WO2013179381A1 - 粒子状物質処理装置 - Google Patents

粒子状物質処理装置 Download PDF

Info

Publication number
WO2013179381A1
WO2013179381A1 PCT/JP2012/063735 JP2012063735W WO2013179381A1 WO 2013179381 A1 WO2013179381 A1 WO 2013179381A1 JP 2012063735 W JP2012063735 W JP 2012063735W WO 2013179381 A1 WO2013179381 A1 WO 2013179381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protrusion
particulate matter
exhaust
flow direction
Prior art date
Application number
PCT/JP2012/063735
Other languages
English (en)
French (fr)
Inventor
三谷 信一
啓 野村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014518118A priority Critical patent/JPWO2013179381A1/ja
Priority to CN201280073621.1A priority patent/CN104379263A/zh
Priority to PCT/JP2012/063735 priority patent/WO2013179381A1/ja
Priority to EP12878029.3A priority patent/EP2857104A4/en
Priority to US14/404,368 priority patent/US20150113959A1/en
Publication of WO2013179381A1 publication Critical patent/WO2013179381A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • B03C3/0175Amassing particles by electric fields, e.g. agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating of parameters, e.g. efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a particulate matter processing apparatus.
  • a technique is known in which a needle-like discharge electrode is provided in an exhaust passage of an internal combustion engine to charge particulate matter (hereinafter also referred to as PM) and the charged PM is retained in a dust collecting electrode (for example, a patent). Reference 1). Moreover, according to this technique, since the particle diameter of PM becomes large, when a filter is provided on the downstream side, PM can be easily collected by the filter.
  • PM particulate matter
  • Patent Document 2 a technique for collecting PM by disposing a discharge electrode having a protrusion in the exhaust pipe is known (see, for example, Patent Document 2).
  • Patent Document 3 a technique for ensuring insulation of discharge electrodes in a particulate matter processing apparatus using corona discharge is known (for example, see Patent Document 3).
  • Patent Document 5 a technique for suppressing moisture condensation by heating the discharge part is known (see, for example, Patent Document 5).
  • 3 to 6 needle-like projections are arranged radially at equal intervals along the circumferential direction of the discharge electrode, and the distance D0 is from the tip of the projection to the inner surface of the duct.
  • the installation interval P in the length direction is set to, a technique for setting the relationship between the two in the range of 0.6D0 ⁇ P ⁇ 2.4D0 is known (see, for example, Patent Document 6).
  • the PM is pulverized and refined by high-speed electrons resulting from the strong discharge. If it does so, the effect which aggregates PM will become low. On the other hand, it is conceivable to control the applied voltage so that strong discharge does not occur. However, in the configuration of the prior art, the electric field strength is hardly considered, and even if PM is aggregated, the effect is small.
  • the present invention has been made in view of the above-described problems, and an object thereof is to promote aggregation of particulate matter.
  • the particulate matter processing apparatus is: Provided in an exhaust passage of the internal combustion engine, extends from a wall surface of the exhaust passage toward the inside of the exhaust passage, and bends upstream or downstream in the flow direction of the exhaust at a bent portion, In the particulate matter processing apparatus provided with an electrode extending downstream, The electrode is formed such that the electric field strength between the electrode and the wall surface of the exhaust passage is larger on the upstream side than on the downstream side.
  • PM when voltage is applied to the electrode, PM can be charged.
  • the charged PM moves toward the wall surface of the exhaust passage due to the Coulomb force or the flow of exhaust. Since the PM that has reached the wall surface of the exhaust passage emits electrons to the exhaust passage, electricity flows to the ground side from the electrode. And since PM which emitted the electron aggregates with other PM which exists near, the number of particles can be decreased.
  • the electric field strength between the electrode and the wall of the exhaust passage is increased on the upstream side of the exhaust flow, PM can be more reliably charged on the upstream side where the electric field strength is relatively large. Then, the PM charged on the upstream side flows toward the downstream side where the electric field strength is relatively small, and gradually proceeds toward the wall surface of the exhaust passage due to the influence of the electric field. That is, the charging of PM can be promoted by relatively increasing the upstream electric field strength.
  • the downstream side it is only necessary to direct the already charged PM toward the wall surface of the exhaust passage, so the electric field strength may be relatively small. For this reason, simplification or weight reduction of an apparatus is attained. Even if the electric field strength on the downstream side is relatively small, the PM is charged on the upstream side, so the chances of PM aggregation can be increased. Thereby, the number of particles of PM can be reduced.
  • the electrode may be bent upstream in the exhaust flow direction or may be bent downstream.
  • the direction in which the electrode extends may not be parallel to the exhaust flow direction.
  • the electric field strength may decrease stepwise from the upstream side to the downstream side in the exhaust flow direction, or may gradually decrease gradually.
  • the power source can supply power to one portion of the electrode and apply the same voltage to the entire electrode.
  • the apparatus and control can be simplified by changing the electric field strength between the upstream side and the downstream side while supplying power from one place. Further, it is necessary to provide a hole for passing the electrode in the exhaust passage, but only one hole is required. Therefore, the manufacturing cost can be reduced.
  • the electrode has a plurality of protrusions extending toward the wall surface side of the exhaust passage in a direction perpendicular to the exhaust flow direction at a portion extending upstream or downstream in the exhaust flow direction.
  • the electric field strength between the electrode and the wall of the exhaust passage may be the electric field strength around the electrode.
  • the closer the distance between the protrusion and the wall surface of the exhaust passage the greater the electric field strength.
  • the longer the protrusion the greater the electric field strength.
  • the shorter the installation interval in the exhaust flow direction of the protrusion the greater the electric field strength.
  • the electric field strength increases as the distance between the protrusions adjacent to each other in the exhaust flow direction is shorter.
  • the electric field strength can be adjusted by changing the distance between the protrusion and the wall surface of the exhaust passage or the installation interval of the protrusion in the exhaust flow direction.
  • the electric field strength between the electrode and the wall surface of the exhaust passage is changed from the downstream side. It can be enlarged upstream.
  • the length of the protrusion or the installation interval of the protrusion in the exhaust flow direction may be gradually changed or may be changed for each of the plurality of protrusions installed in the exhaust flow direction.
  • the exhaust passage around the electrode has the same inner diameter, and by changing at least one of the length of the protrusion and the installation interval of the protrusion in the flow direction of the exhaust, The electric field strength between the electrode and the wall surface of the exhaust passage can be changed.
  • the distance between the tip of the protrusion and the wall surface of the exhaust passage can be shortened by lengthening the protrusion.
  • the longer the protrusion the greater the electric field strength, and the shorter the protrusion, the smaller the electric field strength.
  • mass can be reduced by shortening a protrusion part.
  • the fall of an electric field strength can be suppressed by shortening the installation space
  • the electrode extends from the bent portion toward the downstream side in the exhaust flow direction,
  • the length of the projecting portion may be shorter and the installation interval of the projecting portion in the flow direction of the exhaust gas may be shorter at a location far from the bent portion than at a location near the bent portion.
  • the length of the protrusion is shortened on the downstream side of the exhaust flow, the mass in the vicinity of the downstream end of the electrode, that is, the vicinity of the tip of the electrode can be reduced.
  • size of the force concerning an electrode and the attachment part of an electrode can be reduced, a deformation
  • the electric field strength may be reduced more than necessary.
  • it can suppress that an electric field strength falls by shortening the installation space
  • the electrode extends from the bent portion toward the upstream side in the flow direction of the exhaust,
  • the length of the protruding portion may be longer and the installation interval of the protruding portion in the exhaust gas flow direction may be longer at a location far from the bent portion than at a location near the bent portion.
  • the thickness of the projecting portion can be changed between the upstream side and the downstream side of the exhaust flow.
  • the thickness of the protruding portion increases the rigidity but decreases the electric field strength.
  • the reduction in the electric field strength can be suppressed by shortening the installation interval in the exhaust flow direction of the protrusion or by increasing the protrusion. Therefore, by changing the thickness of the protrusion between the upstream side and the downstream side of the exhaust flow, the electric field strength around the electrode can be changed between the upstream side and the downstream side while ensuring rigidity.
  • the thickness of a protrusion part as the diameter of the cross section of the root of a protrusion part.
  • the electric field strength may be relatively increased by making the protrusion relatively thick on the upstream side of the exhaust flow and shortening the installation interval in the exhaust flow direction.
  • a detection device for detecting a current passing through the electrode;
  • a determination device for determining whether or not a pulse current is generated in the current detected by the detection device;
  • a control device that reduces the applied voltage to the electrode from the current time; Can be provided.
  • control device may increase the applied voltage from the current time when it is determined by the determination device that no pulse current is generated.
  • PM is more likely to aggregate. That is, PM aggregation can be promoted by increasing the applied voltage within a range where no pulse current is generated.
  • feedback control may be performed so that the applied voltage becomes maximum within a range in which no pulse current is generated.
  • aggregation of particulate matter can be promoted.
  • FIG. 1 is a diagram illustrating a schematic configuration of a particulate matter processing apparatus according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing a distribution of electric field strength around an electrode according to Example 1. It is the figure which showed distribution of the electric field intensity at the time of arrange
  • FIG. 6 is a diagram showing a distribution of electric field strength according to Example 2.
  • FIG. 10 is a diagram illustrating a schematic configuration of a particulate matter processing apparatus according to an eighth embodiment. It is a figure which shows schematic structure of the particulate matter processing apparatus which concerns on Example 9.
  • FIG. 10 It is the flowchart which showed the control flow of the air supply apparatus which concerns on Example 9.
  • FIG. 10 It is a figure which shows schematic structure of the particulate matter processing apparatus which concerns on Example 10.
  • FIG. It is a figure which shows schematic structure of the particulate matter processing apparatus based on Example 11.
  • FIG. It is the figure which showed transition of the electric current detected by the detection apparatus for every applied voltage.
  • FIG. It is a figure which shows schematic structure of the particulate matter processing apparatus based on Example 12.
  • FIG. It is a figure which shows schematic structure of the particulate matter processing apparatus concerning Example 13.
  • FIG. It is a figure which shows schematic structure of the particulate matter processing apparatus based on Example 14.
  • FIG. 1 is a diagram illustrating a schematic configuration of a particulate matter processing apparatus 1 according to the present embodiment.
  • the particulate matter processing apparatus 1 is provided in, for example, an exhaust passage 2 of a gasoline engine. It can also be provided in the exhaust passage of a diesel engine.
  • the particulate matter treatment apparatus 1 includes a housing 3 whose both ends are connected to an exhaust passage 2.
  • the material of the housing 3 is a stainless steel material.
  • the housing 3 is formed in a hollow cylindrical shape. Both ends of the housing 3 are formed in a tapered shape in which the cross-sectional area of the exhaust passage becomes smaller as the end is closer.
  • the exhaust gas flows through the exhaust passage 2 in the direction of arrow B.
  • the housing 3 may be a part of the exhaust passage 2. That is, the wall surface of the housing 3 can be the wall surface of the exhaust passage 2.
  • a flange 21 is formed at the end of the exhaust passage 2, and a flange 31 is formed at the end of the housing 3.
  • the exhaust passage 2 and the housing 3 are fastened by, for example, bolts and nuts via the flange 21 on the exhaust passage side and the flange 31 on the housing 3 side.
  • An electrical insulator may be provided between the flange 21 on the exhaust passage side and the flange 31 on the housing 3 side.
  • An electrode 5 having a circular cross section is attached to the housing 3.
  • the cross-sectional shape of the electrode 5 may be other shapes such as a polygon.
  • the electrode 5 penetrates the side surface of the housing 3, extends from the side surface of the housing 3 in the direction of the central axis A of the housing 3, and bends to the downstream side of the exhaust flow at a bent portion 51 near the central axis A, It extends toward the downstream side of the exhaust flow in parallel with the central axis A. For this reason, in this embodiment, the central axis of the electrode 5 on the downstream side of the bent portion 51 is the same as the central axis A of the housing 3.
  • the electrode 5 is provided with an insulator 52 made of an electrical insulator so that electricity does not flow between the electrode 5 and the housing 3 where the electrode 5 penetrates the housing 3.
  • the insulator 52 is located between the electrode 5 and the housing 3 and insulates electricity and fixes the electrode 5 to the housing 3.
  • a plurality of projecting portions 54 that are orthogonal to the central axis A and extend toward the side surface of the housing 3 are provided downstream of the bent portion 51 in the flow of the exhaust gas.
  • the protrusions 54 are formed in a needle shape, and a plurality of protrusions 54 are provided at intervals from the upstream side to the downstream side of the exhaust flow.
  • a plurality of protrusions 54 are provided around the central axis A, for example, at an equal angle with respect to the central axis A.
  • a plurality may be provided radially about the central axis A. Note that the inner diameter of the housing 3 around the protrusion 54 is constant.
  • the length of the protrusion 542 provided on the relatively downstream side is set shorter than the length of the protrusion 541 provided on the relatively upstream side. Further, in the protruding portion 541 provided on the upstream side, the installation interval of the protruding portion 541 in the exhaust flow direction is relatively long, and in the protruding portion 542 provided on the downstream side, the installation interval of the protruding portion 542 in the exhaust flow direction is compared. Is shortened.
