JP5929734B2 - 内燃機関の排ガス処理装置 - Google Patents

内燃機関の排ガス処理装置 Download PDF

Info

Publication number
JP5929734B2
JP5929734B2 JP2012273060A JP2012273060A JP5929734B2 JP 5929734 B2 JP5929734 B2 JP 5929734B2 JP 2012273060 A JP2012273060 A JP 2012273060A JP 2012273060 A JP2012273060 A JP 2012273060A JP 5929734 B2 JP5929734 B2 JP 5929734B2
Authority
JP
Japan
Prior art keywords
discharge
exhaust gas
oxygen concentration
particulate matter
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012273060A
Other languages
English (en)
Other versions
JP2014118850A (ja
Inventor
良彦 松井
良彦 松井
勇貴 梅本
勇貴 梅本
信行 佐竹
信行 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012273060A priority Critical patent/JP5929734B2/ja
Publication of JP2014118850A publication Critical patent/JP2014118850A/ja
Application granted granted Critical
Publication of JP5929734B2 publication Critical patent/JP5929734B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排ガスに含まれる粒子状物質を、コロナ放電を利用して帯電凝集させる凝集部を備える排ガス処理装置、特に放電プラグの絶縁性を維持するための構成および制御に関する。
近年の燃費向上要求に対し、自動車用ガソリンエンジンにおいて、筒内に直接燃料を噴射する直噴ガソリンエンジンの導入が進められている。一方、筒内噴射方式では、環境や健康への影響が懸念される粒子状物質(PM:パティキュレートマター)が排出されやすく、直噴ガソリンエンジンにおいても、排出粒子数等の規制が強化される傾向にあることから、対策が急務となっている。
粒子状物質を含む排気ガスの後処理装置として、一般には、ハニカム構造のパティキュレートフィルタが知られるが、粒子のすり抜けを防止するためにフィルタの孔径を小さくすると目詰まりしやすく、捕集効率と低圧損が相反する関係にある。特に、直噴ガソリンエンジンから排出される粒子状物質は、ディーゼルエンジンに比し粒子径がより小さい微小粒子(例えば、約100nm)に排出粒子直径分布が存在することが判明しており、パティキュレートフィルタの有効性に限界がある。
そこで、コロナ放電を利用した電気集塵による後処理装置が検討されている。この装置は、放電プラグの高電圧電極と円筒管状の接地電極を対向させて配し、両電極の間に高電圧を印加することによりコロナ放電を発生させて、粒子状物質を帯電凝集させる凝集部を備える。このような凝集部を、直噴ガソリンエンジンの排気通路の途中に設置すると、微小粒子を凝集粒子化してPM粒子数を低減し、イオン風とクーロン力の作用で捕集することができるので、圧損を増加させることなく浄化性能を向上させる効果が期待される。
ところで、低温始動時やエンジン負荷の変動時等に、排気管に流入する粒子状物質が増大すると、放電プラグの絶縁碍子部に粒子状物質が衝突して付着しやすくなる。電気抵抗の低い煤を含む粒子状物質が堆積すると、碍子表面に電流が流れるため、安定した電圧を印加できなくなり、電気集塵効果が得られなくなる問題がある。これに対して、火力発電所等のプラントでは、電気集塵装置に碍子室を設けて、碍子部にオイルやガスを流すことでPM付着抑制を行なっているが、自動車等への適用は、システムの複雑化、スペース確保、コスト高といった問題から困難であった。
特許文献1では、絶縁碍子部へのPM付着による絶縁性の低下を回復するように、高電圧電源部から放電電極への電圧印加状態を制御する通電制御部を設けることが提案されている。通電制御部は、PM付着による過電流を検出したら、印加電圧を上昇させて、碍子部の表面に沿面放電を発生させ、付着成分を除去する。また、碍子部は、放電部の外周を囲む部分が途切れる境界領域を窪ませて環状凹部を形成し、粒子状物質が流れ込みにくく、付着しにくい空間を形成して絶縁性の低下を抑制している。
特開2006−105081号公報
ところが、特許文献1の構成を直噴ガソリンエンジンに適用し、通電による回復制御を実施したところ、必ずしもPM除去に十分な効果が得られない不具合が生じた。その一因は、碍子部の環状凹部の大きさやPM付着状態が、通電によるPM酸化に大きく影響し、酸化が起こる場合と起こらない場合が生じること、さらに、直噴ガソリンエンジンでは、混合気の空燃比が理論空燃比となる領域での燃焼制御(いわゆるストイキ制御)が主となるために、排気中に酸素が少ない状態となりやすいこと、にあると推測される。
その結果、通電してもPM酸化・除去ができないおそれがあり、絶縁性回復がなされないと、リーク電流量が増大してコロナ放電が安定せず、集塵捕集能力の低下およびエネルギロスの増大をまねく。そこで、本願発明は、コロナ放電を利用した排ガス処理装置、特に、絶縁碍子部の形状および付着したPMを除去する回復制御手法を見直すことによって、絶縁碍子部の絶縁性を確実かつ効果的に回復し、浄化性能およびエネルギ効率を向上することを目的とする。
本発明請求項1の排ガス処理装置は、内燃機関の排気管路に接続される筒状ハウジングと該筒状ハウジングに取り付けられる放電プラグを有し、上記筒状ハウジング内の放電空間にコロナ放電を生起して排ガス中の粒子状物質を帯電凝集させる凝集部と、高電圧電源から上記放電プラグへの通電を制御する放電制御部を備えており、
上記放電プラグは、上記放電空間に先端側が露出する高電圧電極と、該高電圧電極の基端側外周を保持する絶縁碍子部と、該絶縁碍子部の中間部外周を保持し、接地電極となる上記筒状ハウジングに固定される取付金具とからなり、かつ、上記放電空間において、上記高電圧電極と上記絶縁碍子部の端縁部との間または上記絶縁碍子部と上記取付金具の端縁部との間またはその両方に環状溝部を有しており、
