WO2013179683A1 - 誘導加熱方法 - Google Patents

誘導加熱方法 Download PDF

Info

Publication number
WO2013179683A1
WO2013179683A1 PCT/JP2013/051346 JP2013051346W WO2013179683A1 WO 2013179683 A1 WO2013179683 A1 WO 2013179683A1 JP 2013051346 W JP2013051346 W JP 2013051346W WO 2013179683 A1 WO2013179683 A1 WO 2013179683A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
induction heating
phase angle
phase
induction
Prior art date
Application number
PCT/JP2013/051346
Other languages
English (en)
French (fr)
Inventor
内田 直喜
信恭 松中
啓二 川中
和義 藤田
高広 阿尾
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN201380003788.5A priority Critical patent/CN103959901B/zh
Priority to KR1020147008529A priority patent/KR101655380B1/ko
Priority to DE112013000253.1T priority patent/DE112013000253B4/de
Priority to JP2013513880A priority patent/JP5296949B1/ja
Priority to US14/351,489 priority patent/US9591696B2/en
Publication of WO2013179683A1 publication Critical patent/WO2013179683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present invention relates to a technique of a heating method using induction heating, and more particularly to a heating method by an induction heating device that heats an object to be heated by arranging a plurality of heating coils adjacent to each other.
  • induction heating is effective as a means for rapid heating.
  • the heating method by induction heating uses electromagnetic induction, when a plurality of heating coils having individual power control means (for example, inverters) are arranged in close proximity and operated, mutual induction occurs in each heating coil. Arise.
  • the reason for making the frequency the same is that if there are mutual inductions of different frequencies, the inverter current and inverter voltage become distorted waveforms and the inverter cannot operate normally.
  • the mutual induction voltage is expressed as j ⁇ M ⁇ I2 ⁇ cos ⁇ M ⁇ I2 ⁇ sin ⁇ based on the phase difference of ⁇ , and the resistance component of the mutual induction impedance appears. Become. For this reason, the power sharing between the inverters is changed by mutual induction and affects the power control of the inverter (note that ⁇ is an angular frequency, and M is a mutual inductance caused by mutual induction between adjacent heating coils. Inductance I2 is the current supplied to the adjacent heating coil.)
  • the resonance sharpness is 3 to 10
  • the inter-coil coupling coefficient k is about 0.2.
  • a coil voltage 10 times as large as the inverter voltage is generated.
  • a voltage that is about 0.2 times the coil voltage is the mutual induction voltage.
  • 30 degrees
  • the effective amount of the mutual induction voltage, that is, the resistance component value of the mutual induction impedance becomes the same as the inverter voltage, which greatly affects the power control of the inverter. In order to avoid this, current synchronous control is required.
  • Patent Document 2 in order to solve this problem, it is proposed to improve the power factor by providing an inductance having a polarity opposite to that of the mutual induction of the coil between the heating coil and the inverter.
  • the inverter output phase changes due to the current change of the other party.
  • the reactive mutual induction voltage that is, when the reactance component of the mutual induction impedance is large
  • the inverter output phase is close to 90 degrees or more than 90 degrees, resulting in a large switching loss or reverse power generation.
  • the effective mutual induction voltage that is, when the resistance component of the mutual induction impedance is large
  • the inverter output phase becomes close to 0 degrees or below 0 degrees, and ZVS (Zero Voltage Switching) operation cannot be performed.
  • ZVS Zero Voltage Switching
  • an inverter in a mutual induction environment can be operated by performing current synchronous control.
  • it is necessary to control the pulse position greatly for current synchronization while changing the current value, and it is difficult to perform stable high-speed response control.
  • the inverter output phase approaches 90 degrees.
  • the effective amount of mutual induction is strong, there is a phenomenon that the inverter output phase approaches 0 degrees. is there.
  • An induction heating method for solving the above-described problem is a resonance in which a current to be heated is heated and a current having a frequency matched is supplied to each of a plurality of heating coils that generate mutual induction by supplying current.
  • the phase difference between the currents becomes zero and / or the phase angle between the output current and the output voltage of the resonant high frequency power supply
  • the frequency and / or the value of the output current is controlled.
  • a reverse coupling inductance is added to a feeding line to the heating coil arranged adjacently, thereby causing a mutual induction voltage and a phase between coil currents that cause mutual induction.
  • a first phase angle is decreased, and a second phase angle, which is a phase between a combined voltage of the self-resonant circuit and a current supplied to the heating coil, is adjusted to coincide with the first phase angle or It is preferable to reduce the phase angle between the output current and the output voltage of the resonance type high frequency power supply by controlling.
  • the induction heating method according to the present invention for solving the above-described problem is to supply an electric current having a matched frequency to each of a plurality of heating coils that heat an object to be heated and cause mutual induction by supplying electric current.
  • the induction heating method according to the present invention for solving the above-described problem is to supply an electric current having a matched frequency to each of a plurality of heating coils that heat an object to be heated and cause mutual induction by supplying electric current.
  • the second ratio which is the ratio of the reactance component of the self-impedance to the resistance component of the self-impedance in the self-resonant circuit, is adjusted or controlled so as to coincide with each other. It may be what you do.
  • the first phase angle and the second phase angle are matched with each other, or the first ratio and the second ratio are matched with each other.
  • the adjustment or control to be performed can be performed by adjusting or controlling the impedance of the self-resonant circuit.
  • the first phase angle and the second phase angle are matched with each other, or the first ratio and the second ratio are matched with each other.
  • the adjustment or control to be performed can be performed by adjusting or controlling the frequency of the current supplied to the heating coil.
  • the induction heating apparatus when supplying a gate pulse to the resonant high-frequency power source in each self-resonant circuit, the phase difference of the gate pulse becomes zero or in advance
  • the induction heating apparatus can be operated by outputting so as to approximate the determined phase difference.
  • the resonance type high frequency power supply in each self-resonant circuit is a voltage type high frequency power supply, and the phase difference of the output voltage of the voltage type high frequency power supply is zero,
  • the induction heating device can also be operated.
  • the resonance type high frequency power supply in each self-resonant circuit is a current type high frequency power supply, and the phase difference of the output current of the current type high frequency power supply is zero,
  • the induction heating device can also be operated.
  • the induction heating device at the time of starting the resonance type high frequency power supply, after outputting the phase difference of the gate pulse to be zero or a predetermined phase difference, It is desirable to operate the induction heating device by controlling a gate pulse supplied to the resonance type high frequency power supply so that the phase of the current supplied to each heating coil matches the phase of a reference signal.
  • the gate pulse is determined based on the reference signal when starting the resonant high-frequency power source so that the phase difference of the gate pulse becomes zero.
  • the current synchronization reference position may be controlled so as to have a predetermined phase or a time corresponding to the phase.
  • the zero cross position of the current supplied to each heating coil is detected after the resonance type high frequency power supply is activated, and the zero cross position of each current is shifted from the current synchronization reference position. If so, the gate pulse position may be controlled so that the phase difference between the zero cross position of each current and the current synchronization reference position becomes zero.
  • an allowable phase angle range that is an allowable range of a phase angle between the output voltage and the output current is determined, and between the output voltage and the output current is determined.
  • the frequency and / or the output current value may be controlled so that the phase angle is within the allowable phase angle range.
  • the frequency control is preferably performed within a range of values higher than the resonance frequency of the self-resonant circuit.
  • a current synchronization control range limiter is defined as a limit range of a phase difference between the gate pulse position and the current synchronization reference position, and the gate pulse position is the current current.
  • the output current may be controlled so as to be within the range of the synchronous control range limiter.
  • the first ratio or the first ratio is obtained by connecting a reverse coupling inductance to each of the power supply paths to adjacent heating coils that cause mutual induction by supplying current. The first phase angle may be reduced.
  • the reverse coupling inductance is used to match the first ratio and the second ratio, or the first phase angle and the second phase angle. It is also possible to adjust or control the reactance component. Further, in the induction heating method having the above-described characteristics, the first ratio or the first phase angle is adjusted to match a predetermined target value, and the second ratio or the target value is adjusted to the target value. The second phase angle can be matched.
  • the reactance component of the mutual induction impedance is changed by changing the coupling coefficient in the reverse coupling inductance, and the first ratio or the first phase angle is changed. Can also be adjusted.
  • the self-inductance constituting the reverse coupling inductance is adjusted to adjust the second ratio or the second phase angle to a target value, or The self-inductance coupling coefficient may be adjusted to adjust the first ratio or the second ratio to a target value.
  • the second ratio or the second phase angle may be adjusted by adjusting inductance or capacitance in the self-resonant circuit.
  • the phase, the phase angle, and the phase difference may be set, adjusted, or controlled by converting them into a time corresponding to a frequency.
  • the detection, the setting, and the control may be performed via a computer program or a programmable device.
  • FIG. 5 is an equivalent circuit diagram of a self-resonant circuit that employs a voltage-type inverter and constitutes a series resonant circuit. It is a figure which shows the structure of the induction heating apparatus provided with the self-resonance circuit which employ
  • FIG. 3 is an equivalent circuit diagram of a self-resonant circuit that employs a voltage-type inverter and constitutes a series resonance circuit and has a reverse coupling inductance. It is a figure which shows the structure of the induction heating apparatus which employ
  • (A) is a waveform diagram showing an example of the case where the zero-cross position of the output current deviates from the current synchronization reference position even when the gate pulse generation position of the inverter output voltage is matched
  • (B) It is a wave form diagram which shows an example of a mode that a current synchronization is completed by shifting a gate pulse generation position slightly. It is a figure which shows the example in case adjustment of phase angle (theta) iv1 of output voltage Viv1 of an inverter and output current Iiv1 is required.
  • FIG. 3 is an equivalent circuit diagram of a self-resonant circuit that employs a current-type inverter to form a parallel resonant circuit.
  • FIG. 3 is an equivalent circuit diagram of a self-resonant circuit that employs a current-type inverter and constitutes a parallel resonant circuit and has a reverse coupling inductance. It is a figure which shows the structure of the induction heating apparatus which employ
  • each self-resonant circuit In a self-resonant circuit that is connected to at least two heating coils and generates mutual induction by supplying current to each heating coil, each self-resonant circuit has an inverter as a resonance type high-frequency power source due to the influence of the mutual induction voltage. The power that is opposite to the output of is input. For this reason, the phase of the output voltage and the output current changes greatly. If the phase angle becomes too small, voltage control and current control such as ZVS (Zero Voltage Switching: when using a voltage type inverter) and ZCS (Zero Current Switching: when using a current type inverter) cannot be performed.
  • ZVS Zero Voltage Switching: when using a voltage type inverter
  • ZCS Zero Current Switching
  • phase angle between the current and the voltage can be ZVS-controlled or ZCS-controlled, and the variation is as small as possible, and a small value leads to stable high-efficiency operation.
  • the output voltages Viv1 and Viv2 from the respective inverters necessary for obtaining the power for heating the object to be heated are Each is a combination of self-resonant circuit voltages (Vs1, Vs2) and mutual induction voltages (Vm21, Vm12).
  • the self-resonant circuit refers to a circuit including a heating coil, a resonant capacitor, a wiring path, and the like.
  • the mutual induction voltage Vm21 for one self-resonant circuit has the phase angle (first phase angle ⁇ m) with respect to the output current Iiv2 from the other inverter Inv2, and the combined voltage Vs1 of one self-resonant circuit is Phase angle with respect to the output current Iiv1 from the inverter Inv1 (second phase angle ⁇ s1 (the phase angle the combined voltage Vs2 of the other self-resonant circuit has with respect to the output current Iiv2 from the other inverter Inv2) Can be made to match the phases of the output voltage Viv of the inverter and the output current Iiv in all the self-resonant circuits in the mutual induction relationship.
  • the frequency of the output current from each inverter may be matched, and the gate pulse of the output voltage of each inverter may be synchronized. This is because the output currents Iiv1 and Iiv2 can inevitably be synchronized by synchronizing the output voltage in a circuit in which the frequencies of the output currents are matched.
  • the induction heating apparatus 10 shown in FIG. 2 includes heating coils 12a and 12b, inverters (inverse conversion circuits) 14a and 14b, chopper circuits 22a and 22b, a converter (forward conversion circuit) 26, a power supply unit 30, and a control circuit 42a.
  • 42b is the basic configuration.
  • the induction heating apparatus 10 shown in FIG. 2 is configured by connecting a circuit including chopper circuits 22a and 22b, inverters 14a and 14b, and heating coils 12a and 12b in parallel to a converter 26, which will be described in detail later.
  • the induction heating device 10 includes a plurality of self-resonant circuits that can individually control power.
  • the heating coils 12a and 12b are coils to which inverters 14a and 14b capable of supplying a high-frequency current are connected.
  • a plurality (two in the example shown in FIG. 2) of heating coils 12a and 12b are arranged close to a single induced heating member 50. In the case of such an arrangement, when electric power is supplied to the coils, mutual induction occurs between the heating coils 12a and 12b arranged adjacent to each other.
  • the inverters 14a and 14b employed in the induction heating apparatus 10 shown in FIG. 2 are voltage type inverters.
  • Resonant capacitors 32a and 32b are connected in series between the heating coils 12a and 12b and the inverters 14a and 14b, and a series resonant circuit is formed between the two. Therefore, it can be said that the induction heating apparatus 10 shown in FIG. 2 constitutes a plurality (two) of self-resonant circuits.
  • the inverters 14a and 14b constitute a single-phase full bridge inverter.
  • an IGBT 16 is employed, and the diode 18 is connected in antiparallel in order to commutate the load current.
  • a smoothing capacitor 20 and a smoothing coil 21 for smoothing the DC voltage are provided in the previous stage of the bridge circuit.
  • the chopper circuits 22a and 22b play a role of changing the average voltage input to the inverters 14a and 14b by chopping the constant DC voltage output from the converter 26 with the IGBT 24 which is a switching element.
  • a smoothing capacitor 25 is provided between the chopper circuits 22 a and 22 b and the converter 26.
  • the converter 26 is constituted by a three-phase diode bridge configured using a diode 28.
  • the three-phase alternating current supplied from the power supply unit 30 is converted into a direct current and supplied to the chopper circuits 22a and 22b.
  • the control circuits 42a and 42b adjust the impedance in each self-resonant circuit based on the detected output voltage and output current from the inverters 14a and 14b, and control the inverters 14a and 14b and the chopper circuits 22a and 22b. It plays a role of giving a gate pulse for control.
  • the gate pulse applied to the inverters 14a and 14b is a signal for controlling the switching timing of the IGBT 16, which is a switching element, and the phase of the output voltage Viv is controlled.
  • a reference signal generator 44 is connected to each control circuit 42a, 42b.
  • the reference signal generator 44 generates a reference waveform of the output current supplied to the heating coils 12a and 12b. Then, the reference signal generation unit 44 gives the generated reference waveform to each of the control circuits 42a and 42b as a reference signal.
  • Each control circuit 42a, 42b compares the phase of the reference waveform (for example, compares the phase using the zero-cross position of the reference waveform as the current synchronization reference position), finds the phase difference between them, and gives the gate pulse to the inverters 14a, 14b, etc. Is generated.
  • current detection means 38a and 38b for detecting the output current and voltage detection means 40a and 40b for detecting the output voltage are provided, respectively, and the detected values are sent to the control circuits 42a and 42b. It is configured to be entered.
  • impedance adjusting means 34a and 34b are provided in series with the heating coils 12a and 12b.
  • the impedance adjusting means 34a and 34b are circuits provided with means for changing inductance and capacitance such as variable inductance and variable capacitance, and based on the adjustment signals from the control circuits 42a and 42b, the self-inductance of the self-resonant circuit. It plays a role of changing L1, L2 and capacitances C1, C2.
  • the gate pulses applied to the inverters 14a and 14b are synchronized (desirably, the phases of the gate pulses are the same as each other.
  • the phase difference is also approximated to zero)
  • the output voltages Viv1 and Viv2 between the self-resonant circuits are synchronized (desirably, the phases of the output voltages coincide with each other.
  • Output currents Iiv1 and Iiv2 are also synchronized (desirably, the phases of the output currents coincide with each other, but in the present embodiment, the output currents Iiv1 and Iiv2 also coincide with each other). (Including approximating the phase difference to zero).
  • reverse coupling inductances 36 a and 36 b may be provided in series with the heating coils 12 a and 12 b.
  • Ls1 and Ls2 are self-inductances of the reverse coupling inductances 36a and 36b (FIG.
  • FIG. 3 shows an equivalent circuit diagram of the induction heating device shown in FIG. 4). Therefore, the reverse coupling inductances 36a and 36b are arranged close to each other between adjacent circuits. Since the reactance component XLm of the mutual induction impedance Zm when the reverse coupling inductances 36a and 36b are provided is represented by ⁇ M ⁇ m, the ratio of the resistance component Rm and the reactance component XLm in the mutual induction impedance Zm is changed by changing ⁇ m. Can be changed.
  • the ratio (first ratio) represented by XLm / Rm is compared with the case where the reverse coupling inductances 36a and 36b are not provided. Can be small.
  • phase of the output voltage from each inverter is synchronized, and the phase of the output current is also Assumes synchronization.
  • minute fluctuations occur in the phase of each output current, and therefore, the phase of the output current may not be matched (synchronized) only by phase angle control by adjusting the gate pulse position.
  • phase angle control by adjusting the gate pulse position.
  • the zero-cross position of the reference waveform may be set as the current synchronization reference position, and the phase angle may be determined with this current synchronization reference position as a base point.
  • the phase angle of the mutual induction voltage Vm with respect to the mutual induction current for example, Iiv2
  • the phase angle of the output voltage Viv from the inverter with respect to the current synchronization reference position is defined as ⁇ g.
  • the output position of the gate pulse given at the time of starting the inverter is determined so that the above ⁇ m and ⁇ g coincide.
  • phase difference of the current phase angle at startup in each self-resonant circuit is zero or a phase difference is generated, it can be reduced.
  • the phase angle between the zero cross position of the output current Iiv1 of the inverter 14a and the current synchronization reference position is ⁇ iv1. Will occur.
  • the phase control is performed in advance when the inverter is activated, the deviation amount (phase angle ⁇ iv1) from the current synchronization reference position is small. For this reason, even when current synchronous control is performed, as shown in FIG. 5B, the current phase can be synchronized within a small pulse movement range ( ⁇ g1), so that the response speed during current synchronous control can be increased. You can speed up.
  • a current synchronization control range limiter as a limit range of the phase difference ⁇ g1 between the gate pulse position and the current synchronization reference position may be determined.
  • the current synchronization control range limiter is a limiter for suppressing control failure due to the gate pulse position being too far from or too close to the current synchronization reference position. Define the value and upper limit. When the gate pulse position changes beyond the current synchronous control range limiter, the output current of the corresponding inverter is increased to suppress fluctuations based on the mutual induction current.
  • the output phase angle ⁇ iv of the inverter can be achieved even when the influence of the mutual induction is avoided, the speed is increased, and the accuracy is improved with respect to the control of the output power from each inverter. If (the phase angle between the voltage Viv and the current Iiv) is not in an appropriate range, there is a possibility that the power factor is deteriorated or control is difficult. That is, when the output phase angle ⁇ iv is too large, the switching loss is increased and the power factor is deteriorated, and when the output phase angle ⁇ iv is too small, the ZVS control is difficult.
  • an allowable value of the phase angle (allowable phase angle range) is determined within a range where ZVS control can be secured and a high power factor can be secured. Good.
  • ZVS control and high power factor operation can be ensured.
  • the phase angle ⁇ iv in each inverter is controlled by adjusting the frequency and / or adjusting the output current. Specifically, the following method may be used.
  • the phase angle ⁇ iv of the output of the inverter 14a to be controlled is small (for example, 20 ° or less: minus in FIG. 6), and the value of the output current Iiv1 is a specified current value (for example, a plurality of inverters Output current Iiv1 is incremented when it is small (for example, 15% or less).
  • the output current of the inverter 14a to be controlled is lower than the specified current value, the influence of the mutual induction voltage becomes large, and the phase angle ⁇ iv between the inverter output voltage and the output current becomes small. Therefore, the phase angle ⁇ iv can be increased as shown in FIG. 7 by reducing the influence of the mutual induction voltage by increasing the output current.
  • the frequency control in the above control is performed within a range of values higher than the resonance frequency in each self-resonant circuit.
  • Equations 1 and 2 if the frequency of the output current is lower than the self-resonance point, ⁇ s1 and ⁇ s2 are negative. For this reason, the output voltage / output current becomes negative and cannot be controlled.
  • ⁇ s1 of the inverter 14a to be controlled is not more than the lower limit value (for example, 18 °) of the phase angle limiter and the value of the output current Iiv1 is not more than the lower limit value (for example, 15%) of the current value limiter
  • Control is performed so as to increase the output current Iiv1 of the inverter 14a.
  • ⁇ s1 is equal to or lower than the lower limit value of the phase angle limiter and the value of the output current Iiv1 is higher than the lower limit value of the current value limiter
  • control is performed so as to increase the frequency of the output current Iiv1.
  • ⁇ s1 is greater than or equal to the upper limit value (for example, 45 °) of the phase angle limiter and the value of the output current Iiv1 is 50% or greater
  • control is performed to decrease the frequency of the output current Iiv1.
  • a variable range of the gate pulse is determined, and the current is incremented when this range is reached. For example, in Formula 1, when Iiv1 ⁇ Iiv2, the phase angle ⁇ iv1 between the output voltage and the output current of the inverter is close to ⁇ m. In such a case, even if the frequency of the output current is increased, ⁇ iv1 does not increment. Further, it is impossible to achieve current synchronization by changing the gate pulse position and changing the current zero cross position. For this reason, in such a case, it is necessary to increment the current.
  • control circuits 42a and 42b are different. Specifically, control is performed to make the ratio between the resistance component and the reactance component of the impedance in the circuit coincide. This is because if the ratios are the same, there is no change in ⁇ even if the magnitude of the impedance
  • the resistance component for example, R1 in one self-resonant circuit and R2 in the other self-resonant circuit
  • the reactance component For example, the ratio of
  • the ratio may be adjusted or controlled.
  • the impedance Z1 and the mutual induction impedance Zm of the self-resonant circuit are ... Formula 5 ... Formula 6 Can be shown.
  • Equation 7 From Equation 7, it can be read that Equation 7 is satisfied by changing ⁇ by changing Ls1 and Ls2 or changing the frequency.
  • the gate pulse given from the control circuit is synchronized with the inverter of each self-resonant circuit in which the phase angle of the output voltage Viv and the output current Iiv are matched so that the mathematical expression 7 is established (the gate pulse is at the same timing).
  • the phase of the output voltage Viv1 from the inverter 14a and the output voltage Viv2 from the inverter 14b are synchronized. As described above, when the phases of the output voltages are synchronized, the phase of the output current is necessarily synchronized.
  • the impedance ratio is controlled in real time by providing the impedance adjusting means 34a and 34b.
  • the impedance ratio can be adjusted in advance as a set value. Even in such a configuration, fluctuations in the phase angle of the output voltage Viv and the output current Iiv due to the influence of mutual induction can be suppressed.
  • the induction heating device 10a shown in FIG. 11 is common to the induction heating device 10 shown in FIG. 2, the current-type inverters 14a1 and 14b1 are used, and a parallel resonance circuit is configured as a resonance circuit. Is different. Therefore, portions having the same configuration are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
  • the smoothing capacitor 20 provided between the inverters 14a and 14b and the chopper circuits 22a and 22b in the induction heating apparatus 10 is eliminated, and the DCL 20a is arranged.
  • the resonance capacitors 40a and 40b disposed between the inverters 14a1 and 14b1 and the heating coils 12a and 12b are arranged in parallel to the heating coils 12a and 12b, thereby forming a parallel resonance circuit.
  • 11 does not clearly show the control circuit, the impedance adjustment unit, the current detection unit, and the voltage detection unit, the configuration may be the same as that of the embodiment shown in FIG.
  • An equivalent circuit diagram of the self-resonant circuit shown in FIG. 11 is shown in FIG. ... Formula 8
  • Iiv1 and Iiv2 can be expressed as Equation 9 respectively. ... Formula 9 Therefore, if the gate pulse applied to the inverter is synchronized, the phases of the inverter currents Iiv1 and Iiv2 are synchronized, and the phases of the coil currents Il1 and Il2 can be synchronized.
  • the mutual induction voltage Vm21 (Vm12) has a phase angle (first phase angle ⁇ m) with respect to the current Il2 (Il1) supplied to the heating coil and the combined voltage Vs1 (Vs2) of the self-resonant circuit. ) Matches the phase angle (the second phase angle ⁇ 1 ( ⁇ 2)) with respect to the current Il1 (Il2) supplied to the heating coil, thereby matching the phase angle between the coil current and the inverter current.
  • the coil current can be synchronized.
  • the self-resonant circuit shown in FIG. 11 is a parallel resonant circuit using a current-type inverter, the phase angle control is performed so that the current waveform advances and becomes a phase with respect to the voltage waveform. This is because ZCS control can be performed.
  • the reverse coupling inductance is not provided in the self-resonant circuit shown in FIG. 11, the present invention is applied even to a circuit provided with a reverse coupling inductance, as in the case of employing a voltage type inverter. (FIG. 12: equivalent circuit, FIG. 13: circuit diagram showing an example).
  • phase, phase angle, and phase difference is given as one of the adjustment, control, and setting elements, and mainly described as angle adjustment, control, and setting.
  • phase, phase angle, and phase difference can be expressed as corresponding times, and various adjustments, controls, and settings may be performed based on the equivalent times.
  • the time per cycle can be obtained by 1 / frequency. Since 360 ° is 2 ⁇ , for the angle ⁇ as the adjustment, control, and setting element, the time per period is divided by the angle ⁇ to correspond to the phase, the phase angle, and the phase difference. Can be converted as time. Therefore, the adjustment, control, and setting can be performed based on the corresponding time instead of the phase, the phase angle, and the phase difference.
  • the detection, setting, and control of the various detection and setting of the output current, the output voltage, the gate pulse, the phase, the phase angle, and the phase difference, and the control elements are performed by the control circuits 42a and 42b.
  • these detection, setting, and control may be performed based on a program (computer program) recorded in the computer using a computer that records the control data.
  • the present invention is not limited to a computer, and may be implemented by attaching a medium (programmable device) in which data such as detection, setting, and control is recorded in advance to an element capable of inputting and outputting control signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)

Abstract

【課題】電流の供給により相互誘導を生じさせる複数の加熱コイルを介して熱処理を行う場合に、コイル電流同期制御を容易かつ高速に行うことができ、電流を変化させる場合に電流値制御を高速化してもインバータ位相角への影響が少ない、高力率な誘導加熱方法を提供する。 【解決手段】被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を投入する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、システム内インピーダンスの位相を合致させ、できるだけこの位相を小さくする。起動時から電流の位相差を零に近似させることができるインバータ位相にする。インバータ位相を一定範囲に制御するために、周波数及び電流値制御を行う。

Description

誘導加熱方法
 本発明は、誘導加熱を用いた加熱方法の技術に係り、特に、加熱コイルを隣接して複数配置して被加熱物の加熱を行う誘導加熱装置による加熱方法に関する。
 従来より、急速加熱を行う手段として、誘導加熱が有効であることは知られている。しかし、誘導加熱による加熱方法は、電磁誘導を利用していることから、電力制御手段(例えばインバータ)を個別に持つ加熱コイルを複数近接配置して稼動させた場合、各加熱コイルに相互誘導が生ずる。
 相互誘導の影響を回避して各加熱コイルへ給電するインバータを正常に運転するためには、各インバータの周波数を同一にし、かつ電流を同期する必要がある(特許文献1を参照)。
 周波数を同一にする理由は、異なる周波数の相互誘導があるとインバータ電流、インバータ電圧が歪み波形になりインバータが正常に運転できなくなるからである。電流を同期させる理由は、相互誘導電圧をjωM・I2・(cosθ+jsinθ)と示した場合、コイル電流が同期している場合にはθ=0であり相互誘導電圧は、jωM・I2となり、相互誘導インピーダンスのリアクタンス成分のみが残ることとなる。一方、コイル電流が同期していない場合にはθの位相差に基づき相互誘導電圧は、jωM・I2・cosθ-ωM・I2・sinθと示されることとなり、相互誘導インピーダンスのレジスタンス成分が現れることとなる。このため、インバータ間の電力分担が相互誘導によって変化し、インバータの電力制御に影響を与える(なお、ωは、角周波数であり、Mは、隣接された加熱コイル間における相互誘導に起因した相互インダクタンス、I2は、隣接配置された加熱コイルに供給される電流である。)。
 通常の誘導加熱では共振先鋭度は3~10、コイル間結合係数kは0.2程度である。直列インバータでは、インバータ電圧の10倍のコイル電圧が発生する。そして、コイル電圧の約0.2倍の電圧が相互誘導電圧となる。θ=30度になると相互誘導電圧の有効分、すなわち相互誘導インピーダンスのレジスタンス成分の値がインバータ電圧と同じになりインバータの電力制御に多大な影響が生じる。これを回避するためには、電流同期制御が必要となる。
 しかし、電流同期制御を行っていても無効分の相互誘導電圧、すなわち相互誘導インピーダンスのリアクタンス成分による電圧が残っている。この相互誘導電圧は、影響を与える側のコイル電流変化により変動する。このときに共振回路の共振コンデンサと自己インダクタンスと相互誘導によるインピーダンスと位相が変化する。このためインバータ出力の電圧と電流間位相が相手のインバータ制御によるコイル電流変化または自己の出力電流変化とともに大幅に変動する。
 従来の電流同期制御は、インバータのゲートパルスの位置制御をして電流同期制御をしているので、インバータ電圧位置(=パルス位置)を大幅に制御しなければ電流同期できない。そして、電流同期制御のためのパルス移動範囲が大きいので電流同期制御は安定的に高速応答できないといった問題や、インバータ制御を安定的に高速化できないといった問題がある。
 また、電流同期していても無効分の相互誘導電圧が大きく、インバータはこの電圧に勝って出力電圧を出さなければならない、この時の出力位相角が大きく力率が悪いのでインバータ変換器容量を大きくしなければならないという問題があった。特許文献2では、この問題を解決するために、加熱コイルとインバータ間にコイルの相互誘導と逆極性のインダクタンスを設けて力率を改善することが提案されている。
 しかし、この状態においても自己または相手側の電流変化によってインバータ出力位相が変化する。無効分相互誘導電圧が強い場合、すなわち相互誘導インピーダンスのリアクタンス成分が大きい場合には、インバータ出力位相が90度近くまたは90度以上にもなり、スイッチングロスが大きくなる、あるいは逆方向電力が発生し危険運転になるといった問題がある。また、有効分相互誘導電圧が強い場合、すなわち相互誘導インピーダンスのレジスタンス成分が大きい場合には、インバータ出力位相が0度近くまたは0度以下にもなり、ZVS(Zero Voltage Switching)運転が出来なくなりスイッチングロスが増大したり危険運転状態となるといった問題がある。
 上記は電圧型インバータ(直列共振)の例で述べたが電流型インバータ(電圧型インバータ)でも同様の問題がある。
特表2005-529475号公報 特開2004-259665号公報
 上記特許文献に開示された技術によれば、電流同期制御を行うことにより、相互誘導環境下にあるインバータを運転することができる。しかし上述したように、電流値を変化させながら、電流同期のためにパルス位置を大幅に制御する必要があり、安定な高速応答制御が難しいといった問題や、電流値を変化させるときに、無効分相互誘導が強い場合にはインバータ出力位相が90度に近づく、有効分相互誘導が強いときにはインバータ出力位相が0度に近づく現象があり、力率が悪く、危険運転に達する虞があるといった問題がある。
 そこで本発明では、隣接配置された複数の加熱コイルを介して熱処理を行う場合に、自己または相手の電流が変化しても相互誘導のインバータ出力位相変化が少なく、コイル電流の同期制御が容易かつ高速に行うことができ、電流変化させる場合に電流値制御を高速化しても電流同期制御に影響を与えない誘導加熱方法であり、自己または相手の電流が変化しても相互誘導インバータの出力位相変化が小さくかつ位相を小さく一定にしてZVS(電流型ではZCS:Zero Current Switching)及び高力率化を達成できる方法を提供する。
 そして、高効率、高力率で、高速応答性に優れ、コンパクトで経済的な相互誘導環境下においても均一加熱を実現できる誘導加熱装置による誘導加熱方法を構築する。
 上記課題を解決するための本発明に係る誘導加熱方法は、被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、相互誘導インピーダンスのリアクタンス成分とレジスタンス成分からなる位相角と、自己共振回路のインピーダンスのリアクタンス成分とレジスタンス成分からなる位相角を合わせるように調整、または制御した後、前記電流の位相差が零となるようにするため、および/または、前記共振型高周波電源の出力電流と出力電圧との位相角の変動を抑制するために、前記周波数および/または、前記出力電流の値を制御することを特徴とする。
 上記のような特徴を有する誘導加熱方法では、前記誘導加熱装置を高効率運転するために、前記相互誘導インピーダンスにおける位相角及び、前記自己共振回路のインピーダンスにおける位相角を減少させるように調整または制御するようにすると良い。
 また、上記のような特徴を有する誘導加熱方法では、隣接配置された前記加熱コイルへの給電線路に逆結合インダクタンスを付加することにより、相互誘導電圧と相互誘導を生じさせるコイル電流間の位相である第1の位相角を減少させ、前記自己共振回路の合成電圧と前記加熱コイルに供給される電流間の位相である第2の位相角を前記第1の位相角に一致させるように調整または制御することで、前記共振型高周波電源の出力電流と出力電圧との位相角を減少させると良い。
 また、上記課題を解決するための本発明に係る誘導加熱方法は、被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、相互誘導電圧と相互誘導を生じさせるコイル電流間の位相である第1の位相角と、自己共振回路の合成電圧と前記加熱コイルに供給される電流間の位相である第2の位相角を一致させるように調整、または制御して運転することを特徴とするものであっても良い。
 さらに、上記課題を解決するための本発明に係る誘導加熱方法は、被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、隣接する前記自己共振回路間における相互誘導インピーダンスのレジスタンス成分に対する相互誘導インピーダンスのリアクタンス成分の比である第1の比と、前記自己共振回路における自己インピーダンスのレジスタンス成分に対する自己インピーダンスのリアクタンス成分の比である第2の比を、一致させるように調整、または制御して運転することを特徴とするものであっても良い。
 また、上記のような特徴を有する誘導加熱方法では、前記第1の位相角と前記第2の位相角とを一致させるように、または前記第1の比と前記第2の比とを一致させるようにする調整、または制御は、前記自己共振回路のインピーダンスを調整、または制御することによって成すようにすることができる。
 また、上記のような特徴を有する誘導加熱方法では、前記第1の位相角と前記第2の位相角とを一致させるように、または前記第1の比と前記第2の比とを一致させるようにする調整、または制御は、前記加熱コイルに供給する電流の周波数を調整、または制御することによって成すようにすることもできる。
 また、上記のような特徴を有する誘導加熱方法では、各自己共振回路における前記共振型高周波電源に対してゲートパルスを供給する際に、当該ゲートパルスの位相差が零となるように、または予め定めた位相差に近似するように出力して、前記誘導加熱装置を運転するようにすることができる。
 また、上記のような特徴を有する誘導加熱方法では、各自己共振回路における前記共振型高周波電源を電圧型高周波電源とし、当該電圧型高周波電源の出力電圧の位相差が零となるようにして、前記誘導加熱装置を運転することもできる。
 また、上記のような特徴を有する誘導加熱方法では、各自己共振回路における前記共振型高周波電源を電流型高周波電源とし、当該電流型高周波電源の出力電流の位相差が零となるようにして、前記誘導加熱装置を運転することもできる。
 また、上記のような特徴を有する誘導加熱方法では、前記共振型高周波電源の起動時に、前記ゲートパルスの位相差が零となるように、または予め定めた位相差となるように出力した後、各加熱コイルに供給される前記電流の位相を基準信号の位相に一致させるように、前記共振型高周波電源に供給するゲートパルスを制御して、前記誘導加熱装置を運転することが望ましい。
 また、上記のような特徴を有する誘導加熱方法では、前記ゲートパルスの位相差が零となるようにして前記共振型高周波電源を起動させる際に、前記ゲートパルスが、前記基準信号に基づいて定めた電流同期基準位置対して、予め定めた位相、または当該位相に対応する時間を持つように制御すると良い。
 また、上記のような特徴を有する誘導加熱方法では、前記共振型高周波電源起動後に、各加熱コイルに供給する電流のゼロクロス位置を検出し、各電流のゼロクロス位置が前記電流同期基準位置からずれている場合には、各電流のゼロクロス位置と前記電流同期基準位置との位相差が零となるように、前記ゲートパルス位置を制御すると良い。
 また、上記のような特徴を有する誘導加熱方法では、前記出力電圧と前記出力電流との間の位相角の許容範囲である許容位相角範囲を定め、前記出力電圧と前記出力電流との間の位相角が前記許容位相角範囲内に位置するように、前記周波数及び/または出力電流の値を制御すると良い。
 また、上記のような特徴を有する誘導加熱方法では、前記周波数の制御を行いつつ、前記各電流間の位相差が零となるように、前記ゲートパルス位置を制御することが望ましい。
 また、上記のような特徴を有する誘導加熱方法では、前記周波数の制御は、前記自己共振回路の共振周波数よりも高い値の範囲内で行うようにすると良い。
 また、上記のような特徴を有する誘導加熱方法では、前記ゲートパルス位置と前記電流同期基準位置との間の位相差の限界範囲としての電流同期制御範囲リミッタを定め、前記ゲートパルス位置が前記電流同期制御範囲リミッタの範囲内となるように、前記出力電流を制御すると良い。
 また、上記のような特徴を有する誘導加熱方法において、電流の供給により相互誘導を生じさせる隣接配置された加熱コイルへの給電路に、それぞれ逆結合インダクタンスを接続することで前記第1の比または前記第1の位相角を減少させるようにすると良い。
 また、上記のような特徴を有する誘導加熱方法では、前記第1の比と前記第2の比、または前記第1の位相角と前記第2の位相角を一致させるために、前記逆結合インダクタンスのリアクタンス成分を調整または制御することもできる。
 また、上記のような特徴を有する誘導加熱方法では、前記第1の比または前記第1の位相角を予め定められた目標値に合わせるように調整し、当該目標値に前記第2の比または前記第2の位相角を一致させるようにすることもできる。
 また、上記のような特徴を有する誘導加熱方法では、前記逆結合インダクタンスにおける結合係数を変化させることで、相互誘導インピーダンスのリアクタンス成分を変化させ、前記第1の比、または前記第1の位相角を調整することもできる。
 また、上記のような特徴を有する誘導加熱方法では、前記逆結合インダクタンスを構成する自己インダクタンスを調整して前記第2の比又は前記第2の位相角を目標値に合わせるように調整し、または前記自己インダクタンスの結合係数を調整して前記第1の比または前記第2の比を目標値に合わせるように調整するようにしても良い。
 さらに、上記のような特徴を有する誘導加熱方法では、前記自己共振回路におけるインダクタンスまたは、キャパシタンスを調整し、前記第2の比または前記第2の位相角を調整するようにしても良い。
 また、上記のような特徴を有する誘導加熱方法では、前記位相、前記位相角、および前記位相差を周波数に対応する時間に換算して設定、調整、または制御しても良い。
 さらに、上記のような特徴を有する誘導加熱方法では、前記検出、前記設定、および前記制御は、コンピュータプログラム、またはプログラマブルデバイスを介して行うようにしても良い。
電圧型インバータを採用して直列共振回路を構成する自己共振回路の等価回路図である。 電圧型インバータを採用して直列共振回路を構成する自己共振回路を備えた誘導加熱装置の構成を示す図である。 電圧型インバータを採用し、直列共振回路を構成すると共に、逆結合インダクタンスを有する自己共振回路の等価回路図である。 電圧型インバータを採用し、直列共振回路を構成すると共に、逆結合インダクタンスを有する自己共振回路を備えた誘導加熱装置の構成を示す図である。 (A)は、インバータ出力電圧のゲートパルス発生位置を一致させた場合であっても、出力電流のゼロクロス位置が電流同期基準位置からずれる場合の一例を示す波形図であり、(B)は、ゲートパルス発生位置を僅かにずらすことで、電流同期が完了する様子の一例を示す波形図である。 インバータの出力電圧Viv1と出力電流Iiv1との位相角θiv1の調整が必要な場合の例を示す図である。 インバータの出力電圧Viv1と出力電流Iiv1との位相角θiv1の調整により、位相角θiv1が改善された例を示す図である。 インバータの出力電圧Viv1と出力電流Iiv1との位相角θiv1の調整が必要な場合の例を示す図である。 インバータの出力電圧Viv1と出力電流Iiv1との位相角θiv1の調整が必要な場合の例を示す図である。 電流型インバータを採用して並列共振回路を構成する自己共振回路の等価回路図である。 電流型インバータを採用して並列共振回路を構成する自己共振回路を備えた誘導加熱装置の構成を示す図である。 電流型インバータを採用し、並列共振回路を構成すると共に、逆結合インダクタンスを有する自己共振回路の等価回路図である。 電流型インバータを採用し、並列共振回路を構成すると共に、逆結合インダクタンスを有する自己共振回路を備えた誘導加熱装置の構成を示す図である。
 以下、本発明の誘導加熱方法に係る実施の形態について、図面を参照しつつ詳細に説明する。
 少なくとも2つの加熱コイルにそれぞれ接続され、各加熱コイルに電流を供給することにより相互誘導を生じさせる自己共振回路では、相互誘導電圧の影響により各自己共振回路には、共振型高周波電源としてのインバータの出力と逆向きとなる電力が投入される。このため、出力電圧と出力電流の位相が大きく変化する。そして、位相角が小さくなりすぎた場合には、ZVS(Zero Voltage Switching:電圧型インバータ使用時)や、ZCS(Zero Current Switching:電流型インバータ使用時)といった電圧制御、電流制御ができなくなってしまい、出力電力の制御が困難となる。一方、位相角が大きくなりすぎた場合には、各インバータにおけるスイッチングロスが大きくなり、極端にエネルギー効率が悪くなってしまう。また、時には両者の位相差が90度を超え、制御不能となることもある。このため、電流と電圧の位相角は、ZVS制御やZCS制御が可能であり、かつできるだけ変動が小さく、小さな値とすることが、安定した高効率運転に繋がることとなる。
 ここで、図1に示すような、相互誘導状態にある2つの自己共振回路において、被加熱物を加熱するための電力を得るのに必要とされる各インバータからの出力電圧Viv1、Viv2は、それぞれ、自己共振回路の電圧(Vs1、Vs2)と相互誘導電圧(Vm21、Vm12)を合成したものである。ここで、自己共振回路とは、加熱コイル、共振コンデンサ、および配線経路等から成る回路をいう。そして、このような回路系において相互誘導の影響を考慮した場合には、各インバータからの出力電圧Viv1、Viv2は、数式1、2のように示すことができる。
Figure JPOXMLDOC01-appb-I000001

・・・(数式1)
Figure JPOXMLDOC01-appb-I000002

・・・(数式2)
数式1、2において、位相角θに関し、θs1=θs2=θm=θとした場合、数式3、4を得ることができる。
Figure JPOXMLDOC01-appb-I000003

・・・(数式3)
Figure JPOXMLDOC01-appb-I000004

・・・(数式4)
 数式3と数式4は、位相角θが一致していることより、Viv1とViv2のベクトル方向が一致していることが判る。このような制御環境下(θmとθs1、およびθs2が一致している制御環境)では、相互誘導が生じた場合であっても、その影響はインピーダンスZmの変化にとどまり、相互誘導電圧Vmに増減が生じた場合であっても、インバータの出力電圧と出力電流の位相角に変動を生じさせなくなる。
 よって、一方の自己共振回路に対する相互誘導電圧Vm21が他方のインバータInv2からの出力電流Iiv2に対して持つ位相角(第1の位相角θm)と、一方の自己共振回路の合成電圧Vs1が一方のインバータInv1からの出力電流Iiv1に対して持つ位相角(第2の位相角θs1(他方の自己共振回路の合成電圧Vs2が他方のインバータInv2からの出力電流Iiv2に対して持つ位相角はθs2))を一致させることによれば、相互誘導関係にある全ての自己共振回路におけるインバータの出力電圧Vivと出力電流Iivの位相を一致させることができる。
 位相角θs1、θs2、およびθmを一致させるためには、各インバータからの出力電流の周波数を一致させ、各インバータの出力電圧のゲートパルスを同期させれば良い。出力電流の周波数を一致させた回路において出力電圧を同期させることにより、必然的に出力電流Iiv1とIiv2を同期させることができるからである。
 以下、具体的な回路構成の一例を図2に示し、これを参照しつつ、上記方法の実現について説明する。
 図2に示す誘導加熱装置10は、加熱コイル12a,12bと、インバータ(逆変換回路)14a,14b、チョッパ回路22a,22b、コンバータ(順変換回路)26、電源部30、および制御回路42a,42bを基本として構成されている。
 図2に示す誘導加熱装置10は、詳細を後述するコンバータ26に対して、チョッパ回路22a,22b、インバータ14a,14b、および加熱コイル12a,12bからなる回路が、並列に接続されることで構成されている。よって本実施形態に係る誘導加熱装置10は、個別に電力制御可能な複数の自己共振回路を備えていることとなる。
 加熱コイル12a,12bは、高周波電流を供給可能なインバータ14a,14bが接続されたコイルである。本実施形態の場合、単一の被誘導加熱部材50に対して、複数(図2に示す例では2つ)の加熱コイル12a,12bを近接配置する構成としている。このような配置構成とした場合、コイルへ電力を投入した際、隣接して配置された加熱コイル12a,12b間には、相互誘導が生ずることとなる。
 図2に示す誘導加熱装置10で採用しているインバータ14a,14bは、電圧型インバータである。各加熱コイル12a,12bとインバータ14a,14bとの間には、共振コンデンサ32a,32bが直列に接続されており、両者の間には、直列共振回路が構成されている。よって、図2に示す誘導加熱装置10は、複数(2つ)の自己共振回路を構成しているということができる。
 インバータ14a,14bは、単相のフルブリッジインバータを構成している。スイッチング素子としては、IGBT16を採用し、負荷電流を転流させるためにダイオード18を逆並列に接続する構成としている。ブリッジ回路の前段には、直流電圧を平滑化するための平滑コンデンサ20と平滑コイル21が設けられている。
 チョッパ回路22a,22bは、コンバータ26から出力された定電圧の直流電圧をスイッチング素子であるIGBT24でチョッピングすることで、インバータ14a,14bへ入力する平均電圧を変化させる役割を担う。チョッパ回路22a,22bとコンバータ26との間には、平滑コンデンサ25が設けられている。
 コンバータ26は、ダイオード28を用いて構成される三相ダイオードブリッジにより成る。電源部30より供給された三相交流電流を直流電流に変換し、チョッパ回路22a,22bへと供給する役割を担う。
 制御回路42a,42bは、検出されたインバータ14a,14bからの出力電圧、および出力電流に基づいて各自己共振回路におけるインピーダンスの調整や、各インバータ14a,14b、およびチョッパ回路22a,22bに対して、制御のためのゲートパルスを与える役割を担う。なお、インバータ14a,14bに与えるゲートパルスは、スイッチング素子であるIGBT16の切換えタイミングを制御する信号であり、出力電圧Vivの位相が制御される。
 各制御回路42a,42bには、基準信号生成部44が接続されている。基準信号生成部44は、加熱コイル12a,12bに供給する出力電流の基準波形を生成する。そして、基準信号生成部44は、生成した基準波形を基準信号として、各制御回路42a,42bに与える。各制御回路42a,42bは、基準波形の位相を比較し(例えば基準波形のゼロクロス位置を電流同期基準位置として位相を比較する)、両者の位相差を求め、インバータ14a,14b等に与えるゲートパルスを生成する。
 インバータ14a,14bの出力側にはそれぞれ、出力電流を検出する電流検出手段38a,38bと、出力電圧を検出する電圧検出手段40a,40bが設けられており、検出値が制御回路42a,42bへ入力されるように構成されている。
 また、本実施形態では、加熱コイル12a,12bと直列に、インピーダンス調整手段34a,34bが設けられている。インピーダンス調整手段34a,34bは、可変インダクタンスや可変キャパシタンス等のインダクタンスやキャパシタンスを変化させるための手段を備えた回路であり、制御回路42a,42bからの調整信号に基づいて、自己共振回路の自己インダクタンスL1,L2やキャパシタンスC1,C2を変化させる役割を担う。
 上記のような構成の誘導加熱装置10では、各インバータ14a,14bに与えるゲートパルスを同期(望ましくは、ゲートパルスの位相が互いに一致することであるが、本実施形態においては、ゲートパルスの位相差を零に近似させることも含む)させ、各自己共振回路間における出力電圧Viv1,Viv2を同期(望ましくは、出力電圧の位相が互いに一致することであるが、本実施形態においては、出力電圧の位相差を零に近似させることも含む)させた場合には、出力電流Iiv1,Iiv2も同期(望ましくは、出力電流の位相が互いに一致することであるが、本実施形態においては、出力電流の位相差を零に近似させることも含む)しているに等しく運転することができる。よって、本発明の効果のうちの少なくとも一部を発揮することが可能であるといえる。このような制御状態によれば、高速でチョッパ制御して電流値を可変しても、電流同期の状態を安定してキープすることができる。よって、応答性が速く、安全かつ簡易な制御を行うことが可能となる。
 なお、図2に示す例では、1つのコンバータ26に対して、複数のインバータ14a,14bを並列接続しているように説明した。このような構成によれば、電源回路の小型化、低コスト化を図りつつ、個別電力制御が可能となるからである。しかしながら、コンバータ26、および電源部30についても、各インバータ14a,14bに対して個別に接続する形態としても良いことは、いうまでも無い。
 また、本実施形態に係る誘導加熱装置10では、図4に示すように、各加熱コイル12a,12bと直列に、逆結合インダクタンス36a,36bを設けるようにすると良い。逆結合インダクタンス36a,36bとは、加熱コイル12a,12b間における相互誘導に起因した相互インダクタンス(M)と逆極性の相互インダクタンス(-m)を生じさせるように構成されたコイルであり、m=k2×√(Ls1×Ls2)と示すことができる(k2は結合係数)。なお、Ls1、Ls2は、逆結合インダクタンス36a,36bの自己インダクタンスである(図3に、図4に示す誘導加熱装置の等価回路図を示す)。よって、逆結合インダクタンス36a,36bは、隣接する回路間において近接配置されることとなる。逆結合インダクタンス36a,36bを備える場合の相互誘導インピーダンスZmのリアクタンス成分XLmは、ωM-ωmで示されるため、-mが変化することにより相互誘導インピーダンスZmにおけるレジスタンス成分Rmとリアクタンス成分XLmの比を変化させることができる。また、相互誘導インピーダンスを|Zm|=√(Rm+XLm)と示した場合、XLm/Rmで示される比(第1の比)を、逆結合インダクタンス36a,36bを備えない場合に比べて小さくすることができる。ここで、第1の位相角θmは、atanωM/Rmと示すことができるため、-mの付加によりωMの値が小さくなれば、θmも小さくなる。よって、θm=θs1=θs2とした場合には、力率の向上を図ることができる。
 よって、上記のような構成とすることによれば、ZVSが可能な最小位相角で運転することが可能となる。このため、当該構成の誘導加熱装置に対して上記制御を適用することにより、高効率で応答性が速く、安全かつ簡易な制御を行うことが可能となる。
 上記実施形態ではいずれも、θm(第1の位相角)とθs1、θs2(第2の位相角)とを一致させることにより、各インバータからの出力電圧の位相が同期し、出力電流の位相も同期することを前提としている。しかしながら実際には、各出力電流の位相には、微小変動が生じるため、ゲートパルス位置の調整による位相角制御のみでは、出力電流の位相を一致(同期)させることができない場合がある。このような場合には、周波数調整、および電流値調整を組み合わせることにより、出力電流の位相同期を図ることで、電流値の高精度な制御を高速で安定的に行うことが可能となる。
 このような制御を行う場合、出力電流、出力電圧の位相に関して、基準波形のゼロクロス位置を電流同期基準位置とし、この電流同期基準位置を基点として位相角を定めるようにすると良い。例えば、相互誘導電圧Vmが電流同期基準位置に同期した相互誘導電流(例えばIiv2)に対して持つ位相角をθmとした場合、インバータからの出力電圧Vivが電流同期基準位置に対して持つ位相角θgと定める。そして、本形態では、上記θmとθgとが一致するように、インバータ起動時に与えるゲートパルスの出力位置を定める。
 このような運転を実施することで、各自己共振回路における起動時の電流位相角の位相差をゼロ、あるいは位相差が生じている場合であっても、それを小さくすることができる。例えば、図5(A)に示す例では、θmとθg1を一致させた場合であっても、インバータ14aの出力電流Iiv1のゼロクロス位置と電流同期基準位置との間には、位相角として、Δθiv1が生ずることとなる。
 しかし、上記のような制御では、インバータ起動時に予め位相制御が行われることとなるため、電流同期基準位置からのずれ量(位相角Δθiv1)は小さなものとなる。このため、電流同期制御を行う場合であっても、図5(B)に示すように、小さなパルス移動範囲(Δθg1)で電流位相を同期させることができることより、電流同期制御時の応答速度を速めることができる。ここで、前記ゲートパルス位置と電流同期基準位置との間の位相差θg1の限界範囲としての電流同期制御範囲リミッタを定めるようにすると良い。電流同期制御範囲リミッタは、ゲートパルス位置が、電流同期基準位置から離れ過ぎたり、近づき過ぎたりすることによる制御不良を抑制するためのリミッタであり、良好な制御性を確保可能な範囲で、下限値と上限値を定める。そして、ゲートパルス位置が電流同期制御範囲リミッタを超えて変化した場合には、該当するインバータの出力電流を上昇させ、相互誘導電流に基づく変動を抑制する。
 また、上記のような制御を行うことにより、各インバータからの出力電力の制御に関し、相互誘導の影響の回避、高速化、高精度化を実現した場合であっても、インバータの出力位相角θiv(電圧Vivと電流Iiv間の位相角)が適正な範囲に無い場合には、力率の悪化や制御困難といった事態に陥る可能性がある。すなわち、出力位相角θivが大きすぎる場合には、スイッチングロスが大きくなり力率が悪化し、出力位相角θivが小さすぎる場合には、ZVS制御が困難となるということである。このため、出力位相角θivには、ZVS制御を確保することができ、かつ高力率を確保することができる範囲で、その位相角の許容値(許容位相角範囲)を定めておくようにすると良い。出力位相角θivが許容位相角範囲内に位置するように制御することで、ZVS制御、および高力率運転を確保することができる。
 各インバータにおける位相角θivの制御は、周波数調整、および/または出力電流の調整により行う。具体的には、次のような方法で行えば良い。
 例えば、図6に示すように、制御対象とするインバータ14a出力の位相角θivが小さく(例えば20°以下:図6ではマイナス)、出力電流Iiv1の値が規定の電流値(例えば、複数のインバータからの出力電流の平均値)に対して小さい場合(例えば15%以下)には、出力電流Iiv1を増分させる。制御対象とするインバータ14aの出力電流が規定の電流値よりも低い場合には、相互誘導電圧の影響が大きくなり、インバータ出力電圧と出力電流の位相角θivが小さくなる。このため、出力電流の増分を図ることにより、相互誘導電圧の影響を小さくすることで、図7に示すように、位相角θivを大きくすることができる。
 これに対し、位相角が小さい場合であっても、図8に示すように、出力電流Iiv1の値が規定値の電流に対して所定の割合よりも高い場合(例えば15%より高い場合)には、出力電流の周波数を上昇させる。これにより位相角θivを大きくすることができる。これらの制御を行うことにより、ZVS制御を確実に行うことが可能となる。
 一方で、図9に示すように、位相角θivが大きく(例えば45°以上)、出力電流Iiv1の値が規定値の50%以上である場合には、周波数を低下させ、位相角θivを小さくする。このような制御により、インバータ14aにおけるスイッチングロスが低減され、力率が向上する。なお、周波数調整は、全てのインバータに対して同様に行われる。このため、位相角θivが大きいインバータが存在し、周波数を低下させる必要が生じた場合であっても、他のインバータにおいて周波数を増大させる制御を行う旨の制御信号が出力されている場合には、周波数の増大を優先して行う。インバータの出力電力を高精度に制御する上ではZVS制御を確保することが、優先されるからである。
 また、上記制御における周波数の制御は、各自己共振回路における共振周波数よりも高い値の範囲内で行うようにする。数式1、2において、出力電流の周波数が自己共振点よりも低い場合、θs1、θs2がマイナスとなる。このため、出力電圧/出力電流が負性となり、制御できなくなってしまうからである。
 上記制御を行う場合、位相角θsの下限値や上限値を定めるための位相角リミッタや、出力電流Iivの下限値や上限値を定めるための電流値リミッタを定めるようにすると良い。各リミッタ値と検出値とを比較することで、制御パターンを定めることが可能となるからである。
 すなわち、制御対象とするインバータ14aのθs1が位相角リミッタの下限値(例えば18°)以下で、かつ出力電流Iiv1の値が電流値リミッタの下限値(例えば15%)以下である場合には、インバータ14aの出力電流Iiv1を増大させるように制御を行うというものである。また、θs1が位相角リミッタの下限値以下で、出力電流Iiv1の値が電流値リミッタの下限値よりも高い場合には、出力電流Iiv1の周波数を上昇させるように制御を行う。さらに、θs1が位相角リミッタの上限値(例えば45°)以上で出力電流Iiv1の値が50%以上といった場合には、出力電流Iiv1の周波数を降下させるように制御を行う。
 また、電流同期制御をゲートパルス位置を変えて行う場合に、ゲートパルス可変範囲を定め、この範囲に当たったら電流を増分する。例えば、数式1において、Iiv1<<Iiv2である場合、インバータの出力電圧と出力電流間の位相角θiv1は、θmに近くなる。このような場合、出力電流の周波数を上げても、θiv1は増分しない。また、ゲートパルス位置を変えて電流ゼロクロス位置を変えることで電流同期を図ろうとしても不可能である。このため、このような場合には、電流を増分する必要がある。
 次に、上記実施形態に係る誘導加熱装置10を用いた誘導加熱方法に係る第2の実施形態について説明する。本実施形態では、制御回路42a,42bを介して制御を行う対象が異なる。
 具体的には、回路内のインピーダンスのレジスタンス成分とリアクタンス成分の比を一致させるための制御を行う。それぞれの比が一致していれば、インピーダンス|Z|の大きさが異なっていても、θに変化は無いからである。
 よって、θs1、θs2、θmを一致させるためには、自己共振回路におけるインピーダンス(Z1、Z2)のレジスタンス成分(例えば、一方の自己共振回路ではR1、他方の自己共振回路ではR2)とリアクタンス成分(例えば、一方の自己共振回路では|XL1-XC1|、他方の自己共振回路では|XL2-XC2|)の比と、相互誘導インピーダンス(Zm)におけるレジスタンス成分(例えばRm)とリアクタンス成分(例えばXLm)の比を、調整、または制御すれば良い。
 例えば図4に示すような構成の誘導加熱装置10では、自己共振回路のインピーダンスZ1と相互誘導インピーダンスZmは、
Figure JPOXMLDOC01-appb-I000005

・・・数式5
Figure JPOXMLDOC01-appb-I000006

・・・数式6
と示すことができる。
 よって、相互誘導インピーダンスZm(=ZLm)のレジスタンス成分に対するリアクタンス成分の比(第1の比)と、自己共振回路における自己インピーダンスZ1(Z2)のレジスタンス成分に対するリアクタンス成分の比(第2の比)を一致させるには、数式7を成立させれば良い。
Figure JPOXMLDOC01-appb-I000007

・・・数式7
 数式7からは、Ls1やLs2を変化させる、あるいは周波数を変化させることによりωを変化させることにより、数式7が成立することを読み取ることができる。
 数式7を成立させるようにして、出力電圧Vivと出力電流Iivの位相角を一致させた各自己共振回路のインバータに対して制御回路から与えられるゲートパルスを同期させる(ゲートパルスが同一のタイミングで発せられる)ことで、インバータ14aからの出力電圧Viv1とインバータ14bからの出力電圧Viv2の位相が同期する。なお、上述したように、それぞれの出力電圧の位相が同期した場合には、必然的に出力電流の位相も同期する。
 また、上記実施形態では、インピーダンス調整手段34a,34bを設けることでインピーダンス比をリアルタイムで制御するように記載した。しかしながらインピーダンス比は、設定値として予め調整しておくようにすることもできる。このような構成とした場合であっても、相互誘導の影響による出力電圧Vivと出力電流Iivの位相角の変動を抑制することができる。
 このため、各インバータ14a,14bに与えるゲートパルスを同期させた場合には、各自己共振回路間における出力電圧Viv1,Viv2が同期し、出力電流Iiv1,Iiv2も同期しているに等しく運転することができる。よって、本発明の効果のうちの少なくとも一部を発揮することが可能であるといえる。
 上記実施形態では、自己共振回路の説明として、電圧型インバータを用いた直列共振回路を挙げて説明した。しかしながら、本発明に係る誘導加熱方法を適用可能な自己共振回路は、図11に示すようなものであっても良い。
 図11に示す誘導加熱装置10aは、その殆どを図2に示す誘導加熱装置10と共通としているが、電流型のインバータ14a1,14b1を採用している点、および共振回路として並列共振回路を構成している点が異なる。よって、その構成を同一とする箇所には図面に同一符号を付して、詳細な説明は省略する。
 図11に示す誘導加熱装置10aでは、誘導加熱装置10においてインバータ14a,14bとチョッパ回路22a,22bとの間に配設されていた平滑コンデンサ20を排除しDCL20aを配置している。また、インバータ14a1,14b1と加熱コイル12a,12bとの間に配設する共振コンデンサ40a,40bは、加熱コイル12a,12bに対して並列に配置し、並列共振回路が構成されている。なお、図11には、制御回路、インピーダンス調整手段、電流検出手段、および電圧検出手段を明示していないが、その構成については、図2に示す実施形態と同様とすれば良い。図11に示す自己共振回路の等価回路図については、図10に示す。
Figure JPOXMLDOC01-appb-I000008

・・・数式8
 ここで、θs1、θs2、θmを一致させ、θs1=θs2=θm=θとした場合、Iiv1、Iiv2はそれぞれ数式9のように示すことができる。
Figure JPOXMLDOC01-appb-I000009

・・・数式9
 よって、インバータに与えるゲートパルスを同期させれば、インバータ電流Iiv1とIiv2の位相が同期し、コイル電流Il1とIl2の位相を同期させることができる。
 したがって、このような自己共振回路であっても、相互誘導インピーダンスにおけるレジスタンス成分Rmに対するリアクタンス成分Zm(=jωM)の比(第1の比)と、自己共振回路における自己インピーダンスのレジスタンス成分R1に対するリアクタンス成分Z1(=jω(L1+Ls1))の比(第2の比)を一致させるように、制御、あるいは調整することにより、コイル電流とインバータ電流間の位相角を一致させることができ、コイル電流の同期を図ることができる。
 また、当然に、相互誘導電圧Vm21(Vm12)が、加熱コイルに供給される電流Il2(Il1)に対して持つ位相角(第1の位相角θm)と、自己共振回路の合成電圧Vs1(Vs2)が、加熱コイルに供給される電流Il1(Il2)に対して持つ位相角(第2の位相角θ1(θ2)を一致させることによっても、コイル電流とインバータ電流間の位相角を一致させることができ、コイル電流の同期を図ることができる。
 なお、図11に示す自己共振回路は電流型インバータを用いた並列共振回路であるため、位相角制御に関しては、電圧波形に対して電流波形が進み位相となるように制御する。これにより、ZCS制御を行うことが可能となるからである。
 また、図11に示す自己共振回路には、逆結合インダクタンスが設けられていないが、電圧型インバータを採用する場合と同様に、逆結合インダクタンスを設けた回路であっても、本発明を適用することができる(図12:等価回路、図13:一例を示す回路図)。
 上記実施形態では、調整、制御、および設定要素の1つとして、位相、位相角、および位相差という構成を挙げており、主に、角度の調整、制御、および設定として説明している。しかしながら、上記位相、位相角、および位相差は、対応する時間として表すことができ、この相当時間に基づいて各種の調整、制御、および設定を行うようにしても良い。
 すなわち、1/周波数により、1周期あたりの時間を求めることができる。そして、360°は、2πであるから、調整、制御、および設定要素としての角度θについて、1周期あたりの時間を当該角度θで除算することで、位相、位相角、および位相差を対応する時間として変換することができる。よって、上記調整、制御、および設定は、位相、位相角、および位相差に替えて、それぞれ対応する時間に基づいて行うことができるからである。
 また、上記実施形態においては、出力電流、出力電圧、ゲートパルス、並びに位相、位相角、および位相差等の各種検出、設定、および制御要素の検出、設定、および制御は、制御回路42a,42b、や基準信号生成部44への信号の入力やこれらの要素からの信号の出力に基づいて成される旨記載した。しかしながらこれらの検出、設定、および制御は、これらの制御データを記録したコンピュータを用い、当該コンピュータに記録されたプログラム(コンピュータプログラム)に基づいて行うようにしても良い。また、コンピュータに限らず、制御信号を出入力可能な要素に対し、予め検出、設定、制御等のデータを記録した媒体(プログラマブルデバイス)を附帯させることで実施するようにしても良い。このような制御方式を採ることにより、設定値や制御値等の調整、変更を容易に行うことが可能となると共に、汎用機器の使用による低コスト化にも寄与することができる。
 10………誘導加熱装置、12a………加熱コイル、12b………加熱コイル、14a………インバータ、14b………インバータ、16………IGBT、18………ダイオード、20………平滑コンデンサ、21………平滑コイル、22a………チョッパ回路、22b………チョッパ回路、24………IGBT、25………平滑コンデンサ、26………コンバータ、28………サイリスタ、30………電源部、32a………共振コンデンサ、32b………共振コンデンサ、34a………インピーダンス調整手段、34b………インピーダンス調整手段、36a………逆結合インダクタンス、36b………逆結合インダクタンス、38a………電流検出手段、38b………電流検出手段、40a………電圧検出手段、40b………電圧検出手段、42a………制御回路、42b………制御回路、44………基準信号生成部、50………被誘導加熱部材。
             

Claims (24)

  1.  被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、
     相互誘導インピーダンスのリアクタンス成分とレジスタンス成分からなる位相角と、自己共振回路のインピーダンスのリアクタンス成分とレジスタンス成分からなる位相角を合わせるように調整、または制御した後、
     前記電流の位相差が零となるようにするため、および/または、前記共振型高周波電源の出力電流と出力電圧との位相角の変動を抑制するために、前記周波数および/または、前記出力電流の値を制御することを特徴とする誘導加熱方法。
  2.  前記誘導加熱装置を高効率運転するために、
     前記相互誘導インピーダンスにおける位相角及び、前記自己共振回路のインピーダンスにおける位相角を減少させるように調整または制御することを特徴とする請求項1に記載の誘導加熱方法。
  3.  隣接配置された前記加熱コイルへの給電線路に逆結合インダクタンスを付加することにより、相互誘導電圧と相互誘導を生じさせるコイル電流間の位相である第1の位相角を減少させ、
     前記自己共振回路の合成電圧と前記加熱コイルに供給される電流間の位相である第2の位相角を前記第1の位相角に一致させるように調整または制御することで、
     前記共振型高周波電源の出力電流と出力電圧との位相角を減少させることを特徴とする請求項2に記載の誘導加熱方法。
  4.  被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、
     相互誘導電圧と相互誘導を生じさせるコイル電流間の位相である第1の位相角と、
     自己共振回路の合成電圧と前記加熱コイルに供給される電流間の位相である第2の位相角を一致させるように調整、または制御して運転することを特徴とする誘導加熱方法。
  5.  被加熱物を加熱し、電流の供給により相互誘導を生じさせる複数の加熱コイルのそれぞれに、周波数を一致させた電流を供給する共振型高周波電源を接続した複数の自己共振回路を備えた誘導加熱装置による誘導加熱方法であって、
     隣接する前記自己共振回路間における相互誘導インピーダンスのレジスタンス成分に対する相互誘導インピーダンスのリアクタンス成分の比である第1の比と、
     前記自己共振回路における自己インピーダンスのレジスタンス成分に対する自己インピーダンスのリアクタンス成分の比である第2の比を、一致させるように調整、または制御して運転することを特徴とする誘導加熱方法。
  6.  前記第1の位相角と前記第2の位相角とを一致させるように、または前記第1の比と前記第2の比とを一致させるようにする調整、または制御は、前記自己共振回路のインピーダンスを調整、または制御することによって成すことを特徴とする請求項4または5に記載の誘導加熱方法。
  7.  前記第1の位相角と前記第2の位相角とを一致させるように、または前記第1の比と前記第2の比とを一致させるようにする調整、または制御は、前記加熱コイルに供給する電流の周波数を調整、または制御することによって成すことを特徴とする請求項4または5に記載の誘導加熱方法。
  8.  各自己共振回路における前記共振型高周波電源に対してゲートパルスを供給する際に、当該ゲートパルスの位相差が零となるように、または予め定めた位相差に近似するように出力して、前記誘導加熱装置を運転することを特徴とする請求項4乃至7のいずれか1項に記載の誘導加熱方法。
  9.  各自己共振回路における前記共振型高周波電源を電圧型高周波電源とし、当該電圧型高周波電源の出力電圧の位相差が零となるようにして、前記誘導加熱装置を運転することを特徴とする請求項4乃至7のいずれか1項に記載の誘導加熱方法。
  10.  各自己共振回路における前記共振型高周波電源を電流型高周波電源とし、当該電流型高周波電源の出力電流の位相差が零となるようにして、前記誘導加熱装置を運転することを特徴とする請求項4乃至7のいずれか1項に記載の誘導加熱方法。
  11.  前記共振型高周波電源の起動時に、前記ゲートパルスの位相差が零となるように、または予め定めた位相差となるように出力した後、
     各加熱コイルに供給される前記電流の位相を基準信号の位相に一致させるように、前記共振型高周波電源に供給するゲートパルスを制御して、前記誘導加熱装置を運転することを特徴とする請求項8に記載の誘導加熱方法。
  12.  前記ゲートパルスの位相差が零となるようにして前記共振型高周波電源を起動させる際に、前記ゲートパルスが、前記基準信号に基づいて定めた電流同期基準位置対して、予め定めた位相、または当該位相に対応する時間を持つように制御することを特徴とする請求項11に記載の誘導加熱方法。
  13.  前記共振型高周波電源起動後に、各加熱コイルに供給する電流のゼロクロス位置を検出し、各電流のゼロクロス位置が前記電流同期基準位置からずれている場合には、各電流のゼロクロス位置と前記電流同期基準位置との位相差が零となるように、前記ゲートパルス位置を制御することを特徴とする請求項12に記載の誘導加熱方法。
  14.  前記出力電圧と前記出力電流との間の位相角の許容範囲である許容位相角範囲を定め、
     前記出力電圧と前記出力電流との間の位相角が前記許容位相角範囲内に位置するように、前記周波数及び/または出力電流の値を制御することを特徴とする請求項13に記載の誘導加熱方法。
  15.  前記周波数の制御を行いつつ、前記各電流間の位相差が零となるように、前記ゲートパルス位置を制御することを特徴とする請求項14に記載の誘導加熱方法。
  16.  前記周波数の制御は、前記自己共振回路の共振周波数よりも高い値の範囲内で行うことを特徴とする請求項14または15に記載の誘導加熱方法。
  17.  前記ゲートパルス位置と前記電流同期基準位置との間の位相差の限界範囲としての電流同期制御範囲リミッタを定め、前記ゲートパルス位置が前記電流同期制御範囲リミッタの範囲内となるように、前記出力電流を制御することを特徴とする請求項13乃至16のいずれか1項に記載の誘導加熱方法。
  18.  電流の供給により相互誘導を生じさせる隣接配置された加熱コイルへの給電路に、それぞれ逆結合インダクタンスを接続することで前記第1の比または前記第1の位相角を減少させることを特徴とする請求項4乃至17のいずれか1項に記載の誘導加熱方法。
  19.  前記第1の比と前記第2の比、または前記第1の位相角と前記第2の位相角を一致させるために、前記逆結合インダクタンスのリアクタンス成分を調整または制御することを特徴とする請求項18に記載の誘導加熱方法。
  20.  前記第1の比または前記第1の位相角を予め定められた目標値に合わせるように調整し、
     当該目標値に前記第2の比または前記第2の位相角を一致させるようにすることを特徴とする請求項19に記載の誘導加熱方法。
  21.  前記逆結合インダクタンスにおける結合係数を変化させることで、相互誘導インピーダンスのリアクタンス成分を変化させ、
     前記第1の比、または前記第1の位相角を調整することを特徴とする請求項20に記載の誘導加熱方法。
  22.  前記自己共振回路におけるインダクタンスまたは、キャパシタンスを調整し、前記第2の比または前記第2の位相角を調整することを特徴とする請求項4乃至20のいずれか1項に記載の誘導加熱方法。
  23.  前記位相、前記位相角、および前記位相差を周波数に対応する時間に換算して設定、調整、または制御することを特徴とする請求項1乃至請求項22のいずれか1項に記載の誘導加熱方法。
  24.  前記検出、前記設定、および前記制御は、コンピュータプログラム、またはプログラマブルデバイスを介して行うことを特徴とする請求項1乃至23のいずれか1項に記載の誘導加熱方法。
     
PCT/JP2013/051346 2012-06-01 2013-01-23 誘導加熱方法 WO2013179683A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380003788.5A CN103959901B (zh) 2012-06-01 2013-01-23 感应加热方法
KR1020147008529A KR101655380B1 (ko) 2012-06-01 2013-01-23 유도 가열방법
DE112013000253.1T DE112013000253B4 (de) 2012-06-01 2013-01-23 Induktionsheizverfahren
JP2013513880A JP5296949B1 (ja) 2012-06-01 2013-01-23 誘導加熱方法
US14/351,489 US9591696B2 (en) 2012-06-01 2013-01-23 Induction heating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012125900 2012-06-01
JP2012-125900 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013179683A1 true WO2013179683A1 (ja) 2013-12-05

Family

ID=49672899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051346 WO2013179683A1 (ja) 2012-06-01 2013-01-23 誘導加熱方法

Country Status (5)

Country Link
US (1) US9591696B2 (ja)
KR (1) KR101655380B1 (ja)
CN (1) CN103959901B (ja)
DE (1) DE112013000253B4 (ja)
WO (1) WO2013179683A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764174B (zh) * 2014-12-16 2019-07-19 佛山市顺德区美的电热电器制造有限公司 电磁加热控制方法、电磁加热控制系统和电磁加热装置
KR101954531B1 (ko) * 2017-09-26 2019-05-23 엘지전자 주식회사 정수기 및 정수기의 제어 방법
US10993292B2 (en) * 2017-10-23 2021-04-27 Whirlpool Corporation System and method for tuning an induction circuit
US11746059B2 (en) 2020-02-26 2023-09-05 General Electric Companhy Induction melt infiltration processing of ceramic matrix composite components
KR102572531B1 (ko) * 2021-08-25 2023-08-31 울산과학기술원 후판 가열용 유도가열기의 제어 방법 및 제어 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259665A (ja) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd 誘導加熱方法及び装置
JP2005529475A (ja) * 2002-06-26 2005-09-29 三井造船株式会社 誘導加熱方法および装置
JP2006040693A (ja) * 2004-07-27 2006-02-09 Mitsui Eng & Shipbuild Co Ltd 誘導電圧検出方法および装置、並びに誘導加熱システム
JP2010245002A (ja) * 2009-04-10 2010-10-28 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置、その制御方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405711B1 (en) 2002-06-26 2015-05-06 Mitsui Engineering and Shipbuilding Co, Ltd. Induction heating method and unit
CN101917788B (zh) * 2002-06-26 2012-05-09 三井造船株式会社 感应加热装置
JP4729692B2 (ja) * 2006-02-09 2011-07-20 北芝電機株式会社 電源高調波対応誘導加熱装置
US8437149B2 (en) * 2009-12-23 2013-05-07 University Of New Hampshire Fully resonant power supply
JP5063755B2 (ja) 2010-08-09 2012-10-31 三井造船株式会社 誘導加熱装置および誘導加熱方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529475A (ja) * 2002-06-26 2005-09-29 三井造船株式会社 誘導加熱方法および装置
JP2004259665A (ja) * 2003-02-27 2004-09-16 Mitsui Eng & Shipbuild Co Ltd 誘導加熱方法及び装置
JP2006040693A (ja) * 2004-07-27 2006-02-09 Mitsui Eng & Shipbuild Co Ltd 誘導電圧検出方法および装置、並びに誘導加熱システム
JP2010245002A (ja) * 2009-04-10 2010-10-28 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置、その制御方法、及びプログラム

Also Published As

Publication number Publication date
CN103959901A (zh) 2014-07-30
DE112013000253B4 (de) 2023-02-09
KR20140054411A (ko) 2014-05-08
KR101655380B1 (ko) 2016-09-07
DE112013000253T5 (de) 2015-04-16
CN103959901B (zh) 2016-03-16
US20150108118A1 (en) 2015-04-23
US9591696B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
WO2013179683A1 (ja) 誘導加熱方法
KR101422138B1 (ko) 유도 가열 장치, 유도 가열 장치의 제어 방법, 및 제어 프로그램
TWI601352B (zh) 一種用於逆變系統的控制方法及控制裝置
JP6218961B2 (ja) 多重巻線電動機駆動制御装置
JP2017524327A (ja) 共振周波数補償
CN104092242B (zh) 一种基于可控虚拟阻抗的逆变器并联控制方法
JP5559944B1 (ja) 誘導加熱装置、誘導加熱装置の制御方法、及びプログラム
JP5388109B2 (ja) 誘導加熱装置、その制御方法、及びプログラム
JP5968564B2 (ja) 電力変換装置
JP6356416B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
US20160134202A1 (en) Control signal generating system and inverter control device thereof
JP5296949B1 (ja) 誘導加熱方法
EP3276820B1 (en) Motor control device
JP2014225366A (ja) 誘導加熱装置、誘導加熱装置の制御方法、及びプログラム
JP6226833B2 (ja) 電力変換装置
JP5498664B2 (ja) インバータ制御装置
JP2012048962A (ja) 誘導加熱装置および誘導加熱方法
JP2017060243A (ja) 誘導加熱装置とその出力電力制御方法。
JP4948388B2 (ja) 誘導加熱調理器
JP5612518B2 (ja) 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム
JP2012199159A (ja) 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム
CN113972849A (zh) 感应加热电源的频率自适应装置、方法及相关设备
Pavithra et al. DTC based induction motor speed control using 10-sector methodology for torque ripple reduction
JP2022097219A (ja) 三相インバータの3パルスpwm制御法
Satyanarayana et al. A DTC based FOC Strategy of Induction Motor drive for the Mitigations of CMV

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003788.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013513880

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008529

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14351489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000253

Country of ref document: DE

Ref document number: 1120130002531

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797664

Country of ref document: EP

Kind code of ref document: A1