  • the length of the third protrusion 541 (hereinafter also referred to as an upstream protrusion 541), for example, in the exhaust flow direction from the side closer to the bent part 51 is set to the downstream side of the length. Is longer than the length of the protruding portion 542 (hereinafter also referred to as a downstream protruding portion 542). That is, the length L3 of the upstream protrusion 541 is longer than the length L4 of the downstream protrusion 542. Then, the distance L5 from the tip of the upstream protrusion 541 to the wall surface of the housing 3 is shorter than the distance L6 from the tip of the downstream protrusion 542 to the wall surface of the housing 3.
  • the length of the protrusion 54 may be the distance from the central axis A to the tip of the protrusion 54, or may be the length from the root of the protrusion 54 to the tip.
  • the length of the protruding portion 542 existing at a predetermined distance or more from the bent portion 51 may be shorter than the length of the protruding portion 541 existing at a predetermined distance from the bent portion 51.
  • the lengths of the protruding portions 541 existing below a predetermined distance from the bent portion 51 may be the same, or may be shorter toward the downstream side of the exhaust flow.
  • the lengths of the protruding portions 542 existing at a predetermined distance or more from the bent portion 51 may be the same, or may be shorter toward the downstream side of the exhaust flow.
  • the installation interval L1 in the exhaust flow direction of the upstream protrusion 541 is longer than the installation interval L2 in the exhaust flow direction of the downstream protrusion 542.
  • the electrode 5 is connected to a power source via an electric wire 53. That is, the electrode 5 is connected to the power source via the electric wire 53 at one place.
  • the power source can energize the electrode 5 and change the applied voltage.
  • the housing 3 is electrically grounded.
  • electrons are emitted from the electrode 5 by applying a negative DC high voltage from the power source to the electrode 5. That is, electrons are emitted from the electrode 5 by making the potential of the electrode 5 lower than that of the housing 3.
  • the electrons in the exhaust gas can be negatively charged by the electrons. Negatively charged PM moves due to Coulomb force and gas flow.
  • the PM reaches the housing 3, the electrons that have negatively charged the PM are emitted to the housing 3.
  • the PM that has released electrons to the housing 3 aggregates to increase the particle size.
  • the number of PM particles is reduced due to aggregation of PM. That is, by applying a voltage to the electrode 5, the particle diameter of PM can be increased and the number of PM particles can be reduced.
  • FIG. 2 is a diagram showing a distribution of electric field strength around the electrode 5 according to the present embodiment.
  • the broken line in FIG. 2 shows the electric field intensity distribution.
  • the electric field strength in the vicinity of the central axis A of the housing 3 is large, and the electric field strength decreases as the distance from the central axis A increases.
  • the shorter the interval between the protrusions 54 the wider the range of the electric field strength in the radial direction of the housing 3.
  • a range where the electric field strength is large is expanded in the radial direction of the housing 3. Therefore, by relatively shortening the protrusion 542 on the downstream side of the exhaust flow, the electric field strength on the tip side of the electrode 5 becomes relatively small.
  • FIG. 3 shows the distribution of the electric field strength when the protrusions 54 on the tip side of the electrode 5 are relatively shortened and the protrusions 54 are arranged at equal intervals from the bent part 51 to the tip of the electrode 5.
  • FIG. 3 shows that when the interval between the protruding portions 54 is the same from the bent portion 51 to the tip of the electrode 5, the electric field strength greatly decreases on the tip side of the electrode 5. For this reason, the force of PM moving toward the wall surface of the housing 3 becomes too small, and the PM is difficult to aggregate.
  • the length of the upstream protruding portion 541 and the installation interval of the upstream protruding portion 541 in the exhaust flow direction are set within a range in which PM in the exhaust can be charged. This range can be obtained by experiments or the like.
  • the length of the downstream projecting portion 542 and the installation interval of the downstream projecting portion 542 in the exhaust flow direction are set to a range in which the charged PM can be directed to the wall surface of the housing 3. This range can also be obtained by experiments or the like.
  • the electric field intensity around the upstream protrusion 541 can be made larger than the electric field intensity around the downstream protrusion 542.
  • PM can be more reliably charged around the upstream protruding portion 541 having a relatively large electric field strength.
  • the PM charged around the upstream protruding portion 541 flows to the downstream side where the electric field strength is relatively small, the PM gradually moves toward the wall surface of the housing 3. That is, even if the electric field strength on the downstream side is reduced, aggregation of PMs is promoted, so that the effect of reducing the number of PM particles can be enhanced.
  • the downstream protrusion 542 is made shorter than the upstream protrusion 541, and the interval in the exhaust flow direction of the downstream protrusion 542 is set in the exhaust flow direction of the upstream protrusion 541.
  • the mass of the protruding portion 542 on the downstream side can be reduced.
  • it can suppress that the electric field strength of a downstream side becomes small too much.
  • aggregation of PM can be promoted, suppressing the failure of the particulate matter processing apparatus 1.
  • the number of particles of PM can be reduced.
  • transformation are suppressed.
  • the manufacturing cost can be reduced rather than the case where the electrode 5 is supported in two or more places.
  • the power source since the power source only needs to supply power to one part of the electrode 5 and apply the same voltage to the entire electrode 5, the manufacturing cost can also be reduced.
  • FIG. 4 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the protrusion 54 according to the present embodiment has a shorter length toward the downstream side of the exhaust flow. Thereby, the mass of the protruding portion 54 can be reduced as the distance from the bent portion 51 increases. Then, since the mass at the tip side of the electrode 5 can be reduced, the bending moment generated in the electrode 5 can be reduced. Therefore, reliability can be improved.
  • the interval in the exhaust flow direction of the protrusion 54 is shorter toward the downstream side of the exhaust flow. That is, as the length of the protruding portion 54 becomes shorter, the interval between the protruding portions 54 becomes shorter.
  • the length of each protrusion 54 is set so that the ends of the other protrusions 54 are positioned on a line connecting the tip of the most upstream protrusion 54 and the tip of the most downstream protrusion 54. May be.
  • FIG. 5 is a diagram showing a distribution of electric field strength according to the present embodiment.
  • the broken lines in FIG. 5 indicate the electric field strength distribution.
  • the electric field strength becomes more uniform, the aggregation of PM can be promoted.
  • the mass of the protruding portion 54 on the downstream side can be reduced. And it can suppress that the electric field strength of a downstream side becomes small too much. By these, aggregation of PM can be promoted, suppressing the failure of the particulate matter processing apparatus 1. For this reason, the number of particles of PM can be reduced.
  • FIG. 6 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the insulator part 52 according to the present embodiment has a smaller amount of protrusion in the exhaust than in the above embodiment. For example, it is good also as minimum protrusion amount required in order to ensure electrical insulation.
  • This protrusion amount is the protrusion amount from the wall surface of the housing 3, and may be a distance from the wall surface of the housing 3 to the tip of the insulator portion 52.
  • the protrusion amount of the insulator part 52 into the exhaust gas small, it is possible to suppress the temperature of the insulator part 52 from changing suddenly. If the insulator portion 52 protrudes greatly into the exhaust gas, for example, when the fuel cut is performed after the internal combustion engine is operated at the maximum output, the temperature of the insulator portion 52 changes abruptly. In addition, even when moisture contained in the exhaust gas is condensed to form water droplets and adheres to the insulator portion 52, the temperature of the insulator portion 52 changes abruptly. Thus, when the temperature of the insulator part 52 changes rapidly, there exists a possibility that this insulator part 52 may be damaged.
  • the amount of protrusion of the insulator part 52 into the exhaust gas is made as small as possible, adhesion of water droplets and the like can be suppressed, so that the temperature of the insulator part 52 can be prevented from changing rapidly. Thereby, it can suppress that the insulator part 52 is damaged.
  • FIG. 7 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the diameter of the cross section of the electrode 5 closer to the insulator portion 52 than the bent portion 51 is larger than the bent portion 51 on the tip side (downstream of the exhaust flow). It is larger than the diameter of the cross section.
  • the diameter of the cross section becomes smaller toward the distal end side of the electrode 5. That is, the thickness of the electrode 5 changes at the bent portion 51.
  • the electric field strength at the bent portion 51 can be reduced. Thereby, insulation can be improved. That is, there is a possibility that the insulating property may be lowered only by reducing the protruding amount of the insulator portion 52 into the exhaust gas, but the insulating property can be prevented from being lowered by changing the thickness of the electrode 5. Thereby, since discharge from other than the protrusion part 54 can be suppressed, reliability can be improved and aggregation of PM can be promoted.
  • FIG. 8 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the diameter of the cross section of the electrode 5 closer to the insulator portion 52 than the bent portion 51 is larger than the bent portion 51 on the tip side (downstream of the exhaust flow). It is larger than the diameter of the cross section. Further, in the electrode 5 between the insulator portion 52 and the bent portion 51, the closer to the bent portion 51, the smaller the diameter of the cross section. In the bent portion 51, the diameter of the cross section becomes smaller toward the distal end side of the electrode 5. That is, the thickness of the electrode 5 changes from the insulator portion 52 to the bent portion 51.
  • the relative electric field strength at the bent portion 51 can be reduced. Thereby, insulation can be improved. Furthermore, by increasing the diameter of the cross section of the electrode 5 in the vicinity of the insulator 52, the electric field strength at this point can be particularly reduced. That is, a short circuit is likely to occur near the insulator portion 52, but the short circuit can be suppressed by reducing the electric field strength. Thereby, since discharge from other than the protrusion part 54 can be suppressed, reliability can be improved and aggregation of PM can be promoted.
  • FIG. 9 is a view of the electrode 5 of the particulate matter processing apparatus 1 according to the present embodiment as viewed from the downstream side of the exhaust flow.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the electrode 5 shown in FIG. 9 has a protrusion 541A (hereinafter referred to as the first row of protrusions 541A) installed at the shortest distance from the bent portion 51, and a position where the distance from the bent portion 51 is the second closest.
  • a protrusion 541B (hereinafter referred to as a second row of protrusions 541B) installed on the projection portion 541C, and a protrusion 541C (hereinafter referred to as a third row of protrusions 541C) installed at a position closest to the third distance from the bent portion 51. And so on.) That is, the first row of protruding portions 541A, the second row of protruding portions 541B, and the third row of protruding portions 541C are installed from the upstream side with an interval in the exhaust flow direction.
  • protrusions 541A in the first row there are two protrusions 541A in the first row, and they face each other in the opposite direction across the central axis A. That is, two protrusions 541A in the first row are provided with an angle of 180 degrees about the central axis A. Two protrusions 541B in the second row are also provided, and they face each other in the opposite direction with the central axis A in between. The first row of protrusions 541A and the second row of protrusions 541B are arranged with a 60 ° offset from the central axis A. There are also two protrusions 541C in the third row, and they face each other in the opposite direction across the central axis A.
  • the first row of protrusions 541A and the third row of protrusions 541C are arranged with a 120 degree offset from the central axis A.
  • the protrusions 541B in the second row and the protrusions 541C in the third row are arranged with a 60 degree offset from the center axis A. Accordingly, when viewed from the downstream side of the exhaust flow, it appears that the protrusions 541A, 541B, and 541C are provided every 60 degrees about the central axis A.
  • the angle around the central axis is shifted from the bent portion 51 toward the downstream side of the first row of protrusions 541A, the second row of protrusions 541B, and the third row of protrusions 541C. ing.
  • the protrusions may be arranged radially when viewed from the downstream side of the exhaust flow.
  • the projecting portion may be shortened toward the downstream side of the exhaust flow, and the interval between the projecting portions in the exhaust flow direction may be shortened.
  • FIG. 10 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the diameter D1 of the housing 3 around the protruding portion 54 is smaller than the diameter D2 of the housing 3 where the insulator portion 52 is provided. This makes it difficult for exhaust to flow around the insulator portion 52. It should be noted that the distance between the housing 3 and the central axis A where the lever portion 52 is provided may be longer than the distance between the housing 3 around the protruding portion 54 and the central axis A.
  • the particulate matter processing apparatus 1 configured as described above, it is possible to suppress water droplets and substances discharged from the internal combustion engine (for example, combustion products) from passing around the insulator portion 52. That is, it can suppress that a water droplet or a combustion product adheres to the insulator part 52, and that insulation property falls. Thereby, since discharge from other than the protrusion part 54 can be suppressed, reliability can be improved and aggregation of PM can be promoted.
  • the internal combustion engine for example, combustion products
  • FIG. 11 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the diameter D3 of the housing 3 around the protrusion 54 is smaller than that in the seventh embodiment. For this reason, the diameter D3 of the housing 3 around the protrusion 54 is smaller than the diameter D4 of the housing 3 where the insulator 52 is provided. This makes it difficult for the exhaust gas to flow around the insulator 52, and the electric field strength around the protrusion 54 becomes relatively large. Accordingly, it is possible to further suppress the deterioration of the insulating property and further promote the aggregation of PM. Thereby, since discharge from other than the protrusion part 54 can be suppressed, reliability can be improved and aggregation of PM can be promoted.
  • FIG. 12 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the particulate matter processing apparatus 1 includes an air supply device 6 that supplies air around the insulator portion 52.
  • the air supply device 6 includes an air supply pipe 61 and a pump 62.
  • the pump 62 is controlled by the control device 7. When the pump 62 is activated, air is discharged from the pump 62. This air flows through the air supply pipe 61 and is supplied around the insulator portion 52. In addition, you may supply air around the other electric insulation member with which the circumference
