WO2013179503A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2013179503A1
WO2013179503A1 PCT/JP2012/073579 JP2012073579W WO2013179503A1 WO 2013179503 A1 WO2013179503 A1 WO 2013179503A1 JP 2012073579 W JP2012073579 W JP 2012073579W WO 2013179503 A1 WO2013179503 A1 WO 2013179503A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerator
condensation prevention
refrigerant
dew condensation
Prior art date
Application number
PCT/JP2012/073579
Other languages
English (en)
French (fr)
Inventor
雄亮 田代
中津 哲史
西澤 章
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2012381228A priority Critical patent/AU2012381228B2/en
Priority to CN201280073550.5A priority patent/CN104350344B/zh
Priority to SG11201407254YA priority patent/SG11201407254YA/en
Priority to CN201320303942.8U priority patent/CN203413897U/zh
Publication of WO2013179503A1 publication Critical patent/WO2013179503A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the present invention relates to a refrigerator having a condensation prevention pipe for preventing condensation.
  • a refrigerator having a condensation prevention pipe (or also referred to as a cabinet pipe or a condensation prevention pipe) for preventing condensation.
  • a condensation prevention pipe is installed at the periphery of the opening of the refrigerator body, and condensation on the periphery of the opening of the refrigerator body is prevented by condensing the high-pressure refrigerant discharged from the compressor in the condensation prevention pipe.
  • the refrigerant in the condensation prevention pipe condenses at the same refrigerant pressure as the condensation pipe, the condensation prevention pipe is heated more than necessary, and an extra compressor input is required. It was.
  • a refrigerant flow distribution device (7) is interposed between the heat radiation capacitor (2a) and the dew condensation prevention capacitor (2b), and the dew condensation prevention capacitor and the bypass are provided according to the temperature difference between the ambient temperature and the dew condensation prevention capacitor.
  • a refrigerator is disclosed in which refrigerant is distributed to the pipe (6) so that the periphery of the opening of the refrigerator main body is not heated more than necessary (see, for example, Patent Document 1).
  • JP-A-8-285426 (see, for example, FIGS. 1 and 6)
  • the present invention provides a refrigerator capable of setting the temperature of the refrigerant flowing into the dew condensation prevention pipe to a target temperature without providing a highly accurate pressure detection device and flow rate adjustment device.
  • the purpose is that.
  • the refrigerator according to the present invention includes a cabinet section that is partitioned into a plurality of storage rooms, a divider section that partitions the internal space of the cabinet section into the plurality of storage rooms, a compressor, a condensation pipe, a decompression device, and dew condensation prevention.
  • the pressure reducing device since the pressure reducing device is provided, the refrigerant pressure of the dew condensation prevention pipe can be lowered, the compressor input can be reduced, and the consumption can be reduced without heating the dew condensation prevention pipe more than necessary. It becomes possible to reduce electric energy.
  • FIG. 1 is a diagram illustrating the configuration of the refrigeration cycle of refrigerator 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the structure of the refrigerating cycle of the refrigerator 100 is demonstrated.
  • the refrigerator 100 cools the inside of the refrigerator 100 to a target temperature using a vapor compression refrigeration cycle. Further, the refrigerator 100 reduces the refrigerant pressure of the dew condensation prevention pipe embedded in the periphery of the opening of the refrigerator main body, so that the dew condensation prevention pipe is not heated more than necessary, and the compressor input is reduced. It is possible to reduce the amount of power consumption.
  • the refrigeration cycle of the refrigerator 100 includes a compressor 11, a condensation pipe 12, a decompression device 18, a dew condensation prevention pipe 13, a dryer 14, a capillary tube 15, and a cooler 16. It is connected by piping. Further, the refrigeration cycle of the refrigerator 100 is provided with a heat exchange portion 17 for exchanging heat between the refrigerant flowing through the capillary tube 15 and the refrigerant flowing through the pipe (suction pipe) between the cooler 16 and the compressor 11. Yes.
  • the compressor 11 is arranged in a machine room provided at the lower back of the refrigerator 100, for example.
  • the compressor 11 compresses the refrigerant into a high-temperature and high-pressure refrigerant, is driven by an inverter, and the operation is controlled according to the state in the warehouse.
  • the condensation pipe 12 is connected to the discharge side of the compressor 11.
  • the condensation pipe 12 indicates a hot pipe for draining evaporation, an air-cooled condenser placed in the installation space of the compressor 11, and a condensation pipe embedded in a side surface or back surface of the refrigerator via a heat insulating material.
  • the decompression device 18 is connected between the condensation pipe 12 and the dew condensation prevention pipe 13.
  • the decompression device 18 decompresses the refrigerant and expands it, and may be constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the condensation prevention pipe 13 is connected between the decompression device 18 and the dryer 14. This dew condensation prevention pipe 13 is provided for preventing dew condensation in the front part of the refrigerator main body, and acts as a condenser.
  • the dryer 14 is connected between the dew condensation prevention pipe 13 and the capillary tube 15.
  • the dryer 14 includes a filter that prevents dust, metal powder, and the like in the refrigeration cycle of the refrigerator 100 from flowing into the compressor 11, an adsorption member that adsorbs moisture in the refrigeration cycle, and the like.
  • the capillary tube 15 is connected between the dryer 14 and the cooler 16.
  • the capillary tube 15 functions as a decompression device that decompresses the refrigerant flowing through the dryer 14.
  • the cooler 16 is connected between the capillary tube 15 and the suction pipe side of the heat exchange portion 17. This cooler 16 cools the cooler room provided in the back side of the refrigerator 100, for example. Note that a fan is provided above the cooler 16, and air is supplied to the cooler 16 by the fan, and cool air cooled around the cooler 16 is blown to each storage chamber.
  • the heat exchanging portion 17 is a portion that exchanges heat between the refrigerant flowing through the capillary tube 15 and the refrigerant sucked into the compressor 11.
  • a control device 10 including a microcomputer or the like for controlling the operation of the refrigerator 100 is provided at the upper back of the refrigerator 100.
  • FIG. 2 is a diagram for explaining an installation example of the dew condensation prevention pipe 13 of the refrigerator 100. Based on FIG. 2, the installation example of the dew condensation prevention pipe 13 is demonstrated.
  • the refrigerator 100 includes a box-shaped cabinet portion 21 whose front side is open.
  • This cabinet part 21 has an outer box that forms the outer shell of the refrigerator main body and an inner box that forms the inner wall of the refrigerator main body, and a heat insulating material such as urethane is provided therebetween.
  • a divider part (partition wall) 22 that partitions the internal space of the cabinet part 21 into a plurality of storage chambers is provided inside the cabinet part 21.
  • a refrigerator compartment 3 an ice making compartment 4, a switching compartment 5, a freezer compartment 6, and a vegetable compartment 7 are provided as storage compartments.
  • the refrigerator compartment 3 is provided in the uppermost part of the refrigerator 100, and the front surface is covered with a double-open door having a heat insulating structure so as to be freely opened and closed.
  • the ice making chamber 4 and the switching chamber 5 are provided side by side on the lower side of the refrigeration chamber 3, and the front surfaces of the ice making chamber 4 and the switching chamber 5 are covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
  • the freezing room 6 is provided below the ice making room 4 and the switching room 5, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be opened and closed.
  • the vegetable compartment 7 is provided below the freezer compartment 6 and at the bottom of the refrigerator 100, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
  • Each door of the storage room is usually provided with a door open / close sensor (not shown) for detecting the open / closed state.
  • the control apparatus 10 receives the output from each door opening / closing sensor, detects the opening / closing state of each door, for example, when a door is open for a long time, an operation panel (illustration omitted) or a voice output device Thus, it is possible to notify the user to that effect.
  • Each storage room is distinguished by a settable temperature zone (set temperature zone).
  • the refrigerator compartment 3 is about 0 ° C. to 4 ° C.
  • the vegetable compartment 7 is about 3 ° C. to 10 ° C.
  • the ice making chamber 4 is about
  • the temperature in the freezer compartment 6 can be set to about -16 ° C to -22 ° C.
  • the switching chamber 5 can be switched to a temperature range such as chilled (about 0 ° C.) or soft freezing (about ⁇ 7 ° C.).
  • the set temperature of each storage room is not limited to this.
  • an operation panel comprising an operation switch for adjusting the temperature and setting of each storage room and a liquid crystal for displaying the temperature of each storage room at that time.
  • the operation panel may be provided with an outside air temperature sensor that detects the temperature of the outside air around the refrigerator 100.
  • the control device 10 controls the operation of the refrigeration cycle and the operation of each part so that the detection value of the internal temperature sensor arranged in each storage room becomes the set temperature set by the operation panel.
  • the surface temperature of the cabinet unit 21 and the divider unit 22 in which the inside of the refrigerator and the outside of the refrigerator are close to each other is equal to or lower than the outside air dew point temperature. If this happens, condensation may occur. Therefore, in the refrigerator 100, as shown in FIG. 2, the surface temperature of the cabinet part 21 and the divider part 22 is maintained above the dew point of the outside air by the refrigerant condensation heat by the dew condensation prevention pipe 13.
  • the dew condensation prevention pipe 13 is bent and installed at the peripheral edge of the front opening of the cabinet portion 21 and the front edge of the divider portion 22.
  • This dew condensation prevention pipe 13 is installed in the cabinet part 21 or the divider part 22 through an elastic member having a large heat capacity such as butyl rubber.
  • the dew condensation prevention pipes 13 may be disposed on all front side edges of the cabinet part 21 and the divider part 22.
  • the anti-condensation pipe 13 is arranged only on the front side edge of the ice making room 4, the switching room 5, and the freezing room 6 and the front edge of the divider part 22 (the area where the cold air in the freezing temperature zone can leak). You may set up.
  • positioning of the dew condensation prevention pipe 13 is not limited to what was illustrated in FIG. 2, It can arrange
  • the surface temperature of the cabinet unit 21 or the divider unit 22 increases if the heater input is increased.
  • the surface temperature is set to be equal to or higher than the outside air dew point temperature in order to prevent dew condensation on the cabinet part 21 and the divider part 22, if the surface temperature becomes equal to the outside air dew point temperature at a certain heater input Wh, an input exceeding Wh is added.
  • the surface temperature is equal to or higher than the outside air dew point temperature.
  • the surface temperature is equal to or lower than the outside air dew point temperature. That is, there is a correlation between the heater input and the surface temperature of the cabinet part 21 or the divider part 22, and as the heater input increases, the heater temperature rises and the surface temperature of the cabinet part 21 or the divider part 22 increases.
  • the dew condensation prevention pipe 13 plays the same role as the heater, and the heater input is the compressor input. That is, if the surface temperature of the cabinet part 21 or the divider part 22 can be lowered, that is, the temperature of the dew condensation prevention pipe 13 can be lowered, the compressor input is reduced.
  • FIG. 3 is a Mollier diagram of isobutane, which is a refrigerant generally used in refrigerators, and a diagram showing refrigerant state transitions in a conventional refrigerator refrigeration cycle. Based on FIG. 3, the refrigerating cycle of the conventional refrigerator which does not have the decompression device 18 is demonstrated.
  • symbol in FIG. 3 has shown the same thing as FIG. In FIG. 3, the horizontal axis represents enthalpy and the vertical axis represents pressure. Further, the outside air temperature outside the warehouse is assumed to be 30 ° C., and the temperature of the air flowing into the cooler 16 is assumed to be ⁇ 15 ° C.