上記放電制御部は、上記放電プラグの上記絶縁碍子部への粒子状物質の付着による電流上昇を検出するPM付着検出手段と、この粒子状物質の付着が検出された時に上記放電空間における排ガス中の酸素濃度が所定濃度となるタイミングを判断し、または酸素濃度を所定濃度に調整する酸素濃度制御手段と、所定の酸素濃度条件において高電圧を印加して粒子状物質の付着部位に沿面放電を生起するPM酸化処理手段と、粒子状物質が排出される運転条件であるか否かに基づいて上記凝集部の作動を判断する判定手段と、粒子状物質が排出される運転条件である時に、酸素濃度に基づいて排ガス状態に応じた放電電流量でコロナ放電を生起するための印加電圧を決定する印加電圧決定手段とを備え、該印加電圧決定手段は、酸素濃度が理論空燃比における酸素濃度よりも高い時に、印加電圧を、理論空燃比における印加電圧よりも増加させることを特徴とする。
本発明請求項2の装置は、上記放電プラグが、上記放電空間において、上記高電圧電極の外表面と上記絶縁碍子部の端縁部内周面との間に第1の環状溝部を、上記絶縁碍子部の外表面と上記取付金具の端縁部内周面との間に第2の環状溝部を有している。
本発明請求項3の装置は、上記酸素濃度制御手段が、上記放電空間の酸素濃度が所定濃度以上か否かを判断し、否定判定された時には内燃機関の燃料カット運転条件まで待機する制御を行なう。
本発明請求項4の装置は、上記酸素濃度制御手段が、上記放電空間の酸素濃度が所定濃度以上か否かを判断し、否定判定された時には上記排気管から上記放電空間に供給される酸素濃度を上昇させる制御を行なう。
本発明請求項5の装置は、上記酸素濃度制御手段が、上記放電空間に供給される酸素濃度を上昇させる制御を、エンジン停止指令時またはアイドルストップ時に実施する。
本発明請求項6の装置は、上記印加電圧決定手段が、粒子状物質が排出される運転条件である時に、排ガス流量及び排ガス温度と、酸素濃度とに基づいて印加電圧を決定する
本発明請求項7の装置は、上記PM付着検出手段が、印加電圧に対応する定常電流値と実測電流値の差異および変化率から粒子状物質の付着による電流上昇を検出し、上記PM酸化処理手段が、沿面放電の電流値を定常電流値より大きく空間放電に至らない範囲に制限する。
本発明請求項8の装置は、上記放電制御部が、印加電圧に対応する定常電流値と実測電流値の差異および変化率から上記放電プラグの上記絶縁碍子部の被水による電流上昇を検出する被水検出手段を有する。
請求項1の排気浄化装置は、放電制御部が、凝集部の放電プラグに高電圧を印加して放電空間内にコロナ放電を発生させ、排気ガスに含まれる粒子状物質を帯電凝集する。ここで、放電プラグの絶縁碍子部に、電気抵抗の低い粒子状物質が付着し、碍子表面に電流が流れると、電気集塵効果が低下することから、絶縁碍子部と高電圧電極または取付金具との間に環状溝部を形成して、電流リーク経路を分断しやすくしている。さらに、絶縁碍子部の表面における電流リークが増大した場合には、これをPM付着検出手段が検知して、PM酸化処理手段により所定の高電圧を印加する。この時、絶縁碍子部の内外周に形成される環状溝部の一部において付着した粒子状物質が形成するブリッジ状の部位に電流が集中して赤熱し、次いで沿面放電が生じて、碍子表面の粒子状物質を酸化する。
さらに、直噴ガソリンエンジン等でストイキ制御の場合は、放電空間内に酸化に必要な酸素が存在しないと回復制御が困難となるが、酸素濃度制御手段が、適切なタイミングかどうかを判断し、あるいは所定の酸素濃度条件として、効果的に粒子状物質を酸化除去する。よって、放電プラグの絶縁性を容易に回復し、安定した電圧を印加可能となるので、凝集部の集塵効果を最大限に発揮できる。
好適には、絶縁碍子部の内外に第1、第2の環状溝部を形成して、電流リーク経路をより分断しやすくし、容易に回復制御可能としている。酸素濃度制御手段は、酸素濃度が所定濃度以上でない場合に燃料カット時まで待機し、またはエンジン停止、アイドルストップ時に大気を導入することで、効果的に所定の酸素濃度とし、速やかに回復制御を実施できる(請求項2〜5)。また、排ガス条件等によって放電特性が変わるので、予め排ガス流量、温度、酸素濃度に応じた放電特性マップを持つことで、電流リークを容易に判別し、さらに電流値を適切に制御することで、沿面放電による粒子状物質の酸化除去を効果的に実現できる(請求項6、7)。また、電流リーク特性の違いを利用して、絶縁碍子部の被水を検出し、適切に対処することで破損等の不具合を回避できる(請求項8)。
第1実施形態における内燃機関の排ガス処理装置の全体概略構成図である。 第1実施形態の放電プラグにおける粒子状物質付着のメカニズムを説明するための図である。 第1実施形態の排ガス処理装置の主要部である凝集部の全体断面図である。 第1実施形態に用いられる放電プラグの側面図および正面図である。 放電プラグの構成の一例を示す一部断面図および要部拡大図である。 放電プラグの構成の他の例を示す一部断面図および要部拡大図である。 放電制御部で実施される放電制御処理のフローチャート図である。 凝集部のPM個数低減性能と放電電流量またはエンジン排ガス流量との関係、をそれぞれ示す図である。 凝集部の放電電流量と印加電圧、酸素濃度または排ガス温度との関係をそれぞれ示す図である。 コロナ放電時の電圧−電流特性と酸素濃度との関係を示す図である。 放電制御部で実施される回復制御処理において、PM付着による電流リークを判別するための処理を示すフローチャート図である。 絶縁碍子部へのPM堆積によるリーク挙動を、被水によるリーク挙動と比較して示す図である。 燃料カット時の回復制御処理のタイムチャート図である。 エンジン停止時の回復制御処理のタイムチャート図である。 過渡運転時の車速変化と燃料カットのタイミングと時間を時の回復制御処理のタイムチャート図である。 ガス流入時およびガス停止時の電圧−電流特性を比較して示す図である。 回復制御処理における印加電圧と放電電流および放電状態の関係を調べた結果を示す図である。 本発明の効果を示す図で、回復制御処理前後の放電特性を新品の放電プラグの放電特性と比較して示した図である。
以下、図面に基づいて、本発明を適用した内燃機関の排ガス処理装置の第1実施形態について説明する。図1Aにおいて、排ガス処理装置は、エンジンEの排気管EX途中に設置され、放電プラグ2を備える凝集部1と、放電プラグ2に接続される高電圧電源Pと、高電圧電源Pから放電プラグ2への通電を制御する放電制御部としてのECU(電子制御装置)6によって構成される。エンジンは、例えば、筒内に燃料を直接噴射する方式の直噴ガソリンエンジンであり、運転状態によりエンジンから排出される燃焼排気ガス(以下、適宜排ガスと称する)に煤を主体とする粒子状物質(以下、適宜PMと称する)が含まれる。