  • FIG. 13 is a flowchart showing a control flow of the air supply device 6 according to the present embodiment. This routine is executed by the control device 7 every predetermined time.
  • step S101 it is determined whether or not the IG switch is ON.
  • the IG switch is a switch that is turned on when the driver starts the internal combustion engine. That is, in this step, it is determined whether there is a request for starting the internal combustion engine. If an affirmative determination is made in step S101, the process proceeds to step S102. On the other hand, if a negative determination is made, this routine is terminated.
  • step S102 the electrical insulation resistance of the electrode 5 is measured.
  • the electrical insulation resistance decreases. Therefore, if this decrease in electrical insulation resistance is detected, it can be determined whether or not water droplets or the like are attached to the electrode 5.
  • the electrical insulation resistance can be detected by applying a predetermined voltage to the electrode 5 and measuring the current at this time.
  • step S103 it is determined whether or not the electrical insulation resistance of the electrode 5 is less than a predetermined value.
  • the predetermined value here is a lower limit value of the electric insulation resistance when water droplets or the like are not attached. This predetermined value may be a value for determining that the electrical insulation resistance has decreased. This predetermined value is obtained in advance by experiments or the like. If an affirmative determination is made in step S103, it is considered that a water droplet or the like has adhered, and the process proceeds to step S104. On the other hand, if a negative determination is made in step S103, it is considered that water droplets or the like are not attached, and the process proceeds to step S106.
  • step S104 the pump 62 is operated. That is, air is supplied around the insulator portion 52, and water droplets and the like are removed. After the process of step S104 is completed, the process proceeds to step S105.
  • step S105 it is determined whether or not the electrical insulation resistance is greater than a predetermined value.
  • the predetermined value here can be the same as the predetermined value in step S103. Further, the predetermined value may be a value for determining that the electrical insulation resistance has been recovered. This predetermined value is obtained in advance by experiments or the like. If an affirmative determination is made in step S105, the process proceeds to step S106 because water drops have been removed. On the other hand, if a negative determination is made in step S105, water drops remain, so the process returns to step S104 and the supply of air is continued.
  • step S106 the internal combustion engine is started. That is, the internal combustion engine is started with no water droplets or the like attached to the electrode 5. After the process of step S106 is completed, this routine is terminated.
  • air may be supplied from the pump 62 to the exhaust purification catalyst when water droplets or the like are not attached to the electrode 5. Thereby, the oxidation of HC and CO in the exhaust can be promoted.
  • FIG. 14 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the throttle portion 4 in which the cross-sectional area of the exhaust passage is reduced is formed in the housing 3 upstream of the insulator portion 52.
  • a check valve 41 is provided in the throttle portion 4. The check valve 41 allows gas to flow in from the outside of the housing 3 to the inside, and blocks gas from flowing out of the housing 3 to the outside.
  • the gas flow rate increases.
  • the check valve 41 is opened and air is introduced into the housing 3.
  • the position where the check valve 41 is provided is determined so that this air reaches the insulator portion 52. In this way, air can be supplied around the insulator portion 52 without providing a pump. Therefore, it can suppress that insulating property falls. Thereby, since discharge from other than the protrusion part 54 can be suppressed, reliability can be improved and aggregation of PM can be promoted.
  • FIG. 15 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the electrode 5 is connected to the power source 8 via the electric wire 53.
  • the power supply 8 can energize the electrode 5 and change the applied voltage.
  • the power source 8 is connected to the control device 7 and the battery 9 via electric wires.
  • the control device 7 controls the voltage that the power source 8 applies to the electrode 5.
  • a ground side electric wire 55 is connected to the housing 3, and the housing 3 is grounded via the ground side electric wire 55.
  • the ground side electric wire 55 is provided with a detection device 10 that detects a current passing through the ground side electric wire 55.
  • the detection device 10 may be an ammeter.
  • the detection device 10 detects a current by measuring a potential difference between both ends of a resistor provided in the middle of the ground-side electric wire 55.
  • the detection device 10 is connected to the control device 7 via an electric wire. Then, the current detected by the detection device 10 is input to the control device 7.
  • the control device 7 is connected to an accelerator opening sensor 71, a crank position sensor 72, a temperature sensor 73, and an air flow meter 74.
  • the accelerator opening sensor 71 outputs an electrical signal corresponding to the amount of depression of the accelerator pedal by the driver of the vehicle on which the internal combustion engine is mounted, and detects the engine load.
  • the crank position sensor 72 detects the engine speed.
  • the temperature sensor 73 detects the temperature of the internal combustion engine by detecting the temperature of the cooling water of the internal combustion engine or the temperature of the lubricating oil.
  • the air flow meter 74 detects the intake air amount of the internal combustion engine.
  • electrons are emitted from the electrode 5 by applying a negative DC high voltage from the power source 8 to the electrode 5. That is, electrons are emitted from the electrode 5 by making the potential of the electrode 5 lower than that of the housing 3.
  • the electrons in the exhaust gas can be negatively charged by the electrons. Negatively charged PM moves due to Coulomb force and gas flow.
  • the PM reaches the housing 3, the electrons that have negatively charged the PM are emitted to the housing 3.
  • the PM that has released electrons to the housing 3 aggregates to increase the particle size.
  • the number of PM particles is reduced due to aggregation of PM. That is, by applying a voltage to the electrode 5, the particle diameter of PM can be increased and the number of PM particles can be reduced.
  • the voltage applied to the electrode 5 is increased, more electrons are emitted from the electrode 5, so that the number of PM particles can be further reduced.
  • strong discharge such as corona discharge or arc discharge can occur.
  • the voltage may be adjusted to be lower than that in which strong discharge such as corona discharge occurs.
  • FIG. 16 is a diagram illustrating the transition of the current detected by the detection device 10 for each applied voltage. As the applied voltage increases, the current detected by the detection device 10 increases. The current detected when the applied voltage is relatively small is substantially constant. When the current is substantially constant, no strong discharge has occurred. However, the PM is negatively charged by the electrons emitted from the electrode 5, and the current is detected because the PM emits electrons to the housing 3. That is, PM can be aggregated even if strong discharge such as corona discharge does not occur.
  • the control device 7 corresponds to the determination device in the present invention.
  • the control device 7 when a pulse current is generated, the control device 7 operates the power supply 8 to make the applied voltage smaller than the current time. Thereby, generation
  • the applied voltage is increased until a pulse current is generated. Thereby, since the applied voltage can be made as high as possible, the number of PM particles can be further reduced.
  • a sign that the pulse current is generated may be read from the current, and the applied voltage may be reduced before the pulse current is generated.
  • the applied voltage can be made as high as possible within the range where no pulse current is generated. Thereby, since aggregation of PM can be promoted more, the number of PM particles can be further reduced.
  • FIG. 17 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the electric field strength is changed by changing the thickness of the protrusion 54.
  • the diameter of the cross section at the base of the upstream protrusion 541 is larger than the diameter of the cross section at the base of the protrusion 542 on the downstream side. That is, the upstream protrusion 541 is thicker than the downstream protrusion 542. Further, in the upstream protrusion 541, the installation interval L7 in the exhaust flow direction of the protrusion 541 is relatively short, and in the downstream protrusion 542, the installation interval L8 in the exhaust flow direction of the protrusion 542 is compared. It is long. Note that the lengths of the protrusions 54 are all the same. For this reason, the distance from the protrusion 54 to the wall surface of the housing 3 is the same for all the protrusions 54.
  • the diameter of the base of the projecting portion 541, for example, up to the fourth in the exhaust flow direction from the side closer to the bent portion 51 is larger than the diameter of the base of the projecting portion 542 on the downstream side. is doing.
  • the diameter of this root is the diameter at the point where the diameter is the largest in each protrusion 54.
  • the diameter of the protruding portion 541 that exists less than a predetermined distance from the bent portion 51 may be larger than the diameter of the protruding portion 542 that exists more than a predetermined distance from the bent portion 51.
  • the lengths of the protruding portions 541 existing below a predetermined distance from the bent portion 51 may all be the same, or may be shorter toward the downstream side.
  • the lengths of the projecting portions 542 existing at a predetermined distance or more from the bent portion 51 may be the same, or may be shortened toward the downstream side.
  • the protrusion 54 As the diameter of the cross section at the base of the protrusion 54 is increased, that is, as the protrusion 54 is thickened, the rigidity of the protrusion 54 increases.
  • the protrusion 541 provided on the relatively upstream side of the exhaust flow is required to have relatively high rigidity. For this reason, it is conceivable to make the upstream protruding portion 541 thicker.
  • the protrusion 54 when the protrusion 54 is thickened, the electric field strength decreases. For this reason, if the upstream protrusion 541 is simply thickened, the upstream electric field strength may decrease.
  • a decrease in the electric field strength can be suppressed by shortening the installation interval of the upstream protruding portion 541 in the exhaust flow direction. That is, the PM can be more reliably charged at the protruding portion 541 on the upstream side.
  • the protrusion 542 on the downstream side of the exhaust flow may be less rigid than the protrusion 541 on the upstream side. For this reason, the downstream protrusion 542 can be made relatively thin. Further, since the electric field strength is increased by making the downstream protrusions 542 relatively thin, it is possible to lengthen the installation interval in the exhaust flow direction of the downstream protrusions 542. In this way, the downstream protrusion 542 can be made relatively thin, and the set interval in the exhaust flow direction of the downstream protrusion 542 can be increased. Mass can be reduced. Thereby, deformation and breakage of the electrode can be suppressed while promoting the aggregation of PM.
  • FIG. 18 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the electric field strength is changed by changing the thickness of the protrusion 54 and the length of the protrusion 54.
  • the diameter of the cross section at the base of the upstream protrusion 541 is larger than the diameter of the cross section at the base of the protrusion 542 on the downstream side. That is, the upstream protrusion 541 is thicker than the downstream protrusion 542. Further, the length of the downstream protruding portion 542 is made shorter than the length of the upstream protruding portion 541.
  • the installation interval L9 in the exhaust flow direction of the upstream protrusion 541 and the installation interval L10 in the exhaust flow direction of the downstream protrusion 542 are the same.
  • the diameter of the base of the projecting portion 541, for example, up to the fourth in the exhaust flow direction from the side close to the bent portion 51 is made larger than the diameter of the base of the projecting portion 542 on the downstream side. ing.
  • the diameter of the protruding portion 541 that exists less than a predetermined distance from the bent portion 51 may be larger than the diameter of the protruding portion 542 that exists more than a predetermined distance from the bent portion 51.
  • the lengths of the protruding portions 541 existing below a predetermined distance from the bent portion 51 may all be the same, or may be shorter toward the downstream side.
  • the lengths of the projecting portions 542 existing at a predetermined distance or more from the bent portion 51 may be the same, or may be shortened toward the downstream side.
  • the length of the protruding portion 542 existing at a predetermined distance or more from the bent portion 51 may be made shorter than the length of the protruding portion 541 existing at a predetermined distance from the bent portion 51.
  • the rigidity of the protrusion 542 on the downstream side of the exhaust flow may be lower than that of the protrusion 541 on the upstream side.
  • the downstream protrusion 542 can be made relatively thin.
  • the length of the downstream protrusion 542 is shorter than that of the upstream protrusion 541, the mass on the tip side of the electrode 5, that is, the downstream end side of the electrode 5 can be reduced. Furthermore, it is possible to suppress a decrease in the electric field strength by relatively shortening the interval in the exhaust flow direction of the downstream protrusion 542.
  • downstream protrusion 542 is relatively thin and short, and the distance in the exhaust flow direction of the downstream protrusion 542 is shortened to reduce the mass in the vicinity of the tip of the electrode 5. Can do. Thereby, deformation and breakage of the electrode can be suppressed while making the electric field strength uniform.
  • FIG. 19 is a diagram illustrating a schematic configuration of the particulate matter processing apparatus 1 according to the present embodiment.
  • the electrode 5 is bent toward the downstream side of the exhaust flow, but in this embodiment, the electrode 5 is bent toward the upstream side.
  • the length of the upstream protrusion 541 is longer than the length of the downstream protrusion 542. Further, the installation interval in the exhaust flow direction of the upstream protrusion 541 is longer than the installation interval in the exhaust flow direction of the downstream protrusion 542. Even in such a case, the electric field strength on the upstream side can be made larger than the electric field strength on the downstream side, so that PM can be more reliably charged on the upstream side where the electric field strength is relatively large. Then, when the PM charged on the upstream side flows to the downstream side where the electric field strength is relatively small, the PM gradually moves toward the wall surface of the housing 3. Thereby, since aggregation of PM is accelerated
  • the electrode 5 when the electrode 5 is bent toward the upstream side of the exhaust flow, PM hardly adheres to the insulator portion 52. That is, since PM can be charged on the upstream side of the insulator portion 52, the PM moves toward the inner peripheral surface of the housing 3. For this reason, since PM colliding with the insulator part 52 decreases, PM hardly adheres to the insulator part 52.
  • the electrode 5 if the electrode 5 is bent toward the upstream side of the exhaust flow, the electrode 5 is easily deformed by receiving a force from the exhaust flow. Further, it is easily affected by the mass of the protruding portion 54. For this reason, it is suitable when the electrode 5 is short.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)

Abstract

 粒子状物質の凝集を促進させる。内燃機関の排気通路(3)に設けられ、該排気通路(3)の壁面から該排気通路(3)の内側へ向かって延び、曲がり部(51)において排気の流れ方向(B)の上流側または下流側へ曲がり、該排気の流れ方向(B)の上流側または下流側に延びる電極(5)を備えた粒子状物質処理装置(1)において、電極(5)が、該電極(5)と排気通路(3)の壁面との間の電界強度が下流側よりも上流側で大きくなるように形成される。

Description

粒子状物質処理装置
 本発明は、粒子状物質処理装置に関する。
 内燃機関の排気通路に針状の放電電極を設けて粒子状物質(以下、PMともいう。)を帯電させ、該帯電したPMを集塵電極に滞留させる技術が知られている(例えば、特許文献1参照。)。また、この技術によれば、PMの粒子径が大きくなるため、下流側にフィルタを設けているときに該フィルタにて容易にPMを捕集することができる。
 また、排気管内に突出部を備えた放電電極を配置して、PMを捕集する技術が知られている(例えば、特許文献2参照。)。
 また、コロナ放電を利用した粒子状物質処理装置において、放電電極の絶縁を確保する技術が知られている(例えば、特許文献3参照。)。
 また、放電電極の絶縁部の先端部を薄肉化して排気の熱により温度を上昇させ、該先端部に付着するPMを酸化させる技術が知られている(例えば、特許文献4参照。)。
 また、放電部を加熱することで、水分の結露を抑制する技術が知られている(例えば、特許文献5参照。)。
 また、放電電極の周方向に沿って等間隔で3乃至6本の針状の突起部を放射状に配設するとともに、突起部の先端からダクトの内面までを距離D0とし、突起部の放電極における長さ方向の設置間隔Pとした場合に、両者の関係を0.6D0≦P≦2.4D0の範囲に設定する技術が知られている(例えば、特許文献6参照。)。
 また、互いに並行配置された対向電極の間隔をDとし、それら対向電極の中間に配置された放電電極に設けられる突起の間隔をPとしたときに、D/5≦P≦Dとする技術が知られている(例えば、特許文献7参照。)。
 また、管内に針状の放電電極を設けた電気集塵機が知られている(例えば、特許文献8,9参照。)。
 また、排気管に設けた電極部においてPMを帯電させた後に捕集する技術が知られている(例えば、特許文献10参照。)。
 ここで、電極からコロナ放電またはアーク放電などの強い放電を発生させると、強い放電に起因する高速電子により、PMが粉砕されてしまい、微細化される。そうすると、PMを凝集させる効果が低くなる。これに対し、強い放電が発生しないように印加電圧を制御することが考えられる。しかし、従来技術の構成では、電界強度がほとんど考慮されておらず、PMを凝集させたとしても効果が小さい。
特開2006-136766号公報 特開2009-114872号公報 特開2006-342730号公報 特開2006-291708号公報 特開2006-122849号公報 特開平06-031199号公報 特開平11-216388号公報 特開2009-208041号公報 特開2009-082901号公報 特開平09-112246号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、粒子状物質の凝集を促進させることを目的とする。
 上記課題を達成するために本発明による粒子状物質処理装置は、
 内燃機関の排気通路に設けられ、該排気通路の壁面から該排気通路の内側へ向かって延び、曲がり部において排気の流れ方向の上流側または下流側へ曲がり、該排気の流れ方向の上流側または下流側に延びる電極を備えた粒子状物質処理装置において、
 前記電極が、該電極と前記排気通路の壁面との間の電界強度が下流側よりも上流側で大きくなるように形成される。
 ここで、電極に電圧を印加すると、PMを帯電させることができる。帯電したPMは、クーロン力や排気の流れにより排気通路の壁面へ向かって移動する。排気通路の壁面に到達したPMは、排気通路に電子を放出するため、電極よりも接地側に電気が流れる。そして、電子を放出したPMは、近くに存在する他のPMと凝集するため、粒子数を減少させることができる。
 ここで、電極と排気通路の壁面との間の電界強度を、排気の流れの上流側で大きくすると、電界強度の相対的に大きな上流側においてPMをより確実に帯電させることができる。そして、上流側で帯電したPMは、電界強度の相対的に小さな下流側へ流されると共に、電界の影響により排気通路の壁面に向かって緩やかに進む。すなわち、上流側の電界強度を比較的大きくすることにより、PMの帯電を促進させることができる。一方、下流側では、既に帯電しているPMを排気通路の壁面に向かわせるだけでよいので、電界強度が比較的小さくてもよい。このため、装置の簡略化又は軽量化が可能となる。そして、下流側の電界強度を比較的小さくしても、上流側でPMを帯電させているので、PMの凝集の機会を増やすことができる。これにより、PMの粒子数を低減することができる。
 なお、電極は、排気の流れ方向の上流側に曲がっていてもよく、下流側に曲がっていてもよい。また、電極が延びる方向は、排気の流れ方向と平行でなくてもよい。また、電界強度は、排気の流れ方向の上流側から下流側へ向かって、段階的に小さくなっていてもよく、連続的に徐々に小さくなっていてもよい。
 本発明においては、前記電極へ電力を供給する電源を備え、
 前記電源は、前記電極の一か所に対して電力を供給し、前記電極全体に同一の電圧を印加することができる。
 このように、一か所から電源を供給しつつ、電界強度を上流側と下流側とで変えることにより、装置や制御の簡略化が可能となる。また、電極を通すための孔を排気通路に設ける必要があるが、この孔が一つで済む。したがって、製造コストを下げることができる。
 本発明においては、前記電極は、排気の流れ方向の上流側または下流側に延びる部位において、前記排気の流れ方向に対して垂直方向に前記排気通路の壁面側に向かって延びる複数の突出部を備え、
 前記突出部と前記排気通路の壁面との距離、または、前記突出部の排気の流れ方向の設置間隔の少なくとも一方を、排気の流れの上流側と下流側とで変えることにより、前記電極と前記排気通路の壁面との間の電界強度を変えることができる。
 電極と排気通路の壁面との間の電界強度は、電極の周りの電界強度としてもよい。ここで、突出部と排気通路の壁面との距離が近いほど、電界強度が大きくなる。これは、突出部が長いほど、電界強度が大きくなるともいえる。また、突出部の排気の流れ方向の設置間隔が短いほど、電界強度が大きくなる。これは、排気の流れ方向に隣接する突出部間の距離が短いほど、電界強度が大きくなるともいえる。このように、突出部と排気通路の壁面との距離、又は、突出部の排気の流れ方向の設置間隔を変えることにより、電界強度を調整することができる。したがって、突出部と排気通路の壁面との距離、又は、突出部の排気の流れ方向の設置間隔の少なくとも一方を変えることにより、電極と排気通路の壁面との間の電界強度を下流側よりも上流側で大きくすることができる。なお、突出部の長さ、又は、突出部の排気の流れ方向の設置間隔は、徐々に変化させてもよく、排気の流れ方向に設置される複数の突出部毎に変化させてもよい。
 本発明においては、前記電極の周りの前記排気通路は、内径が同一であり、前記突出部の長さ、及び、前記突出部の排気の流れ方向の設置間隔の少なくとも一方を変えることで、前記電極と前記排気通路の壁面との間の電界強度を変えることができる。
 突出部を長くすることにより、突出部の先端と排気通路の壁面との距離を短くすることができる。ここで、突出部が長いほど、電界強度が大きくなり、突出部が短いほど、電界強度が小さくなる。また、突出部を短くすることで、質量を低減することができる。そして、突出部を短くしたとしても、突出部の排気の流れ方向の設置間隔を短くすることにより、電界強度の低下を抑制できる。したがって、突出部の長さ、及び、突出部の排気の流れ方向の設置間隔を調整することにより、必要な電界強度を確保しつつ、突出部の質量を調整することができる。そうすると、突出部の質量により電極が変形したり破損したりすることを抑制できる。
 本発明においては、前記電極は、前記曲がり部から排気の流れ方向の下流側へ向かって延び、
 前記曲がり部に近い箇所よりも、前記曲がり部から遠い箇所のほうが、前記突出部の長さが短く、且つ、前記突出部の排気の流れ方向の設置間隔が短くてもよい。
 すなわち、排気の流れの下流側で、突出部の長さを短くすれば、電極の下流端付近、すなわち、電極の先端付近の質量を低減することができる。これにより、電極や、電極の取付け部にかかる力の大きさを低減することができるため、電極の変形等を抑制できる。一方、突出部の長さを短くすると、電界強度が必要以上に小さくなる虞がある。これに対して、突出部の排気の流れ方向の設置間隔を短くすることで、電界強度が低下することを抑制できる。したがって、粒子状物質処理装置の故障を抑制しつつ、PMの凝集を促進できる。
 本発明においては、前記電極は、前記曲がり部から排気の流れ方向の上流側へ向かって延び、
 前記曲がり部に近い箇所よりも、前記曲がり部から遠い箇所のほうが、前記突出部の長さが長く、且つ、前記突出部の排気の流れ方向の設置間隔が長くてもよい。
 このような場合であっても、電界強度が下流側よりも上流側で大きくなるので、電界強度の相対的に大きな上流側においてPMをより確実に帯電させることができる。したがって、PMの凝集を促進できる。
 本発明においては、前記突出部の太さを、排気の流れの上流側と下流側とで変えることができる。
 ここで、突出部を太くすることにより、剛性は高くなるが、電界強度が低下する。剛性を高くするために突出部を太くした場合には、突出部の排気の流れ方向の設置間隔を短くしたり、または、突出部を長くしたりすることにより、電界強度の低下を抑制できる。したがって、突出部の太さを排気の流れの上流側と下流側とで変えることにより、剛性を確保しつつ、電極周りの電界強度を上流側と下流側とで変えることができる。なお、突出部の太さを、突出部の根元の断面の直径としてもよい。また、例えば、排気の流れの上流側で突出部を相対的に太くし且つ排気の流れ方向の設置間隔を短くすることで、電界強度を相対的に大きくしてもよい。
 本発明においては、前記電極を通る電流を検出する検出装置と、
 前記検出装置により検出される電流にパルス電流が発生したか否か判定する判定装置と、
 前記判定装置によりパルス電流が発生したと判定された場合に、前記電極への印加電圧を現時点よりも低減させる制御装置と、
 を備えることができる。
 そうすると、電極を通る電流にパルス電流が発生することを抑制できる。ここで、電極において強い放電が発生すると、電極を通る電流にパルス電流が発生する。すなわち、検出装置によりパルス電流が検出されたときには、電極において強い放電が発生していると考えられる。この強い放電によりPMが粉砕され、微細化される虞がある。これに対し、パルス電流が発生したときに、印加電圧を低減させることにより、強い放電が発生することを抑制できる。なお、コロナ放電やアーク放電などの強い放電を発生させないような印加電圧であっても、PMを凝集させることはできる。したがって、パルス電流が発生したときに印加電圧を低減させてパルス電流の発生を抑制すれば、PMが微細化されることを抑制しつつPMを凝集させることができる。
 なお、本発明においては、前記制御装置は、前記判定装置によりパルス電流が発生していないと判定された場合に、前記印加電圧を現時点よりも増加してもよい。パルス電流が発生しない範囲で印加電圧をより大きくすることにより、PMがより凝集しやすくなる。すなわち、パルス電流が発生しない範囲で印加電圧を増加させることにより、PMの凝集を促進させることができる。なお、パルス電流が発生しない範囲で印加電圧が最大となるようにフィードバック制御を行ってもよい。
 本発明によれば、粒子状物質の凝集を促進させることができる。
実施例1に係る粒子状物質処理装置の概略構成を示す図である。 実施例1に係る電極の周りの電界強度の分布を示した図である。 電極の先端側の突出部を相対的に短くし、且つ、曲がり部から電極の先端まで突出部を等間隔に配置した場合の電界強度の分布を示した図である。 実施例2に係る粒子状物質処理装置の概略構成を示す図である。 実施例2に係る電界強度の分布を示す図である。 実施例3に係る粒子状物質処理装置の概略構成を示す図である。 実施例4に係る粒子状物質処理装置の概略構成を示す図である。 実施例5に係る粒子状物質処理装置の概略構成を示す図である。 実施例6に係る粒子状物質処理装置の電極を排気の流れの下流側から見た図である。 実施例7に係る粒子状物質処理装置の概略構成を示す図である。 実施例8に係る粒子状物質処理装置の概略構成を示す図である。 実施例9に係る粒子状物質処理装置の概略構成を示す図である。 実施例9に係る空気供給装置の制御フローを示したフローチャートである。 実施例10に係る粒子状物質処理装置の概略構成を示す図である。 実施例11に係る粒子状物質処理装置の概略構成を示す図である。 検出装置により検出される電流の推移を、印加電圧ごとに示した図である。 実施例12に係る粒子状物質処理装置の概略構成を示す図である。 実施例13に係る粒子状物質処理装置の概略構成を示す図である。 実施例14に係る粒子状物質処理装置の概略構成を示す図である。
 以下、本発明に係る粒子状物質処理装置の具体的な実施態様について図面に基づいて説明する。なお、下記の実施例は、適宜組み合わせることができる。
 (実施例1)
 図1は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。粒子状物質処理装置1は、例えばガソリン機関の排気通路2に設けられる。なお、ディーゼル機関の排気通路に設けることもできる。
 粒子状物質処理装置1は、両端が排気通路2に接続されているハウジング3を備えて構成される。ハウジング3の材料には、ステンレス鋼材を用いている。ハウジング3は、中空の円柱形に形成されている。ハウジング3の両端は、端部に近くなるほど排気の流路の断面積が小さくなるテーパ状に形成されている。なお、図1においては、排気が排気通路2を矢印Bの方向に流れている。このため、ハウジング3は排気通路2の一部としてもよい。すなわち、ハウジング3の壁面は、排気通路2の壁面とすることができる。
 排気通路2の端部にはフランジ21が形成され、ハウジング3の端部にはフランジ31が形成されている。排気通路2とハウジング3とは、排気通路側のフランジ21及びハウジング3側のフランジ31を介して例えばボルト及びナットにより締結される。排気通路側のフランジ21と、ハウジング3側のフランジ31との間には、電気の絶縁体が備わっていてもよい。
 ハウジング3には、断面が円形の電極5が取り付けられている。なお、電極5の断面形状は、多角形等の他の形状であってもよい。電極5は、ハウジング3の側面を貫通しており、該ハウジング3の側面から該ハウジング3の中心軸A方向へ延びて該中心軸A近傍の曲がり部51において排気の流れの下流側へ曲がり、該中心軸Aと平行に排気の流れの下流側へ向かって伸びている。このため、本実施例では、曲がり部51よりも下流側の電極5の中心軸は、ハウジング3の中心軸Aと同一になる。
 また、電極5がハウジング3を貫通している個所において、電極5とハウジング3との間に電気が流れないように、電極5には電気の絶縁体からなる碍子部52が設けられている。この碍子部52は、電極5とハウジング3との間に位置しており、電気を絶縁すると共に、電極5をハウジング3に固定する。
 曲がり部51よりも排気の流れの下流側には、中心軸Aと直交してハウジング3の側面へ向かって延びる突出部54が複数設けられている。突出部54は、針状に形成されており、排気の流れの上流側から下流側に間隔を空けて複数設けられる。また、突出部54は、中心軸Aを中心として該中心軸Aの周りに例えば等角度に複数設けられる。なお、中心軸Aを中心として放射状に複数設けるとしてもよい。なお、突出部54の周りのハウジング3では、内径が一定となっている。
 そして、本実施例では、比較的下流側に備わる突出部542の長さを、比較的上流側に備わる突出部541の長さよりも短くしている。また、上流側に備わる突出部541では、突出部541の排気の流れ方向の設置間隔を比較的長くし、下流側に備わる突出部542では、突出部542の排気の流れ方向の設置間隔を比較的短くしている。
 図1に示すように、曲がり部51に近い側から排気の流れ方向に例えば3番目までの突出部541(以下、上流側の突出部541ともいう。)の長さを、それよりも下流側の突出部542(以下、下流側の突出部542ともいう。)の長さよりも長くしている。すなわち、上流側の突出部541の長さL3が、下流側の突出部542の長さL4よりも長い。そうすると、上流側の突出部541の先端からハウジング3の壁面までの距離L5が、下流側の突出部542の先端からハウジング3の壁面までの距離L6よりも短くなる。なお、突出部54の長さは、中心軸Aから突出部54の先端までの距離としてもよいし、突出部54の根元から先端までの長さとしてもよい。
 なお、曲がり部51から所定距離未満に存在する突出部541の長さよりも、曲がり部51から所定距離以上に存在する突出部542の長さのほうを短くするとしてもよい。曲がり部51から所定距離未満に存在する突出部541の長さは全て同じとしてもよく、排気の流れの下流側ほど短くてもよい。また、曲がり部51から所定距離以上に存在する突出部542の長さは全て同じとしてもよく、排気の流れの下流側ほど短くしてもよい。
 また、図1に示すように、上流側の突出部541の排気の流れ方向の設置間隔L1を、下流側の突出部542の排気の流れ方向の設置間隔L2よりも長くしている。
 なお、曲がり部51から所定距離未満に存在する突出部541の排気の流れ方向の間隔よりも、曲がり部51から所定距離以上に存在する突出部542の排気の流れ方向の間隔のほうが短いとしてもよい。また、突出部54が長いほど、排気の流れ方向の間隔を長くしてもよい。
 そして、電極5は電線53を介して電源に接続されている。すなわち、電極5は一か所で電線53を介して電源に接続されている。電源は、電極5へ通電すると共に、印加電圧を変更することができる。また、ハウジング3は電気的に接地されている。
 このように構成された粒子状物質処理装置1では、電源から電極5へ負の直流高電圧を印加することで、該電極5から電子が放出される。すなわち、ハウジング3よりも電極5のほうの電位を低くすることで、電極5から電子を放出させている。そして、この電子により排気中のPMを負に帯電させることができる。負に帯電したPMは、クーロン力とガス流によって移動する。そして、PMがハウジング3へ到達すると、PMを負に帯電させた電子は該ハウジング3へと放出される。ハウジング3へ電子を放出したPMは凝集して粒子径が大きくなる。また、PMが凝集することで、PMの粒子数は低減する。すなわち、電極5へ電圧を印加することで、PMの粒子径を大きくし且つPMの粒子数を低減させることができる。
 そして、排気の流れの上流側の突出部541よりも、排気の流れの下流側の突出部542の長さを短くしているため、電極5の先端側、すなわち、電極5の下流端側の質量を低減することができる。これにより、電極5に生じる曲げモーメントを小さくすることができるので、電極5の破損や変形を抑制できる。
 また、図2は、本実施例に係る電極5の周りの電界強度の分布を示した図である。図2中の破線は、電界強度の分布を示している。そして、ハウジング3の中心軸A付近の電界強度が大きく、該中心軸Aから離れるにしたがって電界強度が小さくなる。
 ところで、突出部54の間隔を短くするほど、電界強度の大きい範囲がハウジング3の径方向に広がる。また、突出部54の長さを長くするほど、電界強度の大きい範囲がハウジング3の径方向に広がる。したがって、排気の流れの下流側の突出部542を相対的に短くすることにより、電極5の先端側の電界強度が相対的に小さくなる。これに対し、電極5の先端側の突出部542の排気の流れ方向の間隔を短くすることで、電界強度が低下することを抑制できる。すなわち、電極5の先端側の電界強度が小さくなりすぎることを抑制できる。
 ここで、図3は、電極5の先端側の突出部54を相対的に短くし、且つ、曲がり部51から電極5の先端まで突出部54を等間隔に配置した場合の電界強度の分布を示した図である。図3に示されるように、突出部54の間隔が、曲がり部51から電極5の先端まで同じ場合には、電極5の先端側において、電界強度が大きく低下する。このため、PMがハウジング3の壁面に向かう力が小さくなりすぎて、PMが凝集し難くなる。
 これに対して、突出部54の長さを短くすることに合わせて、突出部54の間隔を短くすることで、電界強度が過度に低下することを抑制できるので、PMの凝集を促進させることができる。なお、上流側の突出部541の長さ及び上流側の突出部541の排気の流れ方向の設置間隔は、排気中のPMを帯電させることができる範囲に設定する。この範囲は、実験等により求めることができる。一方、下流側の突出部542の長さ及び下流側の突出部542の排気の流れ方向の設置間隔は、帯電したPMをハウジング3の壁面に向かわせることができる範囲に設定する。この範囲も、実験等により求めることができる。
 以上説明したように、本実施例によれば、上流側の突出部541の周りの電界強度を、下流側の突出部542の周りの電界強度よりも大きくすることができる。これにより、電界強度が相対的に大きい上流側の突出部541の周りにおいてPMをより確実に帯電させることができる。そして、上流側の突出部541の周りで帯電したPMが、電界強度の相対的に小さい下流側へ流されると、該PMがハウジング3の壁面に緩やかに向かう。すなわち、下流側の電界強度を小さくしても、PM同士の凝集が促進されるので、PMの粒子数の低減効果を高めることができる。
 そして、下流側の突出部542を、上流側の突出部541よりも短くし、且つ、下流側の突出部542の排気の流れ方向の間隔を、上流側の突出部541の排気の流れ方向の間隔よりも短くすることで、下流側の突出部542の質量を低減することができる。また、下流側の電界強度が小さくなりすぎることを抑制できる。これらにより、粒子状物質処理装置1の故障を抑制しつつ、PMの凝集を促進させることができる。そして、PMの粒子数を減少させることができる。また、電極5の先端部付近の質量を低減することで、電極5を一か所で支持しても、破損や変形が抑制される。このため、碍子部52も一か所に設ければよいため、電極5を二か所以上で支持する場合よりも、製造コストを低減することができる。また、電源は、電極5の一か所に対して電力を供給し、電極5の全体に同一の電圧を印加すればよいため、これによっても製造コストを低減することができる。
 (実施例2)
 図4は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。本実施例に係る突出部54は、排気の流れの下流側ほど、長さが短い。これにより、曲がり部51よりも遠くなるほど突出部54の質量を小さくすることができる。そうすると、電極5の先端側の質量を小さくすることができるので、電極5に生じる曲げモーメントを小さくすることができる。したがって、信頼性を向上させることができる。
 また、本実施例では、排気の流れの下流側ほど、突出部54の排気の流れ方向の間隔が短い。すなわち、突出部54の長さが短くなるにしたがって、突出部54の間隔が短くなる。例えば、最上流の突出部54の先端と、最下流の突出部54の先端と、を結ぶ線上に、他の突出部54の先端が位置するように、夫々の突出部54の長さが設定されてもよい。
 ここで、図5は、本実施例に係る電界強度の分布を示す図である。図5中の破線は、電界強度の分布を示している。このように、図2または図3に示した場合と比較して、電界強度がより均一になるため、PMの凝集を促進させることができる。
 また、本実施例に係る粒子状物質処理装置1では、下流側の突出部54の質量を低減することができる。そして、下流側の電界強度が小さくなりすぎることを抑制できる。これらにより、粒子状物質処理装置1の故障を抑制しつつ、PMの凝集を促進させることができる。このため、PMの粒子数を減少させることができる。
 (実施例3)
 図6は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。本実施例に係る碍子部52は、排気中に突出する量を前記実施例よりも小さくしている。例えば、電気の絶縁を確保するのに必要最低限な突出量としてもよい。この突出量は、ハウジング3の壁面からの突出量であり、ハウジング3の壁面から碍子部52の先端までの距離としてもよい。
 このように、碍子部52の排気中への突出量を小さくすることにより、碍子部52の温度が急変することを抑制できる。仮に、碍子部52が排気中へ大きく突出している場合には、例えば、内燃機関が最大出力で運転した後に燃料カットが実施されたときに、碍子部52の温度が急激に変化する。また、排気中に含まれる水分が凝縮して水滴となって碍子部52に付着した場合にも、碍子部52の温度が急激に変化する。このように、碍子部52の温度が急激に変化すると、該碍子部52が破損する虞がある。
 これに対し、碍子部52の排気中への突出量を可及的に小さくすることにより、水滴の付着等を抑制できるので、碍子部52の温度が急激に変化することを抑制できる。これにより、碍子部52が破損することを抑制できる。
 (実施例4)
 図7は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、曲がり部51よりも碍子部52側の電極5の断面の直径が、該曲がり部51よりも先端側(排気の流れの下流側)の電極5の断面の直径よりも大きくなっている。そして、曲がり部51においては、電極5の先端側ほど断面の直径が小さくなっている。すなわち、曲がり部51において電極5の太さが変化している。
 このように構成された粒子状物質処理装置1では、曲がり部51における電界強度を低下させることができる。これにより、絶縁性を向上させることができる。すなわち、排気中への碍子部52の突出量を小さくするだけでは、絶縁性が低下する虞があるが、電極5の太さを変えることにより絶縁性の低下を抑制できる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 (実施例5)
 図8は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、曲がり部51よりも碍子部52側の電極5の断面の直径が、該曲がり部51よりも先端側(排気の流れの下流側)の電極5の断面の直径よりも大きくなっている。さらに、碍子部52から曲がり部51までの間の電極5では、曲がり部51に近くなるほど、断面の直径が小さくなっている。そして、曲がり部51においては、電極5の先端側ほど断面の直径が小さくなっている。すなわち、碍子部52から曲がり部51までにおいて電極5の太さが変化している。
 このように構成された粒子状物質処理装置1では、曲がり部51における相対電界強度を低下させることができる。これにより、絶縁性を向上させることができる。さらに、碍子部52付近において電極5の断面の直径を大きくすることにより、この箇所における電界強度を特に低下させることができる。すなわち、碍子部52付近では短絡が発生しやすいが、電界強度を低下させることにより短絡を抑制できる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 (実施例6)
 図9は、本実施例に係る粒子状物質処理装置1の電極5を排気の流れの下流側から見た図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 図9に示す電極5は、曲がり部51から最も距離の短い位置に設置される突出部541A(以下、1列目の突出部541Aという。)、曲がり部51からの距離が二番目に近い位置に設置される突出部541B(以下、2列目の突出部541Bという。)、曲がり部51からの距離が三番目に近い位置に設置される突出部541C(以下、3列目の突出部541Cという。)を備えて構成されている。すなわち、排気の流れ方向に間隔をあけて、上流側から、1列目の突出部541A、2列目の突出部541B、3列目の突出部541Cが設置されている。
 そして、1列目の突出部541Aは、2本備わり、互いが中心軸Aを挟んで反対方向を向いている。すなわち、1列目の突出部541Aは、中心軸Aを中心にして180度の角度を設けて2本備わる。2列目の突出部541Bも、2本備わり、互いが中心軸Aを挟んで反対方向を向く。そして、1列目の突出部541Aと、2列目の突出部541Bとは、中心軸Aを中心として、60度ずれて配置される。また、3列目の突出部541Cも、2本備わり、互いが中心軸Aを挟んで反対方向を向く。そして、1列目の突出部541Aと、3列目の突出部541Cとは、中心軸Aを中心として、120度ずれて配置される。すなわち、2列目の突出部541Bと、3列目の突出部541Cとは、中心軸Aを中心として、60度ずれて配置される。これにより、排気の流れの下流側から見ると、中心軸Aを中心として60度毎に突出部541A,541B,541Cが備わっているように見える。
 このように、曲がり部51から、1列目の突出部541A、2列目の突出部541B、3列目の突出部541Cと下流側へ向かうにしたがって、中心軸周りの角度をずらして配置している。これにより、電界の空間分布を均一にすることができるので、PMの凝集を促進させることができる。なお、さらに下流側に他の突出部を備えている場合にも同様に考えて、排気の流れの下流側から見たときに夫々の突出部が放射状に配置されるようにしてもよい。また、排気の流れの下流側ほど突出部を短くし、且つ、突出部の排気の流れ方向の間隔を短くしてもよい。
 (実施例7)
 図10は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、突出部54の周りのハウジング3の直径D1が、碍子部52が設けられている箇所におけるハウジング3の直径D2よりも小さい。これにより、碍子部52の周りに排気が流れ難くなっている。なお、碍子部52が設けられている箇所のハウジング3と中心軸Aとの距離が、突出部54の周りのハウジング3と中心軸Aとの距離よりも長いとしてもよい。
 このように構成された粒子状物質処理装置1では、水滴や内燃機関から排出される物質(例えば燃焼生成物)が碍子部52の周辺を通過することを抑制できる。すなわち、碍子部52に水滴や燃焼生成物が付着して絶縁性が低下することを抑制できる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 (実施例8)
 図11は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、実施例7の場合と比較して、突出部54の周りのハウジング3の直径D3が小さい。このため、突出部54の周りのハウジング3の直径D3が、碍子部52が設けられている箇所におけるハウジング3の直径D4よりも、さらに小さくなっている。これにより、碍子部52の周りに排気が流れ難くなると共に、突出部54の周りの電界強度が相対的に大きくなる。したがって、絶縁性が低下することをさらに抑制できると共に、PMの凝集をより促進させることができる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 (実施例9)
 図12は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、碍子部52の周りに空気を供給する空気供給装置6を備えている。空気供給装置6は、空気供給管61およびポンプ62を備えて構成されている。ポンプ62は、制御装置7により制御される。ポンプ62が作動すると、該ポンプ62から空気が吐出される。この空気は、空気供給管61を流通して碍子部52の周りに供給される。なお、碍子部52の周りに備わる他の電気絶縁部材の周りに空気を供給してもよい。
 ここで、碍子部52の周りに、空気を供給することで、該碍子部52に水滴や燃焼生成物が付着することを抑制できる。したがって、絶縁性が低下することを抑制できる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 図13は、本実施例に係る空気供給装置6の制御フローを示したフローチャートである。本ルーチンは、制御装置7により所定の時間毎に実行される。
 ステップS101では、IGスイッチがONとなっているか否か判定される。IGスイッチは、運転者が内燃機関を始動させるときにONとするスイッチである。すなわち、本ステップでは、内燃機関を始動する要求があるか否か判定している。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
 ステップS102では、電極5の電気絶縁抵抗が測定される。ここで、電極5に水滴等が付着していると電気絶縁抵抗が低下する。したがって、この電気絶縁抵抗の低下を検出すれば、電極5に水滴等が付着しているか否か判定することができる。例えば、電極5に所定の電圧を印加し、このときの電流を測定することで、電気絶縁抵抗を検出することができる。ステップS102の処理が完了した後に、ステップS103へ進む。
 ステップS103では、電極5の電気絶縁抵抗が所定値未満であるか否か判定される。ここでいう所定値とは、水滴等が付着していないときの電気絶縁抵抗の下限値である。この所定値は、電気絶縁抵抗が低下したことを判定するための値としてもよい。この所定値は、予め実験等により求めておく。ステップS103で肯定判定がなされた場合には、水滴等が付着していると考えられるため、ステップS104へ進む。一方、ステップS103で否定判定がなされた場合には、水滴等が付着していないと考えられるためステップS106へ進む。
 ステップS104では、ポンプ62が作動される。すなわち、碍子部52の周りに空気が供給され、水滴等が除去される。ステップS104の処理が完了した後に、ステップS105へ進む。
 ステップS105では、電気絶縁抵抗が所定値よりも大きいか否か判定される。ここでいう所定値は、ステップS103における所定値と同じとすることができる。また、所定値は、電気絶縁抵抗が回復したことを判定するための値としてもよい。この所定値は、予め実験等により求めておく。ステップS105で肯定判定がなされた場合には、水滴等が除去されたためステップS106へ進む。一方、ステップS105で否定判定がなされた場合には、水滴等が残っているので、ステップS104へ戻り、空気の供給が継続される。
 ステップS106では、内燃機関が始動される。すなわち、電極5に水滴等が付着していない状態で内燃機関が始動される。ステップS106の処理が完了した後に、本ルーチンを終了させる。
 なお、本実施例では、電極5に水滴等が付着していない場合には、ポンプ62から排気浄化触媒へ空気を供給してもよい。これにより、排気中のHCやCOの酸化を促進することができる。
 (実施例10)
 図14は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、碍子部52よりも上流側のハウジング3において、排気の通路の断面積が小さくなる絞り部4が形成されている。そして、絞り部4に、逆止弁41が設けられている。この逆止弁41は、ハウジング3の外側から内側に流入しようとするガスを通し、ハウジング3の内側から外側へ流出しようとするガスを遮断する。
 このように構成された粒子状物質処理装置1では、内燃機関から排出されるガスが絞り部4を通過するときに、ガスの流速が高くなる。これにより、逆止弁41が開いてハウジング3内に空気が導入される。この空気が、碍子部52に到達するように、逆止弁41を設ける位置が決定される。このようにして、ポンプを設けなくても、碍子部52の周りに空気を供給することができる。したがって、絶縁性が低下することを抑制できる。これにより、突出部54以外からの放電を抑制することができるので、信頼性を向上させ、且つ、PMの凝集を促進させることができる。
 (実施例11)
 図15は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例では、電極5が電線53を介して電源8に接続されている。電源8は、電極5へ通電すると共に、印加電圧を変更することができる。この電源8は、電線を介して制御装置7及びバッテリ9に接続されている。制御装置7は、電源8が電極5に印加する電圧を制御する。
 また、ハウジング3には接地側電線55が接続されており、該ハウジング3は接地側電線55を介して接地されている。接地側電線55には、該接地側電線55を通る電流を検出する検出装置10が設けられている。検出装置10は、電流計としてもよい。検出装置10は、例えば、接地側電線55の途中に設けられる抵抗の両端の電位差を測定することで電流を検出する。この検出装置10は、電線を介して制御装置7に接続されている。そして、検出装置10により検出される電流が制御装置7に入力される。
 なお、制御装置7には、アクセル開度センサ71、クランクポジションセンサ72、温度センサ73、エアフローメータ74が接続されている。アクセル開度センサ71は、内燃機関が搭載されている車両の運転者がアクセルペダルを踏み込んだ量に応じた電気信号を出力し、機関負荷を検出する。クランクポジションセンサ72は、機関回転数を検出する。温度センサ73は、内燃機関の冷却水の温度または潤滑油の温度を検出することで内燃機関の温度を検出する。エアフローメータ74は、内燃機関の吸入空気量を検出する。
 このように構成された粒子状物質処理装置1では、電源8から電極5へ負の直流高電圧を印加することで、該電極5から電子が放出される。すなわち、ハウジング3よりも電極5のほうの電位を低くすることで、電極5から電子を放出させている。そして、この電子により排気中のPMを負に帯電させることができる。負に帯電したPMは、クーロン力とガス流によって移動する。そして、PMがハウジング3へ到達すると、PMを負に帯電させた電子は該ハウジング3へと放出される。ハウジング3へ電子を放出したPMは凝集して粒子径が大きくなる。また、PMが凝集することで、PMの粒子数は低減する。すなわち、電極5へ電圧を印加することで、PMの粒子径を大きくし且つPMの粒子数を低減させることができる。
 ところで、電極5に印加する負の電圧を大きくすると、電極5からより多くの電子が放出されるため、PMの粒子数をより減少させることができる。しかし、電極5への印加電圧を大きくし過ぎると、コロナ放電やアーク放電などの強い放電が起こり得る。このような強い放電が起こると、高速電子によりPMが微細化されてしまう。したがって、PMの粒子数を減少させるためには、コロナ放電などの強い放電が起こるよりも低い電圧に調節するとよい。
 ここで、電極5において強い放電が起こると、電極5を通る電流が急激に上昇した後すぐに下降する。図16は、検出装置10により検出される電流の推移を、印加電圧ごとに示した図である。印加電圧が大きくなるほど、検出装置10により検出される電流が大きくなる。そして、印加電圧が比較的小さいときに検出される電流は略一定になる。電流が略一定のときには、強い放電は発生していない。しかし、電極5から放出される電子によりPMが負に帯電し、該PMがハウジング3に電子を放出しているために電流が検出される。すなわち、コロナ放電などの強い放電が発生していなくても、PMを凝集させることができる。
 一方、印加電圧が比較的大きくなると、検出装置10により検出される電流が大きくなると共に、パルス電流が発生する。そして、印加電圧が大きくなるほど、パルス電流が発生する頻度が高くなる。このパルス電流は、コロナ放電などの強い放電により発生する。パルス電流が発生したか否かは、制御装置7により判定される。すなわち、本実施例では制御装置7が、本発明における判定装置に相当する。
 そこで本実施例では、パルス電流が発生したときに制御装置7が、電源8を操作して印加電圧を現時点よりも小さくする。これにより、パルス電流が発生することを抑制し、PMの粒子数が増加することを抑制する。一方、パルス電流が発生するまでは、印加電圧を大きくする。これにより、印加電圧を可及的に高くすることができるため、PMの粒子数をより減少させることができる。なお、パルス電流が発生する前に、パルス電流が発生する予兆を電流から読み取って、パルス電流が発生する前に印加電圧を小さくしてもよい。
 たとえば、印加電圧をフィードバック制御することで、パルス電流が発生しない範囲で印加電圧を可及的に高くすることができる。これにより、PMの凝集をより促進させることができるため、PM粒子数をより減少させることができる。
 (実施例12)
 図17は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1は、突出部54の太さを変えることにより、電界強度を変化させている。
 そして、本実施例では、上流側の突出部541の根元の断面の直径を、下流側の突出部542の根元の断面の直径よりも大きくしている。すなわち、上流側の突出部541のほうが、下流側の突出部542よりも、太い。また、上流側の突出部541では、突出部541の排気の流れ方向の設置間隔L7を比較的短くし、下流側の突出部542では、突出部542の排気の流れ方向の設置間隔L8を比較的長くしている。なお、突出部54の長さは、全て同一である。このため、突出部54からハウジング3の壁面までの距離も、全ての突出部54で同じである。
 図17に示すように、曲がり部51に近い側から排気の流れ方向に例えば4番目までの突出部541の根元の直径を、それよりも下流側の突出部542の根元の直径よりも、大きくしている。この根元の直径は、夫々の突出部54で直径が最も大きくなる箇所における直径である。
 なお、曲がり部51から所定距離未満に存在する突出部541の直径を、曲がり部51から所定距離以上に存在する突出部542の直径よりも大きくするとしてもよい。また、曲がり部51から所定距離未満に存在する突出部541の長さは全て同じとしてもよく、下流側ほど短くてもよい。また、曲がり部51から所定距離以上に存在する突出部542の長さは全て同じとしてもよく、下流側ほど短くしてもよい。
 また、曲がり部51から所定距離未満に存在する突出部541の排気の流れ方向の間隔よりも、曲がり部51から所定距離以上に存在する突出部542の排気の流れ方向の間隔のほうが短いとしてもよい。また、突出部54の根元の直径が大きいほど、排気の流れ方向の間隔を短くしてもよい。
 ここで、突出部54の根元の断面の直径を大きくするほど、すなわち、突出部54を太くするほど、突出部54の剛性が増す。排気の流れの比較的上流側に備わる突出部541は、比較的高い剛性が求められる。このため、上流側の突出部541を太くすることが考えられる。一方、突出部54を太くすると、電界強度が低下する。このため、上流側の突出部541を太くするだけだと、上流側の電界強度が低下する虞がある。これに対し、上流側の突出部541の排気の流れ方向の設置間隔を短くすることにより、電界強度の低下を抑制できる。すなわち、上流側の突出部541においてPMをより確実に帯電させることができる。
 また、排気の流れの下流側の突出部542では、上流側の突出部541よりも剛性が低くてもよい。このため、下流側の突出部542を相対的に細くすることができる。また、下流側の突出部542が相対的に細くなることにより、電界強度が高くなるので、下流側の突出部542の排気の流れ方向の設置間隔を長くすることができる。このように、下流側の突出部542を相対的に細くすることができ、且つ、下流側の突出部542の排気の流れ方向の設定間隔を長くすることができるので、電極5の先端付近の質量を低減することができる。これにより、PMの凝集を促進させつつ、電極の変形や破損を抑制することができる。
 (実施例13)
 図18は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例と同じ部位については、同じ符号を付して説明を省略する。
 本実施例に係る粒子状物質処理装置1では、突出部54の太さ及び突出部54の長さを変えることにより、電界強度を変化させている。
 そして、本実施例では、上流側の突出部541の根元の断面の直径を、下流側の突出部542の根元の断面の直径よりも大きくしている。すなわち、上流側の突出部541のほうが、下流側の突出部542よりも、太い。また、下流側の突出部542の長さを、上流側の突出部541の長さよりも短くしている。なお、上流側の突出部541の排気の流れ方向の設置間隔L9と、下流側の突出部542の排気の流れ方向の設置間隔L10は同じである。
 図18に示すように、曲がり部51に近い側から排気の流れ方向に例えば4番目までの突出部541の根元の直径を、それよりも下流側の突出部542の根元の直径よりも大きくしている。
 なお、曲がり部51から所定距離未満に存在する突出部541の直径を、曲がり部51から所定距離以上に存在する突出部542の直径よりも大きくするとしてもよい。また、曲がり部51から所定距離未満に存在する突出部541の長さは全て同じとしてもよく、下流側ほど短くてもよい。また、曲がり部51から所定距離以上に存在する突出部542の長さは全て同じとしてもよく、下流側ほど短くしてもよい。
 また、曲がり部51から所定距離未満に存在する突出部541の長さよりも、曲がり部51から所定距離以上に存在する突出部542の長さのほうを短くするとしてもよい。
 ここで、排気の流れの下流側の突出部542では、上流側の突出部541よりも剛性が低くてもよい。このため、下流側の突出部542を相対的に細くすることができる。また、上流側の突出部541よりも、下流側の突出部542の長さを短くしているため、電極5の先端側、すなわち、電極5の下流端側の質量を低減することができる。さらに、下流側の突出部542の排気の流れ方向の間隔を相対的に短くすることで、電界強度が低下することを抑制できる。
 このように、下流側の突出部542を相対的に細く且つ短くし、さらに下流側の突出部542の排気の流れ方向の間隔を短くすることにより、電極5の先端付近の質量を低減することができる。これにより、電界強度を均一にさせつつ、電極の変形や破損を抑制することができる。
 (実施例14)
 図19は、本実施例に係る粒子状物質処理装置1の概略構成を示す図である。前記実施例では、電極5を排気の流れの下流側に向けて曲げているが、本実施例では、電極5を上流側に向けて曲げている。
 そして、上流側の突出部541の長さを、下流側の突出部542の長さよりも長くしている。また、上流側の突出部541の排気の流れ方向の設置間隔を、下流側の突出部542の排気の流れ方向の設置間隔よりも長くしている。このような場合であっても、上流側の電界強度を下流側の電界強度よりも大きくすることができるので、電界強度が相対的に大きい上流側においてPMをより確実に帯電させることができる。そして、上流側で帯電したPMが、電界強度の相対的に小さい下流側へ流されると、ハウジング3の壁面に緩やかに向かう。これにより、PM同士の凝集が促進されるので、PMの粒子数の低減効果を高めることができる。
 また、電極5を排気の流れの上流側に向けて曲げると、碍子部52にPMが付着し難い。すなわち、碍子部52よりも上流側においてPMを帯電されることができるため、該PMがハウジング3の内周面に向かう。このため、碍子部52に衝突するPMが減少するので、該碍子部52にPMが付着し難くなる。しかし、電極5を排気の流れの上流側へ向けて曲げると、排気の流れから力を受けて電極5が変形し易い。また、突出部54の質量の影響を受け易い。このため、電極5が短い場合に適している。一方、電極5を排気の流れの下流側に向けて曲げると、碍子部52にPMが付着し易いが、排気の流れから力を受けても電極5が変形し難い。このため、耐久性及び信頼性が高く、電極5を長くすることができる。
1     粒子状物質処理装置
2     排気通路
3     ハウジング
5     電極
6     空気供給装置
21   フランジ
31   フランジ
51   曲がり部
52   碍子部
53   電線
54   突出部

Claims (8)

  1.  内燃機関の排気通路に設けられ、該排気通路の壁面から該排気通路の内側へ向かって延び、曲がり部において排気の流れ方向の上流側または下流側へ曲がり、該排気の流れ方向の上流側または下流側に延びる電極を備えた粒子状物質処理装置において、
     前記電極が、該電極と前記排気通路の壁面との間の電界強度が下流側よりも上流側で大きくなるように形成される粒子状物質処理装置。
  2.  前記電極へ電力を供給する電源を備え、
     前記電源は、前記電極の一か所に対して電力を供給し、前記電極全体に同一の電圧を印加する請求項1に記載の粒子状物質処理装置。
  3.  前記電極は、排気の流れ方向の上流側または下流側に延びる部位において、前記排気の流れ方向に対して垂直方向に前記排気通路の壁面側に向かって延びる複数の突出部を備え、
     前記突出部と前記排気通路の壁面との距離、または、前記突出部の排気の流れ方向の設置間隔の少なくとも一方を、排気の流れの上流側と下流側とで変えることにより、前記電極と前記排気通路の壁面との間の電界強度を変える請求項1又は2に記載の粒子状物質処理装置。
  4.  前記電極の周りの前記排気通路は、内径が同一であり、前記突出部の長さ、及び、前記突出部の排気の流れ方向の設置間隔の少なくとも一方を変えることで、前記電極と前記排気通路の壁面との間の電界強度を変える請求項3に記載の粒子状物質処理装置。
  5.  前記電極は、前記曲がり部から排気の流れ方向の下流側へ向かって延び、
     前記曲がり部に近い箇所よりも、前記曲がり部から遠い箇所のほうが、前記突出部の長さが短く、且つ、前記突出部の排気の流れ方向の設置間隔が短い請求項4に記載の粒子状物質処理装置。
  6.  前記電極は、前記曲がり部から排気の流れ方向の上流側へ向かって延び、
     前記曲がり部に近い箇所よりも、前記曲がり部から遠い箇所のほうが、前記突出部の長さが長く、且つ、前記突出部の排気の流れ方向の設置間隔が長い請求項4に記載の粒子状物質処理装置。
  7.  前記突出部の太さを、排気の流れの上流側と下流側とで変える請求項3から6の何れか1項に記載の粒子状物質処理装置。
  8.  前記電極を通る電流を検出する検出装置と、
     前記検出装置により検出される電流にパルス電流が発生したか否か判定する判定装置と、
     前記判定装置によりパルス電流が発生したと判定された場合に、前記電極への印加電圧を現時点よりも低減させる制御装置と、
     を備える請求項1から7の何れか1項に記載の粒子状物質処理装置。
PCT/JP2012/063735 2012-05-29 2012-05-29 粒子状物質処理装置 WO2013179381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014518118A JPWO2013179381A1 (ja) 2012-05-29 2012-05-29 粒子状物質処理装置
CN201280073621.1A CN104379263A (zh) 2012-05-29 2012-05-29 颗粒状物质处理装置
PCT/JP2012/063735 WO2013179381A1 (ja) 2012-05-29 2012-05-29 粒子状物質処理装置
EP12878029.3A EP2857104A4 (en) 2012-05-29 2012-05-29 DEVICE FOR TREATING PARTICULATE MATTER
US14/404,368 US20150113959A1 (en) 2012-05-29 2012-05-29 Particulate matter processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063735 WO2013179381A1 (ja) 2012-05-29 2012-05-29 粒子状物質処理装置

Publications (1)

Publication Number Publication Date
WO2013179381A1 true WO2013179381A1 (ja) 2013-12-05

Family

ID=49672635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063735 WO2013179381A1 (ja) 2012-05-29 2012-05-29 粒子状物質処理装置

Country Status (5)

Country Link
US (1) US20150113959A1 (ja)
EP (1) EP2857104A4 (ja)
JP (1) JPWO2013179381A1 (ja)
CN (1) CN104379263A (ja)
WO (1) WO2013179381A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068209A1 (ja) * 2013-11-05 2015-05-14 三菱重工メカトロシステムズ株式会社 集塵装置及び集塵方法
JP2018062865A (ja) * 2016-10-11 2018-04-19 トヨタ紡織株式会社 オイルセパレータの制御装置
JP2018184875A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 排ガス浄化装置
WO2018221207A1 (ja) * 2017-05-31 2018-12-06 臼井国際産業株式会社 ディーゼルエンジン排ガス処理用電気集塵装置の放電電極
JP2019122940A (ja) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 電気集塵装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094555B2 (ja) * 2014-10-02 2017-03-15 トヨタ自動車株式会社 オイル除去装置
CN105649715B (zh) * 2016-03-22 2018-06-29 赵云峰 利用静电式尾气净化捕集装置进行除尘的方法
US11325125B2 (en) 2017-04-23 2022-05-10 Hewlett-Packard Development Company, L.P. Particle separation
US11078818B2 (en) * 2017-08-22 2021-08-03 The Prime Solution L.L.C. System for reducing particulate matter in exhaust gas
WO2020263234A1 (en) * 2019-06-25 2020-12-30 Hewlett-Packard Development Company, L.P. Molded structures with channels
CN114173931A (zh) * 2020-03-02 2022-03-11 富士电机株式会社 集尘装置
CN114798174A (zh) * 2021-01-27 2022-07-29 陕西青朗万城环保科技有限公司 一种微波增强电凝并的方法及其控制系统

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052581U (ja) * 1973-09-10 1975-05-21
JPS5397677A (en) * 1977-02-04 1978-08-26 Ishikawajima Harima Heavy Ind Co Ltd Electric centrifugal dust collector
JPS57107251A (en) * 1980-12-26 1982-07-03 Nippon Soken Inc Electric dust collector
JPH0631199A (ja) 1992-07-21 1994-02-08 Mitsubishi Heavy Ind Ltd ダクト型電気集じん装置
JPH09112246A (ja) 1995-10-24 1997-04-28 Ooden:Kk 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
JPH10277432A (ja) * 1997-04-07 1998-10-20 Sumitomo Heavy Ind Ltd 電気集塵方法及び電気集塵装置
JPH11216388A (ja) 1998-01-29 1999-08-10 Mitsubishi Electric Corp 電気集塵機のイオン化部
JP2006112383A (ja) * 2004-10-18 2006-04-27 Denso Corp 排気浄化装置
JP2006122849A (ja) 2004-10-29 2006-05-18 Toshiba Corp ガス処理装置
JP2006136766A (ja) 2004-11-10 2006-06-01 Mitsubishi Heavy Ind Ltd ディーゼルエンジン排ガス浄化装置
JP2006194116A (ja) * 2005-01-12 2006-07-27 Denso Corp 内燃機関排気浄化装置
JP2006291708A (ja) 2005-04-05 2006-10-26 Denso Corp 排気処理装置
JP2006342730A (ja) 2005-06-09 2006-12-21 Denso Corp 内燃機関の排気処理装置
JP2009082901A (ja) 2007-09-10 2009-04-23 Panasonic Corp 電気集じん機
JP2009114872A (ja) 2007-11-02 2009-05-28 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2009142808A (ja) * 2007-11-20 2009-07-02 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2009208041A (ja) 2008-03-06 2009-09-17 Panasonic Corp 電気集じん機
JP2010022949A (ja) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd 排ガス処理装置
WO2012066825A1 (ja) * 2010-11-16 2012-05-24 臼井国際産業株式会社 ディーゼルエンジン排ガス処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1557150A1 (de) * 1966-12-03 1970-04-02 Metallgesellschaft Ag Elektrostatischer Staubabscheider
US4194888A (en) * 1976-09-24 1980-03-25 Air Pollution Systems, Inc. Electrostatic precipitator
US4247307A (en) * 1979-09-21 1981-01-27 Union Carbide Corporation High intensity ionization-wet collection method and apparatus
JP3629968B2 (ja) * 1998-08-21 2005-03-16 三菱電機株式会社 空気清浄機の制御装置
JP4269436B2 (ja) * 1999-10-04 2009-05-27 株式会社デンソー 内燃機関の排気浄化装置
JP5181902B2 (ja) * 2008-07-31 2013-04-10 パナソニック株式会社 電気集じん機
DE102009036957A1 (de) * 2009-08-11 2011-02-17 Robert Bosch Gmbh Elektrostatischer Abscheider und Heizungssystem
JP2013160176A (ja) * 2012-02-07 2013-08-19 Toyota Motor Corp 粒子状物質処理装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052581U (ja) * 1973-09-10 1975-05-21
JPS5397677A (en) * 1977-02-04 1978-08-26 Ishikawajima Harima Heavy Ind Co Ltd Electric centrifugal dust collector
JPS57107251A (en) * 1980-12-26 1982-07-03 Nippon Soken Inc Electric dust collector
JPH0631199A (ja) 1992-07-21 1994-02-08 Mitsubishi Heavy Ind Ltd ダクト型電気集じん装置
JPH09112246A (ja) 1995-10-24 1997-04-28 Ooden:Kk 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
JPH10277432A (ja) * 1997-04-07 1998-10-20 Sumitomo Heavy Ind Ltd 電気集塵方法及び電気集塵装置
JPH11216388A (ja) 1998-01-29 1999-08-10 Mitsubishi Electric Corp 電気集塵機のイオン化部
JP2006112383A (ja) * 2004-10-18 2006-04-27 Denso Corp 排気浄化装置
JP2006122849A (ja) 2004-10-29 2006-05-18 Toshiba Corp ガス処理装置
JP2006136766A (ja) 2004-11-10 2006-06-01 Mitsubishi Heavy Ind Ltd ディーゼルエンジン排ガス浄化装置
JP2006194116A (ja) * 2005-01-12 2006-07-27 Denso Corp 内燃機関排気浄化装置
JP2006291708A (ja) 2005-04-05 2006-10-26 Denso Corp 排気処理装置
JP2006342730A (ja) 2005-06-09 2006-12-21 Denso Corp 内燃機関の排気処理装置
JP2009082901A (ja) 2007-09-10 2009-04-23 Panasonic Corp 電気集じん機
JP2009114872A (ja) 2007-11-02 2009-05-28 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2009142808A (ja) * 2007-11-20 2009-07-02 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2009208041A (ja) 2008-03-06 2009-09-17 Panasonic Corp 電気集じん機
JP2010022949A (ja) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd 排ガス処理装置
WO2012066825A1 (ja) * 2010-11-16 2012-05-24 臼井国際産業株式会社 ディーゼルエンジン排ガス処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857104A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068209A1 (ja) * 2013-11-05 2015-05-14 三菱重工メカトロシステムズ株式会社 集塵装置及び集塵方法
JP2018062865A (ja) * 2016-10-11 2018-04-19 トヨタ紡織株式会社 オイルセパレータの制御装置
JP2018184875A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 排ガス浄化装置
WO2018221207A1 (ja) * 2017-05-31 2018-12-06 臼井国際産業株式会社 ディーゼルエンジン排ガス処理用電気集塵装置の放電電極
JP2018202297A (ja) * 2017-05-31 2018-12-27 臼井国際産業株式会社 ディーゼルエンジン排ガス処理用電気集塵装置の放電電極
CN110573259A (zh) * 2017-05-31 2019-12-13 臼井国际产业株式会社 柴油发动机排气处理用电集尘装置的放电电极
JP2019122940A (ja) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 電気集塵装置
US11459922B2 (en) 2018-01-18 2022-10-04 Toyota Jidosha Kabushiki Kaisha Electric dust collecting apparatus

Also Published As

Publication number Publication date
JPWO2013179381A1 (ja) 2016-01-14
CN104379263A (zh) 2015-02-25
EP2857104A1 (en) 2015-04-08
EP2857104A4 (en) 2015-05-27
US20150113959A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2013179381A1 (ja) 粒子状物質処理装置
JP5477326B2 (ja) 粒子状物質処理装置
EP2687687B1 (en) Particulate-matter processing device
JP5590216B2 (ja) 粒子状物質処理装置
JP5605498B2 (ja) 粒子状物質処理装置
JP5929734B2 (ja) 内燃機関の排ガス処理装置
WO2012124087A1 (ja) 粒子状物質処理装置
WO2012124088A1 (ja) 粒子状物質処理装置
JP2012219733A (ja) 粒子状物質処理装置
JP5760547B2 (ja) 粒子状物質処理装置
EP2687692B1 (en) Particulate-matter processing apparatus
JP2012219677A (ja) 粒子状物質処理装置
JP2012193701A (ja) 粒子状物質処理装置
JP2012193700A (ja) 粒子状物質処理装置
JP2012219669A (ja) 粒子状物質処理装置
JP2012219679A (ja) 粒子状物質処理装置
JP5760548B2 (ja) 粒子状物質処理装置
JP2012193703A (ja) 粒子状物質処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518118

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012878029

Country of ref document: EP