  • the refrigerant is compressed by the compressor 11 (A ⁇ B in FIG. 3) to be a high-temperature and high-pressure refrigerant, and the condensation heat is radiated to the outside air by the condensation pipe 12 when the refrigerant saturation pressure becomes higher than the outside air temperature.
  • the conventional refrigerator does not have the decompression device 18, the refrigerant flows into the dew condensation prevention pipe 13 downstream of the condensation pipe 12 at a refrigerant pressure equivalent to that of the condensation pipe 12.
  • the refrigerant pressure slightly decreases due to the refrigerant pressure loss in the pipe of the condensing pipe 12, it is sufficiently smaller than the amount of pressure decrease in the decompression device 18 shown below.
  • the refrigerant that has radiated heat through the condensing pipe 12 further dissipates the heat of condensation through the condensation prevention pipe 13 into the outside air and inside the cabinet (B ⁇ C in FIG. 3).
  • the refrigerant exiting the dew condensation prevention pipe 13 reaches the capillary tube 15 (see FIG. 1).
  • the capillary tube 15 the refrigerant is depressurized and at the same time exchanges heat with the refrigerant flowing through the suction pipe of the compressor 11 in the heat exchanging portion 17 (see FIG. 1) (C ⁇ D in FIG. 3).
  • the refrigerant that has exited the capillary tube 15 flows into the cooler 16.
  • the refrigerant evaporates due to the air flowing into the cooler 16, absorbs the incoming air, and returns to the compressor 11 (D ⁇ A in FIG. 3).
  • the compressor input can be reduced more than before.
  • the refrigerant pressure in the condensation pipe 12 and the refrigerant pressure in the condensation prevention pipe 13 are equal, the refrigerant condensation temperature in the condensation prevention pipe 13 is equivalent to the refrigerant condensation temperature in the condensation pipe 12. It becomes.
  • the refrigerant pressure in the condensation pipe 12 is always the refrigerant saturation pressure equal to or higher than the outside air temperature, and the refrigerant pressure in the condensation prevention pipe 13 inevitably becomes the refrigerant saturation pressure equal to or higher than the outside air temperature.
  • the outside dew point temperature is always equal to or lower than the outside air temperature
  • the outside temperature is sufficient as the temperature of the dew condensation preventing pipe 13.
  • the refrigerant pressure of the dew condensation prevention pipe 13 is equal to the refrigerant pressure of the condensation pipe 12
  • the refrigerant temperature of the dew condensation prevention pipe 13 is always maintained above the outside air temperature.
  • FIG. 4 is a Mollier diagram of isobutane, which is a refrigerant generally used in refrigerators, and a diagram showing the state transition of the refrigerant in the refrigeration cycle of the refrigerator 100.
  • a refrigeration cycle of the refrigerator 100 having the decompression device 18 in series between the condensation pipe 12 and the dew condensation prevention pipe 13 will be described with reference to FIG. Note that the reference numerals in FIG. 4 indicate the same as those in FIG. In FIG. 4, the horizontal axis represents enthalpy and the vertical axis represents pressure. Further, the outside air temperature outside the warehouse is assumed to be 30 ° C., and the temperature of the air flowing into the cooler 16 is assumed to be ⁇ 15 ° C.
  • the refrigerant is compressed by the compressor 11 (A ⁇ B in FIG. 4) to be a high-temperature and high-pressure refrigerant, and when the refrigerant saturation pressure becomes higher than the outside air temperature, the condensation pipe 12 dissipates the heat of condensation to the outside air.
  • the pressure of the refrigerant discharged from the condensation pipe 12 is decompressed by the decompression device 18 (E ⁇ F in FIG. 4), thereby reducing the refrigerant pressure in the dew condensation prevention pipe 13. It is possible. Thereby, the refrigerant
  • the amount of decrease that can be reduced by the pressure reducing device 18 is that the refrigerant saturation temperature in the dew condensation prevention pipe 13 reaches a saturation pressure that is 3 ° C. to 5 ° C. lower than the outside air temperature.
  • the refrigerant saturation pressure in the dew condensation prevention pipe 13 is lower than the outside air temperature, the refrigerant cannot condense, but as shown in FIG. It is in contact with the following air.
  • the possible refrigerant saturation temperature in the dew condensation prevention pipe 13 is the outside air temperature.
  • the temperature is reduced by 3 ° C. to 5 ° C. from the outside air temperature. It is.
  • the input of the compressor 11 can be reduced.
  • the temperature of the dew condensation prevention pipe 13 can be lowered. It is possible to reduce the input of the compressor as compared with the refrigerator.
  • the condensing pipe 12, the decompression device 18, and the condensation prevention pipe 13 are connected in series, and the decompression device 18 is provided in front of the condensation prevention pipe 13, thereby reducing the refrigerant pressure of the condensation prevention pipe 13. It is possible to make it lower than the condensation pipe 12. Therefore, since the temperature of the dew condensation prevention pipe 13 can be lowered by the decompression device 18, the input of the compressor can be reduced as compared with a conventional refrigerator. As a result, according to the refrigerator 100, without providing a highly accurate pressure detection device and flow rate adjustment device, the dew condensation prevention pipe 13 is not heated more than necessary, the compressor input is reduced, and the power consumption is reduced. It becomes possible to make it.
  • a refrigerant circuit configuration in which the condensation pipe exists on the downstream side in the refrigerant flow of the dew condensation prevention pipe 13 is not desirable.
  • a fixed pressure reducing valve such as a capillary tube may be used as the pressure reducing device 18, but an electronic expansion valve (flow path) that can be adjusted to an arbitrary pressure reducing amount in order to cope with the operation state of the refrigerator and the outside air temperature. It is desirable to use a valve whose cross-sectional area can be adjusted in multiple steps or continuously.
  • the compressor input can be reduced and the power consumption of the refrigerator can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Lubricants (AREA)

Abstract

 冷蔵庫100は、減圧装置18が、凝縮パイプ12と結露防止パイプ13との間に、凝縮パイプ12及び結露防止パイプ13に直列に接続されているものである。

Description

冷蔵庫
 本発明は、結露を防止する結露防止パイプを有する冷蔵庫に関するものである。
 従来から、結露を防止するための結露防止パイプ(またはキャビネットパイプ、または防露パイプ等とも称する)を有する冷蔵庫が存在している。このような冷蔵庫の多くでは、結露防止パイプを冷蔵庫本体の開口部周縁に設置し、結露防止パイプにおいて圧縮機から吐出された高圧冷媒を凝縮させることで、冷蔵庫本体の開口部周縁の結露を防止するようにしている。しかしながら、凝縮パイプと同等の冷媒圧力で結露防止パイプ中の冷媒が凝縮することになるため、必要以上に結露防止パイプが加熱されてしまい、余分な圧縮機入力が必要となるという問題点があった。
 このため、結露防止パイプを必要以上に加熱しないために、結露防止パイプへの冷媒流量を調節するようにした冷蔵庫が種々提案されている。そのようなものとして、放熱コンデンサ(2a)と結露防止コンデンサ(2b)の間に冷媒流量分配装置(7)を介装し、周囲温度と結露防止コンデンサの温度差に応じて結露防止コンデンサとバイパス管(6)へ冷媒分配を行い、冷蔵庫本体の開口部周縁が必要以上に加熱されないようにした冷蔵庫が開示されている(たとえば、特許文献1参照)。
特開平8-285426号公報(例えば、図1、6等参照)
 しかしながら、特許文献1に記載の冷蔵庫の構成では、バイパス管への冷媒流量により結露防止パイプへの冷媒流量が変化するため、結露防止パイプへ流入させる冷媒の温度を目標温度にするために精度の高い圧力検知装置が必要となってしまうという問題点があった。これにより、コストの増加を招いてしまうことにもなっていた。また、余分な圧縮機入力が必要となり、消費電力量を増加することにもなっていた。
 従来技術では、結露防止パイプを必要以上に加熱しないために、冷媒流量を調節する方法が種々提案されているが、バイパス流路に加え、冷媒流量分配装置によりバイパス管への冷媒流量を調節するため、結露防止パイプへ流入させる冷媒の温度を目標温度にするために精度の高い流量調節装置が必要となってしまうという問題点があった。これにより、コスト及び消費電力量の増加を更に招いてしまうことになっていた。
 本発明は、上記の問題点を解決するために、精度の高い圧力検知装置及び流量調節装置を設けることなく、結露防止パイプへ流入させる冷媒の温度を目標温度にすることができる冷蔵庫を提供することを目的としている。
 本発明に係る冷蔵庫は、内部が複数の貯蔵室に区画されたキャビネット部と、前記キャビネット部の内部空間を複数の前記貯蔵室に仕切るディバイダ部と、圧縮機、凝縮パイプ、減圧装置、結露防止パイプ、キャピラリーチューブ、及び、冷却器を有する冷凍サイクルと、を備え、前記結露防止パイプは、前記キャビネット部及び前記ディバイダ部の前面側の縁の少なくとも一部に内装されており、前記減圧装置は、前記凝縮パイプと前記結露防止パイプの間に接続され、前記凝縮パイプ、前記減圧装置、前記結露防止パイプは直列に接続されているものである。
 本発明の冷蔵庫によれば、減圧装置を備えているので、結露防止パイプの冷媒圧力を低下することが可能で、結露防止パイプを必要以上に加熱することなく、圧縮機入力を低減し、消費電力量を低減させることが可能となる。
本発明の実施の形態に係る冷蔵庫の冷凍サイクルの構成を説明する図である。 本発明の実施の形態に係る冷蔵庫の結露防止パイプの設置例を説明する図である。 冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、従来の冷蔵庫の冷凍サイクルにおける冷媒の状態遷移を示した図である。 冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、本発明の実施の形態に係る冷蔵庫の冷凍サイクルにおける冷媒の状態遷移を示した図である。
 以下、本発明に係る冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1は、本発明の実施の形態1に係る冷蔵庫100の冷凍サイクルの構成を説明する図である。図1に基づいて、冷蔵庫100の冷凍サイクルの構成について説明する。この冷蔵庫100は、蒸気圧縮式冷凍サイクルを利用して冷蔵庫100の庫内を目標温度まで冷却するものである。また、冷蔵庫100は、冷蔵庫本体の開口部周縁に埋設されている結露防止パイプの冷媒圧力を低下させることで、結露防止パイプを必要以上に加熱することがなく、圧縮機入力を低減し、冷蔵庫の消費電力量を低減させることを可能にしたものである。
 図1に示すように、冷蔵庫100の冷凍サイクルは、圧縮機11と、凝縮パイプ12と、減圧装置18と、結露防止パイプ13と、ドライヤ14と、キャピラリーチューブ15と、冷却器16とが、配管にて接続されて構成されている。また、冷蔵庫100の冷凍サイクルには、キャピラリーチューブ15を流れる冷媒と、冷却器16と圧縮機11との間における配管(吸入パイプ)を流れる冷媒とで熱交換させる熱交換部分17が設けられている。
 圧縮機11は、たとえば冷蔵庫100の背面下部に設けられた機械室内に配置されている。圧縮機11は、冷媒を圧縮して高温・高圧の冷媒とするものであり、インバータで駆動され、庫内状況に応じて運転が制御されるようになっている。
 凝縮パイプ12は、圧縮機11の吐出側に接続されている。この凝縮パイプ12は、ドレン蒸発のためのホットパイプや、圧縮機11の設置空間に置かれた空冷凝縮器、冷蔵庫の側面や背面に断熱材を介して埋設されている凝縮パイプを示す。
 減圧装置18は、凝縮パイプ12と結露防止パイプ13との間に接続されている。この減圧装置18は、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 結露防止パイプ13は、減圧装置18とドライヤ14との間に接続されている。この結露防止パイプ13は、冷蔵庫本体の前面部分における露付き防止用に設けられ、凝縮器として作用する。
 ドライヤ14は、結露防止パイプ13とキャピラリーチューブ15との間に接続されている。このドライヤ14は、冷蔵庫100の冷凍サイクル内のゴミや金属粉等を圧縮機11へ流入させないためのフィルターや、冷凍サイクル内の水分を吸着する吸着部材などで構成されている。
 キャピラリーチューブ15は、ドライヤ14と冷却器16との間に接続されている。このキャピラリーチューブ15は、ドライヤ14を流れてきた冷媒を減圧する減圧装置として作用する。
 冷却器16は、キャピラリーチューブ15と熱交換部分17の吸入パイプ側との間に接続されている。この冷却器16は、たとえば冷蔵庫100の背面側に設けられた冷却器室内を冷却するものである。なお、冷却器16の上方にはファンが設けられており、このファンにより冷却器16に空気が供給されるとともに、冷却器16周辺で冷却された冷気が各貯蔵室へと送風される。
 熱交換部分17は、キャピラリーチューブ15を流れる冷媒と、圧縮機11へ吸入する冷媒と、の間で熱交換を行わせる部分である。
 また、たとえば冷蔵庫100の背面上部には、この冷蔵庫100の運転を制御するマイコン等を備えた制御装置10が設けられている。
 図2は、冷蔵庫100の結露防止パイプ13の設置例を説明する図である。図2に基づいて、結露防止パイプ13の設置例について説明する。
 図2に示すように、冷蔵庫100は、前面側が開口した箱状のキャビネット部21を備えている。このキャビネット部21は、冷蔵庫本体の外郭を形成する外箱と、冷蔵庫本体の内壁を形成する内箱とを有し、その間に例えばウレタンなどの断熱材が設けられて構成されている。また、キャビネット部21の内部には、キャビネット部21の内部空間を複数の貯蔵室に仕切るディバイダ部(仕切り壁)22が設けられている。冷蔵庫100では、貯蔵室として、冷蔵室3、製氷室4、切替室5、冷凍室6、野菜室7が設けられている。
 冷蔵室3は、冷蔵庫100の最上部に設けられており、前面は断熱構造を有する両開き式の扉により開閉自在に覆われる。製氷室4及び切替室5は、冷蔵室3の下側の左右に並んで設けられており、それぞれの前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。冷凍室6は、製氷室4及び切替室5の下側に設けられており、前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。野菜室7は、冷凍室6の下側、冷蔵庫100の最下部に設けられており、前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。
 各貯蔵室の扉には、通常、その開閉状態を検出する扉開閉センサー(図示省略)が設けられている。そして、制御装置10は、各扉開閉センサーからの出力を受けて各扉の開閉状態を検出し、例えば扉が長時間開放されたままの場合には、操作パネル(図示省略)や音声出力装置により、その旨を使用者に報知することができる。
 各貯蔵室は、設定可能な温度帯(設定温度帯)によって区別されており、例えば、冷蔵室3は約0℃~4℃、野菜室7は約3℃~10℃、製氷室4は約-18℃、冷凍室6は約-16℃~-22℃にそれぞれ設定可能となっている。また、切替室5は、チルド(約0℃)やソフト冷凍(約-7℃)などの温度帯に切り替えることが可能である。なお、各貯蔵室の設定温度はこれに限るものではない。
 たとえば冷蔵室3の扉の表面には、各貯蔵室の温度や設定を調節する操作スイッチと、そのときの各貯蔵室の温度を表示する液晶などから構成される操作パネルが設けられている。この操作パネルには、冷蔵庫100の周囲の外気の温度を検出する外気温度センサーを設けておくとよい。制御装置10は、各貯蔵室に配置された庫内温度センサーの検出値が、操作パネルにより設定された設定温度となるように、冷凍サイクルの運転や各部の動作を制御する。
 このように冷蔵庫100の内部は、温度帯の異なる複数の貯蔵室に区画されているため、庫内と庫外とが近接するキャビネット部21やディバイダ部22では、その表面温度が外気露点温度以下になると結露が発生する可能性がある。そのため、冷蔵庫100では、図2に示すように結露防止パイプ13により、キャビネット部21、ディバイダ部22の表面温度を冷媒凝縮熱により外気露点温度以上に維持している。
 結露防止パイプ13は、キャビネット部21の前面開口の周縁部及びディバイダ部22の前面側の縁に、折り曲げて内装されている。この結露防止パイプ13は、ブチルゴムなどの熱容量の大きい弾性部材を介して、キャビネット部21やディバイダ部22に設置されている。図2に示すように、キャビネット部21とディバイダ部22のすべての前面側の縁に結露防止パイプ13を配設してもよい。また、製氷室4、切替室5、及び冷凍室6に隣接するキャビネット部21及びディバイダ部22の前面側の縁(冷凍温度帯の冷気が漏れ出しうる領域)にのみ、結露防止パイプ13を配設してもよい。なお、結露防止パイプ13の配置は、図2に図示したものに限定されず、低温冷気が外部に漏れ出すことによる露付きを抑制可能な任意の場所に配置することができる。
 ここで、キャビネット部21、ディバイダ部22の表面温度の上昇と、圧縮機11の必要入力について説明する。
 例えば、キャビネット部21やディバイダ部22の表面温度を結露防止パイプ13でなくヒータにより上昇させる場合、ヒータ入力を増加させればキャビネット部21やディバイダ部22の表面温度は上昇する。そして、キャビネット部21やディバイダ部22の結露防止のため表面温度を外気露点温度以上にする場合、あるヒータ入力Whにて表面温度が外気露点温度と同等になったとすると、Wh以上の入力を加えると表面温度は外気露点温度以上になり、Wh以下の入力では表面温度は外気露点温度以下となる。つまり、ヒータ入力とキャビネット部21やディバイダ部22の表面温度には相関があり、ヒータ入力が増えればヒータ温度が上昇し、キャビネット部21やディバイダ部22の表面温度は高くなる。
 これに対し、冷蔵庫100の場合は結露防止パイプ13がヒータと同等の役割をしており、ヒータ入力が圧縮機入力となる。すなわち、キャビネット部21やディバイダ部22の表面温度を低下、つまり結露防止パイプ13の温度を低下することができれば圧縮機入力が低減するということである。
 図3は、冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、従来の冷蔵庫の冷凍サイクルにおける冷媒の状態遷移を示した図である。図3に基づいて、減圧装置18を持たない従来の冷蔵庫の冷凍サイクルについて説明する。なお、図3中の符号は、図1と同じものを示している。また、図3において、横軸はエンタルピ、縦軸は圧力である。さらに、庫外の外気温を30℃と想定し、冷却器16への流入空気温度を-15℃と想定している。
 冷蔵庫では、冷媒を圧縮機11で圧縮(図3中のA→B)して高温高圧の冷媒とし、冷媒飽和圧力が外気温度以上となることで凝縮パイプ12にて外気に凝縮熱を放熱する。従来の冷蔵庫は減圧装置18を持たないために、凝縮パイプ12の下流の結露防止パイプ13には凝縮パイプ12と同等の冷媒圧力で冷媒が流入する。なお、凝縮パイプ12の管内での冷媒圧力損失によりわずかに冷媒圧力は低下するが、以下に示す減圧装置18での圧力低下量に比べると十分に小さい。
 凝縮パイプ12で放熱した冷媒は、更に結露防止パイプ13で外気及び庫内に凝縮熱を放熱する(図3中のB→C)。結露防止パイプ13を出た冷媒は、キャピラリーチューブ15(図1参照)に至る。キャピラリーチューブ15では、冷媒は、減圧されると同時に熱交換部分17(図1参照)にて圧縮機11の吸入パイプを流れる冷媒と熱交換する(図3中のC→D)。そして、キャピラリーチューブ15を出た冷媒は、冷却器16に流入する。冷却器16では、冷媒は、冷却器16に流入する空気により蒸発し、流入空気を吸熱して圧縮機11に戻る(図3中のD→A)。
 上述したように、結露防止パイプ13の温度と圧縮機入力には相関があり、結露防止パイプ13の温度を必要程度とすることで圧縮機入力を従来以上に低減することが可能である。しかしながら、従来の冷蔵庫では、凝縮パイプ12での冷媒圧力と結露防止パイプ13での冷媒圧力とが同等であるため、結露防止パイプ13での冷媒凝縮温度は凝縮パイプ12での冷媒凝縮温度と同等となる。凝縮パイプ12では外気に放熱するため、凝縮パイプ12の冷媒圧力は必ず外気温度以上の冷媒飽和圧力であり、必然的に結露防止パイプ13の冷媒圧力も外気温度以上の冷媒飽和圧力となる。
 ここで、外気露点温度は必ず外気温度以下であることから、本来は結露防止パイプ13の温度は外気温度で十分である。しかしながら、従来の冷蔵庫では、結露防止パイプ13の冷媒圧力は凝縮パイプ12の冷媒圧力と同等であることから、結露防止パイプ13の冷媒温度は必ず外気温度以上に維持されてしまっている。
 図4は、冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、冷蔵庫100の冷凍サイクルにおける冷媒の状態遷移を示した図である。図4に基づいて、凝縮パイプ12と結露防止パイプ13の間に直列で減圧装置18を持つ冷蔵庫100の冷凍サイクルについて説明する。なお、図4中の符号は、図1と同じものを示している。また、図4において、横軸はエンタルピ、縦軸は圧力である。さらに、庫外の外気温を30℃と想定し、冷却器16への流入空気温度を-15℃と想定している。
 冷蔵庫100では、冷媒を圧縮機11で圧縮(図4中のA→B)して高温高圧の冷媒とし、冷媒飽和圧力が外気温度以上となることで凝縮パイプ12にて外気に凝縮熱を放熱する。冷蔵庫100は減圧装置18を持つために、凝縮パイプ12から出た冷媒の圧力を減圧装置18にて減圧する(図4中のE→F)ことで、結露防止パイプ13の冷媒圧力を低下させることが可能である。これにより、結露防止パイプ13での冷媒温度が低下する。減圧装置18での減圧可能な低下量は、結露防止パイプ13内の冷媒飽和温度が外気温度から3℃~5℃低い温度の飽和圧力までである。
 本来、結露防止パイプ13内の冷媒飽和圧力が外気温度を下回った場合、冷媒は凝縮できないが、図2に示すように結露防止パイプ13は庫内に近い位置にあるため、結果的に外気温度以下の空気と接している。ただし、外気露点温度も考慮する必要があるため、結露防止パイプ13での可能な冷媒飽和温度は、外気温度で、より圧縮機入力を低減させる場合は外気温度から3℃~5℃低い温度までである。
 上述したように、結露防止パイプ13の温度が下がれば圧縮機11の入力の低減が可能であり、減圧装置18を持つ冷蔵庫100の冷凍サイクルでは、結露防止パイプ13の温度を低下できるので、従来の冷蔵庫に比べて圧縮機の入力の低減が可能である。
 以上のように、冷蔵庫100では、直列に凝縮パイプ12、減圧装置18、結露防止パイプ13を接続し、結露防止パイプ13の手前に減圧装置18を設けることで、結露防止パイプ13の冷媒圧力を凝縮パイプ12よりも低下させることを可能としている。そのため、減圧装置18によって、結露防止パイプ13の温度を低下できるので、従来の冷蔵庫に比べて圧縮機の入力の低減が可能である。その結果、冷蔵庫100によれば、精度の高い圧力検知装置及び流量調節装置を設けることなく、結露防止パイプ13を必要以上に加熱することがなく、圧縮機入力が低減し、消費電力量を低減させることが可能となる。
 なお、結露防止パイプ13の冷媒圧力を凝縮パイプ12よりも低下させるためには、結露防止パイプ13の冷媒流れで下流側に凝縮パイプが存在する冷媒回路構成は望ましくない。また、減圧装置18としては、キャピラリーチューブのような固定減圧弁を用いてもよいが、冷蔵庫の運転状態や外気温度に対応するためには、任意の減圧量に調整できる電子膨張弁(流路断面積を多段階あるいは無段階に調節可能な弁)を用いることが望ましい。
 本発明を利用することで、圧縮機入力を低減でき、冷蔵庫の消費電力量を減少させることが可能となる。
 3 冷蔵室、4 製氷室、5 切替室、6 冷凍室、7 野菜室、10 制御装置、11 圧縮機、12 凝縮パイプ、13 結露防止パイプ、14 ドライヤ、15 キャピラリーチューブ、16 冷却器、17 熱交換部分、18 減圧装置、21 キャビネット部、22 ディバイダ部、100 冷蔵庫。

Claims (5)

  1.  内部が複数の貯蔵室に区画されたキャビネット部と、
     前記キャビネット部の内部空間を複数の前記貯蔵室に仕切るディバイダ部と、
     圧縮機、凝縮パイプ、減圧装置、結露防止パイプ、キャピラリーチューブ、及び、冷却器を有する冷凍サイクルと、を備え、
     前記結露防止パイプは、
     前記キャビネット部及び前記ディバイダ部の前面側の縁の少なくとも一部に内装されており、
     前記減圧装置は、
     前記凝縮パイプと前記結露防止パイプの間に接続され、
     前記凝縮パイプ、前記減圧装置、前記結露防止パイプは直列に接続されている
     ことを特徴とする冷蔵庫。
  2.  前記減圧装置は、
     前記結露防止パイプ内の冷媒圧力を、前記結露防止パイプ内での冷媒飽和温度が外気温度と同等となるように調節する
     ことを特徴とする請求項1に記載の冷蔵庫。
  3.  前記減圧装置は、
     前記結露防止パイプ内の冷媒圧力を、前記結露防止パイプ内での冷媒飽和温度が外気温度から3℃~5℃低くなるように調節する
     ことを特徴とする請求項1又は2に記載の冷蔵庫。
  4.  前記減圧装置は、
     減圧量を可変に制御できる電子式膨張弁である
     ことを特徴とする請求項1~3のいずれか一項に記載の冷蔵庫。
  5.  前記減圧装置は、
     キャピラリーチューブである
     ことを特徴とする請求項1~3のいずれか一項に記載の冷蔵庫。
PCT/JP2012/073579 2012-05-30 2012-09-14 冷蔵庫 WO2013179503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012381228A AU2012381228B2 (en) 2012-05-30 2012-09-14 Refrigerator
CN201280073550.5A CN104350344B (zh) 2012-05-30 2012-09-14 冰箱
SG11201407254YA SG11201407254YA (en) 2012-05-30 2012-09-14 Refrigerator
CN201320303942.8U CN203413897U (zh) 2012-05-30 2013-05-30 冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-122868 2012-05-30
JP2012122868A JP5501407B2 (ja) 2012-05-30 2012-05-30 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2013179503A1 true WO2013179503A1 (ja) 2013-12-05

Family

ID=49672749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073579 WO2013179503A1 (ja) 2012-05-30 2012-09-14 冷蔵庫

Country Status (5)

Country Link
JP (1) JP5501407B2 (ja)
CN (2) CN104350344B (ja)
AU (1) AU2012381228B2 (ja)
SG (1) SG11201407254YA (ja)
WO (1) WO2013179503A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279826A (zh) * 2014-08-20 2015-01-14 北京工业大学 用于家用冰箱的蓄热解冻保温系统
JP7021849B2 (ja) * 2016-12-14 2022-02-17 東芝ライフスタイル株式会社 冷蔵庫

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016881A (ja) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp 空気調和装置
JP2005274134A (ja) * 2001-09-28 2005-10-06 Mitsubishi Electric Corp ヒートポンプ床暖房空調装置
JP2007263389A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 冷蔵庫及び冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421660A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Refrigerator
JPS60276A (ja) * 1984-05-18 1985-01-05 松下冷機株式会社 冷蔵庫
JPH0476368A (ja) * 1990-07-17 1992-03-11 Mitsubishi Electric Corp 冷蔵庫
JPH08285426A (ja) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd 冷蔵庫
JPH0949679A (ja) * 1995-08-07 1997-02-18 Sharp Corp 冷蔵庫の結露防止構造及び結露防止制御システム
JPH10197122A (ja) * 1997-01-08 1998-07-31 Toshiba Corp スプリット型冷蔵庫
JPH10300319A (ja) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd 冷蔵庫
KR20100100265A (ko) * 2009-03-05 2010-09-15 박근형 냉장고 응축열을 이용한 히트펌프 방식 음식물 쓰레기 건조장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274134A (ja) * 2001-09-28 2005-10-06 Mitsubishi Electric Corp ヒートポンプ床暖房空調装置
JP2005016881A (ja) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp 空気調和装置
JP2007263389A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 冷蔵庫及び冷却装置

Also Published As

Publication number Publication date
CN104350344A (zh) 2015-02-11
JP5501407B2 (ja) 2014-05-21
CN104350344B (zh) 2016-05-04
AU2012381228A1 (en) 2015-01-29
CN203413897U (zh) 2014-01-29
SG11201407254YA (en) 2014-12-30
AU2012381228B2 (en) 2015-08-27
JP2014005943A (ja) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5313093B2 (ja) 冷凍装置
JP2007248005A (ja) 冷蔵庫
KR102261114B1 (ko) 냉장고
JP2014020715A (ja) 冷蔵庫
JPWO2017179500A1 (ja) 冷蔵庫および冷却システム
JP2007263389A (ja) 冷蔵庫及び冷却装置
JP5832705B1 (ja) 冷蔵庫
JP2012017920A (ja) 冷蔵庫
JP2018096662A (ja) 冷蔵庫
WO2015019740A1 (ja) 冷蔵庫
JP5506760B2 (ja) 冷蔵庫
JP5818993B2 (ja) 冷蔵庫
JP2007078205A (ja) 冷蔵庫
JP5501407B2 (ja) 冷蔵庫
JP2007309585A (ja) 冷凍装置
JP5579290B1 (ja) 冷蔵庫
JP6615354B2 (ja) 冷凍冷蔵庫
KR20160011110A (ko) 냉장고 및 그 제어방법
JP6956900B2 (ja) 冷蔵庫
JP2017040398A (ja) 冷蔵庫
JP2005098605A (ja) 冷蔵庫
JP2017146080A (ja) 冷蔵庫
TWI636226B (zh) Refrigerator with independent greenhouse
JP2007292427A (ja) 冷蔵庫
JP2016050753A (ja) 冷凍サイクル装置及び冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280073550.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012381228

Country of ref document: AU

Date of ref document: 20120914

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12877784

Country of ref document: EP

Kind code of ref document: A1