WO2013180022A1 - 半導体記憶装置、及び、メモリセルアレイの駆動方法 - Google Patents

半導体記憶装置、及び、メモリセルアレイの駆動方法 Download PDF

Info

Publication number
WO2013180022A1
WO2013180022A1 PCT/JP2013/064446 JP2013064446W WO2013180022A1 WO 2013180022 A1 WO2013180022 A1 WO 2013180022A1 JP 2013064446 W JP2013064446 W JP 2013064446W WO 2013180022 A1 WO2013180022 A1 WO 2013180022A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
selection
input
memory cell
output terminals
Prior art date
Application number
PCT/JP2013/064446
Other languages
English (en)
French (fr)
Inventor
満 名倉
優 川端
信夫 山崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013180022A1 publication Critical patent/WO2013180022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0071Write using write potential applied to access device gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0083Write to perform initialising, forming process, electro forming or conditioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • the present invention relates to a semiconductor memory device and a driving method thereof, and more specifically, a semiconductor memory device that rewrites information stored as a resistance state of a variable resistance element of a memory cell by applying a voltage pulse, and driving of the memory cell array Regarding the method.
  • RRAM registered trademark
  • a phenomenon in which resistance changes when a voltage is applied to a metal oxide film or the like is more advantageous than a flash memory in terms of miniaturization limit, and can operate at a low voltage.
  • RRAM registered trademark
  • variable resistance element As a rewriting characteristic of the variable resistance element having these metal oxides, by applying different voltage pulses in the low resistance operation and the high resistance operation, the electrical resistance of the element increases according to the voltage pulse. In order to reduce (resistance) or decrease (lower resistance), by assigning a logical value as data to each resistance state, such a variable resistance element can be used as a memory element.
  • setting writing
  • reset erasing
  • set and reset operations are collectively referred to as a rewrite operation. Note that the definitions of set and reset may be reversed.
  • Non-Patent Document 1 the set operation and the reset operation are alternately performed a plurality of times (hereinafter, referred to as “initialization operation” or “initialization operation”). It has been pointed out that the resistance value is stable.
  • FIG. 5 shows a configuration example of a memory cell in the RRAM.
  • the memory cell MC shown in FIG. 5 is configured as a 1T1R type in which a selection transistor Q for cell selection is connected in series to a variable resistance element R.
  • One end on the variable resistance element R side of the memory cell is connected to the bit line (BL), the other end on the selection transistor Q side of the memory cell is connected to the source line (SL), and the control terminal of the selection transistor Q is connected to the word line (WL).
  • BL bit line
  • SL source line
  • WL word line
  • a memory cell array can be configured by arranging a plurality of such memory cells (see, for example, Patent Document 1). In order to use it as a memory, only a specific memory cell is selected from the memory cell array, and rewriting or reading is performed. By providing a transistor as a current limiting element in the memory cell, a leakage current and a sneak current flowing in a non-selected memory cell when rewriting / reading information stored in the variable resistance element of the selected memory cell Can be limited.
  • variable resistance element is a bipolar element that is rewritten by applying voltage pulses having different polarities in the low resistance (set) operation and the high resistance (reset) operation
  • set operation is performed using the source line Is applied by applying a set voltage pulse from the bit line.
  • reset operation is performed by applying a reset voltage pulse from the source line with the bit line as a reference.
  • the resistance state of the variable resistance element is read by applying a read voltage between the bit line and the source line.
  • an object of the present invention is to provide a memory cell array driving method capable of shortening the time required for the initialization operation of the entire memory cell array, and thereby to realize a semiconductor memory device capable of stable operation.
  • a semiconductor memory device has two input / output terminals, and a variable resistance whose electrical resistance changes between the input / output terminals by applying a voltage between the input / output terminals. And a selection transistor having two input / output terminals and one control terminal, wherein one of the input / output terminals of the variable resistance element and one of the input / output terminals of the selection transistor are connected to each other.
  • a memory cell array in which a plurality of memory cells each having one input / output terminal are arranged in a matrix in the row direction and the column direction;
  • a first selection line extending in a row direction connecting the control terminals of the selection transistors of the memory cells belonging to the same row;
  • a second selection line extending in the column direction connecting one of the input / output terminals of the memory cells belonging to the same column;
  • a third selection line for connecting the other of the input / output terminals of the memory cells belonging to the same column or the same row;
  • a batch selection circuit for simultaneously selecting a second selection line group including a plurality of the second selection lines;
  • a control circuit includes: Selecting one or a plurality of the first selection lines, and controlling the collective selection circuit to select the second selection line group, thereby selecting a plurality of the memory cells;
  • a first voltage application operation for applying a first voltage to all the second selection lines constituting the second selection line group in a state where a predetermined voltage is applied to the selected first selection line; and
  • the first voltage is higher than the third voltage, and the second voltage is lower than the third voltage. .
  • the semiconductor memory device having the above characteristics further includes: The control circuit selects one of the memory cells by selecting one of the first selection lines and one of the second selection lines, and connects to the selected memory cell. Execution of a selection voltage application operation for selectively applying either the first voltage or the second voltage to the selected second selection line in a state where the third voltage is applied to the third selection line. Control It is preferable that the operation mode for executing the selection voltage application operation and the operation mode for executing the initialization operation can be switched.
  • the semiconductor memory device having the above characteristics further includes: In the initialization operation, the control circuit performs the initialization operation so that a read operation for reading the electrical resistance of the variable resistance element is not performed after the first voltage application operation and the second voltage application operation. It is preferable to control.
  • a driving method of a memory cell array has two input / output terminals, and the electric resistance between the input / output terminals changes by applying a voltage between the input / output terminals.
  • a memory cell array driving method in which a plurality of memory cells having two input / output terminals are arranged in a matrix in the row direction and the column direction, respectively.
  • the memory cell array includes: The control terminals of the selection transistors of the memory cells belonging to the same row are connected to a first selection line extending in the row direction, One of the input / output terminals of the memory cells belonging to the same column is connected to a second selection line extending in the column direction, The other of the input / output terminals of the memory cells belonging to the same column or the same row is connected to a third selection line, A plurality of memory cells are selected by selecting a second selection line group including one or a plurality of first selection lines and a plurality of second selection lines, and the selected first selection lines are selected.
  • a first voltage applying step of applying a first voltage to all the second selection lines constituting the second selection line group in a state where a predetermined voltage is applied to the second selection line group; and configuring the second selection line group An initialization step of performing a second voltage application step of applying a second voltage to all the second selection lines; In the initialization step, The first voltage application step and the second voltage application step are alternately performed a plurality of times in a state where a third voltage is applied to the third selection line connected to the selected memory cell.
  • the first voltage is higher than the third voltage
  • the second voltage is lower than the third voltage. Is preferred.
  • the memory cell array driving method having the above characteristics further includes: One memory cell is selected by selecting one first selection line and one second selection line, and the third selection line connected to the selected memory cell is selected.
  • the memory cell array driving method according to the present invention having the above characteristics further includes: In the initialization step, it is preferable that a read operation for reading the electrical resistance of the variable resistance element is not performed after the first voltage application step and the second voltage application step.
  • a plurality of bit lines (third voltage) are applied to a source line (third selection line) while a constant voltage (third voltage) is applied.
  • the set operation and the reset operation can be performed alternately without changing the potential of the source line. Thereby, it is not necessary to charge / discharge a source line having a particularly heavy load, and the initialization operation can be performed at high speed.
  • a bipolar variable resistance element by applying an intermediate voltage between the set voltage and the reset voltage to the source line, the potential of the source line is fixed to the intermediate voltage, so that charging / discharging of the source line with a large load is performed.
  • the initialization operation can be performed at high speed.
  • the control circuit selects an operation mode in which the first voltage and the second voltage are alternately applied to the plurality of bit lines, selects one memory cell, and applies the first voltage and the second voltage to the bit line.
  • the purpose is to alternately apply the voltage stress of the set operation and the reset operation to the variable resistance element of the memory cell a plurality of times, and it is not necessary to read the resistance state of the variable resistance element after the voltage is applied. . Therefore, during the initialization operation, the read operation is not performed every time the first voltage or the second voltage is applied, and the operation of applying the first voltage and the operation of applying the second voltage to the plurality of bit lines are alternately performed.
  • the initialization operation can be performed at high speed by operating continuously. However, if necessary, it is possible to read the resistance state of the variable resistance element of the memory cell during the initialization operation. In order to confirm whether the initialization operation is normally performed or the variable resistance element is a normal element, the read operation may be performed even during the initialization operation.
  • FIG. 7 shows the cumulative probability distribution of the resistance value in the high resistance state after the initialization operation is performed by applying a voltage pulse of opposite polarity between set and reset to a 256-bit variable resistance element. From FIG. 7, by increasing the number of initialization cycles, the variation in resistance value between the high resistance state and the low resistance state after the resistance change in the same element is improved, and the variation in resistance value between elements is also improved. I understand.
  • a highly reliable nonvolatile semiconductor device can be provided by performing an initialization operation of 1000 cycles or more.
  • a time required for the initialization operation of the memory cell array is shortened, a stable operation is possible, and a highly reliable nonvolatile semiconductor memory device can be realized.
  • 1 is a circuit block diagram showing a schematic configuration of a semiconductor memory device according to an embodiment of the present invention.
  • 1 is a circuit configuration diagram showing an example of a configuration of a memory cell array of a semiconductor memory device according to an embodiment of the present invention.
  • 1 is a timing chart illustrating an example of a driving method during an initialization operation in a semiconductor memory device according to an embodiment of the present invention.
  • 1 is a timing chart illustrating an example of a driving method during a selective rewrite operation in a semiconductor memory device according to an embodiment of the present invention.
  • Circuit diagram showing a configuration example of a memory cell of a semiconductor memory device (RRAM) using a variable resistance element Circuit diagram showing a configuration example of a memory cell array of a semiconductor memory device (RRAM) using a variable resistance element
  • Circuit diagram showing a configuration example of a memory cell array of a semiconductor memory device (RRAM) using a variable resistance element Graph showing cumulative probability distribution of resistance value in high resistance state after initialization operation Circuit diagram for explaining the initialization operation method of the present invention in a 1R type memory cell array
  • Circuit diagram for explaining the initialization operation method of the present invention in a 1R type memory cell array Circuit diagram for explaining the initialization operation method of the present invention in a 1R type memory cell array
  • FIG. 1 is a circuit block diagram showing a schematic configuration of a semiconductor memory device (hereinafter referred to as “present invention device 1”) according to an embodiment of the present invention.
  • the device 1 of the present invention includes a memory cell array 100, a control circuit 104, a voltage generation circuit 105, a word line decoder 106, a bit line decoder 107, and a source line decoder 108, respectively.
  • the memory cell array 100 includes a plurality of memory cells in which variable resistance elements and transistors are connected in series, arranged in a matrix in the row and column directions, and memory cells belonging to the same column are connected by bit lines extending in the column direction.
  • the memory cells belonging to the same row are connected to each other by a word line extending in the row direction.
  • FIG. 2 shows a circuit configuration diagram of the memory cell array 100 and its peripheral circuits.
  • the memory cell array 100 includes R11 to Rn1, R12 to Rn2,..., R1m to Rnm as variable resistance elements (memory elements), and Q11 to Qn1, Q12 to Qn2,. .., Q1m to Qnm (n and m are natural numbers) are arranged in a matrix in the row direction (vertical direction in the figure) and the column direction (horizontal direction in the figure), respectively.
  • R11 to Rnm variable resistance element
  • Q Q11 to Qnm
  • the control terminals of the cell selection transistors Q of the memory cells arranged in the same row are connected to word lines (first selection lines) WL1 to WLn, respectively.
  • the input / output terminal on the variable resistance element R side not connected to the cell selection transistor Q is connected to any of the bit lines (second selection lines) BL1 to BLm extending in the column direction.
  • Memory cells connected to each other and connected to each other in the same column, and the input / output terminals on the side of the cell selection transistor Q not connected to the variable resistance element R extend in the row direction and are arranged in the same row
  • the source lines (third selection lines) SL1 to SLn are connected to each other.
  • the source lines may be configured to extend in the column direction, or all the source lines in the memory cell array 100 may be common, and the configuration is not particularly limited.
  • the memory cell array 100 includes an input / output terminal on the variable resistance element R side of the two input / output terminals of the memory cell connected to the bit line extending in the column direction, and the cell selection transistor Q side.
  • the input / output terminal on the cell selection transistor side of the two input / output terminals of the memory cell is connected to the bit lines BL1 to BLm extending in the column direction.
  • the variable resistance element R (R11 to Rnm) is an element in which electrodes are supported on both ends of a variable resistor composed of a transition metal oxide or the like, and the material of the variable resistor is Al, Hf, Ni, Co, Ta, Zr, W, Ti, Cu, V, Zn, Nb oxides or oxynitrides, strontium titanate (SrTiOX), or the like can be used.
  • the material of the variable resistor is Al, Hf, Ni, Co, Ta, Zr, W, Ti, Cu, V, Zn, Nb oxides or oxynitrides, strontium titanate (SrTiOX), or the like can be used.
  • an element in which Hf oxide (HfOX) is sandwiched between a Ta electrode and a TiN electrode as a variable resistor is assumed.
  • a bipolar element is assumed in which a voltage pulse having a polarity opposite to that of low resistance and high resistance is applied.
  • variable resistor material When these metal oxides are used as the variable resistor material, the initial resistance immediately after the manufacture of the variable resistance element is very high, so that a high resistance state and a low resistance state can be switched by electrical stress.
  • a voltage pulse having a voltage amplitude larger than that of a voltage pulse used for a normal rewrite operation and a longer pulse width is applied to a variable resistance element in an initial state immediately after manufacturing to form a current path in which resistance switching occurs. It is necessary to perform so-called forming processing. It is known that a current path (referred to as a filament path) formed by such forming processing determines the electrical characteristics of the subsequent device.
  • the voltage generation circuit 105 generates a voltage necessary for the forming process, and the control circuit 104 controls the word line decoder 106, the bit line decoder 107, and the source line decoder 108, thereby Controls the execution of the forming process.
  • the control circuit 104 controls each memory operation of setting, resetting and reading of the memory cell array 100 and controls the forming process. Specifically, the control circuit 104 uses the word line decoder 106 and the bit line decoder 107 based on the address signal input from the address line, the data input input from the data line, and the control input signal input from the control signal line. And the source line decoder 108 to control each memory operation and forming process of the memory cell. In the example shown in FIG. 1, the control circuit 104 has functions as a general address buffer circuit, data input / output buffer circuit, and control input buffer circuit (not shown). Further, the control circuit 104 controls the initialization (initialization) operation of the plurality of memory cells.
  • the voltage generation circuit 105 generates a predetermined voltage necessary for selecting a memory cell to be operated in each of the memory operation of set, reset, and read and the initialization operation, and the word line decoder 106 and the bit line decoder 107, supplied to the source line decoder 108.
  • the word line decoder 106 selects a word line corresponding to the address signal input to the address line when the target memory cell is input to the address line and specified.
  • the selected word line voltage and the unselected word line voltage are respectively applied to the selected word line and the unselected word line.
  • a selected word line voltage is applied to one or a plurality of word lines connected to the memory cell to be initialized.
  • the bit line decoder 107 includes the bit line selection circuit 101 and the bit line batch selection circuit 102 shown in FIG. 2, and a single selection operation for selecting one bit line according to the operation and a batch selection for simultaneously selecting a plurality of bit lines. One of the selection operations is performed. During the initialization operation, the batch selection operation is selected, and the initialization operation is simultaneously performed on the variable resistance elements of the plurality of memory cells connected to the plurality of bit lines. On the other hand, the bit line decoder 107 selects a single selection operation in each of the set, reset, and read memory operations. When the memory cell to be operated is input to the address line and designated, the bit line decoder 107 is input to the address line. One bit line corresponding to the address signal is selected, and a voltage necessary for the memory operation is applied to the selected bit line.
  • each bit line BL1 to BLm is connected to a power supply line V1 via a transistor T (T1 to Tm), and voltage signals ⁇ 1 to ⁇ m are connected to the control terminal of the transistor T.
  • the line selection circuit 101 or the bit line batch selection circuit 102 By being input via the line selection circuit 101 or the bit line batch selection circuit 102, the voltage supplied from the power supply line V1 is applied to one or a plurality of selected bit lines.
  • a bit line batch selection circuit 102 is inserted between the bit line selection circuit 101 and the control terminal of the transistor T to which the switching signals ⁇ 1 to ⁇ m are input. In the single selection operation, each of the switching signals ⁇ 1 to ⁇ m input to the control terminal of the transistor T is individually controlled by the bit line selection circuit 101.
  • the bit lines are selected so that the transistors T connected to the bit line group (second selection line group) composed of a plurality of selected bit lines among the transistors T1 to Tm are turned on.
  • the voltage of the power supply line Va is applied to the control terminal of the transistor T through the circuit 102.
  • the power supply line Va is individually connected to the control terminal of the transistor T (T1 to Tm) via the transistor S (S1 to Sm), and a plurality of power lines Va corresponding to the selected bit line group among the transistors S1 to Sm.
  • the source line decoder 108 selects the source line corresponding to the address signal input to the address line when the memory cell to be operated is input to the address line and specified in the set, reset, and read memory operations.
  • a voltage necessary for the memory operation (in the example of FIG. 2, a voltage supplied from the power supply line V2) is applied to the selected source line and the non-selected source line, respectively.
  • a voltage necessary for the initialization operation is applied to one or a plurality of source lines connected to the memory cell to be initialized.
  • control circuit 104 the voltage generation circuit 105, the word line decoder 106, the bit line decoder 107, and the source line decoder 108 are described using known circuit configurations. The description is omitted because it is feasible and can be manufactured using a known semiconductor manufacturing technique.
  • one memory cell to be operated is selected by selecting one word line and one bit line, and the selected word line By applying a predetermined voltage to the selected bit line and source line separately, the information stored in the variable resistance element of the selected memory cell can be rewritten or read.
  • a voltage pulse of 1.5 V to 2.5 V, 50 nsec is applied between the input and output terminals of the selected memory cell.
  • a voltage is applied to the bit line and the source line connected to the memory cell.
  • a bit line connected to the selected memory cell and a voltage pulse of ⁇ 1.0 V to ⁇ 1.5 V, 50 nsec are applied between the input and output terminals of the selected memory cell. Apply voltage to the source line. That is, in the set operation and the reset operation, a voltage pulse having a reverse polarity is applied to the variable resistance element.
  • the voltage applied to the selected word line may be set such that the selected word line voltage VWLR in the reset operation is higher than the selected word line voltage VWLS in the set operation.
  • the device 1 of the present invention is configured so that the control mode can be switched between an operation mode for performing an initialization operation and an operation mode for performing a selective rewrite operation.
  • the control circuit 104 performs control to switch the bit line selection operation by the bit line decoder 107 to either the single selection operation or the batch selection operation described above according to the control mode.
  • FIG. 3 is a timing chart when the initialization operation of the memory cell array 100 is performed in the device 1 of the present invention.
  • the interval between times ti and ti + 1 is about 50 nsec.
  • a voltage for example, a voltage to be applied to the selected source line
  • a voltage to be applied to the selected source line is applied to the WL1 via the word line decoder 106 as a reference. + 1.0V.
  • the word line WL1 is raised to the voltage VWLS (for example, +0.6 V with respect to the voltage to be applied to the selected source line) in the set operation, and the word line WL1 is set to the voltage VWLR (in the reset operation).
  • the voltage may be raised to +1.2 V with reference to the voltage to be applied to the selected source line.
  • WL2 to WLn have voltages not higher than the voltage to be applied to the unselected source lines (non-selected word line voltages). For example, 0 V (GND)) is applied.
  • VDD for example, 3V
  • VDD is applied to the power supply line Va in the bit line batch selection circuit 102 to supply a voltage for turning on the transistors T1 to Tm.
  • the transistors S1 to Sm are turned on, and all of ⁇ 1 to ⁇ m are set to the voltage VDD supplied from the power supply line Va. Launch. As a result, the transistors T1 to Tm are turned on, and a plurality of bit lines BL1 to BLm are simultaneously selected. At this time, the output from the bit line selection circuit 101 does not matter.
  • the third voltage VPRE (here, 1.5 V) is applied to the bit line selected later in the set operation and the second voltage applied later to the bit line selected in the reset operation. It is an intermediate voltage between the voltages.
  • all the source lines SL1 to SLn are precharged to such an intermediate voltage at time t3.
  • the third voltage VPRE is also applied to the power supply line V1, and since all of ⁇ 1 to ⁇ m are raised, all the selected bit lines BL1 to BLm are also set to the intermediate voltage. Precharged.
  • a voltage pulse is applied through the power supply line V1, and the set operation or the reset operation is simultaneously performed on the variable resistance elements of the plurality of selected memory cells.
  • the voltage pulse with the voltage amplitude VSET ⁇ VPRE is selected by raising the voltage of the power supply line V1 from VPRE to the first voltage VSET during the period from time t4 to time t5. Apply between bit line and source line.
  • the absolute value of the voltage amplitude is VPRE ⁇ VRST by reducing the voltage of the power supply line V1 from VPRE to the second voltage VRST during the period from time t4 to time t5. Applies a reverse voltage pulse between the selected bit line and the source line.
  • time t8 After time t8, the operation from time t4 to time t8 is continuously repeated. Thereby, the initialization operation of all the memory cells connected to the selected word line WL1 can be performed at once. At this time, since it is not necessary to perform the read operation during the initialization operation, the set operation and the reset operation can be alternately performed at high speed.
  • the source line and all selected bit lines BL1 to BL1 during the period when the set operation and the reset operation are executed after the rise of ⁇ 1 to ⁇ m (that is, until the word line voltage is changed).
  • the application of the third voltage VPRE is maintained at BLm. This prevents disturbance caused by an extra potential difference between the selected and non-selected memory cells.
  • the time required for the initialization operation can be reduced to 1 / m compared to the case where the initialization operation is performed for each memory cell. Furthermore, in the driving method of the present embodiment, the verification operation for verifying whether rewriting has been performed normally between the set operation and the reset operation, and the resistance state of the variable resistance element for the verification operation are not performed. In addition, since the charge / discharge time of the source line is not required, the time required for the initialization operation is actually shortened to less than 1 / m.
  • the application time of the voltage pulse applied to the selected bit line is the same.
  • the application time of the voltage pulse may be different between the set operation and the reset operation. Is possible. In that case, the time interval from time t4 to time t5 when the voltage pulse is applied from the power supply line V1 and time t6 to time t7 may be changed between the set operation and the reset operation.
  • FIG. 4 shows a timing chart when the selective rewriting operation is performed in the device 1 of the present invention.
  • the interval between times ti and ti + 1 is about 50 nsec.
  • a word line connected to the memory cell targeted for selective rewrite operation is selected, and the word line decoder 106 is selected.
  • a voltage for turning on the cell transistor of the memory cell is applied to the selected word line.
  • the variable resistance element R11 of the memory cell specified by the word line WL1 and the bit line BL1 is selected as a rewrite target.
  • a voltage (for example, about +1.0 V with respect to the voltage to be applied to the selected source line) is applied to the word line WL1.
  • the word line WL1 is raised to the voltage VWLS (for example, +0.6 V with respect to the voltage to be applied to the selected source line) in the set operation, and the word line WL1 is set to the voltage VWLR (in the reset operation).
  • the voltage may be raised to +1.2 V with reference to the voltage to be applied to the selected source line.
  • WL2 to WLn have unselected word line voltages lower than the voltage to be applied to the unselected source lines ( For example, 0 V (GND)) is applied.
  • the third voltage VPRE (here, 1.5 V) is between the first voltage applied to the bit line selected in the set operation and the second voltage applied to the bit line selected in the reset operation. Is an intermediate voltage.
  • all the source lines SL1 to SLn are precharged to such an intermediate voltage at time t3.
  • the third voltage VPRE is also applied to the power supply line V1, and ⁇ 1 rises, so that the selected bit line BL1 is also precharged to such an intermediate voltage.
  • a voltage pulse is applied through the power supply line V1, and the setting operation or the resetting operation of the variable resistance element of the selected memory cell is performed.
  • the voltage of the power supply line V1 is increased from VPRE to the first voltage VSET, so that the voltage pulse having the voltage amplitude VSET-VPRE is changed to the bit line BL1.
  • the absolute value of the voltage amplitude is VPRE ⁇ VRST by reducing the voltage of the power supply line V1 from VPRE to the second voltage VRST during the period from time t4 to time t5. Is applied between the bit line BL1 and the source line SL1.
  • a read operation is performed to verify whether the set operation or the reset operation has been performed normally.
  • the voltage applied to the selected word line is changed to the selected word line voltage for reading (here, the same as VWLR), and read to the bit line BL1 via the power line V1.
  • a voltage pulse having a voltage amplitude of VREAD ⁇ VPRE is applied between the bit line BL1 and the source line SL1, and is variable.
  • the resistance state of the resistance element R11 is read out.
  • the reset operation and the set operation in the selective rewriting operation are not limited to the above operation methods, and other methods can be adopted.
  • the potential of the selected source line is precharged to the same intermediate voltage VPRE regardless of whether the selective rewriting operation is a reset operation or a set operation.
  • the voltage to precharge the source line may be changed according to the above. Further, a voltage pulse may be applied from the source line side.
  • the configuration of the memory cell array 100 and the memory cell used in the above embodiment is not limited to the circuit configuration shown in FIG. 2, and the memory cell including the variable resistance element is replaced with a bit line and a source.
  • the present invention is not limited by the configuration as long as it is connected to a line to form a memory cell array.
  • the memory cell array 100 includes the input / output terminals on the variable resistance element side of the memory cell in which the variable resistance elements and the cell transistors are connected in series to the bit lines BL1 to BLm, and the input / output on the cell transistor side. Although the terminals are connected to the source lines S11 to SLn, the input / output terminals on the cell transistor side of the memory cells may be connected to the bit lines.
  • the peripheral circuit of the memory cell array may be provided with a control circuit that can control an operation of selecting a plurality of bit lines and an operation of selecting a specific bit line.
  • a control circuit that can control an operation of selecting a plurality of bit lines and an operation of selecting a specific bit line.
  • the memory cell array 100 is a 1T1R type memory cell array in which memory cells in which variable resistance elements and cell transistors are connected in series is arranged in a matrix is illustrated, but the present invention is not limited thereto. It is not something that can be done.
  • all memory cells can be selected, and the voltage at one end of the memory cells can be fixed to an intermediate voltage, so that the initialization operation can be performed at high speed.
  • variable resistance elements are arranged in a matrix in a row direction (horizontal direction in the figure) and a column direction (vertical direction in the figure), and one end of input / output terminals of the variable resistance element R extends in the row direction.
  • Bit lines first selection lines
  • word lines first selection lines
  • WL1 to WLn memory cells arranged in the same row are connected to each other, and the other end of the input / output terminals of the variable resistance element R extends in the column direction.
  • 2 selection lines memory cells connected to BL1 to BLm and arranged in the same column are connected.
  • the word lines in the memory cell 110 are selected as shown in FIG.
  • the first voltage VSET is applied to all the bit lines BL1 to BLm.
  • the reset operation is simultaneously performed on the variable resistance elements of a plurality of selected memory cells in the memory cell 110
  • all the word lines in the memory cell 110 are selected as shown in FIG.
  • the second voltage VRST is applied to all the bit lines BL1 to BLm.
  • the present invention can also be applied to the 1R type memory cell array described above or a 1D1R type memory cell array in which a current limiting element such as a diode or a varistor is connected in series to a variable resistance element.
  • a power supply line Vb2 connected to the control terminals of the transistors Sk + 1 to Sm
  • a plurality of bit lines are selected at the same time in units of the bit line group, and the selected plurality of bit lines
  • An initialization operation may be performed on the variable resistance elements of a plurality of memory cells connected to the selected word line.
  • the number of memory cells that perform the initialization operation simultaneously can be changed according to the driving capability of the power supply line V1.
  • the set operation or the reset operation can be simultaneously performed in parallel. For example, when the voltage applied to the selected word line is the same in the set operation or the reset operation, one or a plurality of word lines are selected, and the voltage for the set operation is applied to one of the power supply lines Vb1 and Vb2. By applying a voltage pulse for reset operation to one of the other, a set operation of a part of variable resistance elements of a plurality of selected memory cells and a reset operation of the remaining part of variable resistance elements are performed. Can be executed at the same time.
  • the direction of the current flowing through the memory cell is reversed between the set operation and the reset operation, particularly when the variable resistance element is a bipolar element.
  • the total amount of current flowing through the source line is reduced, resulting in power saving.
  • the bit line decoder 107 includes the bit line selection circuit 101 and the bit line batch selection circuit 102, and a single selection operation for selecting one bit line according to the operation, and a plurality of bit lines.
  • the word line decoder 106 includes a word line selection circuit and a word line batch selection circuit, and at the time of initialization, a plurality of word lines are simultaneously selected and variable resistance elements of a plurality of memory cells connected to the selected bit line. May be initialized.
  • the initialization operation can be performed in units of blocks including a plurality of memory cells.
  • the initialization method of the present invention can be suitably performed on a memory cell array having a bipolar variable resistance element.
  • the initialization method of the present invention can also be applied to a memory cell array having a unipolar variable resistance element.
  • a unipolar variable resistance element voltage pulses having the same polarity and different voltage amplitude or pulse application time are applied in the set operation and the reset operation. Since the initialization method of the present invention applies a voltage pulse from the bit line side while keeping the potential of the selected source line constant, it is natural for a memory cell array having a unipolar variable resistance element.
  • the present invention can be applied to.
  • the present invention can be applied as long as a variable resistance element whose resistance state is changed by application of a voltage pulse is provided in the memory cell array.
  • the configuration of the variable resistance element is not limited by the variable resistor, electrode material, element size, or the like.
  • the conditions such as the voltage value and pulse width (application time) of the voltage pulse and the voltage applied to the control terminal of the cell transistor used in the description of the initialization operation in the above embodiment are specific examples for explaining the present invention. There is no limitation on the characteristics of the variable resistance element.
  • the present invention can be used for a semiconductor memory device, and in particular, can be used for a large capacity and highly reliable nonvolatile memory.
  • Bit line selection circuit 102 Bit line batch selection circuit 104: Control circuit 105: Voltage generation circuit 106: Word line decoder 107: Bit line decoder 108: Source Line decoders BL1 to BLm: Bit lines (second selection lines) SL1 to SLn: Source line (third selection line) WL1 to WLn: Word line (first selection line) MC: memory cell Q, Q11 to Qnm: cell selection transistor R, R11 to Rnm: variable resistance element V1, V2, Va, Vb: power supply line ⁇ 1 to ⁇ m: switching signal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 可変抵抗素子を備えた半導体記憶装置において、かかる可変抵抗素子のセット(低抵抗化)とリセット(高抵抗化)を交互に複数回行うイニシャライズ動作を行うに際し、一または複数のワード線と、複数のビット線からなるビット線群を選択することで複数のメモリセルを選択し、かかる複数のメモリセルの夫々に対して、選択されたソース線に一定の電圧VPREを印加した状態で、ビット線側からセット電圧VSETのパルス印加とリセット電圧VRSTのパルス印加を交互に複数回実行する。

Description

半導体記憶装置、及び、メモリセルアレイの駆動方法
 本発明は、半導体記憶装置およびその駆動方法に関し、より詳しくは、電圧パルスの印加によりメモリセルの可変抵抗素子の抵抗状態として記憶されている情報の書き換えを行う半導体記憶装置およびそのメモリセルアレイの駆動方法に関する。
 現在、フラッシュメモリに代わる新型の不揮発性メモリが広く研究されている。なかでも金属酸化物膜等に電圧を印加することで抵抗変化が起きる現象を利用したRRAM(登録商標)は、微細化限界の点でフラッシュメモリに比べ有利であり、また低電圧動作が可能で、高速のデ-タ書き換えが可能であることから近年研究開発が盛んに行われている。
 これら金属酸化物を有する可変抵抗素子の書き換え特性として、低抵抗化動作と高抵抗化動作において、夫々異なる電圧パルスを印加することで、その電圧パルスに応じて、素子の電気抵抗が増加(高抵抗化)または減少(低抵抗化)するため、各抵抗状態にデータとして論理値を割り当てることで、かかる可変抵抗素子をメモリ素子として使用することができる。
 以降、可変抵抗素子の抵抗状態を低抵抗化させる動作をセット(書き込み)、可変抵抗素子の抵抗状態を高抵抗化させる動作をリセット(消去)と称する。また、このセット及びリセット動作を合わせて、書き換え動作と称する。なお、セット、リセットの定義は、夫々、この逆であっても構わない。
かかるRRAMを安定して動かす工夫として、商品利用前に所定の書き換え動作を行っておくことが提案されている。特に、非特許文献1において、セット動作とリセット動作を交互に複数回行うこと(以下において、「イニシャライズ動作」又は「初期化動作」という)で、可変抵抗素子の高抵抗状態と低抵抗状態の抵抗値が安定することが指摘されている。
 このように、イニシャライズ動作により、抵抗変化後の抵抗値のばらつきが改善される。これにより、書込み動作が安定し、誤書込みや素子の破壊を防ぐことができ、RRAMの信頼性を向上させることができる。
 RRAMにおけるメモリセルの構成例を図5に示す。図5に示すメモリセルMCは、可変抵抗素子Rにセル選択用の選択トランジスタQを直列に接続した1T1R型で構成されている。メモリセルの可変抵抗素子R側の一端がビット線(BL)と、メモリセルの選択トランジスタQ側の他端がソース線(SL)と、選択トランジスタQの制御端子がワード線(WL)と接続されている。
 図6に示すように、かかるメモリセルを複数配列してメモリセルアレイを構成することができる(例えば、特許文献1を参照)。メモリとして使用するためには、メモリセルアレイの中から特定のメモリセルのみを選択し、書き換え、或いは、読み出しを行う。メモリセル内に電流制限素子としてのトランジスタを備えることで、選択されたメモリセルの可変抵抗素子に記憶された情報の書き換え・読み出しを行う際に、非選択のメモリセルに流れるリーク電流及び回り込み電流を制限することができる。
 可変抵抗素子が、低抵抗化(セット)動作と高抵抗化(リセット)動作において、夫々極性の異なる電圧パルスを印加することで書き換えを行うバイポーラ型の素子である場合、セット動作は、ソース線を基準としてビット線からセット電圧パルスを印加することで行う。一方、リセット動作は、ビット線を基準としてソース線からリセット電圧パルスを印加することで行う。また、可変抵抗素子の抵抗状態の読み出しは、ビット線とソース線間に読み出し電圧を印加することで行う。
日本国公開特許公報「特開2004-87069号公報」
 上記のように、イニシャライズ動作を行うことで抵抗変化後の抵抗値を安定化させることができるが、そのためには100回以上、セット動作とリセット動作を交互に繰り返すことが望ましい。しかしイニシャライズ動作においては全メモリセルに対しセット動作とリセット動作を繰り返し実行する必要があり、1ビットずつ、1メモリセル毎に処理していては時間がかかる。
 特に、セット動作時とリセット動作時で印加電圧の極性が異なるバイポーラ動作においては、極性を変えるたびに配線の充放電時間が必要であり、イニシャライズ動作を現実的な時間で完了させることが困難であった。
 そこで、本発明は、メモリセルアレイ全体のイニシャライズ動作に要する時間を短縮することのできるメモリセルアレイの駆動方法を提供し、これにより安定動作が可能な半導体記憶装置を実現することをその目的とする。
 上記目的を達成するための本発明に係る半導体記憶装置は、2つの入出力端子を有し、当該入出力端子間に電圧を印加することで当該入出力端子間の電気抵抗が変化する可変抵抗素子と、2つの入出力端子と1つの制御端子を有する選択トランジスタとを備え、前記可変抵抗素子の前記入出力端子の一方と前記選択トランジスタの前記入出力端子の一方とを接続してなる2つの入出力端子を有するメモリセルを、複数、行方向および列方向に夫々マトリクス状に配列してなるメモリセルアレイと、
 同一行に属する前記メモリセルの前記選択トランジスタの前記制御端子同士を接続する、行方向に延伸する第1選択線と、
 同一列に属する前記メモリセルの前記入出力端子の一方同士を接続する、列方向に延伸する第2選択線と、
 同一列または同一行に属する前記メモリセルの前記入出力端子の他方同士を接続する第3選択線と、
 複数の前記第2選択線からなる第2選択線群を同時に選択状態とする一括選択回路と、
 制御回路と、を備え、
 前記制御回路は、
 一または複数の前記第1選択線を選択し、且つ、前記一括選択回路を制御して前記第2選択線群を選択することで、複数の前記メモリセルを選択し、
 前記選択された前記第1選択線に所定の電圧が印加された状態で、前記第2選択線群を構成する全ての前記第2選択線に第1電圧を印加する第1電圧印加動作、及び、前記第2選択線群を構成する全ての前記第2選択線に第2電圧を印加する第2電圧印加動作の実行を制御し、
 前記選択されたメモリセルに接続する前記第3選択線に第3電圧が印加された状態で、前記第1電圧印加動作と前記第2電圧印加動作を交互に複数回実行する初期化動作の実行を制御することを特徴とする。
 上記特徴の本発明に係る半導体記憶装置は、更に、前記第1電圧が、前記第3電圧よりも高電圧であり、前記第2電圧が、前記第3電圧よりも低電圧であることが好ましい。
 上記特徴の本発明に係る半導体記憶装置は、更に、
 前記制御回路は、一本の前記第1選択線、および、一本の前記第2選択線を選択することで、一の前記メモリセルを選択し、当該選択された前記メモリセルに接続する前記第3選択線に前記第3電圧が印加された状態で、当該選択された前記第2選択線に前記第1電圧または前記第2電圧の何れかを選択的に印加する選択電圧印加動作の実行を制御し、
 前記選択電圧印加動作を実行する動作モードと、前記初期化動作を実行する動作モードとを、切り替え可能に構成されていることが好ましい。
 上記特徴の本発明に係る半導体記憶装置は、更に、
 前記初期化動作において、前記制御回路は、前記第1電圧印加動作後および前記第2電圧印加動作後に、前記可変抵抗素子の前記電気抵抗を読み出す読み出し動作が実行されないように、前記初期化動作を制御することが好ましい。
 上記目的を達成するための本発明に係るメモリセルアレイの駆動方法は、2つの入出力端子を有し、当該入出力端子間に電圧を印加することで当該入出力端子間の電気抵抗が変化する可変抵抗素子と、2つの入出力端子と1つの制御端子を有する選択トランジスタとを備え、前記可変抵抗素子の前記入出力端子の一方と前記選択トランジスタの前記入出力端子の一方とを接続してなる2つの入出力端子を有するメモリセルを、複数、行方向および列方向に夫々マトリクス状に配列してなるメモリセルアレイの駆動方法であって、
 前記メモリセルアレイは、
 同一行に属する前記メモリセルの前記選択トランジスタの前記制御端子同士が、行方向に延伸する第1選択線に接続され、
 同一列に属する前記メモリセルの前記入出力端子の一方同士が、列方向に延伸する第2選択線に接続され、
 同一列または同一行に属する前記メモリセルの前記入出力端子の他方同士が、第3選択線に接続され、
 一または複数の前記第1選択線、及び、複数の前記第2選択線からなる第2選択線群を選択することで、複数の前記メモリセルを選択し、前記選択された前記第1選択線に所定の電圧を印加した状態で、前記第2選択線群を構成する全ての前記第2選択線に第1電圧を印加する第1電圧印加工程、及び、前記第2選択線群を構成する全ての前記第2選択線に第2電圧を印加する第2電圧印加工程を実行する初期化工程を有し、
 前記初期化工程において、
 前記選択されたメモリセルに接続する前記第3選択線に第3電圧を印加した状態で、前記第1電圧印加工程と前記第2電圧印加工程を交互に複数回実行することを特徴とする。
 上記特徴の本発明に係るメモリセルアレイの駆動方法は、更に、前記第1電圧が、前記第3電圧よりも高電圧であり、前記第2電圧が、前記第3電圧よりも低電圧であることが好ましい。
 上記特徴の本発明に係るメモリセルアレイの駆動方法は、更に、
 一本の前記第1選択線、および、一本の前記第2選択線を選択することで、一の前記メモリセルを選択し、当該選択された前記メモリセルに接続する前記第3選択線に前記第3電圧を印加した状態で、当該選択された前記第2選択線に前記第1電圧または前記第2電圧の何れかを選択的に印加する選択電圧印加工程を実行する工程を有することが好ましい。
 上記特徴の本発明に係るメモリセルアレイの駆動方法は、更に、
 前記初期化工程において、前記第1電圧印加工程後および前記第2電圧印加工程後に、前記可変抵抗素子の前記電気抵抗を読み出す読み出し動作を実行しないことが好ましい。
 本発明の半導体記憶装置およびメモリセルアレイの駆動方法によれば、1T1R型のメモリセルアレイにおいて、ソース線(第3選択線)に一定電圧(第3電圧)を印加した状態で、複数のビット線(第2選択線)に第1電圧と第2電圧を交互に印加することで、ソース線の電位を変動させずにセット動作とリセット動作を交互に実行することができる。これにより、特に負荷の大きいソース線の充放電を行う必要がなく、イニシャライズ動作を高速に行うことができる。
 特に、バイポーラ型の可変抵抗素子においては、セット電圧とリセット電圧の中間電圧をソース線に印加することで、ソース線の電位がかかる中間電圧に固定されるため、負荷の大きいソース線の充放電を行う必要がなく、イニシャライズ動作を高速に行うことができる。
 また、イニシャライズ動作においてはメモリセルをランダムにアクセスする必要はない。そこで、制御回路が、上記の複数のビット線に対して第1電圧と第2電圧を交互に印加する動作モードと、一のメモリセルを選択してビット線に第1電圧と第2電圧の何れかを印加する選択電圧印加を実行する動作モードとの間で切り替えが可能に構成されていることで、複数のメモリセルに対して一括でイニシャライズ動作を行うことができる。
 さらに、イニシャライズ動作では、メモリセルの可変抵抗素子に対してセット動作とリセット動作の電圧ストレスを交互に複数回印加することが目的であり、電圧印加後に可変抵抗素子の抵抗状態を読み出す必要はない。このため、イニシャライズ動作中は第1電圧または第2電圧の印加のたびに読み出し動作を行わず、複数のビット線に第1電圧を印加する動作と第2電圧を印加する動作を、交互に、連続して動作させることで高速にイニシャライズ動作を行うことができる。ただし、必要に応じて、イニシャライズ動作中にメモリセルの可変抵抗素子の抵抗状態を読み出すことは可能である。正常にイニシャライズ動作が行われているか、或いは可変抵抗素子が正常な素子かを確認するために、イニシャライズ動作中であっても読み出し動作を行っても構わない。
 図7に、256ビットの可変抵抗素子に対し、セットとリセットで極性が逆の電圧パルスを印加して、イニシャライズ動作を行った後の高抵抗状態の抵抗値の累積確率分布を示す。図7から、イニシャライズのサイクル数を増やすことで、同一素子における抵抗変化後の高抵抗状態と低抵抗状態の抵抗値のばらつきが改善されるほか、素子間の抵抗値のばらつきも改善されることが分かる。好適には、1000サイクル以上のイニシャライズ動作を実行することにより、信頼性の高い不揮発性半導体装置を提供することができる。
 したがって、本発明によれば、メモリセルアレイのイニシャライズ動作に要する時間が短縮され、安定動作が可能で、信頼性の高い不揮発性半導体記憶装置を実現することができる。
本発明の一実施形態に係る半導体記憶装置の概略構成を示す回路ブロック図 本発明の一実施形態に係る半導体記憶装置のメモリセルアレイの構成の一例を示す回路構成図 本発明の一実施形態に係る半導体記憶装置において、イニシャライズ動作時の駆動方法の一例を示すタイミングチャート 本発明の一実施形態に係る半導体記憶装置において、選択書き換え動作時の駆動方法の一例を示すタイミングチャート 可変抵抗素子を用いる半導体記憶装置(RRAM)のメモリセルの構成例を示す回路図 可変抵抗素子を用いる半導体記憶装置(RRAM)のメモリセルアレイの構成例を示す回路図 イニシャライズ動作後の高抵抗状態の抵抗値の累積確率分布を示すグラフ 1R型のメモリセルアレイにおいて、本発明のイニシャライズ動作方法を説明するための回路図 1R型のメモリセルアレイにおいて、本発明のイニシャライズ動作方法を説明するための回路図
 〈第1実施形態〉
 本発明の一実施形態に係る半導体記憶装置(以下、「本発明装置1」と称す)の概略の構成を示す回路ブロック図を図1に示す。図1に示すように、本発明装置1は、夫々、メモリセルアレイ100、制御回路104、電圧発生回路105、ワード線デコーダ106、ビット線デコーダ107、及び、ソース線デコーダ108を備えてなる。
 メモリセルアレイ100は、可変抵抗素子とトランジスタを直列に接続したメモリセルを行及び列方向に夫々複数マトリクス状に配置されてなり、列方向に延伸するビット線により同一列に属するメモリセルが接続され、行方向に延伸するワード線により同一行に属するメモリセル同士が相互に接続されてなる。
 図2に、メモリセルアレイ100とその周辺回路の回路構成図を示す。
 メモリセルアレイ100は、可変抵抗素子(記憶素子)としてR11~Rn1、R12~Rn2、・・・、R1m~Rnmが、また、メモリセル選択用のセル選択トランジスタとしてQ11~Qn1、Q12~Qn2、・・・、Q1m~Qnm(n、mは自然数)が、夫々、行方向(図の縦方向)と列方向(図の横方向)にマトリクス状に配列して構成されている。個々のメモリセルにおいて、可変抵抗素子R(R11~Rnm)の入出力端子の一方端とセル選択トランジスタQ(Q11~Qnm)の入出力端子の一方端が接続され、可変抵抗素子とトランジスタが直列接続された2つの入出力端子を有するメモリセルが構成されている。同一行に配列されたメモリセルのセル選択トランジスタQの制御端子同士は、夫々、ワード線(第1選択線)WL1~WLnに接続されている。かかるメモリセルの2つの入出力端子のうち、セル選択トランジスタQと接続しない可変抵抗素子R側の入出力端子が、列方向に延伸するビット線(第2選択線)BL1~BLmの何れかに接続されて、同一列に配列されたメモリセル同士の接続がされ、可変抵抗素子Rと接続しないセル選択トランジスタQ側の入出力端子が、行方向に延伸して同一行に配列されたメモリセル同士を接続するソース線(第3選択線)SL1~SLnに接続されている。
 なお、ソース線については、夫々が列方向に延伸する構成としてもよいし、メモリセルアレイ100内の全てのソース線を共通としてもよく、その構成は特に限定されない。
 また、本実施形態において、メモリセルアレイ100は、メモリセルの2つの入出力端子のうち、可変抵抗素子R側の入出力端子が、列方向に延伸するビット線に接続し、セル選択トランジスタQ側の入出力端子が、行方向に延伸するソース線に接続されているが、逆の構成も可能である。即ち、メモリセルの2つの入出力端子のうち、セル選択トランジスタ側の入出力端子を、列方向に延伸するビット線BL1~BLmに接続したメモリセルアレイも可能である。
 可変抵抗素子R(R11~Rnm)は、遷移金属酸化物等で構成される可変抵抗体の両端に電極を担持してなる素子であり、当該可変抵抗体の材料としてはAl、Hf、Ni、Co、Ta、Zr、W、Ti、Cu、V、Zn、Nbの各酸化物もしくは酸窒化物、或いは、チタン酸ストロンチウム(SrTiOX)等を用いることができる。本実施形態では、可変抵抗体としてHf酸化物(HfOX)をTa電極とTiN電極間に狭持した素子を想定する。また、低抵抗化と高抵抗化で極性が逆の電圧パルスを印加する、バイポーラ型の素子を想定する。
 なお、これらの金属酸化物を可変抵抗体材料として用いる場合、可変抵抗素子の製造直後の初期抵抗は非常に高く、電気的ストレスによって高抵抗状態と低抵抗状態を切り替え可能な状態にするためには、使用前に、通常の書き換え動作に用いる電圧パルスより電圧振幅が大きく、かつパルス幅が長い電圧パルスを製造直後の初期状態の可変抵抗素子に印加し、抵抗スイッチングがおきる電流パスを形成する、所謂フォーミング処理を行っておく必要がある。かかるフォーミング処理によって形成される電流パス(フィラメントパスと呼ばれる)がその後の素子の電気特性を決定することが知られている。本発明装置1において、電圧発生回路105が、かかるフォーミング処理に必要な電圧を生成し、制御回路104が、ワード線デコーダ106、ビット線デコーダ107、及び、ソース線デコーダ108を制御することにより、フォーミング処理の実行を制御する。
 制御回路104は、メモリセルアレイ100のセット、リセット、読み出しの各メモリ動作の制御、及び、フォーミング処理の制御を行う。具体的には、制御回路104はアドレス線から入力されたアドレス信号、データ線から入力されたデータ入力、制御信号線から入力された制御入力信号に基づいて、ワード線デコーダ106、ビット線デコーダ107、及び、ソース線デコーダ108を制御し、メモリセルの各メモリ動作及びフォーミング処理を制御する。なお、図1に示す例では、制御回路104は、図示しないが一般的なアドレスバッファ回路、データ入出力バッファ回路、制御入力バッファ回路としての機能を具備している。さらに、制御回路104は、複数のメモリセルのイニシャライズ(初期化)動作を制御する。
 電圧発生回路105は、セット、リセット、読み出しの各メモリ動作、及び、イニシャライズ動作において、動作対象のメモリセルを選択するために必要な所定の電圧を発生して、ワード線デコーダ106、ビット線デコーダ107、ソース線デコーダ108に供給する。
 ワード線デコーダ106は、セット、リセット、読み出しの各メモリ動作において、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応するワード線を選択し、選択されたワード線と非選択のワード線に、夫々選択ワード線電圧と非選択ワード線電圧を各別に印加する。また、イニシャライズ動作において、イニシャライズ対象のメモリセルに接続する一又は複数のワード線に、選択ワード線電圧を印加する。
 ビット線デコーダ107は、図2のビット線選択回路101とビット線一括選択回路102からなり、動作に応じて一のビット線を選択する単一選択動作と、複数のビット線を同時に選択する一括選択動作の何れかを行う。イニシャライズ動作時には一括選択動作が選択され、複数のビット線に接続する複数のメモリセルの可変抵抗素子に対して同時にイニシャライズ動作を実行する。一方、ビット線デコーダ107は、セット、リセット、読み出しの各メモリ動作では、単一選択動作が選択され、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応する一のビット線を選択し、選択されたビット線に、メモリ動作に必要な電圧を印加する。
 図2に示すように、各ビット線BL1~BLmは、トランジスタT(T1~Tm)を介して電源線V1と接続しており、かかるトランジスタTの制御端子に、電圧信号φ1~φmが、ビット線選択回路101又はビット線一括選択回路102を介して入力されることで、選択された一又は複数のビット線に電源線V1から供給される電圧が印加される。ビット線選択回路101と、切替信号φ1~φmが入力されるトランジスタTの制御端子との間には、ビット線一括選択回路102が挿入されている。単一選択動作時には、トランジスタTの制御端子に入力される切替信号φ1~φmの夫々は、ビット線選択回路101により個別に制御される。一方、一括選択動作時には、トランジスタT1~Tmのうち、選択された複数のビット線からなるビット線群(第2選択線群)に接続するトランジスタTがオン状態となるように、ビット線一括選択回路102を介して、電源線Vaの電圧がトランジスタTの制御端子に印加される。電源線Vaは、トランジスタS(S1~Sm)を介してトランジスタT(T1~Tm)の制御端子と各別に接続しており、トランジスタS1~Smのうち選択されたビット線群に対応する複数のトランジスタを一括してオン状態とすることにより、選択されたビット線群に接続するトランジスタTをオン状態とし、かかるビット線群に、電源線V1から供給される電圧が印加される構成である。
 ソース線デコーダ108は、セット、リセット、読み出しの各メモリ動作において、動作対象のメモリセルがアドレス線に入力され指定されると、当該アドレス線に入力されたアドレス信号に対応するソース線を選択し、選択されたソース線と非選択のソース線に、夫々、メモリ動作に必要な電圧(図2の例では、電源線V2から供給される電圧)を各別に印加する。また、イニシャライズ動作において、イニシャライズ対象のメモリセルに接続する一又は複数のソース線に、イニシャライズ動作に必要な電圧を印加する。
 なお、制御回路104、電圧発生回路105、ワード線デコーダ106、ビット線デコーダ107、及び、ソース線デコーダ108の詳細な回路構成、デバイス構造、並びに、製造方法については、公知の回路構成を用いて実現可能であり、公知の半導体製造技術を用いて作製が可能であるので説明を割愛する。
 メモリセルアレイ100内のメモリセルの通常の書き換え及び読み出し動作時において、動作対象の一のメモリセルを、一のワード線、及び、一のビット線を選択することによって選択し、選択されたワード線、及び、選択されたビット線とソース線に所定の電圧を各別に印加することにより、選択されたメモリセルの可変抵抗素子に記憶された情報の書き換え又は読み出しを行うことができる。
 このとき、選択されたメモリセルの書き換えを行う場合、書き換え対象のメモリセルに記憶したい情報に応じて、セットまたはリセットの何れかを選択的に実行する。以下において、この動作について、適宜「選択書き換え動作」という。
 かかる選択書き換え動作では、代表的な例では、セット動作の場合、選択されたメモリセルの入出力端子間に1.5V~2.5V、50nsecの電圧パルスが印加されるように、選択されたメモリセルに接続するビット線及びソース線に電圧を印加する。一方、リセット動作の場合、選択されたメモリセルの入出力端子間に-1.0V~-1.5V、50nsecの電圧パルスが印加されるように、選択されたメモリセルに接続するビット線及びソース線に電圧を印加する。つまり、セット動作とリセット動作では、極性が逆の電圧パルスを可変抵抗素子に印加している。
 また、セット動作では、抵抗変化後の抵抗値のばらつきを抑えるため、可変抵抗素子に流れる電流量をセル選択トランジスタで小さく制限しながら可変抵抗素子を低抵抗化させることが好ましい。これに対し、リセット動作では、トランジスタによる電流制限を極力行わない状態で、可変抵抗素子に電流を多く流しながら可変抵抗素子を高抵抗化させることが安定動作の点で好ましい。したがって、選択されたワード線に印加される電圧は、リセット動作の場合における選択ワード線電圧VWLRを、セット動作の場合における選択ワード線電圧VWLSよりも高電圧とするとよい。
 本発明装置1は、イニシャライズ動作を行う動作モードと、選択書き換え動作を行う動作モードとの間で、制御モードを切り替えられるように構成されている。制御回路104が、かかる制御モードに応じ、ビット線デコーダ107によるビット線選択動作を、上述の単一選択動作と一括選択動作の何れかに切り替える制御を行う。
 以下に、図3を参照し、図2に示すメモリセルアレイ100において、イニシャライズ動作を行うための駆動方法を説明する。図3は、本発明装置1において、メモリセルアレイ100のイニシャライズ動作を行う場合のタイミングチャートである。なお、図中、時刻tiとti+1の間の間隔は、50nsec程度である。
 まず、図3の時刻t1でイニシャライズ動作の対象であるワード線WL1を選択するため、ワード線デコーダ106を介して、WL1に電圧(例えば、選択されたソース線に印加すべき電圧を基準として、+1.0V程度)を印加する。ここで、上述の通り、セット動作とリセット動作では選択ワード線に印加する電圧を変更することが好ましい。その場合は、セット動作のときワード線WL1を電圧VWLS(例えば、選択されたソース線に印加すべき電圧を基準として、+0.6V)に立ち上げ、リセット動作のときワード線WL1を電圧VWLR(例えば、選択されたソース線に印加すべき電圧を基準として、+1.2V)に立ち上げるとよい。その他のワード線WL2~WLnと接続するメモリセルには電流が流れないようにするため、WL2~WLnには、非選択ワード線電圧として、非選択のソース線に印加すべき電圧以下の電圧(例えば、0V(GND))を印加する。
 さらに、時刻t1において、ビット線一括選択回路102内の電源線VaにVDD(例えば、3V)を印加し、トランジスタT1~Tmをオン状態とするための電圧を供給する。
 さらに、時刻t2において、ビット線一括選択回路102内の電源線VbにVDDを印加することで、トランジスタS1~Smをオン状態とし、φ1~φmの全てを電源線Vaから供給される電圧VDDに立ち上げる。この結果、トランジスタT1~Tmがオン状態となり、複数のビット線BL1~BLmが同時に選択される。このとき、ビット線選択回路101からの出力は問わない。
 ここで、ソース線SL1には、ソース線デコーダ108を介して電源線V2からの電圧(第3電圧)VPREの印加が維持されている。かかる第3電圧VPRE(ここでは、1.5V)は、セット動作において選択されたビット線に印加される後述する第1電圧と、リセット動作において選択されたビット線に印加される後述する第2電圧との間の中間電圧である。本実施形態では、選択・非選択を問わず、全てのソース線SL1~SLnが、時刻t3において、かかる中間電圧にプリチャージされる。さらに、時刻t3において、電源線V1にも第3電圧VPREが印加されており、且つ、φ1~φmの全てが立ち上がっているので、全ての選択されたビット線BL1~BLmも、かかる中間電圧にプリチャージされる。
 その後、時刻t4において、電源線V1を介して電圧パルスを印加し、選択された複数のメモリセルの可変抵抗素子に対しセット動作またはリセット動作を同時に行う。具体的には、セット動作の場合、時刻t4~時刻t5までの期間、電源線V1の電圧をVPREから第1電圧VSETに上昇させることで、電圧振幅がVSET-VPREの電圧パルスを選択されたビット線とソース線間に印加する。一方、リセット動作の場合、時刻t4~時刻t5までの期間、電源線V1の電圧をVPREから第2電圧VRSTに低下させることで、電圧振幅の絶対値がVPRE-VRSTで、セット動作とは極性が逆の電圧パルスを選択されたビット線とソース線間に印加する。
 時刻t5~時刻t6では、セット動作とリセット動作を切り替えるのに伴い、選択ワード線WLに印加する電圧を変更している。
 時刻t6~時刻t7では、時刻t4~時刻t5で行った動作と逆の動作を行う。すなわち、時刻t4~時刻t5でセット動作を行っていればリセット動作を、時刻t4~時刻t5でリセット動作を行っていればセット動作を行うように、電源線V1を介して電圧パルスを印加し、選択された複数のメモリセルの可変抵抗素子のセット動作またはリセット動作を同時に行う。
 時刻t7~時刻t8では、セット動作とリセット動作を切り替えるのに伴い、選択ワード線WL1に印加する電圧を変更している。
 時刻t8以降は、時刻t4~時刻t8までの動作を連続して繰り返し実行する。これにより、選択されたワード線WL1に接続する全てのメモリセルのイニシャライズ動作を一括して行うことができる。このとき、イニシャライズ動作中は読み出し動作を行う必要がないため、高速にセット動作及びリセット動作を交互に実行することができる。
 次に、WL1、WL3~WLnを非選択とし、WL2を新たに選択した状態で、上記のWL1を選択した場合と同様の動作を行い、選択されたワード線WL2に接続する全てのメモリセルのイニシャライズ動作を一括して行う。その後、再度ワード線を選択しなおし、WL3~WLnに接続するメモリセルについても同様の動作を行うことで、メモリセルアレイ100全体に対するイニシャライズ動作を行うことができる。
 なお、φ1~φmが立ち上がってからセット動作とリセット動作が実行される期間の間(すなわち、ワード線電圧が変更されるまでの間)、ソース線、及び、全ての選択されたビット線BL1~BLmには、第3電圧VPREの印加が維持されている。これにより、選択及び非選択のメモリセルに余計な電位差が生じることによるディスターブが発生しないようにしている。
 このようにイニシャライズ動作を行うことで、一メモリセル毎にイニシャライズ動作を行う場合と比べて、イニシャライズ動作に要する時間を1/mに短縮することができる。さらに、本実施形態の駆動方法では、セット動作とリセット動作の間に、正常に書き換えが行われたかを検証する検証動作や、検証動作のための可変抵抗素子の抵抗状態を読み出し動作を行わず、またソース線の充放電時間も必要ないため、イニシャライズ動作に要する時間は、実際には1/m未満に短縮される。
 なお、上記のイニシャライズ動作におけるセット動作およびリセット動作において、選択ビット線に印加される電圧パルスの印加時間をともに同じとしたが、セット動作とリセット動作とで電圧パルスの印加時間を異ならせることも可能である。その場合は、セット動作とリセット動作とで電源線V1から電圧パルスが印加される時刻t4~時刻t5、及び、時刻t6~時刻t7の時間間隔を変更してよい。
 イニシャライズ動作が完了すると、本発明装置1の制御モードを変更し、選択書き換え動作を行う動作モードに変更する。図4に、本発明装置1において、選択書き換え動作を行う時のタイミングチャートを示す。なお、図中、時刻tiとti+1の間の間隔は、50nsec程度である。
 まず、図4の時刻t1において、アドレス線を介して制御回路104に入力されたアドレス信号に基づいて、選択書き換え動作の対象とされたメモリセルに接続するワード線を選択し、ワード線デコーダ106を介して、選択されたワード線にメモリセルのセルトランジスタをオン状態とするための電圧を印加する。ここでは、例えば、ワード線WL1、ビット線BL1により特定されるメモリセルの可変抵抗素子R11を書き換え対象として選択したとする。この場合、ワード線WL1に電圧(例えば、選択されたソース線に印加すべき電圧を基準として、+1.0V程度)が印加される。
 ここで、上述の通り、セット動作とリセット動作では選択ワード線に印加する電圧を変更することが好ましい。その場合は、セット動作のときワード線WL1を電圧VWLS(例えば、選択されたソース線に印加すべき電圧を基準として、+0.6V)に立ち上げ、リセット動作のときワード線WL1を電圧VWLR(例えば、選択されたソース線に印加すべき電圧を基準として、+1.2V)に立ち上げるとよい。その他のワード線WL2~WLnと接続するメモリセルには電流が流れないようにするため、WL2~WLnには、非選択ワード線電圧として、非選択のソース線に印加すべき電圧より低電圧(例えば、0V(GND))を印加する。
 選択書き換え動作では、アドレス信号に基づいてメモリセルを選択する必要があるため、一括してセット動作またはリセット動作を行うことはできない。このため、ビット線一括選択回路102内の電源線Va及びVbにはトランジスタT及びSがオン状態とならないようにGNDを印加する。一方、時刻t2において、入力されたアドレス信号に基づき、ビット線選択回路101を介してφ1をVDDに立ち上げ、ビット線BL1を選択状態とする。
 ここで、ソース線SL1には、ソース線デコーダ108を介して電源線V2からの電圧(第3電圧)VPREの印加が維持されている。かかる第3電圧VPRE(ここでは、1.5V)は、セット動作において選択されたビット線に印加される第1電圧と、リセット動作において選択されたビット線に印加される第2電圧との間の中間電圧である。本実施形態では、選択・非選択を問わず、全てのソース線SL1~SLnが、時刻t3において、かかる中間電圧にプリチャージされる。さらに、時刻t3において、電源線V1にも第3電圧VPREが印加されており、且つ、φ1が立ち上がっているので、選択されたビット線BL1も、かかる中間電圧にプリチャージされる。
 その後、時刻t4において、電源線V1を介して電圧パルスを印加し、選択されたメモリセルの可変抵抗素子のセット動作またはリセット動作を行う。具体的には、セット動作の場合、時刻t4~時刻t5までの期間、電源線V1の電圧をVPREから第1電圧VSETに上昇させることで、電圧振幅がVSET-VPREの電圧パルスをビット線BL1とソース線SL1間に印加する。一方、リセット動作の場合、時刻t4~時刻t5までの期間、電源線V1の電圧をVPREから第2電圧VRSTに低下させることで、電圧振幅の絶対値がVPRE-VRSTで、セット動作とは極性が逆の電圧パルスをビット線BL1とソース線SL1間に印加する。
 さらに、時刻t6~時刻t7では、セット動作またはリセット動作が正常に行われたかを検証するため、読み出し動作を行っている。具体的には、選択されたワード線に印加する電圧を読み出し用の選択ワード線電圧(ここでは、VWLRと同じとする)に変更した状態で、電源線V1を介して、ビット線BL1に読み出しのための電圧パルスを印加する。時刻t6~時刻t7までの期間に、電源線V1の電圧をVPREから読み出し電圧VREADに上昇させることで、電圧振幅がVREAD-VPREの電圧パルスをビット線BL1とソース線SL1間に印加し、可変抵抗素子R11の抵抗状態を読み出す。読み出し電圧VREADは、第1電圧VSETよりも低電圧の、可変抵抗素子の書き換えが起こらない程度の電圧であり、例えば、2.0V(VREAD-VPRE=0.5V)程度である。なお、上記に代えて、ソース線を接地後、選択されたビット線に読み出し電圧を印加し、読み出しを行ってもよい。
 なお、選択書き換え動作におけるリセット動作およびセット動作は、上記動作方法に限定されるものではなく、他の方法を採用することができる。特に、本実施形態では、選択書き換え動作において、リセット動作かセット動作かに拘わらず、選択ソース線の電位が同じ中間電圧VPREにプリチャージされているが、選択書き換え動作がリセット動作かセット動作かに応じてソース線にプリチャージする電圧を変更しても構わない。また、ソース線側から電圧パルスを印加するように構成しても構わない。
 〈別実施形態〉
 以下に、別実施形態につき説明する。
 〈1〉上記実施形態で用いられているメモリセルアレイ100並びにメモリセルの構成については、図2に示した回路構成に限定されるものではなく、可変抵抗素子を備えたメモリセルをビット線およびソース線に接続し、メモリセルアレイを成していれば、その構成により本発明が限定されるものではない。特に、上記実施形態では、メモリセルアレイ100は、可変抵抗素子とセルトランジスタを直列に接続したメモリセルの可変抵抗素子側の入出力端子をビット線BL1~BLmに接続し、セルトランジスタ側の入出力端子をソース線Sl1~SLnに接続してなるが、メモリセルのセルトランジスタ側の入出力端子をビット線に接続しても構わない。
 また、メモリセルアレイの周辺回路については、複数のビット線を選択する動作と、特定のビット線を選択する動作を制御できる制御回路を備えていればよい。上記実施形態では、かかる複数のビット線の選択のため、ビット線一括選択回路102を設けた場合を例示したが、本発明はこれに限られるものではない。
 また、上記実施形態において、メモリセルアレイ100が、可変抵抗素子とセルトランジスタを直列に接続したメモリセルをマトリクス状に配列した1T1R型のメモリセルアレイである場合を例示したが、本発明はこれに限られるものではない。例えば、1R型のメモリセルアレイであれば、全てのメモリセルを選択し、メモリセルの一端の電圧を中間電圧に固定して、イニシャライズ動作を高速に行うことができる。
 図8及び図9に1R型のメモリセルアレイ110を備えた半導体記憶装置において本発明を適用する場合の例を示す。メモリセルアレイ110は、可変抵抗素子を行方向(図の横方向)及び列方向(図の縦方向)にマトリクス状に配列し、可変抵抗素子Rの入出力端子の一方端が行方向に延伸するワード線(第1選択線)WL1~WLnに接続し、同一行に配列されたメモリセル同士の接続がされ、可変抵抗素子Rの入出力端子の他方端が列方向に延伸するビット線(第2選択線)BL1~BLmに接続し、同一列に配列されたメモリセル同士の接続がされている。
 メモリセル110において、選択された複数のメモリセルの可変抵抗素子に対しセット動作を同時に行う場合、図8に示すように、メモリセル110内の全てのワード線を選択し、ワード線に中間電圧VPREを印加した状態で、全てのビット線BL1~BLmに第1電圧VSETを印加する。一方、メモリセル110において、選択された複数のメモリセルの可変抵抗素子に対しリセット動作を同時に行う場合、図9に示すように、メモリセル110内の全てのワード線を選択し、ワード線に中間電圧VPREを印加した状態で、全てのビット線BL1~BLmに第2電圧VRSTを印加する。
 また、メモリセルがユニポーラ型の可変抵抗素子を備えてなる場合には、メモリセルの一端を例えばGNDに固定して、他端から同一極性のセット電圧パルス及びリセット電圧パルスを交互に印加すればよいため、上記の1R型のメモリセルアレイや、メモリセルがダイオード或いはバリスタ等の電流制限素子を可変抵抗素子に直列に接続してなる1D1R型のメモリセルアレイであっても本発明を適用できる。
 〈2〉上記実施形態では、図3及び図4に示すタイミングチャートに従ってイニシャライズ動作及び選択書き換え動作を説明したが、本発明の動作制御方法は上記のタイミングチャートに示す動作方法に限られるものではない。
 〈3〉また、上記実施形態では、一本のワード線を選択し、複数のビット線に接続するメモリセルに対して一括してイニシャライズ動作を行う例を説明したが、複数本のワード線を選択してイニシャライズ動作を行うこともできる。
 〈4〉また、上記実施形態では、イニシャライズ動作において、全てのビット線を選択して同時にセット動作またはリセット動作を行っているが、必ずしも全てのビット線を同時に選択する必要はない。例えば、図2において、トランジスタS1~Snの制御端子と接続する電源線Vbを複数のビット線群毎に複数本(例えば、トランジスタS1~Sk(kは1~m-1の自然数)の制御端子と接続する電源線Vb1と、トランジスタSk+1~Smの制御端子と接続する電源線Vb2)に分け、かかるビット線群単位で複数のビット線を一括して選択し、選択された複数のビット線と選択されたワード線に接続する複数のメモリセルの可変抵抗素子に対してイニシャライズ動作を行ってもよい。電源線V1の駆動能力に応じて同時にイニシャライズ動作を行うメモリセルの数を変更することができる。
 〈5〉また、イニシャライズ動作において、セット動作またはリセット動作を同時に並行して行うことも可能である。例えば、選択ワード線に印加する電圧をセット動作またはリセット動作で同じとする場合には、1または複数のワード線を選択し、上記の電源線Vb1とVb2の何れか一方にセット動作用の電圧パルスを、何れか他方にリセット動作用の電圧パルスを与えることで、選択された複数のメモリセルの可変抵抗素子の一部のセット動作と、残りの一部の可変抵抗素子のリセット動作とを同時に実行することができる。
 このようにセット動作またはリセット動作を同時並行して実行することで、特に可変抵抗素子がバイポーラ型の素子である場合には、セット動作とリセット動作とでメモリセルに流れる電流の向きが逆であることにより、ソース線に流れる合計の電流量が減り、省電力となる。
 〈6〉上記実施形態では、ビット線デコーダ107は、ビット線選択回路101とビット線一括選択回路102からなり、動作に応じて一のビット線を選択する単一選択動作と、複数のビット線を同時に選択する一括選択動作の何れかを行う構成となっているが、かかるビット線一括選択回路102と同様の回路をワード線デコーダ106側に設けることも可能である。すなわち、ワード線デコーダ106が、ワード線選択回路とワード線一括選択回路からなり、イニシャライズ動作時には複数のワード線を同時に選択して、選択されたビット線に接続する複数のメモリセルの可変抵抗素子に対してイニシャライズ動作を行ってもよい。複数のビット線と複数のワード線を同時に選択することで、複数のメモリセルを含むブロック単位でイニシャライズ動作を行うことができる。
 〈7〉本発明のイニシャライズ方法は、バイポーラ型の可変抵抗素子を備えたメモリセルアレイに対して好適に行うことができる。しかしながら、ユニポーラ型の可変抵抗素子を備えたメモリセルアレイに対しても本発明のイニシャライズ方法は適用できる。かかるユニポーラ型の可変抵抗素子では、セット動作とリセット動作とで、極性が同じで、電圧振幅またはパルス印加時間が異なる電圧パルスを印加する。本発明のイニシャライズ方法は、選択ソース線の電位を一定に維持した状態で、ビット線側から電圧パルスを印加するものであるため、ユニポーラ型の可変抵抗素子を備えたメモリセルアレイに対しても当然に本発明を適用できる。
 つまり、電圧パルスの印加により抵抗状態が変化する可変抵抗素子をメモリセルアレイに備える限り、本発明は適用可能である。かかる可変抵抗素子の構成として、可変抵抗体や電極の材料、或いは素子のサイズ等により本発明が制限されるものではない。また、上記実施形態においてイニシャライズ動作の説明で用いた電圧パルスの電圧値やパルス幅(印加時間)、セルトランジスタの制御端子に印加する電圧等の条件は、本発明を説明するための具体例であり、可変抵抗素子の特性を限定するものではない。
 本発明は、半導体記憶装置に利用可能であり、特に、大容量で信頼性の高い不揮発性メモリに利用することができる。
 1: 本発明に係る半導体記憶装置
 100、110: メモリセルアレイ
 101: ビット線選択回路
 102: ビット線一括選択回路
 104: 制御回路
 105: 電圧発生回路
 106: ワード線デコーダ
 107: ビット線デコーダ
 108: ソース線デコーダ
 BL1~BLm: ビット線(第2選択線)
 SL1~SLn: ソース線(第3選択線)
 WL1~WLn: ワード線(第1選択線)
 MC: メモリセル
 Q、Q11~Qnm: セル選択トランジスタ
 R、R11~Rnm: 可変抵抗素子
 V1、V2、Va、Vb: 電源線
 φ1~φm: 切替信号

Claims (8)

  1.  2つの入出力端子を有し、当該入出力端子間に電圧を印加することで当該入出力端子間の電気抵抗が変化する可変抵抗素子と、2つの入出力端子と1つの制御端子を有する選択トランジスタとを備え、前記可変抵抗素子の前記入出力端子の一方と前記選択トランジスタの前記入出力端子の一方とを接続してなる2つの入出力端子を有するメモリセルを、複数、行方向および列方向に夫々マトリクス状に配列してなるメモリセルアレイと、
     同一行に属する前記メモリセルの前記選択トランジスタの前記制御端子同士を接続する、行方向に延伸する第1選択線と、
     同一列に属する前記メモリセルの前記入出力端子の一方同士を接続する、列方向に延伸する第2選択線と、
     同一列または同一行に属する前記メモリセルの前記入出力端子の他方同士を接続する第3選択線と、
     複数の前記第2選択線からなる第2選択線群を同時に選択状態とする一括選択回路と、
     制御回路と、を備え、
     前記制御回路は、
     一または複数の前記第1選択線を選択し、且つ、前記一括選択回路を制御して前記第2選択線群を選択することで、複数の前記メモリセルを選択し、
     前記選択された前記第1選択線に所定の電圧が印加された状態で、前記第2選択線群を構成する全ての前記第2選択線に第1電圧を印加する第1電圧印加動作、及び、前記第2選択線群を構成する全ての前記第2選択線に第2電圧を印加する第2電圧印加動作の実行を制御し、
     前記選択されたメモリセルに接続する前記第3選択線に第3電圧が印加された状態で、前記第1電圧印加動作と前記第2電圧印加動作を交互に複数回実行する初期化動作の実行を制御することを特徴とする半導体記憶装置。
  2.  前記第1電圧が、前記第3電圧よりも高電圧であり、
     前記第2電圧が、前記第3電圧よりも低電圧であることを特徴とする請求項1に記載の半導体記憶装置。
  3.  前記制御回路は、一本の前記第1選択線、および、一本の前記第2選択線を選択することで、一の前記メモリセルを選択し、当該選択された前記メモリセルに接続する前記第3選択線に前記第3電圧が印加された状態で、当該選択された前記第2選択線に前記第1電圧または前記第2電圧の何れかを選択的に印加する選択電圧印加動作の実行を制御し、
     前記選択電圧印加動作を実行する動作モードと、前記初期化動作を実行する動作モードとを、切り替え可能に構成されていることを特徴とする請求項1又は2に記載の半導体記憶装置。
  4.  前記初期化動作において、
     前記制御回路は、前記第1電圧印加動作後および前記第2電圧印加動作後に、前記可変抵抗素子の前記電気抵抗を読み出す読み出し動作が実行されないように、前記初期化動作を制御することを特徴とする請求項1~3の何れか一項に記載の半導体装置。
  5.  2つの入出力端子を有し、当該入出力端子間に電圧を印加することで当該入出力端子間の電気抵抗が変化する可変抵抗素子と、2つの入出力端子と1つの制御端子を有する選択トランジスタとを備え、前記可変抵抗素子の前記入出力端子の一方と前記選択トランジスタの前記入出力端子の一方とを接続してなる2つの入出力端子を有するメモリセルを、複数、行方向および列方向に夫々マトリクス状に配列してなるメモリセルアレイの駆動方法であって、
     前記メモリセルアレイは、
     同一行に属する前記メモリセルの前記選択トランジスタの前記制御端子同士が、行方向に延伸する第1選択線に接続され、
     同一列に属する前記メモリセルの前記入出力端子の一方同士が、列方向に延伸する第2選択線に接続され、
     同一列または同一行に属する前記メモリセルの前記入出力端子の他方同士が、第3選択線に接続され、
     一または複数の前記第1選択線、及び、複数の前記第2選択線からなる第2選択線群を選択することで、複数の前記メモリセルを選択し、前記選択された前記第1選択線に所定の電圧を印加した状態で、前記第2選択線群を構成する全ての前記第2選択線に第1電圧を印加する第1電圧印加工程、及び、前記第2選択線群を構成する全ての前記第2選択線に第2電圧を印加する第2電圧印加工程を実行する初期化工程を有し、
     前記初期化工程において、
     前記選択されたメモリセルに接続する前記第3選択線に第3電圧を印加した状態で、前記第1電圧印加工程と前記第2電圧印加工程を交互に複数回実行することを特徴とする駆動方法。
  6.  前記第1電圧が、前記第3電圧よりも高電圧であり、
     前記第2電圧が、前記第3電圧よりも低電圧であることを特徴とする請求項5に記載の駆動方法。
  7.  一本の前記第1選択線、および、一本の前記第2選択線を選択することで、一の前記メモリセルを選択し、当該選択された前記メモリセルに接続する前記第3選択線に前記第3電圧を印加した状態で、当該選択された前記第2選択線に前記第1電圧または前記第2電圧の何れかを選択的に印加する選択電圧印加工程を実行する工程を有することを特徴とする請求項5又は6に記載の駆動方法。
  8.  前記初期化工程において、
     前記第1電圧印加工程後および前記第2電圧印加工程後に、前記可変抵抗素子の前記電気抵抗を読み出す読み出し動作を実行しないことを特徴とする請求項5~7の何れか一項に記載の駆動方法。
PCT/JP2013/064446 2012-05-30 2013-05-24 半導体記憶装置、及び、メモリセルアレイの駆動方法 WO2013180022A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012122946A JP2013251017A (ja) 2012-05-30 2012-05-30 半導体記憶装置、及び、メモリセルアレイの駆動方法
JP2012-122946 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180022A1 true WO2013180022A1 (ja) 2013-12-05

Family

ID=49673218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064446 WO2013180022A1 (ja) 2012-05-30 2013-05-24 半導体記憶装置、及び、メモリセルアレイの駆動方法

Country Status (2)

Country Link
JP (1) JP2013251017A (ja)
WO (1) WO2013180022A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381045A1 (en) * 2018-03-14 2020-12-03 Nec Corporation Semiconductor device and error detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134512A (ja) * 2005-11-10 2007-05-31 Sony Corp 記憶装置の初期化方法
JP2012038408A (ja) * 2010-07-16 2012-02-23 Sharp Corp 半導体記憶装置およびその駆動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134512A (ja) * 2005-11-10 2007-05-31 Sony Corp 記憶装置の初期化方法
JP2012038408A (ja) * 2010-07-16 2012-02-23 Sharp Corp 半導体記憶装置およびその駆動方法

Also Published As

Publication number Publication date
JP2013251017A (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
KR101964994B1 (ko) 저항변화형 메모리 디바이스 및 그 구동 방법
JP4189395B2 (ja) 不揮発性半導体記憶装置及び読み出し方法
US8654559B2 (en) Semiconductor memory device
US7911824B2 (en) Nonvolatile memory apparatus
JP6391014B2 (ja) 抵抗変化型不揮発性記憶装置
JP4774109B2 (ja) 不揮発性可変抵抗素子のフォーミング処理の制御回路、並びにフォーミング処理の制御方法
US8482956B2 (en) Semiconductor memory device and method of driving the same
US8411487B2 (en) Semiconductor memory device
JP5069339B2 (ja) 不揮発性可変抵抗素子の抵抗制御方法
US9508431B2 (en) Nonvolatile semiconductor memory device of variable resistive type with reduced variations of forming current after breakdown
WO2006134732A1 (ja) 半導体記憶装置
US20120075909A1 (en) Semiconductor memory device
JP6547758B2 (ja) 不揮発性メモリ装置、および不揮発性メモリ装置の制御方法
JPWO2007074504A1 (ja) 不揮発性半導体記憶装置及びその書き込み方法
JP6653488B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法および抵抗変化型不揮発性記憶装置
US9472272B2 (en) Resistive switching memory with cell access by analog signal controlled transmission gate
KR20200008998A (ko) 메모리 장치 및 메모리 장치의 제어 방법
JP2015230736A (ja) 抵抗変化型不揮発性記憶装置およびその書き込み方法
WO2013180022A1 (ja) 半導体記憶装置、及び、メモリセルアレイの駆動方法
WO2013172372A1 (ja) 不揮発性半導体記憶装置、及びメモリセルアレイの駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797919

Country of ref document: EP

Kind code of ref document: A1