本実施形態において、排気管EXには、凝集部1の上流に2つのNOx触媒81、82が直列に配置され、排ガスは、これらNOx触媒81、82と凝集部1にて処理された後、マフラーMを通過して、大気に排出される。2つのNOx触媒81、82は、NOx吸蔵還元型触媒その他の公知の触媒であり、NOx処理性能を向上させるために、任意に選択して組み合わせることができる。例えば、前段のNOx触媒81を小容量として早期活性化による始動時の排ガス処理を可能にし、さらに後段の大容量のNOx触媒82を組み合わせて、広い温度領域でNOx浄化を可能とすることができる。
図2は、排ガス処理装置の主要部である凝集部1であり、円筒状ハウジングHの両端が、図1Aの排気管EXに接続される。凝集部1は、ハウジングHの上部壁に固定される放電プラグ2を有し、放電プラグ2の下半部が位置するハウジングHの内部を排気通路11としている。本実施形態の凝集部1は、図2の左方を排気ガス流れの上流側、右方を下流側とし、ハウジングHの左端開口部をエンジンからの排気ガスが導入される入口部12として説明する。
放電プラグ2は、先端側が放電空間となる排気通路11に露出し、基端側外周が絶縁碍子部3に保持される高電圧電極21を有し、絶縁碍子部3の中間部外周を保持する取付金具4にて、ハウジングHの取付部H1に取り付けられる。取付部H1は、ハウジングHから上方に突出する筒状部で内周面にねじ部が形成され、取付金具4を螺挿してナットで締結する。ハウジングHは車体に接続されており、排気通路11壁となるハウジングHの内周壁は接地電位の集塵電極5となっている。
図3に詳細を示す放電プラグ2は、絶縁碍子部3から露出する高電圧電極21の先端側を放電部22とする。放電部22は、L字状に屈曲しハウジングHの中心軸に沿って配置される棒状支持体23と、その外周に固定され軸方向に等間隔で配置される多数の放電体24を有している。放電体24は、ガス流れに対向するように配置された星型形状の板状体で、外周に多数の突起状電極25が放射状に配置されている。高電圧電極21の基端側端部は端子部26となる。突起状電極25を均等配置することによって、放電空間の全体に均等にコロナ放電を発生させて、凝集効果を高めることができる。
図2において、これら多数の放電体24は、突起状電極25がハウジングHの径方向に突出して、放電部22を同心状に取り囲む筒状の集塵電極5と、所定のギャップGで対向している。放電プラグ2の基端側半部(図の上半部)は、ハウジングHの外部空間に位置し、端子部26に接続される図示しない高電圧電源から高電圧が印加される。なお、放電部22の長さLは、放電空間のガス流れ方向の距離であり、放電体24の設置間隔S、突起数Nを適宜設定することで、放電空間内に所望の電界を均一形成することができる。
次に、図4により、本発明の特徴の1つである碍子形状について詳述する。図4Aにおいて、放電プラグ2の絶縁碍子部3は筒状体で、筒穴31内に棒状の高電圧電極21が挿通され、端子部26から放電部22への導電経路を絶縁保持している。絶縁碍子部3は、例えばアルミナ等のセラミック絶縁材料にて構成される。本発明では、高電圧電極21と絶縁碍子部3の端縁部との間、または絶縁碍子部3と取付金具4の端縁部との間、またはそれら両方に環状溝部を設ける。具体的には、絶縁碍子部3の先端側(図の下端側)の端縁部と、高電圧電極21の外表面との間に、第1の環状溝部32を形成する一方、取付金具4の先端側(図の下端側)の筒状端縁部41と、絶縁碍子部3の外表面との間に第2の環状溝部42を形成する。図中、A、Bとして示す絶縁碍子部3の軸方向の2か所にて、金属部材との間に溝が形成されることで、付着する粒子状物質を分断しやすくし、電流リークを抑制する効果がある。
さらに、第1環状溝部32、第2環状溝部42の径方向の幅、特に最小幅(最小ギャップ)を最適化することで、付着した粒子状物質を酸化除去する回復制御を容易にすることができる。この最小ギャップにおいて、付着した粒子状物質が対向面に到達しやすく、ブリッジを形成して電流が流れやすくなる。さらにブリッジに電流が集中して沿面放電を誘起しやすく、粒子状物質の酸化が促進される。図1Bの左図は、第1環状溝部32に粒子状物質PMが付着してブリッジBを形成した状態を示しており、後述する回復制御において高電圧電極21に所定の電圧を印加することで、粒子状物質を酸化除去し、右図のように絶縁性を回復することができる。
最小ギャップの大きさは、第1環状溝部32、第2環状溝部42の形状によっても異なるが、対象エンジンおよび想定付着粒子の粒子径等に応じて、例えば、1μm(0.001mm)〜2mmの範囲で設定される。最小ギャップを1μm以上とすることで、想定付着粒子、例えば直噴ガソリンエンジンから排出される付着微粒子の平均粒径(通常、約100nm)の10倍(100nm×10=1μm)程度ないしそれ以上となり、また、最小ギャップを2mm以下とすることで、想定付着子の最大粒径(通常、約200μm)の10倍(200μm×10=2mm)程度ないしそれ以下となるので、粒子状物質の付着状態に応じた所望の回復頻度となるように、適宜設定するとよい。
図4Aにおいて、第1環状溝部32、第2環状溝部42は、略一定幅の環状溝形状であってもよく、一般に、排気流れや表面温度等により粒子状物質がある部位に付着するとさらに粒子状物質が集まり、ブリッジが形成されやすくなる。ただし、溝幅(=最小ギャップ)が小さすぎると、多数のブリッジが形成され、または溝が埋まりやすくなるため、好適には、最小ギャップが比較的大きくなるように、例えば100μm(0.1mm)以上に設定するとよい。第1環状溝部32、第2環状溝部42の深さは、付着した粒子状物質によって容易に溝が埋まらないように、通常、溝幅以上に設定される。また、第1環状溝部32、第2環状溝部42を一定幅とせず、周方向の少なくとも一部に最小ギャップとなる部位を設定してもよい。このような形状の一例を次に示す。
図4Bにおいて、放電プラグ2の基本構成は図4Aと同様であり、第1環状溝部32、第2環状溝部42に、粒子状物質の付着を許容する小隙間部を設けている。図4B中に拡大して示す(図中A)第1環状溝部32は、略円形断面の内周面の対向する2箇所に平面部33を設け、平面部33と対向する高電圧電極21の外表面との間に、他の部位より幅狭の小隙間部34を形成する。このように、第1環状溝部32により、高電圧電極21の露出表面を取り囲む環状空間を形成して、絶縁性を確保しつつ、さらに、その一部を小隙間部34として粒子状物質を誘導付着させることで、絶縁性の回復を容易にすることができる。
図4B中に拡大して示す(図中B)第2環状溝部42は、筒状部41の内側に、さらに、絶縁碍子部3の外表面と略平行に下方へ突出する筒状凸部43を一体に設けて、対向する絶縁碍子部3の外表面を、所定高さ・所定幅で取り囲む小隙間部44を形成する。筒状部41の高さは、筒状凸部43の高さより高く設定される。このように、第2環状溝部42により、絶縁碍子部3の露出表面を取り囲む環状空間を形成して、絶縁性を確保しつつ、さらに、その内方に幅狭の小隙間部44を形成して粒子状物質を誘導付着させることで、絶縁性の回復を容易にすることができる。
図4Bの構成では、第1環状溝部32、第2環状溝部42の幅は、熱膨張係数差や組み付けを考慮した通常のクリアランスより十分大きく、付着した粒子状物質が容易に対向する高電圧電極21、または絶縁碍子部3の外表面に到達しないように、例えば、0.1mm〜2mmの範囲で適宜設定される。これら溝幅を、想定付着粒子の最大粒径(通常、約200μm)の10倍(200μm×10=2mm)程度ないしそれ以下とすることで、絶縁性の確保に十分なギャップとすることができる。第2環状溝部42を構成する筒状部41の取付け位置や形状は、溝幅に応じて適宜変更することができる。第1環状溝部32、第2環状溝部42の深さは、付着した粒子状物質によって容易に溝が埋まらないように、通常、溝幅以上に設定される。
小隙間部34、小隙間部44は、それぞれ第1環状溝部32、第2環状溝部42の最小ギャップとなる部位であり、第1環状溝部32、第2環状溝部42よりも先に付着した粒子状物質が対向面に到達して、ブリッジBを形成しやすい。このブリッジBに電流が流れることで、付着した粒子状物質が酸化除去され、さらに沿面放電を誘起して、絶縁碍子部3の表面に付着した粒子状物質が酸化する。本実施形態では、絶縁碍子部3の先端側と取付け側の2箇所に2つの小隙間部34、小隙間部44を形成しているので、いずれかにて沿面放電を生起すれば、表面の粒子状物質が分断されて、容易に絶縁性を回復することができる。
小隙間部34、小隙間部44の幅は、第1環状溝部32、第2環状溝部42よりも小さければよく、最小ギャップが通常1mm以下、好適には、10μm(0.01mm)〜0.5mmの範囲で適宜設定される。10μm以上とすることで、想定付着粒子、例えば直噴ガソリンエンジンから排出される付着微粒子の平均粒径(通常、約100nm)の100倍(100nm×100=10μm)程度ないしそれ以上となり、最小ギャップを対象エンジン等に応じて適宜設定することで、粒子状物質の付着状態および回復処理を容易に制御できる。最小ギャップが10μmより小さいと、わずかな粒子状物質でブリッジBが形成され、回復制御の頻度が増すので好ましくない。また、想定付着粒子の最大粒径(通常、約200μm)の5倍(200μm×5=1mm)以下、好ましくはその1/2程度ないしそれ以下とすることで、必要以上にギャップが大きくならず、粒子状物質が排出される運転状態において確実に回復制御を実施可能となる。
上記構成の排ガス処理装置の作動を説明する。図1Aにおいて、高電圧電源Pには車内電源P1が接続され、内蔵する昇圧回路で電源電圧を昇圧して、所望の負の高電圧を放電プラグ2の高電圧電極21に印加可能となっている。車内電源P1は、例えばバッテリ(12Vまたは24V)、オルタネータ、ハイブリッド(HV)用電圧ライン(200V〜600V)であり、通常、−5kV〜−20kV、0.1mA〜3mAの範囲で電圧印加を行う。また、吸気管INには、エアフローセンサS1が、排気管EXの2つのNOx触媒81、82下流にはそれぞれOセンサ(またはA/Fセンサ)S2が設置され、これらセンサからの吸気流量および酸素濃度信号が、制御部であるECU6に送られている。ECU6には、図示しない各種センサが接続されており、これらセンサからの信号に基づいてエンジンEへの燃料噴射その他の制御を行って燃焼状態を制御する。
また、ECU6は、粒子状物質が排出される運転条件においては、凝集部1の放電プラグ2に通電してPM粒子数を低減する放電制御を実施し、さらに放電プラグ2の回復制御を行う。本発明では、PM排出時のみ凝集部1を作動させ、かつ所望のPM低減率となるように放電電流量を排ガス条件に応じて制御することで、高効率の排ガス処理を可能にする。この放電制御および回復制御は、本発明の特徴部分であり、図5のフローチャートを参照しながら、次に説明する。図5の放電制御処理が開始されると、ステップ1において、まず、現在のエンジンEの運転状態が、粒子状物質(PM)が排出される条件か否か、すなわち、PM処理のために凝集部1を作動させる必要があるか否かを判断する(判定手段)。
直噴ガソリンエンジンは、通常、理論空燃比(ストイキオメトリック)の混合気となるように制御(ストイキ制御)して均質燃焼させ、NOxの発生と粒子状物質の排出を抑制しているが、低温始動時や回転数、トルクが変動する過渡運転時等、運転条件によっては粒子状物質の排出が避けられない。このため、予め実機試験等を行って、エンジンEの燃焼状態とPM排出量の関係を把握し、所定量以上の粒子状物質が排出されるエンジンEの運転条件を、予めステップ1の肯定条件として設定する。ECU6には、例えば、エンジン回転数、トルク、燃料噴射量(Qfin )、エンジン冷却水温、エンジンオイル温度、アクセル開度等を軸とするマップを記憶させておく。ECU6は、各種センサ信号とマップ値からPM排出条件と一致しているか否かを判定することができる。
ステップ1が肯定判定されると、ステップ2に進んで、排出される粒子状物質を低減させるべく凝集部1へ電圧印加指令を出力し、続くステップ3において、所望のPM個数低減性能を得るために、高電圧電源Pからの放電プラグ2への印加電圧を決定する(印加電圧決定手段)。ステップ3では、エアフローセンサS1、OセンサS2、図示しない排気温度センサ等の検出結果から知られるエンジン排ガス流量、排ガス温度、酸素濃度を用いて、排出されるPM量に対して、目的とするPM低減率を実現するために必要な印加電圧を算出する。そして、ステップ4に進み、高電圧電源Pから放電プラグ2への電圧印加を実施する。ステップ1が否定判定されると、ステップ10へ進み、放電プラグ2への電圧印加を実施せずに、本処理を一旦終了する。
ここで、ステップ3における印加電圧の算出方法の詳細を説明するため、図6A、Bに、凝集部1のPM個数低減性能と放電条件および排ガス条件との関係を示す。図示するように、粒子状物質の帯電凝集によるPM個数低減性能は、コロナ放電による放電電流量(mA)と相関があり、一般に、放電電流量の増加に伴ってPM低減率が増大し、徐々にPM低減率の増加割合は小さくなる。また、PM個数低減性能はエンジン排ガス流量(g/s)と反比例の関係にあり、排ガス流量が増加すると放電電流量に対するPM低減率が低下する。これは、凝集部1内の排ガスの増加が、粒子状物質の帯電や集塵電極5への移動を妨げる方向に作用するためと考えられる。
そこで、予めステップ1のエンジン条件毎に、排出される粒子状物質に対するPM低減率と放電電流量の関係をマップ化し、目標とするPM低減率(例えば50〜90%)に対応する放電電流量を、排ガス流量等を考慮して決定する。さらに、印加電圧と放電電流量の関係に基づいて、所望の放電電流量となるように、放電プラグ2への印加電圧値を決定すればよい。ここで、放電電流量は、印加電圧の増加とともに増大し、さらに、酸素濃度および排ガス温度と相関がある。一般に、放電電流量は排ガス温度と比例関係にあり、排ガス温度が高いほど放電電流は増加するが、酸素濃度については、逆に低濃度ほど放電電流量が多くなる傾向があり、特に0%(理論空燃比)付近で急増する。ここで、酸素濃度0%とは、理論空燃比での燃焼により排ガス中の酸素濃度が0%となっている状態であり、酸素濃度0%以下の領域は、理論空燃比より酸素濃度が低い状態での燃焼であることを示す。
図6Cは、試験用の模擬ガスを用いて凝集部1に所定の排ガス流量で導入し、酸素濃度を0%〜20%まで変化させて測定した電圧−電流特性と、放電プラグ2の放電体24先端の発光の様子を示したものである。図示されるように、酸素濃度低下に伴い、印加電圧(−15kV)に対して流れる電流値が増加し、発光が促進される。これは、電子親和力の高い酸素分子が減少することで、放電プラグ2の周囲の負イオンが減少するためであり、放電部位である放電体24先端の電界が対空間で増加する結果、放電が促進されて電流が増加する。このため、酸素濃度1%以下、特に0%近傍で、図6Bのように放電電流が急増することになる。したがって、所望のPM個数低減性能となるように、排ガス流量、酸素濃度、排気温度に応じて必要な放電電流量を決定し、さらに印加電圧を決定するために、放電特性に基づく定常電流の電流値マップを持ち、測定結果を基に図6の関係から印加電圧を決定すればよい。
そしてステップ4では、図1Aにおいて、放電プラグ2の端子部26に、高電圧電源Pから負の直流高電圧が印加され、放電部22の放電体24近傍においてコロナ放電が発生し、電子が放射される。一方、図2の入口部12から、凝集部1内に排ガスが流入しており、排ガス中の粒子状物質は、放電空間に存在する電子またはイオンによって負に帯電する。帯電した粒子状物質は、クーロン力によって外周側へ移動し、集塵電極5に静電捕集される。粒子状物質は、ここで電子を放出し、凝集粒子となる。したがって、ステップ3で設定した電圧印加を持続することにより、微小な粒子状物質を粗大化して捕集し、目標とする低減性能で粒子状物質の個数を低減することができる。
この時、電圧印加時の放電電流および放電電圧信号は、ECU6に送られ、ECU6はこれら信号に基づいて、PM排出条件における凝集部1の放電状態が正常か否かを判断する。具体的には、ステップ5において、印加電圧に対して、予め設定した正常時の所定の電流域から外れているか否かを判断する。ここで、正常時の所定の電流域とは、ステップ3で設定した印加電圧に対応する放電電流値(定常電流値)の近傍で、正常と判断される所定域であり、目標とするPM低減性能を得るために許容される電流域として、予め設定しておく。ステップ5が肯定判定された場合には、さらに、絶縁碍子部3の付着PMを除去する回復制御が必要な状態か否かを判別するために、ステップ6に進む。ステップ5が否定判定された場合には、正常状態と判断して、本処理を一旦終了する。
このように、PM排出時にのみ凝集部1を作動させ、エンジン条件毎に異なるPM排出量に対して、放電特性マップを基に放電状態を制御することで、所望のPM低減率が実現される。なお、直噴ガソリンエンジンでは、ストイキ制御の場合、排ガス中の酸素濃度は極めて低いが、上述したように、酸素濃度0%近傍で放電電流が急変することから、酸素濃度が比較的多くなる運転条件において、印加電圧の設定に際し酸素濃度を考慮することは重要である。また、放電電流は凝集部1に流入する排ガス中の水蒸気量と比例関係にあり、水蒸気量を検出して、放電制御に反映させてもよい。
さらに、ステップ5において、印加電圧に対応する放電電流(定常電流)と実際に測定された放電電流(実測電流)の差異から、電流上昇(絶縁碍子部3電流リーク)を判別することができる。放電電流値が所定電流域から外れる要因としては、1)粒子状物質の付着による電流リーク(漏電)の他に、冷間始動時のように排気管内の水分が凝縮しやすい環境で、2)絶縁碍子部3に被水による電流リーク(漏電)が生じたか、あるいは、装置のその他の部位の故障や破損により、3)電圧印加異常または電流漏電異常といった状態が生じた可能性がある。そこで、ステップ6では、実測電流値の変化率、具体的には単位時間当たりの測定電流の増加量(ΔI/ΔT)、電圧低下幅、エンジン状態に基づいて、これら1)〜3)のどの状態にあるかを判別し、その結果により、それぞれ適切な処理を行なう。3)は、車載装置の故障診断(OBD)としての検出処理である。
ステップ6の詳細を図7に示す。ステップ61では、まず、実測電流値がステップ5の所定電流域より高いか否かを判断する。1)のPM付着を含む漏電が原因の場合には、電流値が上昇するので、ステップ62へ進む。ステップ61が否定判定された場合、すなわち、電流値が低下する方向に外れるのは、装置自体に何らかの異常が生じて、所定の電圧が印加できない場合であり、ステップ64にて、3a)電圧印加異常と判定する。この原因としては、例えば、電源故障、電圧ライン故障、装置破損等が挙げられる。ステップ62では、さらに、単位時間当たりの放電電流の増加量と電圧低下幅を、予め設定した所定値と比較する。この所定値は、1)PM付着による漏電を、他の要因による漏電と区別するための閾値であり、これについて、次に説明する。
図8は、絶縁碍子部3へのPM堆積によるリーク挙動(左図)を、被水によるリーク挙動(右図)と比較して示したものである。PM堆積時には、時間とともに放電電流が緩やかに上昇し(例えば、0.015mA/秒)、ある時点で高圧電極21または取付部4側との導通が生じて、リーク電流が検出される。また、リーク発生までは電圧低下が起こりにくく、電圧低下幅が比較的小さい(ゼロにならない)。これに対して、被水時には、エンジン始動とともに電流値が急上昇し(例えば、2mA/秒)、リーク発生とほぼ同時に電圧がゼロになる。したがって、図8に基づいて、1)PM付着による漏電と2)被水による漏電を判別可能な閾値を、電流増加量、電圧低下幅についてそれぞれ設定し、ステップ62の所定値とすればよい。
そして、ステップ62が肯定判定されたら、ステップ63へ進み、1)PM付着による漏電と判定することができる。ステップ62が否定判定されたら、ステップ65へ進み、被水が生じる運転条件、例えば、冷間始動直後か否かを判断する。ステップ65が肯定判定されたら、ステップ66へ進み、2)被水による漏電と判定することができる。ステップ65が否定判定されたら、ステップ67へ進み、それ以外の何らかの異常による、3b)電流漏電異常と判定する。この原因としては、例えば、電極破損、碍子破損、電圧ライン破損等が挙げられる。これらOBD異常判定がなされた場合は、例えば、警告ランプ等を点灯させて速やかに運転者に知らせる。
ステップ63で、1)PM付着による漏電と判定された場合は、図5のステップ7へ進み、回復制御開始指令を出力する。その後、ステップ8へ進んで、排ガス中の酸素濃度が所定濃度以上か否かを判断する。これは、絶縁碍子部3の付着PMを酸化除去するために放電空間内に酸素が供給される必要があるからで、一方、直噴ガソリンエンジンでは、特にストイキ制御の場合、排ガス中に酸素がほとんど存在しない。そこで、排気管EXに設置したOセンサS2の検出結果から、凝集部1に供給される排ガスが、予め設定した所定の酸素濃度(例えば、1%)以上である時のみ、次のステップ9へ進み、PM酸化処理手段としての付着PMの酸化処理を実施する。
ステップ8が否定判定された場合には、ステップ81に進む。ステップ81は、酸素濃度制御手段としての処理で、排ガスが所定の酸素濃度以上となる条件まで待機する、または、所定の酸素濃度以上に上昇させる処理を行った後、ステップ8へ戻る。具体的には、所定の酸素濃度となる条件として、エンジン負荷変化や減速に伴う燃料カット時が挙げられ、エンジンEへの燃料供給が停止され酸素が使用されないためほぼ大気中の酸素濃度(約21%)となる。あるいは、アイドルストップ、エンジン停止信号直後のタイミングで、吸気量を増加させ、空燃比(A/F)を上昇させた燃焼を行なうか、排気管EXに大気を導入することで、強制的に排ガス中の酸素濃度を上昇させることもできる。
その後、ステップ8が肯定判定されたら、ステップ9へ進み、印加電圧を上昇させて沿面放電による付着PMの酸化処理に適した所定の電流値範囲に制御する。図9Aは、燃料カット時、図9Bは、エンジン停止時の制御例である。図9Aのタイムチャートに示すように、付着PMにより検出される電流値が徐々に上昇していき、ある時点T1において、印加電圧(ここでは、10kV)に対して、予め設定した正常時の所定の電流域より高くなる。すなわち、図5のステップ5、図7のステップ61が肯定判定され、ステップ62で電流増加量、電圧低下幅から、PM付着による漏電であり回復制御が必要と判断される。ただし、排ガス中の酸素濃度がほぼ0%と低く、このままでは酸素不足であるために、ステップ8が否定判定され、ステップ81で燃料カットのタイミング(時点T2)まで待機する。さらに、ステップ9の処理として、燃料カットにより排気管EXに供給される酸素濃度が上昇するタイミングに合わせて、印加電圧を上昇させ、第1環状溝部32、第2環状溝部42のPM付着部位に電流を集中させることにより、絶縁碍子部3の表面に沿面放電を生起する。
これにより、付着PMが酸化燃焼し、リーク電流が減少することにより、図9Aの時点T2以降、電流値が急減に低下する。次に燃料カット停止したら、印加電圧を通常電圧に低下させ、通常動作に戻る。これを、電流値が所定の閾値(例えば、1mA)を下回るまで行う。ここでは、燃料カット停止時(時点T3)に電流値が閾値以下となっているので、回復制御を一旦終了する。その後、電流値が再び上昇したら(時点T4)、同様の処理を行なって、絶縁性を回復させる(時点T5)。この時点5において、エンジンEがPM排出条件でない場合には、電圧印加を停止し、放電制御を終了する(時点T5〜T6)。
図10Aは、実車による過渡運転データの一例である。この場合、一定期間内に車速変化に応じて、比較的頻繁に燃料カット要求がなされており(図中、fuelカット信号)、燃料カットの総時間は、1200秒中、53秒で十分長い。また、個々の燃料カットの時間は、例えば1.5秒〜12秒である。したがって、燃料カットのタイミングで、繰り返し回復制御を実施することで、効率よく確実に絶縁性の回復制御が可能である。
図9Bのエンジン停止時には、ステップ8が否定判定された後、ステップ81で排ガス中の酸素不足を解消する手段が異なる。例えば、エンジン停止信号が出力されたら(時点T1)、例えば、吸気管INのスロットル開度を大きくして吸気量を増大させることで、排気管EX内の酸素濃度を上昇させた後(時点T2)、エンジンEを停止する。ステップ9としてエンジンE停止後、所定の高電圧を印加し(時点T3)、所定時間保持することで、同様に付着PMが酸化し、リーク電流が減少する。さらに、所定の閾値以下の電流となったら電圧印加を停止する(時点T4)。
図10Bは、ガス(大気)流入時と停止時の放電特性(大気圧、常温)を調べた結果である。放電特性はガス流量と相関があり、エンジン停止時には、排気管EXに酸素を導入した後、ガス流が停止するため、これを考慮して回復制御の電流値を制御することが望ましい。図示するように、所定以上の電圧印加で放電が生じ、印加電圧に応じて放電電流量が上昇するが、ガス停止時には放電電流量がより多くなる傾向がある。したがって、回復制御をエンジン停止、アイドルストップ等のガス流れがない状態で実施する場合には、図10Bに基づいて、沿面放電の電流値が上記範囲に制限されるように、印加電圧を設定するとよい。
図11は、回復制御時の放電状態を制御するために試験を行い、印加電圧を段階的に上昇させていき、検出される放電電流と放電状態を観察した結果である。図示するように、印加電圧を上昇させると、まず放電プラグ2の絶縁碍子3側部空間で火花放電が発生する。この放電は、絶縁碍子部3の先端側と取付金具4に近い根元側の間で生じる火花に近い放電で、比較的高い放電電流が流れる(電流条件(1):約15mA)。次いで、絶縁碍子部3側部空間と、絶縁碍子部3表面での放電が観察されるようになり(電流条件(2):約11mA)、さらに電圧が上昇すると、絶縁碍子部3表面のみ沿面放電となる(電流条件(3):約4.7mA)。
この沿面放電が発生する電流条件(3)において、絶縁碍子部3表面に付着している粒子状物質が、良好に酸化燃焼することが確認された。これは、火花放電または火花放電に近い放電では空間放電となって、絶縁碍子部3表面に付着する粒子状物質の酸化燃焼が促進されないためである。したがって、回復制御時には、凝集部1の放電空間における電気集塵時の定常電流よりも電流値を大きくし、好適には、定常電流値+1mA以上とすることで、付着PMを酸化除去する効果が得られる。また、付着PMを効果的に除去するには、空間放電に至らない電流値、好適には、絶縁碍子部3表面の沿面放電となる10mA以下、より好ましくは6mA以下に電流値を制限するとよい。このように回復制御時の電流値が沿面放電の範囲となるように、印加電圧を設定することで放電経路を制御することができる。そして、沿面放電を効果的に発生させて付着PMを燃焼除去し、絶縁性を回復できる。
図12は、本発明の効果を確認するために、上述した回復制御を実施した結果であり、予めPM排出条件の排ガスに晒して、絶縁碍子3表面全体に粒子状物質を付着させた放電プラグ2を用いている。この放電プラグ2に、図示するように、電圧の上昇とともに放電電流値が上昇し、ピーク値前後において沿面放電による発光が確認された(放電試験1回目)。その後、再び同様の試験を行なったところ(放電試験2回目)、電流値の大きな上昇が見られず、新品の絶縁碍子を取り付けた比較用プラグ(新品碍子)と同等の電圧電流特性となった。また、放電試験後の放電プラグ2を目視観察したところ、絶縁碍子3の先端側と根元側において粒子状物質が燃焼除去されて表面が露出し、付着PMの分断が確認された。
以上のように、本発明によれば、絶縁碍子部の内外2箇所に第1の環状溝部、第2の環状溝部を形成した構成として、絶縁性を保持しつつ、PM付着により絶縁性が低下した場合には、所定の酸素濃度に制御して高電圧を印加し回復制御を実施することで、速やかに絶縁性を回復することができる。さらに第1の環状溝部、第2の環状溝部は、それぞれ最小ギャップを適切に設定し、あるいは小隙間部を形成することで、特定部位への粒子状物質の付着を促して、付着した粒子状物質を沿面放電により効率よく除去できる。よって、簡易な構成で、制御性よく絶縁性を回復することができ、凝集部による電気集塵効果を最大限に発揮して、粒子数の低減に高い能力を発生する。
上記図4Bに示した実施形態では、絶縁碍子部3と高電圧電極21の間に形成される第1の環状溝部32に、平面部33を設けて小隙間部34を形成したが、絶縁碍子部3の内周面の形状または対向する高電圧電極21の外周面の形状を、楕円、三角、四角または多角形等としても、小隙間部34を容易に形成することができる。または、絶縁碍子部3の内周面と高電圧電極21の外周面を偏芯配置することもできる。また、絶縁碍子部3と取付金具4の間に形成される第2の環状溝部42、小隙間部44についても、同様の形状を適用することができる。
本発明の排ガス処理装置は、直噴方式のガソリンエンジンに好適であるが、これに限らず、ディーゼルエンジンその他の内燃機関にももちろん利用することができ、排出される粒子状物質の低減に有効利用されて、その性能を長期に渡って維持することができる。また、凝集部は図示した構成に限らず、例えば放電プラグの放電部形状が異なっていてもよく、同様の効果が期待できる。さらに、排気管路または排気管路に配置されるNOx触媒その他の構成や配置も任意に変更することができる。
H ハウジング
P 高電圧電源
1 凝集部
2 放電プラグ
21 高電圧電極
3 絶縁碍子部
32 第1の環状溝部
34 小隙間部
4 取付金具
42 第2の環状溝部
43 小隙間部
5 集塵電極
6 ECU(放電制御部)

Claims (8)

  1. 内燃機関の排気管路に接続される筒状ハウジングと該筒状ハウジングに取り付けられる放電プラグを有し、上記筒状ハウジング内の放電空間にコロナ放電を生起して排ガス中の粒子状物質を帯電凝集させる凝集部と、高電圧電源から上記放電プラグへの通電を制御する放電制御部を備えており、
    上記放電プラグは、上記放電空間に先端側が露出する高電圧電極と、該高電圧電極の基端側外周を保持する絶縁碍子部と、該絶縁碍子部の中間部外周を保持し、接地電極となる上記筒状ハウジングに固定される取付金具とからなり、かつ、上記放電空間において、上記高電圧電極と上記絶縁碍子部の端縁部との間または上記絶縁碍子部と上記取付金具の端縁部との間またはその両方を隔てる環状溝部を有しており、
    上記放電制御部は、上記放電プラグの上記絶縁碍子部への粒子状物質の付着による電流上昇を検出するPM付着検出手段と、この粒子状物質の付着が検出された時に上記放電空間における排ガス中の酸素濃度が所定濃度となるタイミングを判断し、または酸素濃度を所定濃度に調整する酸素濃度制御手段と、所定の酸素濃度条件において高電圧を印加して粒子状物質の付着部位に沿面放電を生起するPM酸化処理手段と、粒子状物質が排出される運転条件であるか否かに基づいて上記凝集部の作動を判断する判定手段と、粒子状物質が排出される運転条件である時に、酸素濃度に基づいて排ガス状態に応じた放電電流量でコロナ放電を生起するための印加電圧を決定する印加電圧決定手段とを備え、該印加電圧決定手段は、酸素濃度が理論空燃比における酸素濃度よりも高い時に、印加電圧を、理論空燃比における印加電圧よりも増加させることを特徴とする内燃機関の排ガス処理装置。
  2. 上記放電プラグは、上記高電圧電極の外表面と上記絶縁碍子部の端縁部内周面との間に第1の環状溝部を、上記絶縁碍子部の外表面と上記取付金具の端縁部内周面との間に第2の環状溝部を有している請求項1記載の内燃機関の排ガス処理装置。
  3. 上記酸素濃度制御手段は、上記放電空間の酸素濃度が所定濃度以上か否かを判断し、否定判定された時には内燃機関の燃料カット運転条件まで待機する制御を行なう請求項1または2記載の内燃機関の排ガス処理装置。
  4. 上記酸素濃度制御手段は、上記放電空間の酸素濃度が所定濃度以上か否かを判断し、否定判定された時には上記排気管から上記放電空間に供給される酸素濃度を上昇させる制御を行なう請求項1ないし3のいずれか1項に記載の内燃機関の排ガス処理装置。
  5. 上記酸素濃度制御手段は、上記放電空間に供給される酸素濃度を上昇させる制御を、エンジン停止指令時またはアイドルストップ時に実施する請求項1ないし4のいずれか1項に記載の内燃機関の排ガス処理装置。
  6. 上記印加電圧決定手段は、粒子状物質が排出される運転条件である時に、排ガス流量及び排ガス温度と、酸素濃度とに基づいて印加電圧を決定する請求項1ないし5のいずれか1項に記載の内燃機関の排ガス処理装置。
  7. 上記PM付着検出手段が、印加電圧に対応する定常電流値と実測電流値の差異および変化率から粒子状物質の付着による電流上昇を検出し、上記PM酸化処理手段が、沿面放電の電流値を粒子状物質の帯電凝集を目的としたコロナ放電定常電流値より大きく空間放電に至らない範囲に制限する請求項1ないし6のいずれか1項に記載の内燃機関の排ガス処理装置。
  8. 上記放電制御部が、印加電圧に対応する定常電流値と実測電流値の差異および変化率から上記放電プラグの上記絶縁碍子部の被水による電流上昇を検出する被水検出手段を有する請求項1ないし7のいずれか1項に記載の内燃機関の排ガス処理装置。
JP2012273060A 2012-12-14 2012-12-14 内燃機関の排ガス処理装置 Expired - Fee Related JP5929734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273060A JP5929734B2 (ja) 2012-12-14 2012-12-14 内燃機関の排ガス処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273060A JP5929734B2 (ja) 2012-12-14 2012-12-14 内燃機関の排ガス処理装置

Publications (2)

Publication Number Publication Date
JP2014118850A JP2014118850A (ja) 2014-06-30
JP5929734B2 true JP5929734B2 (ja) 2016-06-08

Family

ID=51173902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273060A Expired - Fee Related JP5929734B2 (ja) 2012-12-14 2012-12-14 内燃機関の排ガス処理装置

Country Status (1)

Country Link
JP (1) JP5929734B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124219A (zh) * 2017-12-25 2018-06-05 广州市尊浪电器有限公司 一种减噪智能音响

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107948831A (zh) * 2017-12-25 2018-04-20 广州市尊浪电器有限公司 一种音响
WO2020216365A1 (zh) * 2019-04-25 2020-10-29 上海必修福企业管理有限公司 一种发动机尾气中VOCs气体处理系统和方法
JP7393999B2 (ja) 2020-03-30 2023-12-07 ダイハツ工業株式会社 排気ガス浄化用プラズマリアクタ装置
JP7393998B2 (ja) 2020-03-30 2023-12-07 ダイハツ工業株式会社 排気ガス浄化用プラズマリアクタ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105081A (ja) * 2004-10-08 2006-04-20 Denso Corp 排気浄化装置
JP4396477B2 (ja) * 2004-10-18 2010-01-13 株式会社デンソー 排気浄化装置
JP4457021B2 (ja) * 2005-01-24 2010-04-28 日本特殊陶業株式会社 スパークプラグ
EP2085582A1 (en) * 2006-11-20 2009-08-05 Kabushiki Kaisha Toshiba Gas purifying device, gas purifying system and gas purifying method
JP5796314B2 (ja) * 2011-03-17 2015-10-21 トヨタ自動車株式会社 粒子状物質処理装置
JP2012219679A (ja) * 2011-04-06 2012-11-12 Toyota Motor Corp 粒子状物質処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124219A (zh) * 2017-12-25 2018-06-05 广州市尊浪电器有限公司 一种减噪智能音响

Also Published As

Publication number Publication date
JP2014118850A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5929734B2 (ja) 内燃機関の排ガス処理装置
US20090241520A1 (en) Diesel Exhaust Soot Sensor System and Method
US20120151992A1 (en) Particulate matter detection sensor
EP1890014B1 (en) Exhaust emission control method and exhaust emission control system
WO2013179381A1 (ja) 粒子状物質処理装置
EP2687687B1 (en) Particulate-matter processing device
US20130000280A1 (en) Gas monitoring method implementing soot concentration detection
EP3032060A1 (en) Function diagnostic system for filter of internal combustion engine
WO2012124089A1 (ja) 粒子状物質処理装置
US9284869B2 (en) Particulate matter processing apparatus
JP2009030567A (ja) 内燃機関の排気浄化装置
JP2006105081A (ja) 排気浄化装置
JP5929704B2 (ja) 内燃機関の排ガス処理装置
JP2004177407A (ja) 流体中、特に内燃エンジンの排気ガス中に含まれている粒子の量を測定する装置
JP4604803B2 (ja) 排気処理装置
JP5655652B2 (ja) 粒子状物質処理装置
JP2012219746A (ja) 内燃機関システム
JP2012193696A (ja) 粒子状物質処理装置
JP2005232971A (ja) 排気ガス浄化装置
JP2012219677A (ja) 粒子状物質処理装置
JP7264111B2 (ja) 排気浄化装置
EP2687692B1 (en) Particulate-matter processing apparatus
JP5796314B2 (ja) 粒子状物質処理装置
JP7113598B2 (ja) パティキュレートフィルタの故障検出装置及び故障検出方法
JP7393998B2 (ja) 排気ガス浄化用プラズマリアクタ装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees