アミンの具体例としては、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ジアザビシクロウンデセン(DBU)、及びジアザビシクロノネン(DBN)などが挙げられる。
 上記トリアルキルアミンの3つのアルキル基は、同一であってもよく、異なっていてもよい。上記トリアルキルアミンの3つのアルキル基の炭素数はそれぞれ1以上、好ましくは2以上、好ましくは20以下、より好ましくは6以下である。上記トリアルキルアミンの具体例としては、トリメチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルエチルアミン、トリエチルアミン、N,N-ジメチルプロピルアミン、トリプロピルアミン及びトリブチルアミンなどが挙げられる。
 上記芳香族アミンの具体例としては、N,N-ジメチルアミノトルイジン、N,N-ジエチルアミノトルイジン、N,N-ジメチルアミノベンゼン、N,N-ジエチルアミノベンゼン、及びN,N、N’N’-テトラメチル-p-フェニレンジアミンなどが挙げられる。
 ガス発生材11a中における溶解性を高くし、更に他の成分との混合性をより一層高くし、かつ均質なフィルム状のガス発生材を得る観点からは、上記第三級アミンは23℃で液状であることが好ましい。
 上記第三級アミンの含有量は、上記ガス発生剤100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。上記第三級アミンの含有量が上記下限以上及び上記上限以下であると、ガス発生材11aにおける単位時間あたりのガス発生量が効果的に多くなり、保存安定性が効果的に高くなる。
 ガス発生材11aは、光増感剤を含む。上記光増感剤は、ガス発生剤への光による刺激を増幅する効果を有する。よって、ガス発生材11aが光増感剤を含むことにより、少ない光照射量によって、ガスを発生させ、放出させることができる。また、より広い波長領域の光によって、ガスを発生させ、放出させることができる。上記光増感剤は、単独で用いられてもよく、2種以上併用されてもよい。
 上記光増感剤の種類は、特に限定されない。上記光増感剤として、公知の光増感剤を使用することができる。上記光増感剤としては、例えば、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物及びアクリドン化合物などが挙げられる。上記チオキサントン化合物は、チオキサントン骨格を有する。上記フェノチアジン化合物は、フェノチアジン骨格を有する。上記アントラセン化合物は、アントラセン骨格を有する。上記アクリドン化合物は、アクリドン骨格を有する。
 上記チオキサントン化合物の具体例としては、チオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、及び2,4-ジエチルチオキサントンなどが挙げられる。
 上記フェノチアジン化合物の具体例としては、フェノチアジン、2-クロロフェノチアジン、2-メチルチオフェノチアジン、2-メトキシフェノチアジン、及び2-(トリフルオロメチル)フェノチアジンなどが挙げられる。
 上記アントラセン化合物の具体例としては、アントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセン、9-カルボキシアントラセン、2-アントラセンカルボン酸、1-アントラセンカルボン酸、1,8-アントラセンジカルボン酸ジメチル、(1R,2R)-2-(アントラセン-2,3-ジカルボキシイミド)シクロヘキサンカルボン酸、1-アミノアントラセン、2-アントラセンボロン酸、9-クロロメチルアントラセン、9,10-ジメトキシアントラセン-2-スルホン酸ナトリウム、ベンゾアントレン、ベンゾ[a]アントラセン-7,12-ジオン、ジベンゾ[a,c]アントラセン、1,2,3,4-ジベンゾアントラセン、9-ブロモアントラセン、9,10-ビス(クロロメチル)アントラセン、7-ブロモベンゾ[a]アントラセン、1,8-ビス(ヒドロキシメチル)アントラセン、9,10-ビス(3,5-ジヒドロキシフェニル)アントラセン、1-ブロモアントラセン、2-ブロモアントラセン、9,10-ビス(ジエチルホスホノメチル)アントラセン、2-ブロモ-9,10-ジフェニルアントラセン、2-t-ブチルアントラセン、9-クロロメチルアントラセン、9-シアノアントラセン、1-クロロ-9,10-ビス(フェニルエチニル)アントラセン、2-クロロアントラセン、ジベンゾ[a,h]アントラセン、9,10-ジブロモアントラセン、9,10-ジメチルアントラセン、9,10-ジヒドロアントラセン、7,12-ジメチルベンゾ[a]アントラセン、9,10-ジシアノアントラセン、9,10-ジフェニルアントラセン、2,3-ジメチルアントラセン、2,6-ジブロモアントラセン、1,5-ジブロモアントラセン、(11R,12R)-9,10-ジヒドロ-9,10-エタノアントラセン-11,12-ジアミン、9,10-ジヒドロ-9,10-ビス(2-カルボキシエチル)-N-(4-ニトロフェニル)-10,9-(エポキシイミノ)アントラセン-12-カルボキサミド、9,10-ジ(1-ナフチル)アントラセン、9,10-ジ(2-ナフチル)アントラセン、1,8-ジヨードアントラセン、9-(ヒドロキシメチル)アントラセン、2-(ヒドロキシメチル)アントラセン、9-(2-ヒドロキシエチル)アントラセン、9-メチルアントラセン、7-メチルベンゾ[a]アントラセン、2,3-ベンゾアントラセン、ジベンゾ[de,kl]アントラセン、9-フェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1-アニリノアントラセン、2-アニリノアントラセン、1,4,9,10-テトラヒドロキシアントラセン、1,8,9-トリヒドロキシアントラセン、(R)-(-)-α-(トリフルオロメチル)-9-アントラセンメタノール、(S)-(+)-α-(トリフルオロメチル)-9-アントラセンメタノール、及び9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセンなどが挙げられる。
 上記アクリドン化合物の具体例としては、10-メチル-9(10H)アクリドン、9(10H)-アクリドン、及び10-ブチル-2-クロロ-9(10H)-アクリドンなどが挙げられる。
 単位時間あたりのガス発生量を多くするために、上記光増感剤は、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含むことが好ましい。上記光増感剤は、チオキサントン化合物であることが好ましく、フェノチアジン化合物であることが好ましく、アントラセン化合物であることが好ましく、アクリドン化合物であることも好ましい。
 また、上記光増感剤としては、アルコキシ基を有する多環芳香族化合物も挙げられる。上記多環芳香族化合物は、アルコキシ基を2つ以上有していてもよい。なかでも、グリシジル基または水酸基を含むアルコキシ基を有する多環芳香族化合物が好ましい。この多環芳香族化合物は、アルコキシ基の一部がグリシジル基または水酸基で置換されているアルコキシ基を有する置換アルコキシ多環芳香族化合物であることが好ましい。このような光増感剤は、高い耐昇華性を有し、高温下で使用することができる。また、アルコキシ基の一部がグリシジル基や水酸基で置換されることにより、ガス発生材11a中における溶解性が高まり、ブリードアウトを抑制することができる。
 上記光増感剤として用いられる上記多環芳香族化合物の好ましい例としては、アントラセン骨格を有する多環芳香族化合物などが挙げられる。上記アントラセン骨格を有する多環芳香族化合物は、アルコキシ基を有するアントラセン化合物であり、アントラセン誘導体などである。また、アルコキシ基を有する多環芳香族化合物のアルコキシ基の炭素数は1以上、好ましくは18以下、より好ましくは8以下である。
 上記アルコキシ基を有する多環芳香族化合物の具体例としては、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、2-t-ブチル-9,10-ジメトキシアントラセン、2,3-ジメチル-9,10-ジメトキシアントラセン、9-メトキシ-10-メチルアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、2-t-ブチル-9,10-ジエトキシアントラセン、2,3-ジメチル-9,10-ジエトキシアントラセン、9-エトキシ-10-メチルアントラセン、9,10-ジプロポキシアントラセン、2-エチル-9,10-ジプロポキシアントラセン、2-t-ブチル-9,10-ジプロポキシアントラセン、2,3-ジメチル-9,10-ジプロポキシアントラセン、9-イソプロポキシ-10-メチルアントラセン、9,10-ジブトキシアントラセン、9,10-ジベンジルオキシアントラセン、2-エチル-9,10-ジベンジルオキシアントラセン、2-t-ブチル-9,10-ジベンジルオキシアントラセン、2,3-ジメチル-9,10-ジベンジルオキシアントラセン、9-ベンジルオキシ-10-メチルアントラセン、9,10-ジ-α-メチルベンジルオキシアントラセン、2-エチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2-t-ブチル-9,10-ジ-α-メチルベンジルオキシアントラセン、2,3-ジメチル-9,10-ジ-α-メチルベンジルオキシアントラセン、9-(α-メチルベンジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、及び2-エチル-9,10-ジ(2-カルボキシエトキシ)アントラセンなどが挙げられる。
 上記グリシジル基または水酸基を含むアルコキシ基を有する多環芳香族化合物の具体例としては、9,10-ジ(グリシジルオキシ)アントラセン、2-エチル-9,10-ジ(グリシジルオキシ)アントラセン、2-t-ブチル-9,10-ジ(グリシジルオキシ)アントラセン、2,3-ジメチル-9,10-ジ(グリシジルオキシ)アントラセン、9-(グリシジルオキシ)-10-メチルアントラセン、9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-エチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2-t-ブチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、2,3-ジメチル-9,10-ジ(2-ビニルオキシエトキシ)アントラセン、9-(2-ビニルオキシエトキシ)-10-メチルアントラセン、9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2-エチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2-t-ブチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(3-メチル-3-オキセタニルメトキシ)アントラセン、9-(3-メチル-3-オキセタニルメトキシ)-10-メチルアントラセン、9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2-t-ブチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-エポキシフェニルメトキシ)アントラセン、9-(p-エポキシフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-エチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、2-t-ブチル-9,1-ジ(p-ビニルフェニルメトキシ)アントラセン、2,3-ジメチル-9,10-ジ(p-ビニルフェニルメトキシ)アントラセン、9-(p-ビニルフェニルメトキシ)-10-メチルアントラセン、9,10-ジ(2-ヒドロキシエトキシ)アントラセン、9,10-ジ(2-ヒドロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシブトキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-ブトキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-アリロキシプロポキシ)アントラセン、9,10-ジ(2-ヒドロキシ-3-フェノキシプロポキシ)アントラセン、及び9,10-ジ(2,3-ジヒドロキシプロポキシ)アントラセンなどが挙げられる。
 上記光増感剤は、光重合開始剤として一般に知られている材料であってもよい。このような光増感剤としては、例えば、250~800nmの波長の光を照射することにより活性化される化合物が挙げられる。このような光増感剤の具体例としては、メトキシアセトフェノンなどのアセトフェノン化合物;ベンゾインプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインエーテル化合物;ベンジルジメチルケタール、アセトフェノンジエチルケタールなどのケタール化合物;フォスフィンオキシド化合物;ビス(η5-シクロペンタジエニル)チタノセンなどのチタノセン化合物;ベンゾフェノン;ミヒラーケトン;クロロチオキサントン;ドデシルチオキサントン;ジメチルチオキサントン;ジエチルチオキサントン;α-ヒドロキシシクロヘキシルフェニルケトン;2-ヒドロキシメチルフェニルプロパンなどが挙げられる。上記光増感剤は、単独で用いられてもよく、2種以上併用されてもよい。
 上記光増感剤の含有量は、上記ガス発生剤100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、好ましくは50質量部以下、より好ましくは30質量部以下である。また、上記光増感剤の含有量は、後述のバインダー樹脂100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、好ましくは30質量部以下、より好ましくは15質量部以下である。上記光増感剤の含有量が上記下限以上であると、充分な光増感効果が得られる。上記光増感剤の含有量が上記上限以下であると、光増感剤に由来する残存物が少なくなり、充分にガスが発生されやすくなる。
 上記第三級アミンと上記光増感剤との配合量に関しては、上記光増感剤に対して上記第三級アミンが当モルとなるように配合することが好ましい。また、ガス発生に際して、上記第三級アミンは消費されないと考えられるため、上記第三級アミンは、上記ガス発生剤のモル当量よりも少ない量で配合することができる。ガス発生材11aにおいて、上記第三級アミンのモル当量は、上記ガス発生材のモル当量以下であることが好ましい。
 なお、ここでいう当量とは、アミン中の窒素原子1個を1当量とし、光増感剤1分子を1当量とする。
 ガス発生材11aは、バインダー樹脂をさらに含んでいてもよい。ガス発生材11aがバインダー樹脂を含む場合、ガス発生材11aを錠剤状、微粒子状及びフィルム状などの形態とすることが容易になる。また、ガス発生剤をガス発生材11a中に強固に保持することができる。上記バインダー樹脂は、単独で用いられてもよく、2種以上併用されてもよい。
 上記バインター樹脂は特に限定されない。上記バインダー樹脂として、上記ガス発生剤、上記第三級アミン及び上記光増感剤をガス発生材11a中に保持することが可能である適宜のバインダー樹脂が用いられる。上記バインター樹脂として、例えば、ポリ(メタ)アクリレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエーテル、ポリウレタン、ポリカーボネート、ポリアミド及びポリイミドなどの高分子材料を用いることができる。また、これらの高分子材料を構成するモノマーの共重合体を用いてもよく、これらの高分子材料を併用してもよい。なかでも、上記ポリ(メタ)アクリレートは、ガスの発生効率をより一層高めるため、バインダー樹脂として好ましい。すなわち、上記バインダー樹脂は、(メタ)アクリル重合体であることが好ましい。なお、上記(メタ)アクリル重合体には、(メタ)アクリル共重合体が含まれる。
 上記バインダー樹脂のSP値は好ましくは7以上、好ましくは10.5以下である。上記バインダー樹脂のSP値が上記下限以上及び上記上限以下であると、相溶性がより一層良好になる。
 上記SP値(溶解度パラメータ)は、Fedors法(R.F.Fedors,Polym.Eng.Sci.,14,147(1974))を用いて算出可能である。
 上記ポリ(メタ)アクリレートを構成する(メタ)アクリレートモノマーは、鎖状化合物及び環状化合物のいずれであってもよい。上記鎖状化合物としては、(メタ)アクリル酸メチル、アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-メチルヘキシル、及び(メタ)アクリル酸ラウリルなどが挙げられる。上記環状化合物としては、(メタ)アクリル酸シクロヘキシル、及び(メタ)アクリル酸イソボロニルなどが挙げられる。これらのなかでも、(メタ)アクリル酸メチルが好ましい。
 上記ポリ(メタ)アクリレートは、例えば、(メタ)アクリレートモノマーと、(メタ)アクリレートモノマーと共重合可能なビニルモノマーとの共重合体であってもよい。上記ビニルモノマーとしては、特に限定されず、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、(無水)マレイン酸、(無水)フマル酸、カルボキシアルキル(メタ)アクリレート類(カルボキシエチルアクリレートなど)のカルボキシル基含有ビニルモノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートなどの水酸基含有ビニルモノマー;(メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルラウリロラクタム、(メタ)アクリロイルモルホリン、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ジメチルアミノメチル(メタ)アクリレートなどの窒素含有ビニルモノマーなどが挙げられる。上記ビニルモノマーは単独で用いてもよく、2種以上で併用してもよい。
 上記(メタ)アクリレートモノマーと上記ビニルモノマーとの組合せとしては、特に限定されず、例えば(メタ)アクリル酸ブチルと(メタ)アクリル酸、(メタ)アクリル酸ブチルと(メタ)アクリルアミド、及び(メタ)アクリル酸とN-イソプロピル(メタ)アクリルアミドとの組合せなどが挙げられる。(メタ)アクリレートモノマーとビニルモノマーとの共重合比(質量比)は、98:2~51:49の範囲内であることが好ましい。
 ガスの発生効率をより一層高めるために、上記ポリ(メタ)アクリレートとしては、ポリメチル(メタ)アクリレート、(メタ)アクリル酸ブチル・(メタ)アクリル酸共重合体、及び(メタ)アクリル酸ブチル・(メタ)アクリルアミド共重合体からなる群から選択された少なくとも1種が好ましい。また、ガスの発生効率をさらに高めるために、上記ポリ(メタ)アクリレートは、アミノ基またはカルボニル基を有することが好ましい。
 上記バインダー樹脂は、紫外光吸収帯を有することが好ましい。上記バインダー樹脂の紫外光吸収帯は、ガス発生剤及び光増感剤の紫外光吸収帯よりも短波長であることが好ましい。
 ガスの発生効率をより一層高めるために、上記バインダー樹脂は、光分解性を有してもよい。
 上記バインダー樹脂の重量平均分子量は、好ましくは5万以上、より好ましくは60万以上、好ましくは200万以下、より好ましく160万以下である。上記バインダー樹脂の重量平均分子量が上記下限以上であると、バインダー樹脂自体の凝集力の低下が抑えられ、上記ガス発生剤、上記第三級アミン及び上記光増感剤をガス発生材11a中に、強固に保持することができる。上記バインダー樹脂の重量平均分子量が上記上限以下であると、ガス発生材11aを各種の形態に加工することが容易になる。
 上記バインダー樹脂は、粘接着性を有することが好ましい。上記バインダー樹脂が粘接着性を有する場合、ガス発生材11aに粘接着性を付与することができる。このため、マイクロポンプ1にガス発生材11aを容易に配置することができる。例えば、粘接着性を有するフィルム状のガス発生材11aは、マイクロポンプ1の基板面または基板内部の壁面に容易に貼り付けることができる。
 ガス発生材11aが上記バインダー樹脂を含む場合、上記バインダー樹脂の含有量は、例えば、上記ガス発生剤100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは150質量部以下である。
 ガス発生材11aは、上記ガス発生剤100質量部と、上記ガス発生剤100質量部に対して、上記第三級アミン0.1質量部以上、50質量部以下、上記光増感剤0.1質量部以上、50質量部以下、上記バインダー樹脂11質量部以上、300質量部以下とを含み、かつ、ガス発生材11aは、該ガス発生材11a100質量%中、上記ガス発生剤を10質量%以上、90質量%以下で含むことが好ましい。
 ガス発生材11aは、シランカップリング剤を含むことが好ましい。上記シランカップリング剤の使用により、ガス発生材11aの接着対象部材に対する接着力がより一層高くなる。上記シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 ガス発生材11aは、アミノ基を有するシランカップリング剤を含むことがより好ましい。上記アミノ基を有するシランカップリング剤の使用により、ガス発生材11aの接着対象部材に対する接着力が更に一層高くなるだけでなく、シランカップリング剤を用いたことに伴うガス発生材11aから発生するガスの発生量の低下を抑えることもできる。すなわち、上記アミノ基を有するシランカップリング剤を用いた場合には、アミノ基を有さないシランカップリング剤を用いた場合と比べて、ガス発生材11aの接着対象部材に対する接着力が効果的に高くなり、更にガス発生材11aから発生するガスの発生量の低下が効果的に抑えられる。すなわち、上記アミノ基を有するシランカップリング剤を用いることで、上記ガス発生材がシランカップリング剤を含んでいても、単位時間あたりのガス発生量にほとんど影響しなくなる。このことは、本発明者らにより初めて見出された。上記第三級アミンは、珪素原子を含まないことが好ましく、シランカップリング剤ではないことが好ましい。上記アミノ基を有するシランカップリング剤は、上記第三級アミンではないことが好ましい。
 上記アミノ基を有するシランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’-ビス[(3-トリメトキシシリル)プロピル]エチレンジアミン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン及びN-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。これら以外のアミノ基を有するシランカップリング剤を用いてもよい。上記アミノ基を有するシランカップリング剤は、単独で用いられてもよく、2種以上併用されてもよい。
 上記アミノ基を有さないシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシランカップリング剤、及び3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロイル基を有するシランカップリング剤等が挙げられる。
 ガス発生材11aにおいて、上記ガス発生剤100質量部に対して、上記シランカップリング剤の含有量及び上記アミノ基を有するシランカップリング剤の含有量はそれぞれ、好ましくは0.0001質量部以上、より好ましくは0.0003質量部以上、好ましくは1質量部以下、より好ましくは0.3質量部以下である。上記シランカップリング剤及び上記アミノ基を有するシランカップリング剤の含有量が上記下限以上であると、ガス発生材11aの接着対象部材に対する接着力がより一層高くなる。上記シランカップリング剤及び上記アミノ基を有するシランカップリング剤の含有量が上記上限以下であると、余剰の上記シランカップリング剤及び上記アミノ基を有するシランカップリング剤によるガス発生量の低下がより一層抑えられる。
 また、ガス発生材11aは、架橋剤、粘着剤及び無機充填材などを含んでもいてもよい。ガス発生材11aは、上記架橋剤を含むことがより好ましい。但し、ガス発生材11aは、上記架橋剤を含んでいなくてもよい。上記架橋剤の使用により、ガス発生材11aの粘着力がより一層高くなる。
 (変形例)
 図2は、上記の実施形態の変形例に係るマイクロポンプの略図的断面図である。
 本変形例に係るマイクロポンプ2は、ガス発生材11bの形状及び基材10の形状において、上記の実施形態に係るマイクロポンプ1と異なる。
 本変形例では、マイクロ流路10bは、基材10内に形成されたポンプ室10cに接続されている。ガス発生材11bは、ブロック状に形成されており、ポンプ室10c内に配されている。
 本実施形態に係るマイクロポンプ2においても、上記マイクロポンプ1と同様に、高出力かつ長駆動時間を実現することができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されず、要旨を変更しない範囲において適宜変更して実施することが可能である。
 (バインダー樹脂の合成例)
 以下のようにして、実施例及び比較例で使用したバインダー樹脂を合成した。n-ブチルアクリレート(日本触媒社製)97質量部と、アクリル酸(日本触媒社製)3質量部と、イルガキュア907(長瀬産業社製)0.05質量部と、酢酸エチル200質量部とを混合して、混合物を得た。次に、この混合物に、紫外線を4時間照射して、アクリル共重合体であるバインダー樹脂Aを作製した。バインダー樹脂Aの重量平均分子量は、約70万であった。得られたバインダー樹脂AのSP値は7以上、10.5以下の範囲内である。
 (実施例1)
 バインダー樹脂A190質量部と溶剤である酢酸エチル380重量部とを配合した。バインダー樹脂A190質量部(但し、溶剤である酢酸エチル380質量部をバインダー樹脂Aと共に配合してある)と、ガス発生剤であるGAP4006(グリシジルアジドポリマー、日油社製)100質量部と、第三級アミンであるトリプロピルアミン(トリn-プロピルアミン)10質量部と、光増感剤である2,4-ジエチルチオキサントン(日本化薬社製のDETX-S)3.5質量部と、架橋剤であるテトラッドX(三菱ガス化学社製)1質量部とを混合し、フィルム状に加工した。このフィルムを110℃で5分間加熱して、溶剤である酢酸エチルを除去した。これを離型PETフィルムで保護し、常温で一日(24時間)保管して、フィルム状のガス発生材を得た。なお、実施例1において架橋剤として用いたテトラッドXは、下記式(X)で表される。
Figure JPOXMLDOC01-appb-C000004
 得られたフィルム状のガス発生材を用いて、上記第1の実施形態のマイクロポンプ1と実質的に同様の構成を有するマイクロポンプを作製した。
 なお、マイクロ流路10bの断面形状は、0.5mm角の矩形状とした。マイクロ流路10bの長さは、800mmとした。マイクロ流路10bの先端は大気に開放した状態とした。ガス発生材は、直径0.6cmサイズで、厚み50μmのフィルム状とした。
 次に、得られたマイクロポンプについて、それぞれ、24時間経過後及び10日経過後のガス発生量(μL)を測定した。24時間経過後のガス発生量(μL)を基準(100%)として、10日経過後の相対的なガス発生量(ガス発生量の増減)(%)を求めた。後述の実施例及び比較例でも、同様の評価を行った。
 なお、ガス発生量の測定では、380nmの紫外線LED(ナイトレイドセミコンダクター社製のNS375L-5RFS)で2分間照射したときのガスの発生量を測定した。ガス発生量の測定方法は、マイクロ流路10bとメスピペットとをシリコンチューブでつなぎ、この中を水で充填し、その後、ガス発生材に紫外線を照射し、発生したガスによるメスピペットの体積変化を読み取る方法とした。
 (実施例2~18及び比較例1,2)
 配合成分の種類及び配合量(単位は質量部)を下記の表1,2に示すように変更したこと以外は実施例1と同様にして、マイクロポンプを作製した。なお、比較例1では、第三級アミンを用いなかった。比較例2では、第三級アミンと架橋剤とを用いなかった。
 また、用いた第三級アミンの種類は、以下の通りである。
 トリプロピルアミン(トリn-プロピルアミン)
 1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)
 ジアザビシクロウンデセン(DBU)
 ジアザビシクロノネン(DBN)
 N,N-ジエチルアミノ-p-トルイジン
 配合組成及び評価結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (実施例19)
 実施例1と同様にして作製したマイクロポンプにおいて、紫外線LED(ナイトレイドセミコンダクター社製のNS375L-5RFS)から380nmの光を照射して、ガス発生量(μL)を測定した。
 (比較例3)
 比較例1と同様にして作製したマイクロポンプについて、実施例19と同様にして、紫外線LEDからの380nmの光を照射して、ガス発生量(μL)を測定した。
 (実施例20~26及び比較例4,5)
 下記の表3,4に示す種類の光増感剤及びアミンを用いたこと以外は実施例19と同様にして作製したマイクロポンプにおいて、実施例19と同様にして、紫外線LEDからの380nmの光を照射して、ガス発生量(μL)を測定した。
 (比較例6~12)
 下記の表4に示す種類の光増感剤を用いたこと、並びにアミンを用いなかったこと以外は実施例19と同様にして作製したマイクロポンプにおいて、実施例19と同様にして、紫外線LEDからの380nmの光を照射して、ガス発生量(μL)を測定した。
 実施例19~26の結果を下記の表3に示し、比較例3~12の結果を下記の表4に示す。また、実施例19及び比較例3,4,5の結果を図3に示し、実施例20及び比較例6の結果を図4に示し、実施例21及び比較例7の結果を図5に示し、実施例22及び比較例8の結果を図6に示し、実施例23及び比較例9の結果を図7に示し、実施例24及び比較例10の結果を図8に示し、実施例25及び比較例11の結果を図9に示し、実施例26及び比較例12の結果を図10に示す。なお、表3、4及び図3~10に示すガス発生量は、積算値である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 (実施例27)
 実施例1と同様にして作製した6つのマイクロポンプについて、それぞれ、作製してから1日経過後、3日経過後、6日経過後、9日経過後、16日経過後及び30日経過後に、紫外線LEDからの380nmの光を2分間照射したときのガス発生量(μL)を測定した。
 (比較例13)
 比較例4と同様にして作製した6つのマイクロポンプについて、それぞれ、作製してから1日経過後、3日経過後、6日経過後及び9日経過後に、紫外線LEDからの380nmの光を2分間照射したときのガス発生量(μL)を測定した。
 (比較例14)
 比較例5と同様にして作製した6つのマイクロポンプについて、それぞれ、作製してから1日経過後、3日経過後、6日経過後及び9日経過後に、紫外線LEDからの380nmの光を2分間照射したときのガス発生量(μL)を測定した。
 (比較例15)
 トリプロピルアミンの代わりにドデシルアミンを用いたこと以外は実施例1と同様にして作製した6つのマイクロポンプについて、それぞれ、作製してから1日経過後、3日経過後、6日経過後及び9日経過後に、紫外線LEDからの380nmの光を2分間照射したときのガス発生量(μL)を測定した。
 実施例27及び比較例13,14,15の結果を下記の表5及び図11に示す。なお、表5及び11に示すガス発生量は、積算値である。実施例27と比較例13~15との対比から明らかなとおり、第三級アミンを含むガス発生材は、第1級アミン及び第2級アミンを含むガス発生材に比べて、保存安定性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000009
 (実施例28)
 バインダー樹脂A100質量部と溶剤である酢酸エチル567重量部とを配合した。バインダー樹脂A100質量部(但し、溶剤である酢酸エチル567質量部をバインダー樹脂Aと共に配合してある)と、ガス発生剤であるDBSN(4-ドデシルベンゼンスルフォニルアジド 東洋紡社製)50質量部と、第三級アミンであるトリプロピルアミン(トリn-プロピルアミン)3.5質量部と、光増感剤である(DKSHジャパン社製のIPX)2質量部と、架橋剤である(綜研化学社製のE-AX トルエン5%液)0.5質量部とを混合し、フィルム状に加工した。このフィルムを110℃で5分間加熱して、溶剤である酢酸エチルを除去した。これを離型PETフィルムで保護し、常温で一日(24時間)保管して、フィルム状のガス発生材を得た。得られたガス発生材を用いて、実施例1と同様にしてマイクロポンプを得た。
 (実施例29~31)
 配合成分の種類及び配合量(単位は質量部)を下記の表6に示すように変更したこと以外は実施例28と同様にして、ガス発生材を得て、マイクロポンプを作製した。実施例30,31では、ガス発生剤として、GAP5003(グリシジルアジドポリマー、日油社製)を用いた。
 実施例28~31で得られたマイクロポンプについて、実施例1と同様の評価を行った。評価結果を下記の表6に示す。なお、実施例28~31のガス発生材でも、実施例1~27と同様に、第三級アミンを用いていることから、24時間経過後及び10日経過後でも、ガスの発生量の低下は少なく、また24時間経過後のガス発生量(μL)を基準(100%)として、10日経過後の相対的なガス発生量(ガス発生量の増減)(%)は95%以上、105%以下の範囲内であり、保存安定性に優れていた。
Figure JPOXMLDOC01-appb-T000010
 (実施例32)
 バインダー樹脂A100質量部と溶剤である酢酸エチル567重量部とを配合した。バインダー樹脂A100質量部(但し、溶剤である酢酸エチル567質量部をバインダー樹脂Aと共に配合してある)と、ガス発生剤であるGAP4006(グリシジルアジドポリマー、日油社製)110質量部と、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(信越化学工業社製のKBM-602)0.001質量部と、第三級アミンであるトリプロピルアミン(トリn-プロピルアミン)2質量部と、光増感剤である(DKSHジャパン社製のIPX)3.5質量部と、架橋剤である(綜研化学社製のE-AX トルエン5%液)0.5質量部とを混合し、フィルム状に加工した。このフィルムを110℃で5分間加熱して、溶剤である酢酸エチルを除去した。これを離型PETフィルムで保護し、常温で一日(24時間)保管して、フィルム状のガス発生材を得た。得られたガス発生材を用いて、実施例1と同様にしてマイクロポンプを得た。
 (実施例33~38)
 配合成分の種類及び配合量(単位は質量部)を下記の表7に示すように変更したこと以外は実施例32と同様にして、ガス発生材を得て、マイクロポンプを作製した。なお、実施例33~35では、アミノ基を有するシランカップリング剤を用いた。実施例36,37では、アミノ基を有さないシランカップリング剤を用いた。実施例38では、シランカップリング剤を用いなかった。
 また、用いたシランカップリング剤の種類は、以下の通りである。
 N,N-ビス[(3-トリメトキシシリル)プロピル]エチレンジアミン(Gelest社製)
 3-アミノプロピルトリメトキシシラン(信越化学工業社製のKBM-903)
 3-アミノプロピルトリエトキシシラン(信越化学工業社製のKBE-903)
 3-グリシドキシプロピルトリエトキシシラン(信越化学工業社製のKBE-403)
 3-メタクリロキシプロピルメチルジエトキシシラン(信越化学工業社製のKBE-502)
 実施例32~38について、以下の評価項目について評価した。
 (1)ガス発生量
 ガス発生量の測定では、380nmの紫外線LED(ナイトレイドセミコンダクター社製のNS375L-5RFS)で120秒間照射したときのガスの発生量を測定した。なお、ガス発生量の測定方法は、実施例1と同じである。
 (2)接着力
 引張試験機(島津製作所製:AG-IS)を用いて、180度ピール剥離を行うことにより接着力を評価した。測定条件は、剥離速度300mm/分、剥離幅25mm及び測定温度23℃の条件である。
 (3)アンカー
 セロファンテープの糊面と得られたフィルム状のガス発生材の糊面とを互いに貼り合わせ、90度剥離を行い、剥離強度を測定した。測定方法は接着力の測定に準じる。
 結果を下記の表7に示す。なお、実施例32~38のガス発生材では、第三級アミンを用いていることから、24時間経過後及び10日経過後でも、ガスの発生量の低下は少なく、また24時間経過後のガス発生量(μL)を基準(100%)として、10日経過後の相対的なガス発生量(ガス発生量の増減)(%)は90%以上、105%以下の範囲内であり、保存安定性に優れていた。
Figure JPOXMLDOC01-appb-T000011
1,2…マイクロポンプ
10…基材
10a…主面
10b…マイクロ流路
10c…ポンプ室
11a、11b…ガス発生材
12…ガスバリア層

Claims (13)

  1.  アゾ化合物またはアジド化合物であるガス発生剤、第三級アミン、光増感剤、及びバインダー樹脂を含む、ガス発生材。
  2.  前記第三級アミンが、環状アミン、トリアルキルアミン、及び芳香族アミンからなる群から選択された少なくとも1種を含む、請求項1に記載のガス発生材。
  3.  前記第三級アミンの含有量は、前記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下である、請求項1または2に記載のガス発生材。
  4.  前記アジド化合物は、スルフォニルアジド基またはアジドメチル基を有する、請求項1または2に記載のガス発生材。
  5.  前記光増感剤の含有量は、前記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下である、請求項1または2に記載のガス発生材。
  6.  前記光増感剤が、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含む、請求項1または2に記載のガス発生材。
  7.  シランカップリング剤をさらに含む、請求項1または2に記載のガス発生材。
  8.  請求項1または2のいずれか1項に記載のガス発生材と、
     マイクロ流路が形成された基材と、
    を備え、
     前記ガス発生材は、前記ガス発生材において発生したガスが前記マイクロ流路に供給されるように配されている、マイクロポンプ。
  9.  前記ガス発生材において、前記第三級アミンの含有量は、前記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下である、請求項8に記載のマイクロポンプ。
  10.  前記アジド化合物は、スルフォニルアジド基またはアジドメチル基を有する、請求項8に記載のマイクロポンプ。
  11.  前記ガス発生材において、前記光増感剤の含有量は、前記ガス発生剤100質量部に対して、0.1質量部以上、50質量部以下である、請求項8に記載のマイクロポンプ。
  12.  前記光増感剤が、チオキサントン化合物、フェノチアジン化合物、アントラセン化合物、及びアクリドン化合物からなる群から選択された少なくとも1種を含む、請求項8に記載のマイクロポンプ。
  13.  前記ガス発生材が、シランカップリング剤をさらに含む、請求項8に記載のマイクロポンプ。
PCT/JP2012/074511 2012-06-08 2012-09-25 ガス発生材及びマイクロポンプ WO2013183175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280001957.7A CN103717553B (zh) 2012-06-08 2012-09-25 气体发生材料及微型泵
US13/822,634 US8986630B2 (en) 2012-06-08 2012-09-25 Gas-generating material and micro pump
JP2012543404A JP5162731B1 (ja) 2012-06-08 2012-09-25 ガス発生材及びマイクロポンプ
EP12878533.4A EP2860167B1 (en) 2012-06-08 2012-09-25 Gas generating material, and micropump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131386 2012-06-08
JP2012131386 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183175A1 true WO2013183175A1 (ja) 2013-12-12

Family

ID=49711589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074511 WO2013183175A1 (ja) 2012-06-08 2012-09-25 ガス発生材及びマイクロポンプ

Country Status (5)

Country Link
US (1) US8986630B2 (ja)
EP (1) EP2860167B1 (ja)
JP (1) JP2014012624A (ja)
CN (1) CN103717553B (ja)
WO (1) WO2013183175A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061355A1 (ja) * 2012-10-15 2014-04-24 積水化学工業株式会社 ガス発生材及びマイクロポンプ
JP2014080310A (ja) * 2012-10-15 2014-05-08 Sekisui Chem Co Ltd ガス発生材及びマイクロポンプ
JP5580923B1 (ja) * 2013-03-18 2014-08-27 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP2015230184A (ja) * 2014-06-03 2015-12-21 積水化学工業株式会社 懸濁液の移送方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109093A (ja) 1994-10-07 1996-04-30 Nippon Oil & Fats Co Ltd 高エネルギーバインダー含有コンポジット推進薬
JPH08310888A (ja) 1995-05-10 1996-11-26 Nippon Oil & Fats Co Ltd ガス発生剤
JPH10298168A (ja) * 1997-04-22 1998-11-10 Toyo Kasei Kogyo Co Ltd 新規な1,5′−ビテトラゾール系化合物とその製造法及び該1,5′−ビテトラール系化合物を主剤とするガス発生剤
JP2005197630A (ja) 2003-12-09 2005-07-21 Sekisui Chem Co Ltd Icチップの製造方法
JP2006128621A (ja) 2004-09-29 2006-05-18 Sekisui Chem Co Ltd ウエハ貼着用粘着シート及びダイ接着用接着剤層付きicチップの製造方法
JP2010089259A (ja) 2008-03-11 2010-04-22 Sekisui Chem Co Ltd 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP2012062238A (ja) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd ガス発生剤及びマイクロポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248931B (de) * 1963-09-27 1967-08-31 Takeda Chemical Industries, Ltd., Osaka (Japan) Verfahren zur Herstellung von Polyurethanschaumstoffen
US3759807A (en) * 1969-01-28 1973-09-18 Union Carbide Corp Photopolymerization process using combination of organic carbonyls and amines
DE3170983D1 (en) * 1980-03-21 1985-07-25 Fbc Ltd Chemical blowing agent composition, its composition and use
DE3331157A1 (de) * 1983-08-30 1985-03-14 Basf Ag, 6700 Ludwigshafen Photopolymerisierbare mischungen, enthaltend tertiaere amine als photoaktivatoren
JPH08337770A (ja) * 1995-06-09 1996-12-24 Toyo Kasei Kogyo Co Ltd テトラゾ−ル系ガス発生剤
EP1367048B1 (en) * 2000-05-25 2009-07-22 Sekisui Chemical Co., Ltd. Photo-setting compositions and photoreactive adhesive compositions
ATE271919T1 (de) 2001-10-18 2004-08-15 Aida Eng Ltd Mikrodosier- und probennahmevorrichtung sowie mikrochip mit dieser vorrichtung
EP1456286B1 (en) * 2001-12-21 2012-06-13 Henkel AG & Co. KGaA Expandable epoxy resin-based systems modified with thermoplastic polymers
JP4302442B2 (ja) 2002-09-12 2009-07-29 ダイセル化学工業株式会社 ガス発生剤組成物
US6964716B2 (en) 2002-09-12 2005-11-15 Daicel Chemical Industries, Ltd. Gas generating composition
ATE530250T1 (de) * 2006-03-09 2011-11-15 Sekisui Chemical Co Ltd Mikrofluidische vorrichtung und verfahren zur verdünnung von flüssigkeit in spuren
WO2008061957A1 (en) * 2006-11-23 2008-05-29 Agfa Graphics Nv Novel radiation curable compositions
CN102146905B (zh) * 2008-03-11 2014-03-26 积水化学工业株式会社 微流体设备
JP4856733B2 (ja) * 2008-04-28 2012-01-18 積水化学工業株式会社 マイクロポンプ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109093A (ja) 1994-10-07 1996-04-30 Nippon Oil & Fats Co Ltd 高エネルギーバインダー含有コンポジット推進薬
JPH08310888A (ja) 1995-05-10 1996-11-26 Nippon Oil & Fats Co Ltd ガス発生剤
JPH10298168A (ja) * 1997-04-22 1998-11-10 Toyo Kasei Kogyo Co Ltd 新規な1,5′−ビテトラゾール系化合物とその製造法及び該1,5′−ビテトラール系化合物を主剤とするガス発生剤
JP2005197630A (ja) 2003-12-09 2005-07-21 Sekisui Chem Co Ltd Icチップの製造方法
JP2006128621A (ja) 2004-09-29 2006-05-18 Sekisui Chem Co Ltd ウエハ貼着用粘着シート及びダイ接着用接着剤層付きicチップの製造方法
JP2010089259A (ja) 2008-03-11 2010-04-22 Sekisui Chem Co Ltd 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP2012062238A (ja) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd ガス発生剤及びマイクロポンプ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF INDUSTRIAL EXPLOSIVES SOCIETY, vol. 51, no. 4, 1990, pages 216 - 217
R. F. FEDORS, POLYM. ENG. SCI., vol. 14, 1974, pages 147
See also references of EP2860167A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061355A1 (ja) * 2012-10-15 2014-04-24 積水化学工業株式会社 ガス発生材及びマイクロポンプ
JP2014080310A (ja) * 2012-10-15 2014-05-08 Sekisui Chem Co Ltd ガス発生材及びマイクロポンプ
US10731062B2 (en) 2012-10-15 2020-08-04 Sekisui Chemical Co., Ltd. Gas-generating material and micropump
JP5580923B1 (ja) * 2013-03-18 2014-08-27 積水化学工業株式会社 ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP2015230184A (ja) * 2014-06-03 2015-12-21 積水化学工業株式会社 懸濁液の移送方法

Also Published As

Publication number Publication date
JP2014012624A (ja) 2014-01-23
US20140161687A1 (en) 2014-06-12
EP2860167A4 (en) 2016-04-13
US8986630B2 (en) 2015-03-24
EP2860167B1 (en) 2020-04-29
EP2860167A1 (en) 2015-04-15
CN103717553B (zh) 2015-08-19
CN103717553A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2013183175A1 (ja) ガス発生材及びマイクロポンプ
JP4528352B2 (ja) マイクロ流体デバイス
JP4454694B2 (ja) 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
KR101578575B1 (ko) 접착제 조성물, 접착 테이프, 반도체 웨이퍼의 처리 방법 및 tsv 웨이퍼의 제조 방법
JP5162731B1 (ja) ガス発生材及びマイクロポンプ
WO2014061355A1 (ja) ガス発生材及びマイクロポンプ
JP5639137B2 (ja) ガス発生材及びマイクロポンプ
JP5580923B1 (ja) ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP6110652B2 (ja) マイクロポンプ用ガス発生材及びマイクロポンプ
JP7144140B2 (ja) ガス発生材、ガス発生材の製造方法及びマイクロポンプ
JP2012062238A (ja) ガス発生剤及びマイクロポンプ
JP5941544B2 (ja) テトラゾール化合物又はその塩、接着剤組成物及び接着テープ
JP5291415B2 (ja) マイクロ流体送液装置
JP5699007B2 (ja) ガス発生材及びマイクロポンプ
JP2015054798A (ja) マイクロポンプにおけるガスの発生方法
TW201245377A (en) Resin paste composition for bonding semiconductor element, and semiconductor device
JP5957306B2 (ja) ガス発生材及びマイクロポンプ
JP2013256626A (ja) ガス発生材及びマイクロポンプ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012543404

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13822634

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012878533

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE