WO2013169048A2 - 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치 - Google Patents

이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2013169048A2
WO2013169048A2 PCT/KR2013/004113 KR2013004113W WO2013169048A2 WO 2013169048 A2 WO2013169048 A2 WO 2013169048A2 KR 2013004113 W KR2013004113 W KR 2013004113W WO 2013169048 A2 WO2013169048 A2 WO 2013169048A2
Authority
WO
WIPO (PCT)
Prior art keywords
enb
base station
rlc
information
terminal
Prior art date
Application number
PCT/KR2013/004113
Other languages
English (en)
French (fr)
Other versions
WO2013169048A3 (ko
Inventor
김성훈
리에샤우트게르트 잔 반
장재혁
최종수
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1020147031376A priority Critical patent/KR102184046B1/ko
Priority to US14/399,723 priority patent/US20150181593A1/en
Priority to EP13788466.4A priority patent/EP2849368B1/en
Priority to CN201380036294.7A priority patent/CN104412532A/zh
Publication of WO2013169048A2 publication Critical patent/WO2013169048A2/ko
Publication of WO2013169048A3 publication Critical patent/WO2013169048A3/ko
Priority to US15/259,888 priority patent/US10187193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0241Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where no transmission is received, e.g. out of range of the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present specification relates to a method and apparatus for transmitting and receiving data using a plurality of carriers in a mobile communication system.
  • a mobile communication system has been developed for the purpose of providing communication while securing user mobility.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
  • the LTE system is a technology for implementing a high-speed packet-based communication having a transmission rate of up to 100 Mbps higher than the currently provided data rate and is almost standardized.
  • Carrier aggregation is a representative example of the new technology to be introduced.
  • Carrier aggregation means that a terminal uses a plurality of forward carriers and a plurality of reverse carriers, unlike a conventional terminal that transmits and receives data using only one forward carrier and one reverse carrier.
  • An embodiment of the present disclosure has been made to solve at least some of the above problems, and an object thereof is to provide a method and apparatus for inter-ENB carrier aggregation between different base stations.
  • a communication method of a base station (P-ENB) for controlling a primary cell (PCell) of a terminal (UE) the serving cell of another base station (NP-ENB) other than the P-ENB
  • P-ENB the serving cell of another base station (NP-ENB) other than the P-ENB
  • NP-ENB non-primary
  • PDU Radio Link Control Packet Data Unit
  • the communication method of the base station (NP-ENB), not the base station (P-ENB) for controlling the primary cell (PCell) of the UE (UE) according to an embodiment of the present disclosure, the RLC PDU (Radio) from the P-ENB Link control packet data unit), generating a repartitioned RLC PDU using the received RLC PDU, and converting the repartitioned RLC PDU into a signal and transmitting the signal to the terminal.
  • the RLC PDU Radio
  • P-ENB a base station
  • NP-ENB another base station
  • the communication unit may deliver the generated first RLC PDU to the NP-ENB.
  • the communication apparatus of the base station NP-ENB which is not the base station P-ENB that controls the primary cell PCell of the UE UE according to an embodiment of the present disclosure, is an RLC PDU (Radio) from the P-ENB.
  • the communication unit may convert the redivided RLC PDU into a signal and transmit the signal to the terminal.
  • a discontinuous reception operation is applied to reduce battery consumption of the terminal.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which some embodiments of the present specification are applied.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which some embodiments of the present disclosure are applied.
  • FIG. 3 is a diagram illustrating carrier aggregation in a base station to which some embodiments of the present disclosure are applied.
  • FIG. 4 illustrates a carrier aggregation scheme according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating operations of a terminal and a base station for configuring a SCell belonging to a primary set according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a process of setting a SCell belonging to a nonprimary set.
  • FIG. 7 is a configuration diagram of an RRC control message according to an embodiment of the present specification.
  • FIG. 8 is a configuration diagram of an RRC control message according to another embodiment of the present specification.
  • FIG. 9 is a schematic diagram of a distribution scheme according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a first PDCP distribution structure according to an embodiment of the present specification.
  • FIG. 11 is a diagram illustrating a second PDCP distribution structure according to an embodiment of the present specification.
  • FIG. 12 is a diagram illustrating a first RLC dispersion structure according to an embodiment of the present specification.
  • FIG. 13 is a diagram illustrating a first MAC distributed structure according to an embodiment of the present specification.
  • FIG. 14 is a structural diagram of a second MAC distributed structure according to an embodiment of the present specification.
  • 15 is a structural diagram of a data unit according to one embodiment of the present specification.
  • 16 is a structural diagram of an RLC device and a MAC device in a second MAC distributed structure according to an embodiment of the present specification.
  • 17 is a structural diagram of a second RLC dispersion structure according to an embodiment of the present specification.
  • FIG. 18 is a flowchart illustrating an operation of adding a primary set and non-primary set serving cell and setting a DRB according to an embodiment of the present specification.
  • 19 is a flowchart of an operation of releasing an SCell and transmitting and receiving data according to an embodiment of the present disclosure.
  • 20 is a flowchart of an operation of releasing a SCell and transmitting and receiving data according to another embodiment of the present specification.
  • FIG. 21 is a view illustrating a sparking / reversing process according to one embodiment of the present specification.
  • 22 is a flowchart of a radio link monitoring procedure according to an embodiment of the present disclosure.
  • FIG. 23 is a flowchart of an RLF detection process according to an embodiment of the present specification.
  • 25 is a diagram illustrating a PHR trigger and transmission process according to an embodiment of the present specification.
  • FIG. 26 is a diagram illustrating a PHR format according to an embodiment of the present specification.
  • FIG. 27 is a diagram illustrating a process of determining a subframe pattern according to an embodiment of the present specification.
  • 28 is a view illustrating a timing difference according to an embodiment of the present specification.
  • 29 is a diagram illustrating a terminal structure according to one embodiment of the present specification.
  • FIG. 30 is a diagram illustrating a P-ENB structure according to an embodiment of the present specification.
  • FIG. 31 is a diagram illustrating an NP-ENB structure according to an embodiment of the present specification.
  • 32 is a structural diagram of a multiple PDCP structure according to an embodiment of the present specification.
  • 33 is a structural diagram of a multiple RLC structure according to an embodiment of the present specification.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which some embodiments of the present specification are applied.
  • a radio access network of an LTE system includes a next-generation base station (Evolved Node B, ENB, Node B or base station) 105, 110, 115, and 120, an MME 125, and a Mobility Management Entity (S-GW). (130, Serving-Gateway).
  • the user equipment (hereinafter referred to as UE or terminal) 135 connects to an external network through the ENBs 105, 110, 115, and 120 and the S-GW 130.
  • the ENBs 105, 110, 115, and 120 correspond to existing Node Bs of the UMTS system.
  • the ENB is connected to the UE 135 through a radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available.
  • VoIP Voice over IP
  • a device is needed to collect and schedule the ENBs 105, 110, 115, and 120.
  • One ENB typically controls multiple cells.
  • the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology in a 20 MHz bandwidth.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125.
  • the MME is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which some embodiments of the present disclosure are applied.
  • a wireless protocol of an LTE system includes packet data convergence protocols 205 and 240 (PDCP), radio link control 210 and 235 (RMC), and medium access control 215 and 230 (MAC) in a terminal and an ENB, respectively.
  • the PDCP Packet Data Convergence Protocol
  • RLC Radio Link control
  • PDCP PDU Packet Data Unit
  • the MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs.
  • the physical layers 220 and 225 channel-code and modulate higher layer data, make an OFDM symbol, and transmit it to a wireless channel, or demodulate, channel decode, and transmit the received OFDM symbol through a wireless channel to a higher layer. .
  • FIG. 3 is a diagram illustrating carrier aggregation in a base station to which some embodiments of the present disclosure are applied.
  • one base station generally transmits and receives multiple carriers over several frequency bands. For example, when a carrier 315 having a forward center frequency of f1 and a carrier having a forward center frequency of f3 (310) is transmitted from the base station 305, one terminal conventionally uses one carrier of the two carriers. To transmit and receive data. However, a terminal having carrier aggregation capability may transmit and receive data through multiple carriers at the same time. The base station 305 may increase the transmission speed of the terminal 330 by allocating more carriers to the terminal 330 having carrier aggregation capability according to a situation. As described above, integrating forward and reverse carriers transmitted and received by one base station is called carrier aggregation in the base station. However, in some cases, unlike in FIG. 3, it may be necessary to integrate forward and reverse carriers transmitted and received from different base stations.
  • FIG. 4 illustrates a carrier aggregation scheme according to an embodiment of the present disclosure.
  • the terminal 430 when the base station 1 405 transmits and receives a carrier having a center frequency of f1 and the base station 2 420 transmits and receives a carrier having a center frequency of f2, the terminal 430 has a carrier having a forward center frequency of f1.
  • f1 carriers result in the aggregation of carriers transmitted and received from two or more base stations, which is referred to herein as inter-ENB carrier aggregation (or inter-base station CA). Name it.
  • carrier aggregation is understood as a terminal transmitting and receiving data through multiple cells at the same time. It could be. This increases the maximum transfer rate in proportion to the number of carriers integrated.
  • the terminal receiving data through any forward carrier or transmitting data through any reverse carrier means that the control channel and the data channel provided by the cell corresponding to the center frequency and the frequency band characterizing the carrier It has the same meaning as transmitting and receiving data using.
  • carrier aggregation will be expressed as 'a plurality of serving cells are set', and terms such as primary serving cell (hereinafter referred to as PCell) and secondary serving cell (hereinafter referred to as SCell) or activated serving cell will be used.
  • PCell primary serving cell
  • SCell secondary serving cell
  • activated serving cell activated serving cell
  • a set of serving cells controlled by the same base station is defined as three.
  • the set is further divided into a primary set and a non-primary set.
  • the primary set refers to a set of serving cells controlled by a base station controlling a PCell (hereinafter referred to as a primary base station), and the nonprimary set refers to a base station (hereinafter referred to as a non-primary base station) rather than a base station controlling a PCell.
  • Information about whether a predetermined serving cell belongs to the primary set or the non-primary set is instructed by the base station to the terminal in the process of configuring the corresponding serving cell.
  • One terminal may be configured with one primary set and one or more non-primary sets.
  • FIG. 5 is a flowchart illustrating operations of a terminal and a base station for configuring a SCell belonging to a primary set according to an embodiment of the present disclosure.
  • the mobile communication system includes a terminal 505, a base station 1 515, and a base station 2 510.
  • Cell 1, cell 2, and cell 3 are controlled by base station 1 515, and cell 4 and cell. 5 is controlled by base station 2 510.
  • the PCell of the terminal is cell 1.
  • Base station 1 515 becomes a primary base station according to the above-defined terminology of the primary base station.
  • Base station 1 (515) which is the primary base station, attempts to configure cell 2 as an additional SCell to the terminal.
  • the base station controlling the PCell, that is, controlling the primary set is also referred to as a serving base station.
  • a base station that controls the serving cell of the terminal that is not the serving base station is referred to as a drift base station.
  • the base station controlling the serving cells of the primary set is the serving base station and the base station controlling the serving cells of the non-primary set is the drift base station.
  • the terms primary base station and nonprimary base station may be used.
  • the primary base station corresponds to the serving base station and the nonprimary base station corresponds to the drift base station.
  • the serving base station 515 stores and transmits information related to the SCell to be newly added to the terminal 505 in an RRC connection reconfiguration control message (step 520).
  • the newly added SCell is a cell directly managed by a serving base station.
  • the control message may accommodate at least some of the information in Table 1 below according to the serving cell.
  • Table 1 name Explanation sCellIndex-r10 Identifier of the serving cell. It is an integer with a predetermined size. It is used to update the information of the corresponding serving cell in the future.
  • cellIdentification-r10 Information that physically identifies the serving cell. It consists of forward center frequency and PCI (Physical Cell Id).
  • radioResourceConfigCommonSCell-r10 Information related to radio resources of the serving cell. For example, it includes forward bandwidth, forward HARQ feedback channel configuration information, reverse center frequency information, reverse bandwidth information, and the like.
  • radioResourceConfigDedicatedSCell-r10 Information related to a dedicated resource allocated to the terminal in the serving cell. For example, reference signal structure information for channel quality measurement, intercarrier scheduling configuration information, and the like are included therein.
  • Timing Advance Group Information indicating which TAG a terminal belongs to. This may be configured, for example, with a TAG id and a Timing Advance (TA) timer. If the terminal belongs to a P-TAG (primary TAG), this information is not signaled.
  • TAG is a set of serving cells that share the same backward transmission timing.
  • P-TAG Primary TAG
  • S-TAG Secondary TAG
  • P-TAG is the TAG to which the PCell belongs.
  • S-TAG is a TAG composed only of SCells, not PCells.
  • the fact that any serving cell belongs to an arbitrary TAG means that the backward transmission timing of the serving cell is the same as backward transmission timing of other serving cells belonging to the TAG, and it is determined whether backward synchronization is performed by the TA timer of the TAG. It means.
  • the backward transmission timing of any TAG is established by performing a random access procedure in a predetermined serving cell belonging to the TAG, and is maintained by receiving a TA command.
  • the UE drives or restarts the TA timer of the corresponding TAG.
  • the UE determines that backward transmission synchronization of the corresponding TAG is lost and does not perform backward transmission until random access is performed again.
  • the terminal 505 transmits a response message (RRC Connection Reconfiguration Complete) to the control message (step 525).
  • the terminal 505 establishes forward / downlink synchronization with respect to cell 2, that is, serving cell 1 (530).
  • the forward / downlink means that the base station transmits and is received by the terminal
  • the reverse / uplink means that the terminal transmits and the base station transmits.
  • 'forward' and 'downlink' are used interchangeably as words having the same meaning.
  • the terms "reverse direction” and "uplink” are used interchangeably.
  • Establishing forward sync for any cell means acquiring a sync channel of the cell to obtain a forward frame boundary (boundary).
  • the serving base station 515 activates / deactivates MAC control element (hereinafter referred to as A / D MAC CE), which is a MAC layer control command for activating the SCell 1 to the terminal at any time when the terminal 505 determines that the terminal 505 has completed the configuration of the SCell 1.
  • a / D MAC CE MAC control element
  • the control command consists of a bitmap.
  • the first bit may correspond to SCell 1, the second bit to SCell 2, and the nth bit to SCell n.
  • Each bit indicates activation / deactivation of a corresponding SCell.
  • the bitmap may have a size of 1 byte.
  • the first LSB (Least Significant Bit) of the byte is not used, the second LSB is SCell 1, the third LSB is SCell 2, the last LSB (or Most Significant Bit, MSB) may be mapped to SCell 7.
  • the terminal 505 starts monitoring the downlink physical control channel (PDCCH) of the SCell 1 after a predetermined period has elapsed based on the time point of receiving the activation command for the SCell 1.
  • the PDCCH is forward / reverse direction.
  • the channel is provided with transmission resource allocation information, etc. If the SCell 1 belongs to a TAG which has already been synchronized, the terminal 505 starts forward / reverse transmission and reception from the start of monitoring. If the UE belongs to a TAG that has not been received, the terminal 505 starts receiving only forward signals and does not perform reverse signal transmission at the start of monitoring, that is, the terminal 505 receives forward transmission resource allocation information through the PDCCH.
  • the UE receives the forward data through the PDCCH. Waits until a random access command is received by a predetermined SCell belonging to the TAG
  • the random access command is a predetermined field of uplink transmission resource allocation information set to a predetermined value and is provided to a terminal by a predetermined serving cell.
  • CIF Carrier Indicator Field
  • an identifier of a serving cell to perform preamble transmission may be indicated.
  • the terminal 505 receives a random access command instructing to transmit a random access preamble through the serving cell 1.
  • the UE 505 transmits the indicated preamble through SCell 1 and monitors the PDCCH of the PCell to receive a random access response (RAR), which is a response message to the preamble.
  • RAR random access response
  • the RAR contains a TA command and other control information. If the cell to which the preamble is transmitted is a cell of the serving base station, it is efficient in several aspects to respond to the preamble in the PCell. For example, since RAR reception is performed only in the PCell, the PDCCH monitoring load of the terminal 505 is reduced.
  • the terminal 505 monitors the PDCCH of the PCell in order to receive the RAR in step 550. Upon receiving a valid response message for the preamble transmitted in step 545, the terminal 505 determines that backward signal transmission is possible after a predetermined period has elapsed based on the time point. For example, if a valid RAR is received in subframe n, backward transmission is considered to be possible starting from subframe (n + m).
  • FIG. 6 is a flowchart of a process of setting a SCell belonging to a nonprimary set.
  • the serving base station 615 decides to add an SCell to the terminal 605.
  • the serving base station 615 determines to add the cell controlled by the base station 2 610 to the SCell in step 620.
  • the serving base station 615 transmits a control message to the base station 2 610 requesting the addition of the SCell (625).
  • the control message may accommodate at least some of the information mentioned in Table 2 below.
  • SCell id information Information related to identifiers of SCells to be set in the drift base station. It consists of one or more sCellIndex-r10.
  • the serving base station determines and informs the drift base station in order to prevent the identifier already in use at the serving base station from being reused.
  • the SCell id used by the serving base station and the SCell id used by the drifty base station may be separately defined.
  • the SCell ids 1 to 3 are defined in advance by the serving base station so that the SCell ids 4 to 7 are used by the drift base station.
  • TAG id information Information related to the identifier of the TAG to be set in the drift base station.
  • the serving base station determines and informs the drift base station in order to prevent the identifier already in use at the serving base station from being reused.
  • Reverse Scheduling Information It consists of the priority information of the logical channels set in the terminal and the logical channel group information.
  • the drift base station interprets the buffer status report information of the terminal using this information and performs reverse scheduling.
  • Bearer Information to be Offloaded In DENB it is desirable to handle services that require large data transmission and reception, such as FTP download.
  • the serving base station determines which bearer among the bearers configured in the terminal to offload to the drift base station, and information related to the bearer to be offloaded, for example, DRB identifier, PDCP configuration information, RLC configuration information, required QoS information, and the like.
  • the serving base station provides the reference information so that the drift base station can determine whether to accept or reject the SCELL addition request. For example, the required data rate, the expected uplink data amount, the estimated downlink data amount, and the like.
  • the drift base station 610 determines whether to accept the request in consideration of the current load situation. If it is determined to accept the request, the drift base station 610 generates a control message containing at least some of the information in Table 3 below and transmits the control message to the serving base station 615 (630).
  • SCellToAddMod Information related to the SCells configured in the drift base station, and consists of the following information.
  • PUCCH setting information for PUCCH SCell PUCCH is configured in at least one SCell among the non-primary sets.
  • backward control information such as HARQ feedback, channel status information (CSI), sounding reference signal (SRS), or scheduling request (SR) is transmitted.
  • CSI channel status information
  • SRS sounding reference signal
  • SR scheduling request
  • the SCell through which the PUCCH is transmitted is called a PUCCH SCell.
  • Identifier information and PUCCH configuration information of the PUCCH SCell are sub-information of this information.
  • Data Forwarding Information Information on a logical channel (or logical tunnel) to be used for data exchange between a serving base station and a drift base station includes information such as a GTP (GPRS Tunnel Protocol) tunnel identifier for forward data exchange and a GTP tunnel identifier for reverse data exchange. .
  • Identifier of the terminal The UE is a C-RNTI to be used in the SCell of the non-primary set. Hereinafter, it is called C-RNTI_NP.
  • the serving base station 615 When the serving base station 615 receives the control message, the serving base station 615 generates and transmits an RRC control message indicating the addition of the serving cell to the terminal 605 (635).
  • the RRC control message includes at least some of the information in Table 4 below.
  • Table 4 name Explanation SCellAddMod The information delivered by the drift base station is stored as it is. That is, the same information as the SCellAddMod of Table 3.
  • One SCellAddMod is stored per SCell, and the information is sub-information of SCellAddModList.
  • PUCCH setting information for PUCCH SCell The information delivered by the drift base station is stored as it is. That is, the same information as the PUCCH information for PUCCH SCell of Table 3.
  • Identifier of the terminal C-RNTI ie, C-RNTI_NP, to be used by a UE in a serving cell of a non-primary set.
  • Offroad Bearer Information Information related to the bearer to be processed in the drift base station.
  • the terminal is information related to a bearer to be transmitted / received through the serving cells of the non-primary set, and bearer configuration information is included when the bearer list and the bearer configuration are different.
  • Configuration information of a plurality of SCells may be stored in the RRC control message.
  • the primary set serving cell and the non-primary set serving cells may be configured together. For example, if Cell 2, Cell 3, Cell 4, and Cell 5 are set to SCell for a terminal in which Cell 1 is a PCell, the information may be arranged in various orders in an RRC control message.
  • FIG. 7 is a configuration diagram of an RRC control message according to an embodiment of the present specification.
  • Cell 1 and Cell 2 have the same backward transmission timing and configure P-TAG
  • Cell 3 configures S-TAG 1 and Cell 4
  • Cell 5 configure S-TAG 2.
  • the RRC control message includes a SCellToAddModList 705, where SCellToAddModList 705 includes SCellToAddMod 710 for Cell 2, SCellToAddMod 715 for Cell 3, SCellToAddMod 720 for Cell 4, and SCellToAddMod for Cell 5 725 is stored.
  • the SCellToAddMod 710, 715, 720, and 725 may or may not include specific information depending on the nature of the SCell. If the SCell belongs to the P-TAG, that is, has the same backward transmission timing as that of the PCell, the SCellToAddMod does not store information related to the TAG. For example, information related to a TAG is not stored in the SCellToAddMod 710 for Cell 2.
  • SCellToAddMod (715, 720, 725) for SCells belonging to a TAG other than the remaining P-TAG includes an identifier and a TA timer value of the TAG to which the corresponding SCell belongs.
  • At least one of the cells belonging to the non-primary set contains information 730 related to the non-primary set, for example, an identifier of the non-primary set and a C-RNTI of a terminal to be used in the non-primary set.
  • the information is stored in SCellToAddMod 715 for Cell 4.
  • PUCCH configuration information 735 is stored for one of the cells belonging to the non-primary set.
  • the information is stored in SCellToAddMod 715 for Cell 4.
  • the nonprimary set-related information of the SCell having the same TAG id is applied.
  • the non-primary set-related information is not stored in Cell 5, but since the non-primary set-related information is stored in Cell 4 having the same TAG id, the terminal determines that Cell 5 is also a non-primary set.
  • the non-primary set identifier and C-RNTI of use the same value as indicated for Cell 4.
  • FIG. 8 is a configuration diagram of an RRC control message according to another embodiment of the present specification.
  • FIG. 8 illustrates another example of storing TAG related information and non-primary set related information in a separate location instead of SCellToAddMod.
  • the RRC control message includes a SCellToAddModList 805, which contains a SCellToAddMod 810 for Cell 2, a SCellToAddMod for Cell 3, a SCellToAddMod for Cell 4, and a SCellToAddMod for Cell 5.
  • SCellToAddModList 805 contains a SCellToAddMod 810 for Cell 2, a SCellToAddMod for Cell 3, a SCellToAddMod for Cell 4, and a SCellToAddMod for Cell 5.
  • SCellToAddMod contains information such as sCellIndex-r10, cellIdentification-r10, and radioResourceConfigCommonSCell-r10.
  • the TAG related information 815, the nonprimary set related information 820, and the PUCCH configuration information of the PUCCH SCell are individually stored.
  • the TAG related information 815 stores a TAG identifier, identifiers of SCells constituting the TAG, and a TA timer value for each TAG.
  • a TAG with a TAG identifier of 1 is composed of SCell 2 and the information t1 is used as a TA timer (830)
  • a TAG with a TAG identifier of 2 is composed of SCell 3 and SCell 4, and a value of t2 is used as a TA timer.
  • Information 835 is received.
  • the non-primary set related information 820 stores the identifier of the set for each non-primary set, the identifier of the serving cells constituting the set, and the C-RNTI information to be used in the set.
  • a non-primary set having a set identifier of 1 is composed of SCell 3 and SCell 4, and information 840 is stored that x is used as the C-RNTI.
  • Information about the primary set is not signaled separately and is determined according to the following rules.
  • SCells that are not nonprimary set serving cells of PCell and SCell
  • C-RNTI to be used in the primary set C-RNTI currently being used by the PCell
  • the non-primary set related information may include the identifier of the TAG rather than the identifier of the SCell. This is possible under the premise that sets and TAGs are configured so that a TAG is not organized over multiple sets. For example, instead of the information indicating SCell 3 and SCell 4 in the non-primary set configuration information 820, information indicating TAG id 2 is stored, and the terminal indicates that SCell 3 and SCell 4 belonging to TAG id 2 are non-primary set. You can also make judgments.
  • PUCCH configuration information of the PUCCH SCell is composed of a non-primary set identifier, an identifier of the PUCCH SCell, and PUCCH configuration information.
  • One PUCCH SCell exists per nonprimary set, and CSI information and HARQ feedback information about serving cells belonging to the nonprimary set are transmitted through the PUCCH configured in the PUCCH SCell.
  • the PUCCH SCell may be determined according to a predetermined rule. For example, the SCell corresponding to the first SCellToAddMod of the SCellToAddModList may be determined as the PUCCH SCell. Alternatively, the SCell having the highest SCell identifier or the SCell having the lowest SCell identifier may be determined as the PUCCH SCell among the SCells in which the SCellToAddMod information is stored in the RRC control message. This tacit decision presupposes that only one nonprimary exists.
  • the terminal 605 transmits a response message to the serving base station 615 and establishes forward synchronization with the newly established SCells in step 645.
  • the terminal 605 obtains an SFN (System Frame Number) of the PUCCH SCell among the SCell newly configured in step 650.
  • SFN acquisition is achieved in the process of receiving system information called MIB (Master Information Block).
  • MIB Master Information Block
  • SFN is an integer between 0 and 1023, increasing by 1 every 10 ms.
  • the terminal 605 determines the PUCCH transmission time point of the PUCCH SCell using the SFN and the PUCCH configuration information.
  • the terminal 605 waits until the SCells are activated.
  • the drift base station 610 receives forward data from the serving base station 615 or receives a predetermined control message instructing to activate the SCell, the drift base station 610 starts a procedure of activating the SCells (655).
  • the drift base station 610 may transmit an A / D MAC CE to the terminal 605 indicating to activate the SCell 3.
  • the terminal 605 activates the SCell in the subframe n + m1 if the MAC CE is received in the subframe n.
  • the reverse synchronization of the PUCCH SCell has not yet been established in the subframe (n + m1), both forward and reverse transmission and reception are not possible even though the SCell is activated. In other words, the terminal 605 monitors the PDCCH of the SCell, but ignores the reception of the forward / reverse resource allocation signal.
  • the drift base station 610 transmits a random access command to the terminal 605 so that the terminal 605 establishes reverse synchronization of the PUCCH SCell (665).
  • the terminal 605 initiates a random access procedure in the PUCCH SCell using the dedicated preamble indicated by the command. That is, the terminal 605 transmits a preamble in the SCell (670) and monitors the PDCCH in order to receive the RAR, which is a response message. If the terminal 605 transmits a preamble in the primary set, the RAR is transmitted through the PCell.
  • the terminal 605 monitors the PDCCH of the SCell or the PUCCH SCell that transmitted the preamble in order to receive the RAR.
  • the RAR may be received through, for example, C-RNTI_NP of the terminal 605. This is because the C-RNTI_NP has already been allocated to the UE 605, and since there is no possibility of malfunction due to collision since the dedicated preamble is used (the base station recognizes that a UE has transmitted a preamble when the dedicated preamble is received.
  • the terminal 605 When the terminal 605 receives a valid response message from the SCell that transmitted the preamble or from the PUCCH SCell, the terminal 605 adjusts the backward transmission timing of the PUCCH SCell and the TAG to which the PUCCH SCell belongs by applying a TA command of the response message and at a predetermined time. Enable reverse.
  • the predetermined time point may be a subframe (n + m2) when a valid TA command or a valid random access response message is received in the subframe (n).
  • M2 is a predetermined integer.
  • one user service is serviced by one Evolved Packet System (EPS) bearer, and one EPS bearer is connected to one radio bearer.
  • the radio bearer is composed of PDCP and RLC.
  • a PDCP device and an RLC device of one radio bearer may be located at different base stations to increase data transmission and reception efficiency.
  • the serving base station controls the macro cell and the drift base station controls the pico cell. Therefore, a pico cell may be used in a similar meaning to a non-primary set serving cell and a macro cell to a primary set serving cell.
  • EPS bearer hereinafter referred to as P-EPS bearer
  • NP-EPS bearer EPS bearer
  • the bearer traffic is once delivered to the primary ENB, and the primary ENB may deliver a data of the NP-EPS bearer to the drift base station.
  • the former will be referred to as a core network splitting scheme (CN split) and the latter as a wireless network splitting scheme (RAN split).
  • CN split core network splitting scheme
  • RAN split wireless network splitting scheme
  • FIG. 9 is a schematic diagram of a distribution scheme according to an embodiment of the present disclosure.
  • the UE 920 controls the macro cell with control plane data and all user plane data (i.e. serving base station). Transmit / receive with 910
  • the user plane data 925 is processed by the S-GW 905, and the bearer for transmitting / receiving the user plane data, and the EPS bearer 1 and the EPS bearer 2 are both the S-GW 905 and the serving base station. 910 is formed between.
  • EPS bearer 1 is an NP-EPS bearer
  • EPS bearer 2 is a P-EPS bearer.
  • EPS bearer 1 is rebuilt between the S-GW 905 and the drift base station 915 if CN split 930 has been applied.
  • EPS bearer 2 is maintained between the S-GW and the serving base station.
  • the serving base station 910 transmits / receives data of EPS bearer 2 with the terminal 905 and the drift base station 915 transmits / receives EPS bearer 1 data with the terminal.
  • both EPS bearer 1 and EPS bearer 2 are maintained between the S-GW 905 and the serving base station 910.
  • the serving base station 910 transmits / receives data of the EPS bearer 2 with the terminal 905, and transmits the EPS bearer 1 data to the drift base station 915.
  • the drift base station 915 transmits / receives EPS bearer 1 data with the terminal 920.
  • the paths of data transmitted and received in the primary set serving cell are assigned to a primary set EPS bearer (P-EPS bearer), a primary set DRB (P-DRB), and a primary set logical channel (P-LCH).
  • P-EPS bearer a primary set EPS bearer
  • P-DRB primary set DRB
  • P-LCH primary set logical channel
  • Paths of data transmitted and received in the non-primary set serving cell are referred to as non-primary set EPS bearer (NP-EPS bearer), non-primary set DRB (NP-DRB), and non-primary set logical channel (NP). -LCH) and the like.
  • FIG. 10 is a diagram illustrating a first PDCP distribution structure according to an embodiment of the present specification.
  • the P-EPS bearer 1005, P-DRB, and P-LCH are set in the primary base station 1010, and the non-primary set EPS bearer 1015, NP-DRB, NP-LCH Is set in the non-primary base station 1020.
  • the terminal transmits and receives data of the primary set EPS bearer to and from the primary set serving cell and non-primary set EPS bearer data to and from the nonprimary set serving cell.
  • the P-DRB is configured at the primary base station, but the NP-DRB or NP-LCH may be configured at the primary base station or non-primary base station, and various selections are derived.
  • a first PDCP distributed structure a second PDCP distributed structure, a first RLC distributed structure, a first MAC distributed structure, a MAC distributed structure 2, and a second RLC distributed structure are presented.
  • the operation of the network and the terminal, the signaling scheme of the configuration process, and the like will be described.
  • the first PDCP distribution structure is formed between the S-GW and the non-primary base station 1010 and the NP-DRB and NP-LCH It is a structure set in the non-primary base station 1010.
  • FIG. 11 is a diagram illustrating a second PDCP distribution structure according to an embodiment of the present specification.
  • the NP-EPS bearer 1115 is configured between the S-GW and the primary base station 1110, but the NP-DRB 1125 is configured for the non-primary base station 1120.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station 1110 and the non-primary base station 1120 for data forwarding, and the NP-EPS bearer 1115 is formed through the GTP tunnel.
  • the IP packet is forwarded from the P-ENB 1110 to the NP-ENB 1120 or vice versa.
  • the second PDCP distributed structure has the following characteristics.
  • a PDCP status report control message (PDCP STATUS REPORT) is sent from the NP-ENB to the P-ENB via a GTP tunnel.
  • the RLC PDU size of the NP-DRB is determined by the MAC scheduler of the NP-ENB. Since both the RLC device and the MAC device of the NP-DRB are located in the NP-ENB, the size of the RLC PDU can be dynamically determined to reflect the current channel state.
  • NP-EPS bearer data is transmitted and received only through the non-primary set serving cell.
  • the UE uses only transmission resources allocated by the non-primary set serving cell.
  • FIG. 12 is a diagram illustrating a first RLC dispersion structure according to an embodiment of the present specification.
  • the NP-EPS bearer 1215 is between the S-GW and the P-ENB, a part of the NP-DRB, that is, the PDCP device 1230 is in the P-ENB 1210, and the RLC device 1225 is in the The structure is set in the NP-ENB 1220.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station and the non-primary base station, and the PDCP PDU (or RLC SDU) of the NP-EPS bearer is P through the GTP tunnel.
  • GTP GPRS Tunnel Protocol
  • the first RLC distributed structure has the same characteristics as the second PDCP distributed structure.
  • FIG. 13 is a diagram illustrating a first MAC distributed structure according to an embodiment of the present specification.
  • the NP-EPS bearer 1315 is set between the S-GW and the P-ENB, and the NP-DRB 1330 is set to the P-ENB.
  • the NP-ENB In the first MAC distributed structure, only the MAC layer device and the PHY layer device are configured in the NP-ENB.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station and the non-primary base station, and the RLC PDU (or MAC SDU) of the NP-EPS bearer is P through the GTP tunnel.
  • GTP GPRS Tunnel Protocol
  • the first MAC distributed structure has the following characteristics.
  • RLC STATUS PDU RLC status report control message
  • the MAC scheduler of the NP-ENB indicates the size of the RLC PDU to the RLC device of the P-ENB.
  • the size of the RLC PDU is determined by reflecting the long term channel status of the non-primary set serving cell and may be periodically updated.
  • NP-EPS bearer data is transmitted and received through both the primary set serving cell and the non-primary set serving cell.
  • the UE uses both the transmission resource allocated in the primary set serving cell and the transmission allocated in the nonprimary set serving cell.
  • FIG. 14 is a structural diagram of a second MAC distributed structure according to an embodiment of the present specification.
  • the NP-EPS bearer 1415 is set between the S-GW and the P-ENB.
  • the NP-DRB 1430 is set in the P-ENB 1410.
  • a device 1435 (hereinafter referred to as a low RLC device) that is responsible for some functions of the RLC device is set in the NP-ENB 1420.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station 1410 and the non-primary base station 1420 for data forwarding, and through the GTP tunnel, an NP-EPS bearer 1415 RLC PDUs (or MAC SDUs) are forwarded from the P-ENB 1410 to the NP-ENB 1420, or vice versa.
  • the lower RLC device 1435 of the NP-ENB 1420 re-segments the RLC PDU delivered by the P-ENB 1410 to an appropriate size according to the current channel situation.
  • 15 is a structural diagram of a data unit according to one embodiment of the present specification.
  • the lower RLC device 1435 of the P-ENB 1410 delivers the RLC PDU 1505 to the NP-ENB 1420, which is of a predetermined size, for example 1500 bytes of payload.
  • the lower RLC device 1435 of the NP-ENB 1420 stores the received RLC PDU 1505 in a buffer.
  • the scheduler of the NP-ENB 1420 decides to transmit the data at any time and selects the size of the data to be transmitted. The size of the data is determined by the channel situation, scheduling situation, and the like at that time.
  • the lower RLC device 1435 repartitions the RLC PDU 1505 according to the determined size and transfers the repartitioned RLC PDUs 1510 and 1520 to the MAC layer device.
  • the repartitioned RLC PDUs 1510 and 1520 further include segment headers 1515 and 1525 that include the offset and the last segment indicator.
  • the offset is information indicating how many bytes of the original RLC PDU is the 0 th byte of the repartitioned RLC PDU payload
  • the last segment indicator is information indicating whether the repartitioned RLC PDU is the last segment.
  • the offset included in the segment header 1515 of the first repartitioned RLC PDU 1510. May be set to zero. Also, since the first repartitioned RLC PDU 1510 is not the last segment, the last segment indicator of the segment header 1515 may be set to 'NO'. Since the 0th byte of the payload of the second repartitioned RLC PDU 1520 is the 500th byte of the original RLC PDU 1505 payload, the offset of the second repartitioned RLC PDU 1520 segment header 1525 may be set to 500. have.
  • the last segment indicator of the segment header 1525 is set to 'YES'.
  • the lower RLC device 1435 may repartition the RLC PDU while inserting the segment header as described above. These segments may later be passed to another device or other component that reconstructs the segment and may be combined according to the segment headers 1515 and 1525.
  • the RLC subordinate device 1435 processes only forward data. Reverse data is passed directly from the MAC layer of NP-ENB 1420 to the RLC device of P-ENB 1410 without going through RLC sub-device 1435.
  • data of the NP-EPS bearer 1415 is transmitted and received through all of the serving cells regardless of the primary set serving cell and the non-primary set serving cell.
  • the RLC PDU size of forward data transmitted / received through the primary set serving cell is dynamically determined in consideration of the channel state and scheduling situation of the corresponding serving cell, while the RLC PDU size of forward data transmitted / received through the non-primary set serving cell is determined. Is determined by reflecting the long term channel status of the non-primary set serving cell, and the value once determined is not changed for a relatively long period of time.
  • the size of the dynamically determined RLC PDU is referred to as the dynamic RLC PDU size
  • the size of the RLC PDU applied for a relatively long period is referred to as a static RLC PDU size because long-term channel conditions are reflected.
  • the dynamic RLC PDU size is applied regardless of the primary set serving cell and the non-primary set serving cell.
  • 16 is a structural diagram of an RLC device and a MAC device in a second MAC distributed structure according to an embodiment of the present specification.
  • the RLC device of the P-ENB has both an RLC receiving function 1605 and an RLC transmitting function 1610.
  • the RLC transfer function includes an RLC repartition function 1615.
  • the RLC redistribution function is to adjust the size of the RLC PDU during RLC retransmission, and the size of the first RLC PDU transmitted is a dynamic RLC PDU size 1620 determined according to channel conditions / scheduling conditions when the RLC PDU is transmitted. Is set to.
  • the MAC 1650 of the P-ENB determines the dynamic RLC PDU size 1620 and notifies the RLC transmission function prior to the RLC PDU transmission.
  • the MAC 1645 of the NP-ENB determines the static RLC PDU size and informs the RLC transmission function in the SCell setup phase or the flow control phase.
  • the RLC transmission function sets the size of the RLC PDU to be transmitted through the primary set serving cell according to the dynamic RLC PDU size 1620 and the size of the RLC PDU to be transmitted through the non-primary set serving cell is fixed RLC PDU size ( 1630).
  • the RLC transmission function 1610 determines a RLC SDU to be transmitted in the primary set serving cell and an RLC SDU to be transmitted in the nonprimary set serving cell by applying a predetermined method.
  • the RLC SDUs may be distributed according to a ratio in which the load condition of the primary set serving cell and the load condition of the non-primary set serving cell are reflected.
  • the ratio of the RLC SDUs to be transmitted in the non-primary set serving cell among the entire RLC SDUs may be determined according to the data generation amount of the NP-EPS bearer and the expected transmission rate of the non-primary set.
  • the estimated transmission rate of the non-primary set is determined by the scheduler of the non-primary set in consideration of the load status of cells, the channel status of the UE, the priority / importance of the NP-EPS bearer, and the amount of data generated by the NP-EPS bearer. Information to inform the primary base station.
  • the RLC transmission function transmits the RLC SDUs configured to the RLC PDU according to the dynamic RLC PDU size and transmits them through the primary set serving cell according to the dynamic RLC PDU size. Therefore, it is configured as an RLC PDU and transmitted to the non-primary base station. In some cases, the RLC transmission function may also transmit retransmission RLC PDUs to the non-primary base station.
  • the non-primary base station transmits the retransmission RLC PDU first.
  • One of the unused bits of the GTP header may be used to indicate the retransmission RLC PDU, or may be implicitly indicated by setting the size of the retransmission RLC PDU to be different from the size of the fixed RLC PDU.
  • the non-primary base station preferentially transmits retransmission RLC PDUs in transmitting RLC PDUs.
  • the second MAC distributed structure has the following characteristics.
  • RLC STATUS PDU RLC status report control message
  • the NP-ENB's MAC scheduler indicates the static RLC PDU size and the P-ENB's MAC scheduler indicates the dynamic RLC PDU size.
  • the size of the static RLC PDU is determined by reflecting the long term channel status of the nonprimary set serving cell and may be updated periodically.
  • NP-EPS bearer data is transmitted and received through both the primary set serving cell and the non-primary set serving cell.
  • the UE uses both transmission resources allocated in the primary set serving cell and transmissions allocated in the non-primary set serving cell.
  • Forward data of the NP-EPS bearer is transmitted to the UE after being repartitioned into an appropriate size by the lower RLC device of the NP-ENP.
  • 17 is a structural diagram of a second RLC dispersion structure according to an embodiment of the present specification.
  • the NP-EPS bearer 1715 is between the S-GW and the P-ENB, and a portion of the NP-DRB, that is, the PDCP device 1730 and the RLC receiving device 1333, is connected to the P-ENB 1710.
  • the RLC transmitter 1735 is a structure set in the NP-ENB 1720. The reason for separating the RLC receiver and the RLC transmitter is as follows.
  • the RLC transmitting apparatus is located in the NP-ENB to determine the RLC PDU size for the forward data of the NP-EPS bearer by reflecting the channel condition and scheduling decision of the non-primary set serving cell.
  • the RLC receiving apparatus is located in the P-ENB. If the RLC receiving apparatus is configured in the NP-ENB and the UE transmits the RLC PDU to the primary set serving cell, the P-ENB delivers the RLC PDU to the NP-ENB to take the necessary action for the RLC receiving apparatus, and then P- Transfer to the ENB occurs and is prevented by placing the RLC receiver in the P-ENB.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station and the non-primary base station, and a forward PDCP PDU (or RLC SDU) of the NP-EPS bearer is formed through the GTP tunnel.
  • the P-ENB is forwarded from the NP-ENB and the reverse RLC PDU (or MAC SDU) is forwarded from the NP-ENB to the P-ENB.
  • a RLC status report control message (RLC STATUS PDU) is transmitted from the NP-ENB to the P-ENB via the GTP tunnel, i.e., the control information which reports the transmission / reception status of the RLC PDU, that is, the ACK / NACK information of the RLC.
  • NP-EPS bearer forward data is transmitted and received through the non-primary set serving cell.
  • NP-EPS bearer reverse data is transmitted and received through the primary set serving cell serving cell and the non-primary set serving cell.
  • 32 is a structural diagram of a multiple PDCP structure according to an embodiment of the present specification.
  • a multiple PDCP structure a plurality of DRBs are configured for the NP-EPS bearers 3205 and 3220.
  • Using a multiple PDCP structure can increase the maximum data rate of the EPS bearer.
  • 32 is described with reference to a transmitting apparatus and a receiving apparatus.
  • the terminal and the base station have both a transmitting device and a receiving device.
  • the distribution device 3210 is set in the P-ENB and the order rearrangement device 3215 is set in the terminal.
  • the distribution device 3210 is set in the terminal and the order reordering device 3215 is set in the P-ENB.
  • one DRB 3225 of the two DRBs is set to the P-ENB and the other to the NP-DRB 3230.
  • one DRB is set in the P-ENB and the other in the NP-DRB.
  • the distribution device 3210 distributes traffic of the NP-EPS bearer to NP-DRBs connected to the NP-EPS bearer. Since the distribution device does not have a buffer, when the traffic of the NP-EPS bearer arrives, it distributes to one of the DRBs in real time.
  • the distribution device of the P-ENB distributes traffic in consideration of channel conditions and scheduling conditions of the primary set serving cell and the non-primary set serving cell.
  • the distribution apparatus periodically receives the expected throughput information from the MAC scheduler of the P-ENB and the MAC scheduler of the NP-ENB. The traffic is distributed according to the ratio between the expected throughput of the P-ENB and the expected throughput of the NP-ENB.
  • the distribution device of the terminal distributes the traffic according to the instructions of the base station.
  • the base station includes distribution information in a control message for setting a non-primary set, for example, an RRC connection reconfiguration message 1855, and delivers the distribution information to the terminal.
  • the distribution information includes a ratio between the amount of data to be transmitted to the primary set serving cell (or the amount of data to be transmitted to the P-DRB) and the amount of data to be transmitted to the non-primary set serving cell (or the amount of data to be transmitted to the NP-DRB).
  • the information may be, for example, information specifying a ratio of data to be sent to the non-primary set serving cell, and the ratio of data to be sent to the primary set serving cell may be inferred from the information.
  • the distribution information is 90, this means that 90% of data generated from the NP-EPS bearer for a predetermined period should be delivered to the DRB of the non-primary set serving cell.
  • the proportion of data to be delivered to the DRB of the primary set serving cell is therefore 10%.
  • the reordering operation is an operation for checking whether there is an unreceived NP-EPS bearer packet and, if present, waiting for a predetermined period of time until the unreceived NP-EPS bearer packet is received. Packets that occur later than the unreceived packets wait in the reorder buffer until the unreceived packets are released.
  • the serial number is required to perform the reorder operation. In this specification, an order reordering operation is performed using a serial number of TCP.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between the primary base station and the non-primary base station, and the forward PDCP SDU of the NP-EPS bearer is transferred from the P-ENB to the NP-ENB through the GTP tunnel.
  • GTP GPRS Tunnel Protocol
  • FIG. 33 is a structural diagram of a multiple RLC structure according to an embodiment of the present specification.
  • a plurality of RLC devices are configured for the NP-EPS bearers 3305 and 3320.
  • Using multiple RLC structures can increase the maximum data rate of the EPS bearer.
  • 32 is described with reference to a transmitting apparatus and a receiving apparatus.
  • the terminal and the base station have both a transmitting device and a receiving device.
  • the distribution device 3310 is set in the P-ENB and the order rearrangement device 3315 is set in the terminal.
  • the distribution device 3310 is set in the terminal and the order rearrangement device 3315 is set in the P-ENB.
  • the distribution device is set up between the PDCP device and the RLC device.
  • the distribution device is set below the PDCP device, in particular the device to which the PDCP header is attached.
  • the distribution device may be set as part of the PDCP device and configured as the last processing device of the PDCP device.
  • the distribution device 3310 performs an operation of distributing the PDCP PDU to the RLC device connected to the PDCP device. Since the distribution device does not have a buffer, when a PDCP PDU is generated, it is distributed to either RLC device in real time.
  • the distribution device of the P-ENB distributes traffic in consideration of channel conditions and scheduling conditions of the primary set serving cell and the non-primary set serving cell.
  • the distribution apparatus periodically receives the expected throughput information from the MAC scheduler of the P-ENB and the MAC scheduler of the NP-ENB. The traffic is distributed according to the ratio between the expected throughput of the P-ENB and the expected throughput of the NP-ENB.
  • the distribution device of the terminal distributes the traffic according to the instructions of the base station.
  • the base station includes distribution information in a control message for setting a non-primary set, for example, an RRC connection reconfiguration message 1855, and delivers the distribution information to the terminal.
  • the distribution information includes the amount of data to be transmitted to the primary set serving cell (or P-DRB or the amount of data to be transmitted to P-LCH) and the amount of data to be transmitted to the non-primary set serving cell (or NP-DRB). Or information related to the ratio between the amount of data to be transmitted to the NP-LCH.
  • the information may be, for example, information specifying a ratio of data to be sent to the non-primary set serving cell, and the ratio of data to be sent to the primary set serving cell may be inferred from the information. For example, if the distribution information is 90, this means that 90% of data generated from the NP-EPS bearer for a predetermined period of time should be delivered to the DRB (or RLC device) of the non-primary set serving cell. The proportion of data to be delivered to the DRB of the primary set serving cell is therefore 10%.
  • the reordering operation is an operation for checking whether there is an unreceived NP-EPS bearer packet and, if present, waiting for a predetermined period of time until the unreceived NP-EPS bearer packet is received. Packets that occur later than the unreceived packets wait in the reorder buffer until the unreceived packets are released.
  • the serial number is required to perform the reorder operation. In the present specification, an order reordering operation is performed using a serial number of a PDCP SN. The base station sets the time to wait until the unreceived packet is received and notifies the terminal.
  • the order reordering device is set between the RLC device and the PDCP device.
  • the order reordering device may be set as part of the PDCP device.
  • the reordering device may be set as the first processing device of the PDCP receiving device.
  • the PDCP device performs two types of order reordering operations.
  • the first order reordering operation only works when the lower layer device is reestablished, such as handover, and the second order reordering operation is always performed.
  • the first order reordering operation is applicable only to an AM bearer
  • the second order reordering operation is applicable to both an RLC AM bearer and a UM bearer.
  • the base station determines whether to apply only the first order reordering operation to the bearer, only the second order reordering operation, both, or not to apply the order reordering operation. Notify this to the terminal. Whether to apply the first order reordering operation may be determined in connection with whether to generate a PDCP status report.
  • the terminal applies the first order reordering to the DRB configured to generate the PDCP status report.
  • the first order reordering operation stores PDCP packets that need to be ordered among PDCP packets delivered after the lower layer device is reset in the order reordering buffer, and then refers to only the serial numbers of the received PDCP packets, thereby storing the stored PDCP packets.
  • Determining which packet to forward to the upper layer Determining which packet to forward to the upper layer.
  • the first reordering operation when a packet having a serial number n is received, packets having a serial number less than n are transferred to a higher layer even if the sequence reordering is not completed yet.
  • Whether to apply the second order reordering operation is determined depending on whether the order reordering timer is set. That is, if an order reordering timer is set for a bearer, the UE applies a second order reordering operation to the bearer at all times.
  • the timer is driven when an unreceived packet is found, and if the packet is not received until the timer expires, packets having a lower serial number than the unreceived packet are delivered to a higher layer.
  • the terminal applies the first order reordering first and then applies the second order reordering.
  • the second order rearrangement is not applied while the first order rearrangement is applied, that is, for a predetermined period after the lower layer is reset.
  • a GPRS Tunnel Protocol (GTP) tunnel is formed between a primary base station and a non-primary base station, and a forward PDCP PDU of an NP-EPS bearer is transferred from a P-ENB to an NP-ENB through the GTP tunnel.
  • GTP GPRS Tunnel Protocol
  • FIG. 18 is a flowchart illustrating an operation of adding a primary set and non-primary set serving cell and setting a DRB according to an embodiment of the present specification.
  • cell a is controlled by base station 1 and cell b and cell c are controlled by base station 2.
  • the cell a is a macro cell, and the cells b and c are pico cells.
  • the PCell of the terminal is cell a.
  • Two EPS bearers are set in the terminal.
  • the DRB identifier (hereinafter referred to as DRB id) of EPS bearer 1 is 10
  • the logical channel identifier hereinafter referred to as LCH id
  • LCH id provides a delay sensitive real-time service, for example, a VoIP service.
  • the DRB id of the EPS bearer 2 is 11, the LCH id is 5, and provides a service involving a large amount of data transmission and reception, for example, a file download service.
  • the terminal transmits and receives data of the DRB 10 and the DRB 11 through the PCell.
  • the P-ENB that is, the base station 1, instructs the terminal to measure the cell b or the cell c in order to configure the pico cell to the terminal (1825).
  • the UE that has performed the measurement on the indicated cell reports the measurement result to the base station when the channel quality of the cell satisfies a predetermined condition (1830).
  • the base station may instruct the terminal to directly measure the frequency to be measured instead of directly. That is, in step 1825, the UE may be instructed to measure the frequency of the cell b or the cell c.
  • the measurement result report is stored in a predetermined RRC control message and transmitted.
  • the predetermined condition that triggers the measurement result reporting is, for example, the channel quality of the neighboring cell of the frequency at which the measurement is indicated is better than the predetermined criterion for a predetermined time period, or the channel quality of the neighboring cell of the frequency at which the measurement is indicated The state of the PCell channel quality better than a predetermined reference or more for a predetermined period of time, and the like.
  • the P-ENB adds the pico cell of the base station 2 to the SCell (1840), and decides to transmit / receive (or transmit) data of the EPS bearer 2 in the added SCell (1843). .
  • the P-ENB sends a control message to the NP-ENB requesting the addition of a SCell (1845). At least some of the information in Table 5 may be stored in the control message.
  • Table 5 name Explanation SCell candidate information Among the cells of the NP-ENB, identifiers of cells that can be configured as SCells and measurement results for the cells.
  • the NP-ENB may determine which cell to set as the SCell in consideration of the measurement result and the load state of the cells. If the forward propagation coverage of the pico cells controlled by one base station is similar, the NP-ENB may set a cell other than the SCell candidate cell proposed by the P-ENB as the SCell.
  • TAG id information Information related to the identifier of the TAG to be set in the drift base station.
  • the serving base station determines and informs the drift base station in order to prevent the identifier already in use at the serving base station from being reused.
  • Bearer Information to be Offloaded You have information associated with the EPS bearer to be offloaded to the primary set serving cell. Information such as required QoS information, EPS bearer identifier, and the following information are included.
  • 1st PDCP distribution structure PDCP configuration information, RLC configuration information, DRB id, LCH information
  • 2nd PDCP distribution structure same as 1st PDCP distribution structure
  • 1st RLC distribution structure RLC configuration information, DRB id, LCH information
  • 2nd RLC distribution structure RLC transmitter configuration information, DRB id, LCH information
  • first MAC distribution structure LCH information
  • Second MAC distribution structure LCH information
  • the LCH information also includes an LCH id.
  • RLC configuration information is defined in RLC-config of TS 36.331, PDCP configuration information in PDCP-config, and LCH information in logicalChannelConfig.
  • the RLC transmitting apparatus configuration information is information related to transmission in RLC-config.
  • Call Admission Control Related Information The serving base station provides the reference information so that the drift base station can determine whether to accept or reject the SCELL addition request. For example, the required data rate, the expected uplink data amount, the estimated downlink data amount, and the like.
  • GTP Tunnel Information GTP Tunnel information to be used for reverse data forwarding.
  • NP-ENB performs call admission control. If it is decided to accept the SCell addition request, determine the cell to configure the SCell and configure the NP-DRB. NP-ENB reuses the LCH id used in P-ENB so that the UE can use only one MAC. For example, the NP-ENB allocates 5 as the LCH id in setting the entire DRB or part of the DRB for EPS bearer 2.
  • the terminal MAC One important function of the terminal MAC is to multiplex or demultiplex the RLC PDUs of several DRBs to one MAC PDU. For the multiplexing and demultiplexing, the LCH id of the MAC PDU header should be appropriately written. Therefore, if the P-ENB and NP-ENB allocate LCH ids inconsistently, for example, if the same LCH id is used for different DRBs, the UE sets MAC separately for P-ENB and NP-ENB. shall. In the present specification, to avoid this, the NP-ENB allocates the LCH id of the NP-DRB that is not used by the other DRB in the P-ENB. For example, the LCH id used by the P-ENB may be allocated to the corresponding DRB.
  • the NP-ENB applies the value used in the P-ENB as it is. If a new DRB id is allocated to the NP-DRB, the UE may determine that the new DRB is set, and thus perform a harmful operation, for example, discarding data stored in the current DRB buffer or transferring the data to a higher layer. to be.
  • the NP-ENB applies the PDCP setting and the RLC setting used in the P-ENB in setting the PDCP device and the RLC device of the NP-DRB. If a different configuration is used, the terminal disassembles the currently used DRB and reconfigures it according to the new configuration, since this may lead to the harmful operation.
  • the NP-ENB sets all or part of the NP-DRB as follows.
  • both the PDCP device, the RLC device, and the LCH are configured. If it is the first RLC distributed structure, the RLC device and the LCH are set. In the second RLC distributed structure, the RLC transmitting apparatus and the LCH are set. If the first MAC distributed structure, LCH is set. In the second MAC distributed structure, the lower RLC transmitting apparatus and the LCH are set.
  • the NP-ENB sends a control message to the P-ENB acknowledging the addition of the SCELL (1850). At least some of the information in Table 6 may be stored in the control message.
  • Table 6 name Explanation SCellToAddMod Information related to SCells (for example, cells b and cell c) configured in the drift base station, and includes the following information.
  • sCellIndex-r10 cellIdentification-r10, radioResourceConfigCommonSCell-r10, radioResourceConfigDedicatedSCell-r10, TAG related information;
  • PUCCH setting information for PUCCH SCell PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • backward control information such as HARQ feedback, channel status information (CSI), sounding reference signal (SRS), or scheduling request (SR) is transmitted.
  • CSI channel status information
  • SRS sounding reference signal
  • SR scheduling request
  • the SCell through which the PUCCH is transmitted is called a PUCCH SCell.
  • Identifier information and PUCCH configuration information of the PUCCH SCell are sub-information of this information.
  • Identifier of the terminal The UE is a C-RNTI to be used in the SCell of the non-primary set.
  • C-RNTI_NP Bearer setup information Configuration information of the bearer to be offloaded.
  • the list of bearers accepted offload and bearer-specific configuration information are included. If the bearer settings are the same, only the list information of the accepted bearers may be included.
  • the following information is additionally stored for each structure.
  • First MAC distributed structure RLC PDU size; The RLC PDU size is set in consideration of the channel situation at this time and may be updated by the NP-ENB.
  • Second MAC distribution structure static RLC PDU size; Since the lower RLC device scales through repartitioning, the static RLC PDU size can be set to a fairly large value and does not change after initial setup.
  • MAC setting information Non-MAC configuration information to be applied to the primary set serving cell. For example, there is DRX related information, PHR configuration information, and BSR configuration information.
  • the P-ENB When the P-ENB receives the control message, the P-ENB generates and transmits an RRC control message indicating the addition of the serving cell to the terminal (1855).
  • the RRC control message may include at least some of the information in Table 7 below.
  • the P-ENB also stops sending and receiving data from the NP-DRB as follows.
  • First / Second PDCP Distributed Structure Stops forward data transmission of the NP-DRB.
  • the terminal is information related to a bearer to be transmitted and received through the serving cells of the non-primary set, and includes a list of bearers and bearer configuration information. If bearer configuration is the same, the bearer configuration information may be omitted.
  • the bearer identifier of the bearer list may be an identifier of the EPS bearer or a DRB id or LCH id. If the DRB id, for example, 11 is signaled.
  • MAC setting information Non-MAC configuration information related to the primary set serving cell. For example, there is DRX related information, PHR configuration information, and BSR configuration information.
  • step 1857 when the UE receives the RRC connection reconfiguration control message, the UE sets SCell, PHR, BSR, etc. by using the information stored in the control message. If the offload bearer information is stored, the terminal stops transmitting and receiving data as follows.
  • 1st or 2nd PDCP distributed structure 1st RLC distributed structure : Stopping reverse data transmission of NP-DRB.
  • the first reset procedure is performed on the NP-DRB.
  • the UE establishes forward synchronization with the PUCCH SCell and then performs random access in the PUCCH SCell (1860). More specifically, the UE transmits a random access preamble using a predetermined frequency resource at a predetermined time interval of a PUCCH SCell, and attempts to receive a random access response message during a predetermined time interval defined based on a time point at which the preamble is transmitted. do. When a valid random access response message is received, the reverse transmission timing adjustment command is interpreted to adjust the reverse transmission timing.
  • the MAC PDU is transmitted to the PUCCH SCell using the uplink transmission resource indicated in the uplink grant information of the message.
  • C-RNTI MAC CE and BSR MAC CE are stored in the MAC PDU, and C-RNTI_NP is written in the C-RNTI MAC CE.
  • the BSR MAC CE stores buffer status information indicating the amount of transmittable data stored in the offload bearer.
  • C-RNTI MAC CE and BSR MAC CE are defined in 6.1.3 of TS 36.321.
  • the UE checks whether a PDCCH indicating initial transmission, which is addressed to C-RNTI_NP in the PUCCH SCell, is received. If a PDCCH that satisfies the above condition is received within a predetermined period, the UE determines that the random access is successfully completed and resumes data transmission and reception as follows.
  • PDCP STATUS REPORT is generated for the NP-DRB and transmitted to the non-primary set serving cell.
  • the UE performs NP-DRB data transmission and reception on the newly configured SCell (1865). If the first or second PDCP distribution structure or the first or second RLC distribution structure, the terminal applies a set-based logical channel prioritization (Set specific logical channel prioritization). If the first or second MAC distributed structure, the general logical channel prioritization operation is applied.
  • the P-ENB initiates a procedure of forwarding data of the DRB to be offloaded to the NP-ENB.
  • the P-ENB transmits an SN status message to the NP-ENB (1870), and the message may include at least some of the information in Table 8 below for the NP-DRB that satisfies condition 1.
  • the DRB operates in RLC AM mode and is set to generate PDCP STATUS REPORT.
  • PDCP STATUS REPORT is a control message transmitted and received by the PDCP transceiver to prevent packet loss when the RLC temporarily fails to perform ARQ due to the reset of the RLC device.
  • the P-ENB performs data forwarding to the NP-ENB as follows (1875).
  • PDCP SDUs not yet assigned a PDCP SN are sent to the NP-ENB without including PDCP SN information in the GTP header.
  • PDCP SN information is included in the GTP header.
  • PDCP PDUs already assigned a PDCP SN are sent to the NP-ENB with information indicating that the PDCP PDU is stored in the GTP header.
  • PDCP SDUs not yet assigned a PDCP SN are treated as PDCP PDUs and sent to the NP-ENB with information indicating that the PDCP PDUs are stored in the GTP header.
  • the NP-ENB receives the SCell add request message 1845 and sets the NP-DRB upon determining the SCell add accept.
  • the P-ENB When the P-ENB transmits an RRC connection reconfiguration control message 1885 to the UE, the P-ENB stops forward data transmission of the NP-DRB and reestablishes the RLC. As a result, the reverse RLC packets stored in the RLC receiving apparatus are reassembled into PDCP PDUs and delivered to the PDCP apparatus.
  • the UE When the UE receives the RRC connection reconfiguration control message 1885, the UE stops reverse data transmission of the NP-DRB and reestablishes an RLC transceiver. As a result, the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • the P-ENB transmits SN status information 1870 to the NP-ENB.
  • the SN state information stores information about a forward PDCP SDU stored in a PDCP transmission buffer and a reverse PDCP SDU stored in a reception buffer.
  • the P-ENB forwards the forward PDCP SDUs to the NP-ENB using a GTP tunnel for forward data forwarding and the forward PDCP SDUs using a GTP tunnel for reverse data forwarding (1875).
  • the terminal When the UE acquires forward synchronization with the non-primary set serving cell and random access is completed in the PUCCH SCell, the terminal generates a PDCP Status Report and transmits the non-primary set serving cell.
  • the PDCP Status Report is generated with reference to forward PDCP SDUs stored in a PDCP receive buffer.
  • NP-ENP is generated to the UE by referring to the reverse PDCP SDUs stored in the reverse PDCP reception buffer or by referring to the SN state information.
  • the UE and the NP-ENB resume data transmission and reception of the NP-DRB using the transmission resources of the non-primary set serving cell.
  • the NP-ENB receives the SCell addition request message 1845 and sets the RLC device of the NP-DRB upon determining the SCell addition acceptance.
  • the P-ENB When the P-ENB transmits an RRC connection reconfiguration control message 1885 to the UE, the P-ENB stops forward data transmission of the NP-DRB and reestablishes the RLC. As a result, the reverse RLC packets stored in the RLC receiving apparatus are reassembled into the RLC SDU and delivered to the PDCP apparatus.
  • the UE When the UE receives the RRC connection reconfiguration control message 1885, the UE stops reverse data transmission of the NP-DRB and reestablishes the RLC transceiver. As a result, the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • the P-ENB transmits SN status information 1870 to the NP-ENB.
  • the SN state information stores information about a forward PDCP SDU stored in a PDCP transmission buffer and a reverse PDCP SDU stored in a reception buffer.
  • the P-ENB forwards the forward RLC SDUs to the NP-ENB using a GTP tunnel for forward data forwarding, and the forward RLC SDUs using a GTP tunnel for reverse data forwarding (1875).
  • the terminal When the UE acquires forward synchronization with the non-primary set serving cell and random access is completed in the PUCCH SCell, the terminal generates a PDCP Status Report and transmits the non-primary set serving cell.
  • the PDCP Status Report is generated with reference to forward PDCP SDUs stored in a PDCP receive buffer.
  • P-ENP generates and transmits PDCP STATUS REPORT to UE.
  • PDCP STATUS REPORT is generated by referring to the reverse PDCP SDUs stored in the reverse PDCP receive buffer or by referring to SN status information.
  • the UE and the NP-ENB resume data transmission and reception of the NP-DRB using the transmission resources of the non-primary set serving cell.
  • the NP-ENB receives the SCell addition request message 1845 and, upon determining the SCell addition acceptance, sets the RLC transmission apparatus of the NP-DRB.
  • the P-ENB When the P-ENB transmits an RRC connection reconfiguration control message 1885 to the UE, the P-ENB stops forward data transmission of the NP-DRB and reestablishes the RLC receiving apparatus. As a result, the reverse RLC packets stored in the RLC receiving apparatus are reassembled into PDCP PDUs and delivered to the PDCP apparatus.
  • the terminal continues to perform the reverse data transmission of the NP-DRB even if the RRC connection reconfiguration control message (1885) is received.
  • the terminal also reestablishes the receiving device while maintaining the RLC transmitting device.
  • the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • the P-ENB transmits SN status information 1870 to the NP-ENB.
  • the SN state information stores information about the forward PDCP SDU stored in the PDCP transmission buffer, that is, DL COUNT information.
  • the P-ENB forwards the forward PDCP PDUs to the NP-ENB using a GTP tunnel for forward data forwarding (1875).
  • the terminal When the UE acquires forward synchronization with the non-primary set serving cell and random access is completed in the PUCCH SCell, the terminal generates a PDCP Status Report and transmits the non-primary set serving cell.
  • the PDCP Status Report is generated with reference to forward PDCP SDUs stored in a PDCP receive buffer.
  • the NP-ENB resumes forward data transmission and reception of the NP-DRB using the transmission resources of the non-primary set serving cell.
  • the NP-ENB receives the SCell add request message 1845 and sets the logical channel of the NP-DRB upon determining the SCell add accept.
  • -P-ENB does not stop forward data transmission of NP-LCH during SCell add / release process.
  • the terminal continues without stopping the reverse data transmission of the NP-LCH during the SCell addition / release process.
  • 19 is a flowchart of an operation of releasing an SCell and transmitting and receiving data according to an embodiment of the present disclosure.
  • step 1865 the UE transmits and receives data of the NP-DRB through the non-primary set serving cell.
  • the P-ENB 1815 forwards forward data of the NP-DRB to the NP-ENB 1810, and the NP-ENB forwards backward data to the P-ENB (1903).
  • the UE reports a measurement result that the channel quality of the non-primary set serving cell is equal to or less than a predetermined reference (1905).
  • the P-ENB may determine to release all non-primary set serving cells if the channel quality of some of the non-primary set serving cells, for example, the PUCCH SCell, is below a predetermined criterion (1907).
  • the P-ENB transmits a control message for requesting the release of the SCell of the terminal 1805 to the NP-ENB (1910).
  • the NP-ENB receiving the control message performs the following operation (1913).
  • the released cell contains a PUCCH SCell (i.e. the PUCCH SCell is absent as a result of the SCell release) or the entire primary set serving cell is released
  • a predetermined MAC CE hereinafter referred to as a first MAC CE
  • the first MAC CE is composed of only a MAC subheader without a payload, and instructs the terminal to perform the following operation.
  • PUCCH SCell for example, channel quality indicator, transmission of scheduling request or random access preamble
  • the NP-ENB sends a control message to the P-ENB acknowledging the release of the SCell (1915).
  • the P-ENB transmits a control message instructing the terminal to release the SCell (1920).
  • the control message contains identifier information of the SCell to be released.
  • the terminal receiving the control message performs the following operation.
  • the released cell contains a PUCCH SCell (i.e. the PUCCH SCell is absent as a result of the SCell release), or the entire primary set serving cell is released
  • the UE transmits and receives NP-DRB data through the primary set serving cell (1955).
  • step 1945 the NP-ENB transmits an SN status information message to the P-ENB, and forwards data in step 1950.
  • the P-ENB performs NP-DRB transmission / reception with the terminal using the forwarded data (1955).
  • 20 is a flowchart of an operation of releasing a SCell and transmitting and receiving data according to another embodiment of the present specification.
  • the NP-ENB may determine whether to release the SCell with reference to the CQI of the non-primary set serving cell.
  • the UE reports the CQI of the non-primary set serving cells that are currently active using the PUCCH transmission resource of the PUCCH SCell (2005).
  • the NP-ENB releases the non-primary set serving cell when the CQI of the non-primary set serving cells is maintained above a predetermined criterion or when the CQI of the PUCCH SCell continues to the predetermined criterion more than a predetermined criterion. (2007)
  • the NP-ENB sends a control message to the P-ENB to instruct to release the SCell. Some or all of the SCells set through the control message may be released.
  • the NP-ENB performs a step 1913 operation. The remaining steps are the same as in FIG.
  • -NP-ENB stops forward data transmission of NP-DRB and reestablishes RLC when sending control message related to releasing all SCells, e.g. SCell release accept message (1915) or SCell release message (2010) .
  • SCell release accept message (1915) or SCell release message (2010) the reverse RLC packets stored in the RLC receiving apparatus are reassembled into PDCP PDUs and delivered to the PDCP apparatus.
  • the terminal Upon receiving the RRC connection reconfiguration control message 1920, the terminal stops reverse data transmission of the NP-DRB and reestablishes the RLC transceiver. As a result, the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • the UE immediately resumes reverse data transmission of the NP-DRB, generates a PDCP STATUS REPORT, and transmits it to the primary set serving cell.
  • NP-ENB sends SN status information 1945 to P-ENB.
  • the SN state information stores information about a forward PDCP SDU stored in a PDCP transmission buffer and a reverse PDCP SDU stored in a reception buffer.
  • the NP-ENB forwards the forward PDCP SDUs to the P-ENB using a GTP tunnel for forward data forwarding, and forwards the reverse PDCP SDUs using a GTP tunnel for reverse data forwarding (1950).
  • P-ENP generates and transmits PDCP STATUS REPORT to UE.
  • PDCP STATUS REPORT is generated by referring to the reverse PDCP SDUs stored in the reverse PDCP receive buffer or by referring to SN status information.
  • the UE and the P-ENB resume transmission and reception of forward data of the NP-DRB using the transmission resources of the primary set serving cell.
  • -NP-ENB stops forward data transmission of NP-DRB and reestablishes RLC when sending control message related to releasing all SCells, e.g. SCell release accept message (1915) or SCell release message (2010) .
  • SCell release accept message (1915) or SCell release message (2010) the reverse RLC packets stored in the RLC receiver are reassembled into the RLC SDU and delivered to the PDCP device of the P-ENB.
  • the UE When the UE receives the RRC connection reconfiguration control message 1920, the UE stops reverse data transmission of the NP-DRB and reestablishes an RLC transceiver. As a result, the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • the UE immediately resumes reverse data transmission of the NP-DRB, generates a PDCP STATUS REPORT, and transmits it to the primary set serving cell.
  • NP-ENB sends SN status information 1945 to P-ENB.
  • the SN state information stores information about a forward PDCP SDU stored in a PDCP transmission buffer and a reverse PDCP SDU stored in a reception buffer.
  • the NP-ENB forwards the forward RLC SDUs to the P-ENB using a GTP tunnel for forward data forwarding, and forwards the reverse RLC SDUs using a GTP tunnel for reverse data forwarding (1950).
  • -P-ENB generates and transmits PDCP STATUS REPORT to UE.
  • PDCP STATUS REPORT is generated by referring to the reverse PDCP SDUs stored in the reverse PDCP receive buffer or by referring to SN status information.
  • the UE and the P-ENB resume transmission and reception of forward data of the NP-DRB using the transmission resources of the primary set serving cell.
  • -NP-ENB stops forward data transmission of NP-DRB and restarts RLC receiver when sending control message related to releasing all SCells, e.g. SCell release accept message (1915) or SCell release message (2010). Establish. As a result, the reverse RLC packets stored in the RLC receiver are reassembled into the RLC SDU and delivered to the PDCP device of the P-ENB.
  • the UE continues to perform the reverse data transmission of the NP-DRB even if the RRC connection reconfiguration control message 1920 is received.
  • the terminal also reestablishes the receiving device while maintaining the RLC transmitting device.
  • the forward RLC packets stored in the RLC receiver are reassembled into PDCP PDUs and delivered to the PDCP device.
  • NP-ENB sends SN status information 1945 to P-ENB.
  • the SN state information stores information about a forward PDCP SDU stored in a PDCP transmission buffer, that is, a DL COUNT.
  • the NP-ENB forwards the forward RLC SDUs to the P-ENB using a GTP tunnel for forward data forwarding (1950).
  • the UE and the P-ENB resume transmission and reception of forward data of the NP-DRB using the transmission resources of the primary set serving cell.
  • the NP-ENB releases the logical channel of the NP-DRB by sending a control message related to releasing all SCells, for example, a SCell release accept message 1915 or a SCell release message 2010.
  • -P-ENB does not stop forward data transmission of NP-LCH during SCell add / release process.
  • the terminal continues without stopping the reverse data transmission of the NP-LCH during the SCell addition / release process.
  • FIG. 21 is a view illustrating a sparking / reversing process according to one embodiment of the present specification.
  • the NP-ENB performs secreting / de-secreting of the NP-DRB data.
  • the PDCP transmitting apparatus inputs the following inputs into the secret engine 2105 having the EPS Encryption Algorithm (EEA), and has a keystream having the same size as the plain text 2115 to be secreted. Create block 2110.
  • the plain text to be secreted is a PDCP SDU.
  • COUNT is a 32-bit integer that concatenates HFN and PDCP SN. After initializing to 0, it increments by 1 for each PDCP SDU.
  • BEARER is related to the DRB id and is subtracted from 1 of the DRB id associated with the PDCP SDU.
  • DIRECTION is 1-bit information determined according to which direction of data is the forward direction or the reverse direction.
  • LENGTH is the length of the required keystream block.
  • the KEY is a secret key, derived from KeNB by a predetermined algorithm, and is referred to as K UPenc .
  • the non-text text 2120 is generated by performing a predetermined operation, for example, an exclusive OR operation, on the keystream block 2110 and the PDCP SDU 2115.
  • the PDCP receiving apparatus recovers the non-text (the payload of the PDCP PDU) from the key stream block 2135 generated through the same procedure and input to the original plain text 2140.
  • the NP-ENP secretizes the forward PDCP SDUs and the reverse PDCP SDUs, and the NP-ENB also owns the KEY. If the NP-ENB and the P-ENB independently manage the KEY, there is a problem in that the complexity of the terminal increases, so in this specification, the P-ENB provides the NP-ENB with information related to KEY generation, and the NP-ENB provides the information. Create a KEY using.
  • P-ENB creates a KEY using a kind of root key called KeNB.
  • the terminal and the base station share the KeNB through a call setup process or a handover process, generate a KEY from the KeNB, and then perform the deactivation and inverse deactivation of the DRB data.
  • the P-ENB provides the NP-ENB with the information needed to perform the decryption / deactivation.
  • the information includes the following.
  • KeNB Root key used to create the KEY currently in use
  • BEARER A value obtained by decreasing 1 from the DRB id of the NP-DRB. In the above example, instead of 10. BEARER, it is also possible to inform the DRB id that should be allocated to the NP-DRB.
  • COUNT value being used by NP-DRB. Both forward COUNT and reverse COUNT are signaled.
  • KeNB and BEARER may be included in SCELL add request control message 1845 and forwarded to NP-ENB.
  • the COUNT may be included in the SN status information control message 1870 and delivered to the NP-ENB.
  • the NP-ENB generates the KEY by inputting the KeNB to a predetermined key generation function (KDF).
  • KDF key generation function
  • the KEY is used to perform forward data decryption and reverse data reverse decryption of the NP-DRB.
  • the NP-ENB applies the BEARER value provided in the SCELL addition request control message, not the DRB id of the NP-DRB, to the BEARER in performing the decryption / deactivation of the NP-DRB data.
  • the NP-ENB uses the DL COUNT provided in the SN status information control message to determine the COUNT to apply to the NP-DRB forward PDCP SDU. Each time a PDCP SDU is sent or secreted, the COUNT is incremented by one.
  • the NP-ENB determines the COUNT to apply to the NP-DRB reverse PDCP SDU using the UL COUNT provided in the SN status information control message.
  • the NP-ENB sends an SN status control message 1945 to the P-ENB.
  • DL COUNT and UL COUNT are stored.
  • the NP-ENB stores in the DL COUNT the COUNT that should be applied to the first forward PDCP SDU that has not yet been assigned a PDCP SN.
  • the NP-ENB stores the COUNTs to be applied to the first unreceived PDCP SDU in the UL COUNT.
  • a connection state terminal In an LTE mobile communication system, mobility of a connection state terminal is controlled by a base station. Unless the base station commands the handover, the UE performs normal operations in the current serving cell, for example, PDCCH monitoring and PUCCH transmission. If the serving radio link state deteriorates to a state where normal communication is impossible even before the base station instructs the terminal to handover due to an unexpected error, the terminal is in a deadlock state in the current serving cell. In order to prevent this, the terminal monitors the channel state of the current serving cell, and when a predetermined condition is met, the terminal controls its own mobility. This is called radio link monitoring.
  • the UE independently performs radio channel monitoring on the primary set and the non-primary set.
  • the UE monitors the channel state of the predetermined serving cell of the primary set and the predetermined serving cell of the non-primary set, for example, the PCell and the PUCCH SCell. If the state in which the channel state of the serving cell is equal to or less than a predetermined criterion lasts for more than a predetermined reference period, it is determined that radio link problem is detected.
  • Radio link fault detection condition is as follows.
  • Asynchronous indicator occurs first N310 consecutive times for PCell.
  • the asynchronous indicator for the PCell is a situation in which the PDCCH error rate calculated based on the reception quality of a predetermined channel or signal (for example, cell reference signal) of the PCell is a predetermined criterion, for example, 10% or more. Occurs when the duration of, e.g., 200 ms or more.
  • the terminal acquires the first N310 in SIB2 of the PCell.
  • Asynchronous indicator occurs second N310 consecutive times for PUCCH SCell.
  • the asynchronous indicator for the PUCCH SCell is a situation in which the PDCCH error rate calculated based on the reception quality of a predetermined channel or signal (for example, a cell reference signal) of the PUCCH SCell is a predetermined criterion, for example, 10% or more. It occurs when this predetermined period of time, for example, 200 ms or more lasts.
  • the terminal acquires and uses the second N310 as follows.
  • the temporary second N310 is stored in the RRC connection reconfiguration message 1920 for configuring the PUCCH SCell and transmitted to the UE.
  • the terminal uses the temporary second N310 to a predetermined time point.
  • the predetermined time point is a time point at which the UE acquires system information of the PUCCH SCell and obtains a second N310 from system information of the PUCCH SCell.
  • the terminal uses the second N310 from the predetermined time point.
  • the UE may use the PUCCH SCell radio link abnormality detection condition 2.
  • the terminal may apply three-layer filtering (see Layer 36 filtering, TS 36.331 5.5.3.2) to calculate the path loss.
  • the radio link abnormality determination reference value may be included in the RRC connection reconfiguration message 1920 for configuring the PUCCH SCell and transmitted to the terminal.
  • 22 is a flowchart of a radio link monitoring procedure according to an embodiment of the present disclosure.
  • the UE checks whether the serving cell in which the radio link abnormality is detected is a PCell or a PUCCH SCell and operates as follows.
  • the terminal stops backward transmission of the primary set serving cell and drives the first T310 timer.
  • the first T310 timer is broadcasted through SIB2 of the PCell.
  • the UE stops reverse transmission of the non-primary set serving cell, for example, PUCCH transmission of the PUCCH SCell and nonprimary set serving cell, and SRS transmission of the nonprimary set serving cell. Deactivate the serving cells. At this time, the UE continues to drive without stopping the sCellDeactviationTimer of the deactivated serving cells.
  • the terminal drives the second T310 timer, and the terminal acquires and uses the second T310 timer as follows.
  • the temporary second T310 is stored in the RRC connection reconfiguration message 1920 for configuring the PUCCH SCell and transmitted to the UE.
  • the terminal uses the temporary second T310 to a predetermined time point.
  • the predetermined time point is a time point when the UE acquires system information of the PUCCH SCell and obtains a second T310 from system information of the PUCCH SCell.
  • the terminal uses the second T310 from the predetermined time point.
  • the terminal monitors whether the associated serving cell is recovered while the T310 is driven.
  • Synchronization indicator occurs consecutively for the first N311 for PCell.
  • the synchronization indicator for the PCell is a situation in which the PDCCH error rate calculated based on the reception quality of a predetermined channel or signal (for example, a cell reference signal) of the PCell is a predetermined criterion, for example, 5% or more. Occurs when the duration of, e.g., over 100 ms.
  • the terminal acquires the first N311 from SIB2 of the PCell.
  • a synchronization indicator occurs second N311 consecutive times for the PUCCH SCell.
  • the synchronization indicator for the PUCCH SCell is a situation in which the PDCCH error rate calculated based on the reception quality of a predetermined channel or signal (eg, a cell reference signal) of the PUCCH SCell is a predetermined criterion, for example, 5% or more. It occurs when this predetermined period of time, for example, 100 ms or more lasts.
  • the method of acquiring and using the second N311 is the same as the method of acquiring and using the second N310.
  • the terminal checks whether the serving cell in which the radio link recovery is detected is a PCell or a PUCCH SCell and operates as follows.
  • the UE resumes backward transmission of the primary set serving cell and maintains a current RRC connection. If the serving cell in which the radio link recovery is detected is the PUCCH SCell, the UE resumes backward transmission of the non-primary set serving cell, for example, PUCCH transmission of the PUCCH SCell and SRS transmission of the non-primary set serving cell and before T310 is driven. Of the nonprimary set SCells that were activated, sCellDeactivationTimer activates SCells that have not yet been stopped.
  • the UE checks whether the serving cell whose T310 has expired is a PCell or a PUCCH SCell and operates as follows. If the serving cell whose T310 has expired is a PCell, the terminal declares a radio link failure and drives the first T311. The UE also stops backward transmission of the non-primary set serving cell and starts the RRC connection reestablishment process.
  • the RRC connection reestablishment process refers to a process in which a UE searches for a cell to resume communication, exchanges a predetermined RRC control message with the cell, and resumes an RRC connection, and is described in TS36.331 5.3.7.
  • the first T311 timer is broadcasted included in SIB2 of the PCell. If the serving cell whose T310 has expired is a PUCCH SCell, the UE determines that the non-primary set serving cells are no longer available and generates a predetermined RRC control message.
  • the RRC control message includes a measurement result for the PUCCH SCell or information indicating that a radio link problem has occurred in the PUCCH SCell.
  • the UE stops T311 and checks whether the recovered serving cell is a PCell or a PUCCH SCell and operates as follows. If the serving cell recovered before the expiration of T311 is a PCell, that is, if a cell is found to resume communication before T311 is satisfied, the UE initiates an RRC connection reestablishment process with the cell. If the serving cell recovered before T311 expires is a PUCCH SCell, the UE generates an RRC control message containing information indicating that the PUCCH SCell has been recovered to the base station and transmits the RRC control message to the base station through the primary set serving cell.
  • the UE checks whether the serving cell for which T311 has expired is a PCell or a PUCCH SCell and operates as follows. If the serving cell whose T311 has expired is a PCell, the UE transitions to an idle state and notifies the upper layer that the RRC connection has been released because there is a problem with the radio channel. If the serving cell of which T311 has expired is a PUCCH SCell, the UE releases the corresponding non-primary set serving cells, generates an RRC control message containing information indicating that the non-primary set serving cells are released, and generates a base station through the primary set serving cell. To send.
  • Radio link failures can be declared for various events as well as T310 expiration.
  • the terminal declares a radio link failure differently.
  • FIG. 23 is a flowchart of an RLF detection process according to an embodiment of the present specification.
  • step 2305 the UE initiates and performs an RLF detection operation.
  • the RLF detection operation is initiated when the RRC connection is established in the terminal and continues until the RRC connection is released.
  • step 2310 the UE checks whether a non-primary set serving cell is configured at the present time. If not set, go to step 2315; if set, go to step 2330.
  • step 2315 the UE checks whether the T310 has expired at that time, and if it has not expired, proceeds to step 2345.
  • step 2320 the UE checks whether a random access problem has occurred, and if so, proceeds to step 2345, and if not, proceeds to step 2325.
  • the UE determines that an RLF has occurred.
  • step 2325 the UE checks whether there are any bearers that have reached the RLC maximum transmission limit (or maximum retransmission limit) among all currently configured radio bearers.
  • step 2345 If there is a bearer reaches the maximum retransmission limit, it means that a serious error occurred in the reverse direction, the terminal proceeds to step 2345. If the bearer has not reached the RLC maximum number of transmission limit, the terminal returns to step 2305. In summary, if any one of the three conditions is satisfied, the UE determines that an RLF has occurred and proceeds to step 2345. If one of the three conditions is not satisfied, the terminal returns to step 2305 and continues the RLF detection operation.
  • step 2330 the UE checks whether the T310 timer of the PCell has expired, and if so, proceeds to step 2345 and step 2335 otherwise. The UE does not consider whether the T310 timer expires in a cell other than the PCell, for example, the PUCCH SCell.
  • step 2335 the UE checks whether a problem occurs in the random access of the PCell. If yes, go to step 2345; otherwise, go to step 2340.
  • step 2340 the UE checks whether there is a bearer that has reached an RLC maximum (re) transmission limit among P-DRB and SRB (Signal Radio Bearer). If yes, go to step 2345.
  • step 2305 If no, go to step 2305 and continue the RLF detection operation.
  • the UE does not determine that the condition of step 2340 is satisfied even if the RLC maximum (re) transmission limit is reached in the RLC of the NP-DRB.
  • the UE determines that an RLF has occurred and proceeds to step 2345. If one of the three conditions is not satisfied, the terminal returns to step 2305 and continues the RLF detection operation.
  • step 2340 is not performed, and if the condition is not satisfied in step 2335, the process may immediately return to step 2305.
  • the UE In step 2345, the UE generates information to be written in the RLF report.
  • the RLF report is an RRC control message that records the situation when the RLF occurs.
  • the RLF report is transmitted to the base station after resetting the RRC connection so that the network can be identified in the future.
  • the RLF report contains the following information: Identifier of a registered PLMN (RPLMN) at the time of the RLF, the serving cell (or PCell) at the time of the RLF or the most recent serving cell (or the PCell) at the time of the RLF, and the result of the forward channel measurement. GPS coordinate information of the time when the RLF occurred, as a result of measuring the forward channel with respect to the neighboring cell at the time of the occurrence of the RLF.
  • RPLMN registered PLMN
  • step 2350 the UE initiates an RRC connection reestablishment process.
  • the UE performs a set specific logical channel prioritization or a component carrier specific logical channel prioritization.
  • the three logical channel prioritization process means that the grant grant determines what data to transmit according to the received serving cell.
  • an RRC connection reset message is received.
  • the RRC connection reconfiguration message may be for configuring a non-primary set serving cell.
  • the UE checks whether the NP-LCH exists as a result of the RRC connection reconfiguration, and if it does not exist, proceeds to step 2420 if it exists in step 2415.
  • an existing NP-LCH may be converted into a P-LCH or a P-LCH may be converted into an NP-LCH, and whether a predetermined logical channel is a P-LCH or an NP-LCH is determined by the DRB. In this case, it can be specified as a 1-bit indicator, and for SRB, it is always P-LCH.
  • the UE determines which data to transmit by applying a general LCP when receiving a reverse grant in the future.
  • LCP refers to determining the data to be transmitted in consideration of the priority of data and the amount of data to be transmitted, without considering which serving cell is received or for which serving cell.
  • the UE determines the NP-LCG.
  • the LCG is a unit of the buffer status report and is a set of one or more LCHs.
  • the base station configures LCHs having similar priority as LCGs and signals which LCH belongs to which LCG by using a predetermined control message to the UE.
  • the terminal determines the LCG consisting of only NP-LCH among the LCGs as NP-LCG.
  • P-LCGs are LCGs composed only of P-LCH.
  • step 2435 the UE checks whether the serving cell in which the reverse grant is received is a primary set serving cell. Or check whether the reverse grant is for a primary set serving cell. If it is for the primary set serving cell, the terminal proceeds to step 2445 and performs the primary set LCP for the P-LCH. If the reverse grant is not for the primary set serving cell (ie, for the non-primary set serving cell), the terminal proceeds to step 2440 to perform the non-primary set LCP for the NP-LCH.
  • the UE determines which data to transmit to the primary set serving cell in consideration of priority.
  • the priority is as follows.
  • SDU Common Control Channel Service Data Unit
  • the terminal determines whether to transmit as follows.
  • the terminal After allocating a transmission resource for 1/2/3, the terminal allocates a transmission resource until there is no remaining transmission resource according to the priority for data 4 if there is still a transmission resource.
  • the UE determines which data to transmit to the primary set serving cell in consideration of priority.
  • the priority is as follows.
  • the terminal determines whether to transmit as follows.
  • the terminal After allocating a transmission resource for 1/2, the terminal allocates a transmission resource until there is no remaining transmission resource according to the priority for data 3 if there is still a transmission resource.
  • the PHR is for enabling the base station to refer to the situation related to the uplink transmission output of the terminal in scheduling uplink transmission in any serving cell for the terminal.
  • the PHR stores the maximum transmit power information applicable to the terminal for the serving cell and a difference value (power headroom) between the maximum transmit power and the currently used transmit power.
  • the primary set serving cell is scheduled by the P-ENB and the non-primary set serving cell by the NP-ENB. Therefore, the PHR for the primary set serving cell should be delivered to the P-ENB and the PHR for the non-primary set serving cell to the NP-ENB.
  • the UE when a PHR is triggered at an arbitrary time point, the UE considers whether the PHR is for a primary set serving cell (hereinafter referred to as P-PHR) or for a non-primary set serving cell (hereinafter referred to as NP-PHR). To perform the operation.
  • P-PHR primary set serving cell
  • NP-PHR non-primary set serving cell
  • 25 is a diagram illustrating a PHR trigger and transmission process according to an embodiment of the present specification.
  • the terminal 2505 allocates a sufficient amount of transmission resources to transmit the PHR from the first time point that can be transmitted, that is, the NP-ENB or the P-ENB.
  • the PHR is generated and transmitted (2530).
  • the terminal generates and transmits a PHR (P-PHR) for a primary set serving cell and a PHR (NP-PHR) for a non-primary set serving cell, and the base station receiving the PHR is a PHR required for another base station.
  • the P-PHR is transmitted to another base station, for example, the P-ENB (2535).
  • the NP-ENB determines the time information associated with the PHR, for example, the SFN and the subframe number of the subframe in which the P-PHR was successfully received or the SFN of the subframe in which the initial transmission of the MAC PDU containing the P-PHR is started. And the sub frame number can be transmitted to the opposite base station together.
  • the P-ENB uses the information to determine the channel status of the terminal.
  • the terminal transmits the PHR to the P-ENB through the primary set serving cell, the P-ENB delivers the NP-PHR to the NP-ENB together with the time information.
  • the terminal may generate the PHR and transmit it once through the primary set serving cell and once again through the non-primary set serving cell.
  • the terminal waits until a UL grant is allocated in which a sufficient amount of transmission resources for transmitting the PHR is received.
  • the UE generates and transmits a PHR including both the P-PHR and the NP-PHR (2550). If the non-primary set serving cell is not configured, the UE cancels the triggered PHR after transmitting the PHR.
  • the UE does not immediately cancel the triggered PHR immediately after transmitting the PHR, and only if the PHR is transmitted to both the primary set serving cell and the non-primary set serving cell within a predetermined period of time. Cancel.
  • the PHR is triggered again when a reverse grant is received in the set in which the PHR is not transmitted.
  • the UE When the UE transmits the PHR only to the NP-ENB or only to the non-primary set serving cell, when a UL grant is received without waiting for canceling the PHR and allocating sufficient transmission resources to transmit the PHR from the P-ENB (2555), The PHR is canceled after transmitting the P-PHR and the NP-PHR to the primary set serving cell.
  • the UE manages whether PHR is triggered for each set, and transmits PHR to the serving cell of the set where PHR is triggered, and then cancels PHR.
  • the NP-PHR is triggered in step 2565, if the terminal receives a UL grant that allocates a sufficient amount of transmission resources for transmitting the NP-PHR from the non-primary set serving cell (2570), NP-PHR Generate and transmit (2575), and cancel the NP-PHR.
  • the P-PHR is triggered at any point in the future (2580), when the UE receives a UL grant that allocates a sufficient amount of transmission resources for transmitting the P-PHR from the primary set serving cell (2585), P-PHR Generate and transmit (2590), and cancel the P-PHR.
  • the triggering of the PHR in steps 2520 and 2540 means that one of the following conditions is satisfied.
  • Setting any cell A as a path loss reference cell for another arbitrary cell B means referring to cell A's path loss in setting up cell B's reverse transmission output.
  • the base station may establish a path loss relationship using a predetermined control message.
  • the triggering of the NP-PHR in step 2565 means that one of the following conditions is satisfied.
  • the path loss of the serving cell satisfying the following condition is changed by more than a predetermined reference value.
  • the predetermined reference value is set by the RRC decision reconfiguration message 1855.
  • the timer is restarted every time the NP-PHR is sent.
  • the timer is set by an RRC connection reconfiguration message 1855.
  • the nonprimary set serving cell with reverse set is activated
  • the triggering of the P-PHR in step 2580 means that one of the following conditions is satisfied.
  • the timer is restarted every time the P-PHR is sent.
  • the timer is set by an RRC connection reconfiguration message 1855.
  • PHR is a kind of MAC CE and is composed of a MAC subheader and a payload.
  • an LCID Logical Channel ID
  • PH payload
  • PCMAX maximum transmission output
  • the PHR format is divided into a general PHR format and an extended PHR format.
  • the general PHR format only PH information of one serving cell is stored, and the payload length is specified by 1 byte, LCID 11010.
  • the extended PHR format stores PH information and PCMAX information of various serving cells, and the payload length is variable and is specified by LCID 11001.
  • P-PHR or NP-PHR are distinguished according to a location where PHR is stored or a serving cell in which PHR is stored, without using separate LCIDs for P-PHR and NP-PHR.
  • the first PHR is P-PHR and the second PHR is NP-PHR.
  • the PHR is a P-PHR.
  • the PHR is accommodated in the MAC PDU transmitted to the non-primary set serving cell, the PHR is NP-PHR.
  • P-PHR uses the generic PHR format or the extended PHR format.
  • RRC connection reconfiguration message 520 associated with the primary set serving cell one of the general format and the extended format is indicated as the format of the P-PHR.
  • NP-PHR uses the generic PHR format or the extended PHR format.
  • RRC connection reconfiguration message 635 associated with the non-primary set serving cell one of the general format and the extended format is indicated in the format of the NP-PHR.
  • FIG. 26 is a diagram illustrating a PHR format according to an embodiment of the present specification.
  • the general P-PHR 2605 is specified by LCID 11010 and stores 6 bits of PH information.
  • the 6-bit PH field stores Type 1 PH of the PCell.
  • Type 1 PH is a value representing the difference between the PCMAX of any serving cell and the PUSCH request transmission output of that cell, as defined in Table 6.1.3.6-1 of 36.321.
  • the general NP-PHR 2625 is specified by LCID 11010 and stores 6 bits of PH information.
  • the 6-bit PH field stores a type 1 PH of a PUCCH SCell. That is, a value indicating a difference between the PUSCH request transmission output of the PUCCH SCell and the PCMAX of the PUCCH SCell is stored.
  • the extended P-PHR 2610 is specified by LCID 11001 and the first byte contains a bitmap indicating which primary set SCell contains PH information. For example, if the C3 bit is set to 1, it means that the PH information of the SCell having the index 3 is stored.
  • the type 2 PH 2611 of the PCell is stored. If simultaneous transmission of PUSCH and PUCCH is configured for the primary set or the PCell, the above condition is satisfied. Simultaneous transmission of the PUSCH and the PUCCH is possible or impossible according to the hardware structure of the terminal.
  • the terminal reports its performance according to the command of the base station and includes whether to simultaneously support PUSCH and PUCCH transmission in the performance report information.
  • Type 2 PH is the sum of PUSCH request transmission output and PUCCH request transmission output at PCMAX of PCell or PUCCH SCell, and is defined in 5.1.1.2 of TS 36.213.
  • PCMAX 2612 is accommodated if PUCCH transmission is present in the PCell in a subframe in which the P-PHR is to be transmitted, otherwise it is not received.
  • the presence of the PCMAX is indicated by the associated V field.
  • the type 1 PH 2613 of the PCell is always present and is a subtraction of the PUSCH transmission output from the PCMAX of the PCell.
  • the PCMAX 2614 is accommodated if PUSCH transmission is present in the PCell in a subframe in which the P-PHR is to be transmitted, otherwise it is not received.
  • the PHs of the primary set SCells which are activated in the subframe to which the P-PHR is transmitted are stored in the order of the SCell indexes are low. If the PUSCH transmission is actually present in the SCell, PCMAX is stored in the next byte of the PH-containing byte.
  • the extended NP-PHR 2630 is specified by LCID 11001 and the first byte contains a bitmap indicating which non-primary set SCell contains PH information. For example, if the C7 bit is set to 1, it means that the PH information of the SCell having the index 7 is stored.
  • the type 2 PH 2651 of the PUCCH SCell is stored. If the simultaneous transmission of PUSCH and PUCCH is configured for the non-primary set or for the PUCCH SCell, the above condition is satisfied. Simultaneous transmission of the PUSCH and the PUCCH is possible or impossible according to the hardware structure of the terminal.
  • the terminal reports its performance according to the command of the base station and includes whether to simultaneously support PUSCH and PUCCH transmission in the performance report information.
  • the PCMAX 2632 is accommodated when the PUCCH transmission in the PCell is present in the subframe in which the NP-PHR is to be transmitted, otherwise it is not received.
  • the presence of the PCMAX is indicated by the associated V field.
  • the type 1 PH 2633 of the PUCCH SCell is always present and is a subtraction of the PUSCH request transmission output from PCMAX of the PUCCH SCell.
  • the PCMAX 2634 is accommodated when the PUSCH transmission in the PUSCH SCell actually exists in the subframe in which the NP-PHR is to be transmitted, otherwise it is not received.
  • the PHs of the non-primary set SCells which are activated in the subframe to which the NP-PHR is transmitted are stored in the order of the indexes of the SCells are low. If the PUSCH transmission is actually present in the SCell, PCMAX is stored in the next byte of the PH-containing byte.
  • the P-ENB and the NP-ENB do not know the reverse scheduling of the opposite base station in real time. This may cause a problem that the total transmission power of the terminal exceeds the maximum transmission power of the terminal because the P-ENB and the NP-ENB schedule the reverse transmission in the same time period.
  • the present specification proposes a method in which NP-ENB and P-ENB use a time period that can be used exclusively with each other.
  • FIG. 27 is a diagram illustrating a process of determining a subframe pattern according to an embodiment of the present specification.
  • the P-ENB 2715 determines to add the serving cells of the NP-ENB 2710 to the terminal 2705.
  • the P-ENB transmits a control message instructing the UE to measure the non-primary set serving cell to determine whether the UE is around the NP-ENB serving cell (2725).
  • the control message is the same as the 1815 control message and may further include information indicating to report a timing difference between the predetermined reference cell and the non-primary set serving cell.
  • the reference cell may be, for example, a PCell.
  • the UE Upon receiving the control message, the UE performs measurement on a cell or frequency indicated by the P-ENB. When the measurement result of the best cell at the frequency satisfies a predetermined condition, the timing difference of the cell is measured and TDD UL / DL configuration information is obtained.
  • the TDD UL / DL configuration information is information for specifying a pattern of an UL subframe and a DL subframe in a corresponding cell, and is defined in Table 4.2-2 of TS 36.211.
  • 28 is a view illustrating a timing difference according to an embodiment of the present specification.
  • the timing difference between the reference cell and any neighboring cell is the difference between the SFNs to which the subframe belongs and the temporal distance 2805 between a given subframe of the PCell, e. For example, ⁇ [x + 1]-[y + 1] ⁇ .
  • the terminal transmits a measurement result report message to the P-ENB.
  • the message is the same as the 1820 message and may further include timing difference information between the reference cell and the neighbor cell and TDD UL / DL configuration information of the neighbor cell.
  • the P-ENB determines which subframe to use as the P-ENB subframe, which subframe to use as the NP-ENB subframe, and which subframe to use as the common subframe.
  • the information may consist of a 40-bit or 70-bit bitmap, for example.
  • the first bitmap specifies a P-ENB subframe
  • the second bitmap specifies an NP-ENB subframe.
  • Subframes that do not belong to the P-ENB subframe and do not belong to the NP-ENB subframe are common subframes.
  • the P-ENB determines the type of an arbitrary subframe according to the following principle.
  • the corresponding subframe is determined as an NP-ENB subframe.
  • the corresponding subframe is determined as a P-ENB subframe.
  • a subframe in which both the primary set serving cell and the non-primary set serving cell are UL subframes is partially determined as a P-ENB subframe and the rest as NP-ENB.
  • a subframe in which both the primary set serving cell and the non-primary set serving cell are DL subframes is partially determined as a P-ENB subframe and the rest as NP-ENB.
  • the P-ENB transmits a control message to the NP-ENB requesting the addition of the SCell.
  • the control message is the same as the control message of step 1845, and the subframe pattern suggestion information may be additionally stored.
  • the subframe pattern suggestion information includes a bitmap indicating a P-ENB subframe, bitmap information indicating an NP-ENB subframe, and a maximum transmission output value to be used by the P-ENB in a common subframe.
  • the NP-ENB transmits an SCell additional acceptance control message to the P-ENB.
  • the control message is the same as the control message of step 1850, and may further include information on whether to accept the sub-frame pattern.
  • the P-ENB transmits an RRC connection reconfiguration message to the UE instructing the addition of the SCell (1855).
  • the NP-ENB preferentially uses the NP-ENB subframe in scheduling uplink transmissions to the UE and uses a common subframe by applying a limited transmission output if necessary (2760).
  • the P-ENB preferentially uses the P-ENB subframe in scheduling uplink transmissions to the UE and, if necessary, uses the common subframe by applying a limited transmission output (2765).
  • 29 is a diagram illustrating a terminal structure according to one embodiment of the present specification.
  • a terminal includes a transceiver 2905, a controller 2910, a multiplexing and demultiplexing unit 2915, a control message processing unit 2930, and various upper layer processing units 2920. , 2925).
  • the transceiver 2905 receives data and a predetermined control signal through a downlink channel of a serving cell and transmits data and a predetermined control signal through an uplink channel. When a plurality of serving cells are set, the transceiver 2905 performs data transmission and control signal transmission and reception through the plurality of serving cells.
  • the multiplexing and demultiplexing unit 2915 may multiplex the data generated by the upper layer processing units 2920 and 2925 or the control message processing unit 2930, or demultiplex the data received by the transmitting and receiving unit 2905 to appropriately apply the upper layer processing unit 2920. 2925 or the control message processor 2930.
  • multiplexing and demultiplexing units (or MAC devices) independent of the P-ENB and NP-ENB are configured, one multiplexing and demultiplexing unit (or MAC device) is configured for the terminal.
  • the control message processing unit 2930 is an RRC layer device and processes the control message received from the base station and takes necessary actions. For example, the RRC control message is received and the random access related information is transmitted to the controller.
  • the higher layer processing units 2920 and 2925 may be configured for each service.
  • Data generated from user services such as FTP (File Transfer Protocol) or Voice over Internet Protocol (VoIP) can be processed and delivered to the multiplexing and demultiplexing unit 2915 or the data transferred from the multiplexing and demultiplexing unit 2915 Process it and pass it to the higher-level service application.
  • FTP File Transfer Protocol
  • VoIP Voice over Internet Protocol
  • the control unit 2910 checks scheduling commands, for example, reverse grants, received through the transmission / reception unit 2905, and the transmission / reception unit 2905 and the multiplexing and demultiplexing unit 2915 are performed so that the reverse transmission is performed with the appropriate transmission resource at an appropriate time. ).
  • the controller also manages all procedures related to SCell configuration, all procedures related to radio link monitoring operation, and various procedures related to PHR. More specifically, necessary control operations related to the terminal operation illustrated in FIGS. 5 to 28 are performed.
  • FIG. 30 is a diagram illustrating a P-ENB structure according to an embodiment of the present specification.
  • the P-ENB includes a transceiver 3005, a controller 3010, a multiplexing and demultiplexing unit 3020, a control message processing unit 3035, various upper layer processing units 3025 and 3030, and It may include a scheduler 3015.
  • the transceiver 3005 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 3005 performs data transmission and reception and control signal transmission and reception to the plurality of carriers.
  • the multiplexing and demultiplexing unit 3020 multiplexes data generated by the upper layer processing units 3025 and 3030 or the control message processing unit 3035, or demultiplexes the data received by the transmitting and receiving unit 3005 so that the appropriate upper layer processing unit 3025, 3030, the control message processor 3035, or the controller 3010.
  • the control message processing unit 3035 processes a control message transmitted by the terminal to take necessary actions, or generates a control message to be transmitted to the terminal and delivers the control message to the lower layer.
  • the upper layer processing units 3025 and 3030 may be configured for each bearer, and the data transmitted from the S-GW or another base station may be configured as an RLC PDU to be transmitted to the multiplexing and demultiplexing unit 3020 or the multiplexing and demultiplexing unit 3020.
  • RLC PDU delivered from the C-PW) is configured as a PDCP SDU and transmitted to the S-GW or another base station.
  • An upper layer processor 3030 corresponding to all or part of the NP-DRB is set in the P-ENB.
  • the scheduler allocates a transmission resource to the terminal at an appropriate time point in consideration of the buffer state and the channel state of the terminal, and processes the signal transmitted by the terminal to the transceiver or transmits the signal to the terminal.
  • the controller also manages overall procedures related to SCell configuration. More specifically, in FIG. 5 to FIG. 28, a control operation necessary for an operation to be performed by the P-ENB is performed.
  • FIG. 31 is a diagram illustrating an NP-ENB structure according to an embodiment of the present specification.
  • NP-ENB according to an embodiment of the present specification, the transceiver 3105, the controller 3110, the multiplexing and demultiplexing unit 3120, the control message processing unit 3135, various upper layer processing unit 3130, the scheduler 3115.
  • the transceiver 3105 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 3105 performs data transmission and control signal transmission and reception to the plurality of carriers.
  • the multiplexing and demultiplexing unit 3120 multiplexes data generated by the upper layer processing units 3125 and 3130 or the control message processing unit 3135, or demultiplexes the data received by the transmitting and receiving unit 3105 to appropriately apply the upper layer processing unit 3130. Or it serves to deliver to the control unit 3110.
  • the control message processing unit 3135 processes the control message sent by the P-ENB and takes necessary actions.
  • An upper layer processor 3030 corresponding to all or part of the NP-DRB is set in the NP-ENB.
  • the scheduler allocates a transmission resource to the terminal at an appropriate time point in consideration of the buffer state and the channel state of the terminal, and processes the signal transmitted by the terminal to the transceiver or transmits the signal to the terminal.
  • the controller also manages overall procedures related to SCell configuration. More specifically, in FIG. 5 to FIG. 28, a control operation necessary for an operation to be performed by the NP-ENB is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 통신 방법 및 장치에 관한 것으로, 본 명세서의 일 실시 예에 따르는 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)의 통신 방법은, 상기 P-ENB이 아닌 다른 기지국(NP-ENB)의 서빙 셀을 위한 논-프라이머리(NP)-EPS(Evolved Packet System) 베어러를 통해 서빙 게이트웨이로부터 패킷을 수신하는 단계, 상기 수신한 패킷을 이용해 제1 RLC PDU(Radio Link Control Packet Data Unit)를 생성하는 단계 및 상기 생성한 제1 RLC PDU를 상기 NP-ENB에게 전달하는 단계를 포함할 수 있다.

Description

이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
본 명세서는 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치에 관한 것이다.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 통신을 제공하기 위한 목적으로 개발되었다. 이러한 이동통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다.
근래에는 차세대 이동통신 시스템 중 하나로 3GPP(3rd Generation Partnership Project)에서 LTE(Long Term Evolution) 시스템에 대한 규격 작업이 진행 중이다. 상기 LTE 시스템는 현재 제공되고 있는 데이터 전송률보다 높은 최대 100 Mbps 정도의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이며 현재 규격화가 거의 완료되었다.
최근 LTE 통신 시스템에 여러 가지 신기술을 접목해서 전송 속도를 향상시키는 진화된 LTE 통신 시스템(LTE-Advanced, LTE-A)에 대한 논의가 본격화되고 있다. 상기 새롭게 도입될 기술 중 대표적인 것으로 캐리어 집적(Carrier Aggregation)을 들 수 있다. 캐리어 집적이란 종래에 단말이 하나의 순방향 캐리어와 하나의 역방향 캐리어만을 이용해서 데이터 송수신을 하는 것과 달리, 하나의 단말이 다수의 순방향 캐리어와 다수의 역방향 캐리어를 사용하는 것이다.
현재 LTE-A에서는 기지국 내 캐리어 집적(intra-ENB carrier aggregation)만 정의되어 있다. 이는 캐리어 집적 기능의 적용 가능성을 줄이는 결과로 이어져, 특히 다수의 피코 셀들과 하나의 마크로 셀을 중첩 운용하는 시나리오에서는 매크로 셀과 피코 셀을 집적하지 못하는 문제를 야기할 수 있다.
본 명세서의 일 실시 예는 상기와 같은 문제점 중 적어도 일부를 해결하기 위해 안출된 것으로, 서로 다른 기지국 간 캐리어 집적(inter-ENB carrier aggregation)을 위한 방법 및 장치를 제공하는 것을 그 목적으로 한다.
본 명세서의 일 실시 예에 따르는 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)의 통신 방법은, 상기 P-ENB이 아닌 다른 기지국(NP-ENB)의 서빙 셀을 위한 논-프라이머리(NP)-EPS(Evolved Packet System) 베어러를 통해 서빙 게이트웨이로부터 패킷을 수신하는 단계, 상기 수신한 패킷을 이용해 제1 RLC PDU(Radio Link Control Packet Data Unit)를 생성하는 단계 및 상기 생성한 제1 RLC PDU를 상기 NP-ENB에게 전달하는 단계를 포함할 수 있다.
본 명세서의 일 실시 예에 따르는 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)이 아닌 기지국(NP-ENB)의 통신 방법은, 상기 P-ENB로부터 RLC PDU(Radio Link Control Packet Data Unit)를 수신하는 단계, 상기 수신한 RLC PDU를 이용해 재분할된 RLC PDU를 생성하는 단계 및 상기 재분할된 RLC PDU를 신호로 변환하여 상기 단말에게 송신하는 단계를 포함할 수 있다.
본 명세서의 일 실시 예에 따르는 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)의 통신 장치는, 상기 P-ENB이 아닌 다른 기지국(NP-ENB)의 서빙 셀을 위한 논-프라이머리(NP)-EPS(Evolved Packet System) 베어러를 통해 서빙 게이트웨이로부터 패킷을 수신하는 통신부 및 상기 수신한 패킷을 이용해 제1 RLC PDU(Radio Link Control Packet Data Unit)를 생성하는 제어부를 포함할 수 있다. 상기 통신부는 상기 생성한 제1 RLC PDU를 상기 NP-ENB에게 전달할 수 있다.
본 명세서의 일 실시 예에 따르는 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)이 아닌 기지국(NP-ENB)의 통신 장치는, 상기 P-ENB로부터 RLC PDU(Radio Link Control Packet Data Unit)를 수신하는 통신부 및 상기 수신한 RLC PDU를 이용해 재분할된 RLC PDU를 생성하는 제어부를 포함할 수 있다. 상기 통신부는 상기 재분할된 RLC PDU를 신호로 변환하여 상기 단말에게 송신할 수 있다.
본 명세서의 일 실시 예에 따르면 서로 다른 기지국 간에 캐리어를 집적 했을 때 불연속 수신 동작을 적용해서 단말의 배터리 소모를 줄인다.
도 1은 본 명세서의 일부 실시 예가 적용되는 LTE 시스템의 구조를 도시하는 도면이다.
도 2는 본 명세서의 일부 실시 예가 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 3은 본 명세서의 일부 실시 예가 적용되는 기지국 내 캐리어 집적을 설명하는 도면이다.
도 4는 본 명세서의 일 실시 예에 따르는 캐리어 집적 방식을 도시한다.
도 5는 본 명세서의 일 실시 예에 따르는 프라이머리 셋에 속하는 SCell을 설정하는 단말과 기지국의 동작의 순서도이다.
도 6은 넌프라이머리 셋에 속하는 SCell을 설정하는 과정의 순서도이다.
도 7은 본 명세서의 일 실시 예에 따르는 RRC 제어 메시지의 구성도이다.
도 8은 본 명세서의 다른 실시 예에 따르는 RRC 제어 메시지의 구성도이다.
도 9는 본 명세서의 일 실시 예에 따르는 분배 방식의 모식도이다.
도 10은 본 명세서의 일 실시 예에 따르는 제1 PDCP 분산구조도이다.
도 11은 본 명세서의 일 실시 예에 따르는 제2 PDCP 분산 구조도이다.
도 12는 본 명세서의 일 실시 예에 따르는 제1 RLC 분산 구조도이다.
도 13은 본 명세서의 일 실시 예에 따르는 제1 MAC 분산 구조도이다.
도 14는 본 명세서의 일 실시 예에 따르는 제2 MAC 분산 구조의 구조도이다.
도 15는 본 명세서의 일 실시 예에 따르는 데이터 유닛의 구조도이다.
도 16은 본 명세서의 일 실시 예에 따르는 제2 MAC 분산 구조에서 RLC 장치 및 MAC 장치의 구조도이다.
도 17은 본 명세서의 일 실시 예에 따르는 제2 RLC 분산 구조의 구조도이다.
도 18은 본 명세서의 일 실시 예에 따르는 프라이머리 셋 및 넌프라이머리 셋 서빙 셀을 추가하고 DRB를 설정하는 동작의 순서도이다.
도 19는 본 명세서의 일 실시 예에 따르는 SCell을 해제하고 데이터를 송수신하는 동작의 순서도이다.
도 20는 본 명세서의 다른 실시 예에 따르는 SCell을 해제하고 데이터를 송수신하는 동작의 순서도이다.
도 21은 본 명세서의 일 실시 예에 따르는 비화/역비화 과정을 나타낸다.
도 22는 본 명세서의 일 실시 예에 따르는 무선 링크 감시 과정의 순서도이다.
도 23은 본 명세서의 일 실시 예에 따르는 RLF 감지 과정의 순서도이다.
도 24는 본 명세서의 일 실시 예에 따르는 LCP 과정의 순서도이다.
도 25는 본 명세서의 일 실시 예에 따르는 PHR 트리거 및 전송 과정을 도시한 도면이다.
도 26은 본 명세서의 일 실시 예에 따르는 PHR 포맷을 설명한 도면이다.
도 27은 본 명세서의 일 실시 예에 따르는 서브 프레임 패턴을 결정하는 과정을 도시한 도면이다.
도 28은 본 명세서의 일 실시 예에 따르는 타이밍 차이를 설명한 도면이다.
도 29는 본 명세서의 일 실시 예에 따르는 단말 구조를 도시한 도면이다.
도 30은 본 명세서의 일 실시 예에 따르는 P-ENB 구조를 도시한 도면이다.
도 31은 본 명세서의 일 실시 예에 따르는 NP-ENB 구조를 도시한 도면이다.
도 32는 본 명세서의 일 실시 예에 따르는 다중 PDCP 구조의 구조도이다.
도 33은 본 명세서의 일 실시 예에 따르는 다중 RLC 구조의 구조도이다.
하기에서 본 명세서와 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 명세서의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 명세서의 실시 예를 설명하기로 한다. 이하 본 명세서를 설명하기 앞서 LTE 시스템 및 캐리어 집적에 대해서 간략하게 설명한다.
도 1은 본 명세서의 일부 실시 예가 적용되는 LTE 시스템의 구조를 도시하는 도면이다.
도 1을 참조하면, LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(105, 110, 115, 120)과 MME (125, Mobility Management Entity) 및 S-GW(130, Serving-Gateway)를 포함한다. 사용자 단말(User Equipment, 이하 UE 또는 단말(terminal))(135)은 ENB(105, 110, 115, 120) 및 S-GW(130)를 통해 외부 네트워크에 접속한다.
도 1에서 ENB(105, 110, 115, 120)는 UMTS 시스템의 기존 노드 B에 대응된다. ENB는 UE(135)와 무선 채널을 통해 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(105, 110, 115, 120)가 담당한다. 하나의 ENB는 통상 다수의 셀들을 제어한다. 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.
도 2는 본 명세서의 일부 실시 예가 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP(Packet Data Convergence Protocol 205, 240), RLC(Radio Link Control 210, 235), MAC (Medium Access Control 215,230)으로 이루어진다. PDCP(Packet Data Convergence Protocol)(205, 240)는 IP 헤더 압축/복원 등의 동작을 담당하고, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(210, 235)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. MAC(215, 230)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. 물리 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.
도 3은 본 명세서의 일부 실시 예가 적용되는 기지국 내 캐리어 집적을 설명하는 도면이다.
도 3을 참조하면, 하나의 기지국은 일반적으로 여러 주파수 대역에 걸쳐서 다중 캐리어들을 송출하고 수신한다. 예를 들어 기지국(305)으로부터 순방향 중심 주파수가 f1인 캐리어(315)와 순방향 중심 주파수가 f3(310)인 캐리어가 송출될 때, 종래에는 하나의 단말이 상기 두 개의 캐리어 중 하나의 캐리어를 이용해서 데이터를 송수신하였다. 그러나 캐리어 집적 능력을 가지고 있는 단말은 동시에 여러 개의 캐리어를 통해 데이터를 송수신할 수 있다. 기지국(305)은 캐리어 집적 능력을 가지고 있는 단말(330)에 대해서는 상황에 따라 더 많은 캐리어를 할당함으로써 상기 단말(330)의 전송 속도를 높일 수 있다. 상기와 같이 하나의 기지국이 송출하고 수신하는 순방향 캐리어와 역방향 캐리어들을 집적하는 것을 기지국 내 캐리어 집적이라고 한다. 그러나 경우에 따라서 도 3에 도시된 바와는 달리 서로 다른 기지국에서 송출되고 수신되는 순방향 캐리어와 역방향 캐리어들을 집적하는 것이 필요할 수 있다.
도 4는 본 명세서의 일 실시 예에 따르는 캐리어 집적 방식을 도시한다.
도 4를 참조하면, 기지국 1(405)은 중심 주파수가 f1인 캐리어를 송수신하고 기지국 2(420)는 중심 주파수가 f2인 캐리어를 송수신할 때, 단말(430)이 순방향 중심 주파수가 f1인 캐리어와 순방향 중심 주파수가 f2 캐리어를 집적하면, 하나의 단말이 둘 이상의 기지국으로부터 송수신되는 캐리어들을 집적하는 결과로 이어지며, 본 명세서에서는 이를 기지국 간(inter-ENB) 캐리어 집적(혹은 기지국 간 CA)이라고 명명한다.
아래에 본 명세서에서 빈번하게 사용될 용어들에 대해서 설명한다.
전통적인 의미로 하나의 기지국이 송출하는 하나의 순방향 캐리어와 상기 기지국이 수신하는 하나의 역방향 캐리어가 하나의 셀을 구성한다고 할 때, 캐리어 집적이란 단말이 동시에 여러 개의 셀을 통해서 데이터를 송수신하는 것으로 이해될 수도 있을 것이다. 이를 통해 최대 전송 속도는 집적되는 캐리어의 수에 비례해서 증가된다.
이하 본 명세서에 있어서 단말이 임의의 순방향 캐리어를 통해 데이터를 수신하거나 임의의 역방향 캐리어를 통해 데이터를 전송한다는 것은 상기 캐리어를 특징짓는 중심 주파수와 주파수 대역에 대응되는 셀에서 제공하는 제어 채널과 데이터 채널을 이용해서 데이터를 송수신한다는 것과 동일한 의미를 가진다. 본 명세서에서는 특히 캐리어 집적을 '다수의 서빙 셀이 설정된다'는 것으로 표현할 것이며, 프라이머리 서빙 셀(이하 PCell)과 세컨더리 서빙 셀(이하 SCell), 혹은 활성화된 서빙 셀 등의 용어를 사용할 것이다. 상기 용어들은 LTE 이동 통신 시스템에서 사용되는 그대로의 의미를 가진다.
본 명세서에서는 동일한 기지국에 의해서 제어되는 서빙 셀들의 집합을 셋으로 정의한다. 셋은 다시 프라이머리 셋(primary set)과 넌프라이머리 셋(non-primary set)으로 구분된다. 프라이머리 셋이란, PCell을 제어하는 기지국(이하 프라이머리 기지국)에 의해서 제어되는 서빙 셀들의 집합을 의미하며, 넌프라이머리 셋이란 PCell을 제어하는 기지국이 아닌 기지국(이하 넌프라이머리 기지국)에 의해서 제어되는 서빙 셀들의 집합을 의미한다. 소정의 서빙 셀이 프라이머리 셋에 속하는지 넌프라이머리 셋에 속하는지의 정보는 해당 서빙 셀을 설정하는 과정에서 기지국이 단말에게 지시한다. 하나의 단말에는 하나의 프라이머리 셋과 하나 혹은 둘 이상의 넌프라이머리 셋이 설정될 수 있다.
후술될 설명에서는 이해를 위해 프라이머리 셋과 넌프라이머리 셋 대신 다른 용어를 사용할 수도 있다. 예를 들어 프라이머리 셋과 세컨더리 셋 혹은 프라이머리 캐리어 그룹과 세컨더리 캐리어 그룹 등의 용어가 사용될 수 있다. 하지만 이 경우에 용어만 다를 뿐, 그 의미하는 바는 동일함을 유념하여야 한다. 이러한 용어들의 주요한 사용 목적은 어떠한 셀이 특정 단말의 PCell을 제어하는 기지국의 제어를 받는지 구분하기 위한 것이며, 상기 셀이 특정 단말의 PCell을 제어하는 기지국의 제어를 받는 경우와 그렇지 않은 경우에 대해 단말과 해당 셀의 동작 방식이 달라질 수 있다.
도 5는 본 명세서의 일 실시 예에 따르는 프라이머리 셋에 속하는 SCell을 설정하는 단말과 기지국의 동작의 순서도이다.
도 5를 참조하면 이동 통신 시스템은 단말(505), 기지국 1 (515) 및 기지국 2 (510)을 포함한다 셀 1, 셀 2 및 셀 3은 기지국 1(515)에 의해서 제어되고 셀 4와 셀 5는 기지국 2(510)에 의해서 제어된다. 상기 단말의 PCell이 셀 1이라고 가정한다. 상술한 프라이머리 기지국의 용어 정의에 따라 기지국 1(515)이 프라이머리 기지국이 된다. 프라이머리 기지국인 기지국 1(515)이 단말에게 셀 2를 추가적인 SCell로서 설정하고자 한다. 이하 본 명세서에서 PCell을 제어하는, 즉 프라이머리 셋을 제어하는 기지국을 서빙 기지국이라고도 지칭한다. 서빙 기지국이 아니면서 단말의 서빙 셀을 제어하는 기지국은 드리프트 기지국이라고 지칭한다. 프라이머리 셋의 서빙 셀들을 제어하는 기지국이 서빙 기지국이고 넌프라이머리 셋의 서빙 셀들을 제어하는 기지국이 드리프트 기지국이다. 혹은 프라이머리 기지국과 넌프라이머리 기지국이라는 용어를 사용할 수도 있다. 프라이머리 기지국은 서빙 기지국에 해당하고 넌프라이머리 기지국은 드리프트 기지국에 해당한다.
서빙 기지국 (515)은 단말(505)에게 새롭게 추가할 SCell과 관련된 정보를 RRC 연결 재구성(Radio Resource Control Connection Reconfiguration) 제어 메시지에 수납해서 전송한다(단계 520). 상기 새롭게 추가할 SCell은 서빙 기지국이 직접 관리하는 셀이다. 상기 제어 메시지에는 서빙 셀에 따라 아래 표 1의 정보들 중 적어도 일부가 수납될 수 잇다.
표 1
이름 설명
sCellIndex-r10 서빙 셀의 식별자이다. 소정의 크기를 가지는 정수이다. 향후 해당 서빙 셀의 정보를 갱신할 때 사용된다.
cellIdentification-r10 서빙 셀을 물리적으로 식별하는 정보이다. 순방향 중심 주파수와 PCI (Physical Cell Id)로 구성된다.
radioResourceConfigCommonSCell-r10 서빙 셀의 무선 자원과 관련된 정보이다. 예를 들어 순방향 대역폭, 순방향 HARQ 피드백 채널 설정 정보, 역방향 중심 주파수 정보, 역방향 대역폭 정보 등이 여기에 포함된다.
radioResourceConfigDedicatedSCell-r10 서빙 셀에서 단말에게 할당된 전용 자원과 관련된 정보이다. 예를 들어 채널 품질 측정용 레퍼런스 신호 구조 정보, 캐리어 간 스케줄링 구성 정보 등이 여기에 포함된다.
TAG(Timing Advance Group) 정보 단말이 어느 TAG에 속하는지 나타내는 정보이다. 이는 예를 들어 TAG id와 TA(Timing Advance) 타이머로 구성될 수 있다. 만약 단말이 P-TAG(프라이머리 TAG)에 속한다면 이 정보는 시그널링되지 않는다.
TAG는 동일한 역방향 전송 타이밍을 공유하는 서빙 셀들의 집합이다. TAG의 휴형으로 P-TAG (Primary TAG)와 S-TAG (Secondary TAG)가 있으며, P-TAG는 PCell이 속한 TAG이다. S-TAG는 PCell이 아닌 SCell들로만 구성되는 TAG이다. 임의의 서빙 셀이 임의의 TAG에 속한다는 것은 상기 서빙 셀의 역방향 전송 타이밍은 상기 TAG에 속하는 다른 서빙 셀들의 역방향 전송 타이밍과 동일하다는 것을 의미하며, 상기 TAG의 TA 타이머에 의해서 역방향 동기 여부가 판단된다는 것을 의미한다. 임의의 TAG의 역방향 전송 타이밍은 상기 TAG에 속하는 소정의 서빙 셀에서 랜덤 액세스 과정이 수행됨으로써 수립되고, TA 명령 (TA command)를 수신함으로써 유지된다. 단말은 임의의 TAG에 대해서 TA 명령을 수신할 때마다 해당 TAG의 TA 타이머를 구동 혹은 재구동한다. TA 타이머가 만료되면 단말은 해당 TAG의 역방향 전송 동기가 상실된 것으로 판단하고 다시 랜덤 액세스를 수행하기 전까지는 역방향 전송을 수행하지 않는다.
단말(505)은 상기 제어 메시지에 대한 응답 메시지(RRC Connection Reconfiguration Complete)를 전송한다 (단계 525). 단말(505)은 셀 2, 즉 서빙 셀 1에 대해서 순방향/하향링크 동기를 수립한다(530). 순방향/하향링크란 기지국에서 전송하고 단말이 수신하는 것을 의미하고, 역방향/상향링크란 단말이 전송하고 기지국이 전송하는 것을 의미한다. 본 명세서에서는 '순방향'과 '하향링크'를 같은 의미의 단어로 혼용한다. 또한 본 명세서에서는 '역방향'과 '상향링크'를 같은 의미의 단어로 혼용한다. 임의의 셀에 대해서 순방향 동기를 수립한다는 것은 상기 셀의 동기 채널을 획득해서 순방향 프레임 바운더리(경계)를 획득하는 것 등을 의미한다. 서빙 기지국(515)은 단말(505)이 SCell 1의 설정을 완료했다고 판단되는 임의의 시점에 단말에게 SCell 1을 활성화하라는 MAC 계층 제어 명령인 Activate/Deactivate MAC Control Element (이하 A/D MAC CE)를 전송한다(535). 상기 제어 명령은 비트맵으로 구성된다. 상기 비트맵에서 예를 들어 첫 번째 비트는 SCell 1, 두번째 비트는 SCell 2, n 번째 비트는 SCell n과 대응될 수 있다. 상기 각 각의 비트는 해당 SCell의 활성화/비활성화를 지시한다. 상기 비트맵은 1 바이트 크기를 가질 수 있다. SCell의 인덱스가 1 내지 7의 7개가 존재하므로, 상기 바이트의 첫번째 LSB (Least Significant Bit)는 사용하지 않고, 두번째 LSB는 SCell 1과, 세번째 LSB는 SCell 2와, 마지막 LSB (혹은 Most Significant Bit, MSB)는 SCell 7과 매핑될 수도 있다.
상기 SCell 1에 대한 활성화 명령을 수신한 시점을 기준으로 소정의 기간이 흐른 후부터 단말(505)은 SCell 1의 하향 물리 제어 채널 (PDCCH, Physical Downlink Control Channel의 감시를 시작한다. PDCCH는 순방향/역방향 전송 자원 할당 정보 등이 제공되는 채널이다. 만약 상기 SCell 1이 이미 동기가 수립된 TAG에 속한다면 단말(505)은 상기 감시 시작 시점부터 순방향/역방향 송수신을 개시한다. 상기 SCell 1이 동기가 수립되지 않은 TAG에 속한다면, 단말(505)은 상기 감시 시작 시점에는 순방향 신호의 수신만 개시하고, 역방향 신호 송신은 수행하지 않는다. 즉, 단말(505)은 PDCCH를 통해서 순방향 전송 자원 할당 정보를 수신하면 순방향 데이터를 수신하되, 역방향 전송 자원 할당 정보는 수신하더라도 무시한다. SCell 1이 동기가 수립되지 않은 TAG에 속한다면 단말은 PDCCH를 통해서 상기 TAG에 속하는 소정의 SCell에서 '랜덤 액세스 명령'을 수신할 때까지 대기한다. 랜덤 액세스 명령은 역방향 전송 자원 할당 정보의 소정의 필드를 소정의 값으로 설정한 것이며, 단말에게 소정의 서빙 셀에서 소정의 프리앰블을 전송할 것을 지시하는 것이다. 랜덤 액세스 명령의 CIF (Carrier Indicator Field)에서 프리앰블 전송을 수행할 서빙 셀의 식별자가 지시될 수 있다.
540 단계에서 단말(505)은 서빙 셀 1을 통해 랜덤 액세스 프리앰블을 전송할 것을 지시하는 랜덤 액세스 명령을 수신한다. 545 단계로 진행해서 단말(505)은 지시 받은 프리앰블을 SCell 1을 통해 전송한 후 상기 프리앰블에 대한 응답 메시지인 RAR (Random Access Response)을 수신하기 위해서 PCell의 PDCCH를 감시한다. 상기 RAR에는 TA 명령과 기타 제어 정보들이 수납되어 있다. 프리앰블이 전송된 셀이 서빙 기지국의 셀이라면, 상기 프리앰블에 대한 응답을 PCell에서 하는 것이 여러 가지 측면에서 효율적이다. 예를 들어 RAR 수신이 PCell에서만 이뤄지므로 단말(505)의 PDCCH 감시 부하가 경감되는 장점이 있다. 따라서 단말(505)은 550 단계에서 RAR을 수신하기 위해서 PCell의 PDCCH를 감시한다. 545 단계에서 전송한 프리앰블에 대한 유효한 응답 메시지를 수신하면 단말(505)은 상기 시점을 기준으로 소정의 기간이 경과한 후 역방향 신호 전송이 가능한 것으로 판단한다. 예컨대 유효한 RAR을 서브 프레임 n에서 수신하였다면, 역방향 전송은 서브 프레임 (n+m)부터 가능한 것으로 간주한다.
도 6은 넌프라이머리 셋에 속하는 SCell을 설정하는 과정의 순서도이다.
임의의 시점에 서빙 기지국(615)은 단말(605)에게 SCell을 추가하기로 결정한다. 특히 단말(605)이 기지국 2(610)가 제어하는 셀의 영역에 위치하고 있다면 서빙 기지국(615)은 단계 620에서 기지국 2(610)가 제어하는 셀을 SCell 로 추가하기로 결정한다. 이어 서빙 기지국(615)은 기지국 2(610)에게 SCell 추가를 요청하는 제어 메시지를 전송한다 (625). 상기 제어 메시지에는 아래 표 2에 언급된 정보 중 적어도 일부가 수납될 수 있다.
표 2
이름 설명
SCell id 정보 드리프트 기지국에서 설정될 SCell 들의 식별자와 관련된 정보. 하나 혹은 복수의 sCellIndex-r10으로 구성된다. 서빙 기지국에서 이미 사용 중인 식별자가 재사용되는 것을 방지하기 위해서 서빙 기지국이 결정해서 드리프트 기지국에게 알려준다. 혹은 서빙 기지국이 사용하는 SCell id와 드리프티 기지국이 사용하는 SCell id의 영역을 분리해서 정의해 둘 수도 있다. 예를 들어 SCell id 1 내지 3은 서빙 기지국이 SCell id 4 내지 7은 드리프트 기지국이 사용하도록 미리 정의해두는 것이다.
TAG id 정보 드리프트 기지국에서 설정될 TAG의 식별자와 관련된 정보. 서빙 기지국에서 이미 사용 중인 식별자가 재사용되는 것을 방지하기 위해서 서빙 기지국이 결정해서 드리프트 기지국에게 알려준다.
역방향 스케줄링 관련 정보 단말에 설정된 로지컬 채널들의 우선 순위 정보와 로지컬 채널 그룹 정보로 구성된다. 드리프트 기지국은 이 정보를 이용해서 단말의 버퍼 상태 보고 정보를 해석하고 역방향 스케줄링을 수행한다.
오프로드될 베어러 정보 DENB에서는 대용량 데이터 송수신이 필요한 서비스, 예를 들어 FTP 다운로드 같은 서비스를 처리하는 것이 바람직하다. 서빙 기지국은 단말에 설정되어 있는 베어러 중, 어떤 베어러를 드리프트 기지국으로 오프로드할지 결정하고, 상기 오프로드될 베어러와 관련된 정보, 예를 들어 DRB 식별자, PDCP 설정 정보, RLC 설정 정보, 요구 QoS 정보 등을 드리프트 기지국에게 전달한다.
호 승낙 제어 관련 정보 드리프트 기지국이 SCELL 추가 요청을 승낙할지 거부할지 판단할 수 있도록 서빙 기지국이 참고 정보를 제공한다. 예를 들어 요구되는 전송률, 예상 상향링크 데이터 양, 예상 하향링크 데이터 양 등이 해당된다.
드리프트 기지국(610)은 SCell 추가 요청 제어 메시지를 수신하면, 현재 로드 상황 등을 고려해서 요청 수락 여부를 결정한다. 요청을 수락하기로 결정하였다면 드리프트 기지국(610)은 아래 표 3의 정보 중 적어도 일부를 수납한 제어 메시지를 생성해서 서빙 기지국(615)에게 전송한다(630).
표 3
이름 설명
SCellToAddMod 드리프트 기지국에서 설정된 SCell 들과 관련된 정보로, 다음과 같은 정보들로 구성된다. sCellIndex-r10, cellIdentification-r10, radioResourceConfigCommonSCell-r10, radioResourceConfigDedicatedSCell-r10, TAG 관련 정보
PUCCH SCell에 대한 PUCCH 설정 정보 넌프라이머리 셋에 속하는 SCell 중 적어도 하나의 SCell 에는 PUCCH (Physical Uplink Control Channel)이 설정된다. PUCCH를 통해서는 HARQ feedback이나 CSI (Channel Status Information)이나 SRS (Sounding Reference Signal)나 SR (Scheduling Request) 등의 역방향 제어 정보가 전송된다. 이하 PUCCH가 전송되는 SCell을 PUCCH SCell이라 한다. PUCCH SCell의 식별자 정보와 PUCCH 구성 정보 등이 이 정보의 하위 정보이다.
데이터 포워딩 정보 서빙 기지국과 드리프트 기지국 사이의 데이터 교환에 사용될 논리 채널 (혹은 논리 터널)의 정보이며, 순방향 데이터 교환을 위한 GTP (GPRS Tunnel Protocol) 터널 식별자와 역방향 데이터 교환을 위한 GTP 터널 식별자 등의 정보로 구성된다.
단말의 식별자 단말이 넌프라이머리 셋의 SCell에서 사용할 C-RNTI이다. 이하 C-RNTI_NP라 한다.
베어러 설정 정보 오프로드될 베어러의 설정 정보이다. 오프로드가 승낙된 베어러의 리스트와 베어러 별 설정 정보가 포함된다. 베어러의 설정이 동일하다면 승낙된 베어러의 리스트 정보만 포함될 수도 있다.
서빙 기지국(615)은 상기 제어 메시지를 수신하면 서빙 셀 추가를 지시하는 RRC 제어 메시지를 생성해서 단말(605)에게 전송한다(635). 상기 RRC 제어 메시지에는 아래 표 4의 정보중 적어도 일부의 정보가 포함된다.
표 4
이름 설명
SCellAddMod 드리프트 기지국이 전달한 정보가 그대로 수납된다. 즉 표 3의 SCellAddMod과 동일한 정보이다. SCell 하나 당 하나의 SCellAddMod 가 수납되며, 상기 정보는 SCellAddModList의 하위 정보이다.
PUCCH SCell에 대한 PUCCH 설정 정보 드리프트 기지국이 전달한 정보가 그대로 수납된다. 즉 표 3의 PUCCH information for PUCCH SCell과 동일한 정보이다.
넌프라이머리 셋 서빙 셀 정보 설정되는 SCell들 중 넌프라이머리 셋에 속하는 SCell들에 관한 정보이다. 상기 SCell들의 식별자들이거나, 넌프라이머리 셋에 속하는 TAG들의 식별자일 수 있다.
단말의 식별자 단말이 넌프라이머리 셋의 서빙 셀에서 사용할 C-RNTI, 즉 C-RNTI_NP.
오프로드 베어러 정보 드리프트 기지국에서 처리할 베어러와 관려된 정보이다. 단말 입장에서는 넌프라이머리 셋의 서빙 셀들을 통해서 송수신할 베어러와 관련된 정보이며, 베어러의 리스트 및 베어러 설정이 다른 경우 베어러 설정 정보가 여기에 포함된다.
상기 RRC 제어 메시지에는 복수의 SCell들의 설정 정보가 수납될 수 있다. 또한 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀들이 함께 설정될 수도 있다. 예를 들어 Cell1이 PCell인 단말에게 Cell 2, Cell 3, Cell 4, Cell 5가 SCell로 설정된다면, RRC 제어 메시지에는 상기 정보들이 다양한 순서로 배치될 수 있다.
도 7은 본 명세서의 일 실시 예에 따르는 RRC 제어 메시지의 구성도이다. 본 실시 예에서 Cell 1과 Cell 2가 동일한 역방향 전송 타이밍을 가지며 P-TAG를 구성하고, Cell 3이 S-TAG 1을 구성하고 Cell 4와 Cell 5가 S-TAG 2를 구성한다.
RRC 제어 메시지는 SCellToAddModList (705)를 포함하며, SCellToAddModList(705)에는 Cell 2에 대한 SCellToAddMod(710), Cell 3에 대한 SCellToAddMod(715), Cell 4에 대한 SCellToAddMod(720), Cell 5에 대한 SCellToAddMod(725)가 수납된다.
SCellToAddMod(710, 715, 720, 725)에는 해당 SCell의 성격에 따라서 특정 정보가 포함되거나 포함되지 않을 수 있다. SCell이 P-TAG에 속한다면, 즉 PCell과 동일한 역방향 전송 타이밍을 가진다면, 해당 SCellToAddMod에는 TAG와 관련된 정보가 수납되지 않는다. 예컨대, Cell 2에 대한 SCellToAddMod(710)에는 TAG와 관련된 정보가 수납되지 않는다. 나머지 P-TAG가 아닌 TAG에 속한 SCell들에 대한 SCellToAddMod(715, 720, 725)에는 해당 SCell이 속한 TAG의 식별자와 TA 타이머 값이 포함된다.
넌프라이머리 셋에 속하는 셀 들 중 적어도 하나의 셀에는 넌프라이머리 셋과 관련된 정보(730), 예컨대 넌프라이머리 셋의 식별자와 상기 넌프라이머리 셋에서 사용할 단말의 C-RNTI가 수납된다. 도 7의 예에서는 Cell 4에 대한 SCellToAddMod(715)에 상기 정보가 수납되었다. 넌프라이머리 셋에 속하는 셀들 중 한 셀에 대해서는 PUCCH 구성 정보(735)가 수납된다. 도 7의 예에서는 Cell 4에 대한 SCellToAddMod(715)에 상기 정보가 수납되었다. 넌프라이머리 셋에 속하지만 넌프라이머리 셋과 관련된 정보가 부재하는 SCell에 대해서는 동일한 TAG id를 가지는 SCell의 넌프라이머리 셋 관련 정보를 적용한다. 예컨대 Cell 5에는 넌프라이머리 셋 관련 정보가 수납되어 있지 않지만, 동일한 TAG id를 가지는 Cell 4에 넌프라이머리 셋 관련 정보가 수납되어 있으므로, 단말은 Cell 5 역시 넌프라이머리 셋으로 판단하고, Cell 5의 넌프라이머리 셋 식별자 및 C-RNTI는 Cell 4에 대해서 지시된 값과 동일한 값을 사용한다.
도 8은 본 명세서의 다른 실시 예에 따르는 RRC 제어 메시지의 구성도이다.
도 8에 TAG 관련 정보와 넌프라이머리 셋 관련 정보를 SCellToAddMod가 아닌 별도의 위치에 수납하는 또 다른 예를 도시하였다.
RRC 제어 메시지는 SCellToAddModList (805)를 포함하며, SCellToAddModList(805)에는 Cell 2에 대한 SCellToAddMod(810), Cell 3에 대한 SCellToAddMod, Cell 4에 대한 SCellToAddMod, Cell 5에 대한 SCellToAddMod가 수납된다. SCellToAddMod에는 동일한 종류의 정보들이 수납된다. 즉 모든 SCellToAddMod에는 sCellIndex-r10, cellIdentification-r10, radioResourceConfigCommonSCell-r10 등의 정보가 수납된다.
TAG 관련 정보(815), 넌프라이머리 셋 관련 정보(820), PUCCH SCell의 PUCCH 구성 정보 등은 개별적으로 수납된다. TAG 관련 정보(815)에는 TAG 별로 TAG 식별자와 TAG를 구성하는 SCell들의 식별자 그리고 TA 타이머 값이 수납된다. 예컨대 TAG 식별자가 1인 TAG는 SCell 2로 구성되며 TA 타이머로 t1이라는 값이 사용된다는 정보 (830)와 TAG 식별자가 2인 TAG는 SCell 3과 SCell 4로 구성되며 TA 타이머로 t2라는 값이 사용된다는 정보 (835)가 수납된다.
넌프라이머리 셋 관련 정보(820)에는 넌프라이머리 셋 별로 셋의 식별자와 셋을 구성하는 서빙 셀들의 식별자 및 해당 셋에서 사용할 C-RNTI 정보가 수납된다. 예컨대 셋 식별자가 1인 넌프라이머리 셋은 SCell 3과 SCell 4로 구성되며 C-RNTI로 x가 사용된다는 정보(840)가 수납된다. 프라이머리 셋에 대한 정보는 따로 시그날링되지 않으며 아래와 같은 규칙에 따라서 결정된다.
<프라이머리 셋 관련 정보 결정 규칙>
프라이머리 셋에 속하는 서빙 셀: PCell 및 SCell 중 넌프라이머리 셋 서빙 셀이 아닌 SCell들
프라이머리 셋에서 사용할 C-RNTI: 현재 PCell에서 사용 중인 C-RNTI
넌프라이머리 셋 관련 정보에 SCell의 식별자가 아니라 TAG의 식별자가 포함될 수도 있다. 이는 한 TAG가 다수의 셋에 걸쳐서 구성되지 않도록 셋과 TAG가 구성된다는 전제하에서 가능한 방식이다. 예컨대 넌프라이머리 셋 구성 정보(820)에 SCell 3과 SCell 4를 지시하는 정보 대신 TAG id 2를 지시하는 정보를 수납하고, 단말은 TAG id 2에 속하는 SCell 3과 SCell 4가 넌프라이머리 셋임을 판단하도록 할 수도 있다.
PUCCH SCell의 PUCCH 구성 정보는 넌프라이머리 셋 식별자, PUCCH SCell의 식별자, PUCCH 구성 정보로 구성된다. PUCCH SCell이란 넌프라이머리 셋 당 하나씩 존재하며, 넌프라이머리 셋에 속하는 서빙 셀들에 대한 CSI 정보, HARQ feedback 정보 등은 상기 PUCCH SCell에 설정된 PUCCH를 통해서 전송된다.
PUCCH SCell의 식별자를 명시적으로 시그날링하는 대신, 미리 정해진 규칙에 따라서 PUCCH SCell을 판단할 수도 있다. 예를 들어 SCellToAddModList의 첫번째 SCellToAddMod에 해당하는 SCell을 PUCCH SCell로 결정할 수 있다. 혹은 해당 RRC 제어 메시지에 SCellToAddMod 정보가 수납된 SCell들 중 SCell 식별자가 가장 높은 SCell을, 혹은 SCell 식별자가 가장 낮은 SCell을 PUCCH SCell로 결정할 수도 있다. 이러한 암묵적인 결정 방식은 넌프라이머리 셋이 하나만 존재하는 것을 전제로 한다.
도 6으로 돌아가서 640 단계에서 단말(605)은 서빙 기지국(615)에게 응답 메시지를 전송하고 645 단계에서 새롭게 설정된 SCell들과의 순방향 동기를 수립한다. 단말(605)은 650 단계에서 새롭게 설정된 SCell들 중 PUCCH SCell의 SFN (시스템 프레임 넘버, System Frame Number)을 획득한다. SFN 획득은 MIB (Master Information Block)이라는 시스템 정보를 수신하는 과정에서 이뤄진다. SFN은 0에서 1023사이의 정수로 10 ms 마다 1씩 증가한다. 단말(605)은 상기 SFN 및 PUCCH 구성 정보를 사용해서 PUCCH SCell의 PUCCH 전송 시점을 파악한다.
이 후 단말(605)은 SCell들이 활성화될 때까지 대기한다. 드리프트 기지국(610)은 서빙 기지국(615)으로부터 순방향 데이터를 수신하거나, SCell을 활성화시킬 것을 지시하는 소정의 제어 메시지를 수신하면 SCell들을 활성화하는 절차를 시작한다 (655).
드리프트 기지국(610)은 단계 660에서 예를 들어 SCell 3을 활성화할 것을 지시하는 A/D MAC CE를 단말(605)에게 전송할 수 있다. 단말(605)은 상기 MAC CE를 서브 프레임 n에서 수신하였다면 서브 프레임 (n+m1)에서 상기 SCell을 활성화시킨다. 그러나 서브 프레임 (n+m1)에서는 PUCCH SCell의 역방향 동기가 아직 수립되지 않은 상태이기 때문에, SCell이 활성화되었음에도 불구하고 순방향/역방향 송수신이 모두 가능하지 않다. 다시 말해서 단말(605)은 상기 SCell의 PDCCH를 감시하기는 하지만, 순방향/역방향 자원 할당 신호를 수신하더라도 무시한다. 드리프트 기지국(610)은 단말(605)이 PUCCH SCell의 역방향 동기를 수립하도록 단말(605)에게 랜덤 액세스 명령을 전송한다 (665). 단말(605)은 상기 명령에서 지시된 전용 프리앰블을 이용해서 PUCCH SCell에서 랜덤 액세스 과정을 개시한다. 즉 단말(605)은 상기 SCell에서 프리앰블을 전송하고(670) 이에 대한 응답 메시지인 RAR을 수신하기 위해서 PDCCH를 감시한다. 단말(605)이 프라이머리 셋에서 프리앰블을 전송하였다면 RAR은 PCell을 통해서 전송된다. 반면, 단말(605)이 넌프라이머리 셋에서 프리앰블을 전송한 경우, 단말(605)은 RAR을 수신하기 위해서 프리앰블을 전송한 SCell의, 혹은 PUCCH SCell의 PDCCH를 감시한다. 이는 RAR을 PCell에서 처리하기 위해서는 드리프트 기지국(610)과 서빙 기지국(615) 사이에서 부가적인 정보 교환이 필요하기 때문이다. 상기 RAR은 예를 들어 단말(605)의 C-RNTI_NP를 통해 수신될 수 있다. 이는 단말(605)에게 이미 C-RNTI_NP가 할당되었으며, 전용 프리앰블을 사용했기 때문에 충돌에 의한 오동작이 발생할 가능성이 없으므로 (기지국은 전용 프리앰블을 수신하면 어떤 단말이 프리앰블을 전송하였다는 것을 인지한다. 따라서 어떤 단말에게 RAR을 전송해야 하는지 인지한다.), C-RNTI_NP를 사용해서 응답 메시지를 송수신하는 것이 더욱 효율적이기 때문이다. 단말(605)은 프리앰블을 전송한 SCell에서 혹은 PUCCH SCell에서 유효한 응답 메시지를 수신하면, 상기 응답 메시지의 TA 명령을 적용해서 PUCCH SCell 및 PUCCH SCell이 속한 TAG의 역방향 전송 타이밍을 조정하고 소정의 시점에 역방향을 활성화한다. 상기 소정의 시점은 유효한 TA command, 혹은 유효한 랜덤 액세스 응답 메시지를 서브 프레임 (n)에서 수신했을 때 서브 프레임 (n+m2)가 될 수 있다. 상기 m2는 미리 정해진 정수이다.
일반적으로 하나의 사용자 서비스는 하나의 EPS(Evolved Packet System) 베어러에 의해서 서비스되고, 하나의 EPS 베어러는 하나의 무선 베어러(Radio Bearer)와 연결된다. 무선 베어러는 PDCP와 RLC로 구성되는데, 기지국 간 CA에서는 하나의 무선 베어러의 PDCP 장치와 RLC 장치를 서로 다른 기지국에 위치시켜서 데이터 송수신 효율을 증대시킬 수 있다. 이 하의 설명에서 서빙 기지국은 매크로 셀을, 드리프트 기지국은 피코 셀을 제어하는 것을 가정한다. 따라서 피코 셀이란 넌 프라이머리 셋 서빙 셀과, 매크로 셀은 프라이머리 셋 서빙 셀과 유사한 의미로 사용되기도 한다.
크게 두 가지 방안을 고려할 수 있는데, 매크로 셀에서 처리될 EPS 베어러(이하 P-EPS 베어러)와 피코 셀에서 처리될 EPS 베어러(이하 NP-EPS 베어러)를 S-GW에서 분리하는 방안과, 모든 EPS 베어러 트래픽은 일단 프라이머리 ENB로 전달되고, 프라이머리 ENB가 NP-EPS 베어러의 데이터를 드리프트 기지국으로 전달하는 방안이 가능하다. 이 하 설명의 편의를 위해서 전자를 핵심 망 분배 방식(CN split), 후자를 무선망 분배 방식 (RAN split)으로 명명한다.
도 9는 본 명세서의 일 실시 예에 따르는 분배 방식의 모식도이다.
UE(920)가 피코 셀의 전파가 도달하지 않는 매크로 셀의 영역에 있는 경우(925), 상기 UE(920)는 제어 평면 데이터와 모든 사용자 평면 데이터를 매크로 셀을 제어하는 기지국(즉 서빙 기지국)(910)과 송/수신한다. 상기 사용자 평면 데이터(925)는 S-GW(905)에 의해서 처리되며 상기 사용자 평면 데이터를 송/수신하기 위한 베어러, EPS 베어러 1과 EPS 베어러 2는 모두 상기 S-GW(905)와 서빙 기지국(910) 사이에 형성된다. 이하 설명의 편의를 위해서 EPS 베어러 1이 NP-EPS 베어러, EPS 베어러 2는 P-EPS 베어러인 것으로 가정한다.
임의의 시점에 UE(920)가 피코 셀의 전파와 매크로 셀의 전파가 모두 도달하는 영역으로 이동한다. CN split (930)이 적용되었다면 EPS 베어러 1은 S-GW(905)와 드리프트 기지국(915) 사이에서 재형성된다. EPS 베어러 2는 S-GW와 서빙 기지국 사이에서 유지된다. 서빙 기지국(910)은 EPS 베어러 2의 데이터를 단말(905)과 송/수신하고 드리프트 기지국(915)은 EPS 베어러 1 데이터를 단말과 송/수신한다. RAN split (935) 방식에 따르면, EPS 베어러 1과 EPS 베어러 2 모두 S-GW(905)와 서빙 기지국(910) 사이에서 유지된다. 서빙 기지국은(910) EPS 베어러 2의 데이터를 단말(905)과 송/수신하고, EPS 베어러 1 데이터는 드리프트 기지국(915)에게로 전달한다. 드리프트 기지국(915)은 EPS 베어러 1 데이터를 단말(920)과 송/수신한다.
이하 설명의 편의를 위해서 프라이머리 셋 서빙 셀에서 송수신되는 데이터의 통로들을 프라이머리 셋 EPS 베어러(P-EPS 베어러), 프라이머리 셋 DRB (P-DRB), 프라이머리 셋 로지컬 채널(P-LCH) 등으로 지칭하고, 넌프라이머리 셋 서빙 셀에서 송수신되는 데이터의 통로들을 넌프라이머리 셋 EPS 베어러(NP-EPS 베어러), 넌프라이머리 셋 DRB(NP-DRB), 넌프라이머리 셋 로지컬 채널(NP-LCH) 등으로 지칭한다.
도 10은 본 명세서의 일 실시 예에 따르는 제1 PDCP 분산구조도이다.
CN split이 적용되는 경우, P-EPS 베어러(1005), P-DRB, P-LCH는 프라이머리 기지국(1010)에 설정되고, 넌프라이머리 셋 EPS 베어러(1015), NP-DRB, NP-LCH는 넌프라이머리 기지국(1020)에 설정된다. 단말은 프라이머리 셋 EPS 베어러의 데이터는 프라이머리 셋 서빙 셀과 송수신하고 넌프라이머리 셋 EPS 베어러 데이터는 넌프라이머리 셋 서빙 셀과 송수신한다.
RAN split이 적용되는 경우, P-DRB는 프라이머리 기지국에 설정되지만, NP-DRB 혹은 NP-LCH는 프라이머리 기지국 혹은 넌프라이머리 기지국에 설정될 수 있으며, 여러 가지 선택이 파생된다.
본 명세서에서는 제1 PDCP 분산 구조, 제2 PDCP 분산 구조, 제1 RLC 분산 구조, 제1 MAC 분산 구조, MAC 분산 구조 2, 제2 RLC 분산 구조를 제시한다. 특히 상기 각 구조가 사용될 경우, 망과 단말의 동작, 설정 과정의 시그널링 체계 등에 대해서 설명한다.
제1 PDCP 분산 구조는 도 10을 참조하여 설명한 바와 같이 CN split이 적용되었을 때, NP-EPS 베어러는 S-GW와 넌프라이머리 기지국(1010) 사이에 설성되고, NP-DRB, NP-LCH는 넌프라이머리 기지국(1010)에 설정되는 구조이다.
도 11은 본 명세서의 일 실시 예에 따르는 제2 PDCP 분산 구조도이다.
제2 PDCP 분산 구조는 NP-EPS 베어러(1115)는 S-GW와 프라이머리 기지국(1110) 사이에 설정되지만, NP-DRB (1125)는 넌프라이머리 기지국(1120)에 설정되는 구조다. 제2 PDCP 분산 구조에서는 프라이머리 기지국(1110)과 넌프라이머리 기지국(1120) 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러(1115)의 IP 패킷이 P-ENB(1110)로부터 NP-ENB(1120)에게로 혹은 그 반대 방향으로 포워딩된다. 제2 PDCP 분산 구조는 아래와 같은 특징을 가진다.
- GTP 터널을 통해 NP-ENB로부터 P-ENB로 PDCP 상태 보고 제어 메시지 (PDCP STATUS REPORT; PDCP PDU의 송수신 상태를 보고하는 제어 메시지)가 전달된다.
- NP-DRB의 RLC PDU 크기는 NP-ENB의 MAC 스케줄러에 의해서 결정된다. NP-DRB의 RLC 장치와 MAC 장치가 모두 NP-ENB에 위치하기 때문에 상기 RLC PDU 크기는 현 시점의 채널 상태를 반영해서 동적으로 결정될 수 있다.
- NP-EPS 베어러 데이터는 오직 넌프라이머리 셋 서빙 셀을 통해서만 송수신된다. 단말은 NP-EPS 베어러 데이터를 전송함에 있어서, 넌프라이머리 셋 서빙 셀에서 할당된 전송 자원만을 사용한다.
도 12는 본 명세서의 일 실시 예에 따르는 제1 RLC 분산 구조도이다.
제1 RLC 분산 구조는 NP-EPS 베어러(1215)는 S-GW와 P-ENB사이에, NP-DRB의 일부 즉 PDCP 장치(1230)는 P-ENB(1210)에, RLC 장치(1225)는 NP-ENB(1220)에 설정되는 구조이다. 제1 RLC 분산 구조에서도 프라이머리 기지국과 넌프라이머리 기지국 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러의 PDCP PDU (혹은 RLC SDU)가 P-ENB에서 NP-ENB로 혹은 그 반대 방향으로 포워딩 된다. 제1 RLC 분산 구조는 제2 PDCP 분산 구조와 동일한 특징을 가진다.
도 13은 본 명세서의 일 실시 예에 따르는 제1 MAC 분산 구조도이다.
제1 MAC 분산 구조는 NP-EPS 베어러(1315) 는 S-GW와 P-ENB사이에, NP-DRB(1330)는 P-ENB에 설정되는 구조이다. 제1 MAC 분산 구조에서는 MAC 계층 장치와 PHY 계층 장치만 NP-ENB에 설정된다. 제1 MAC 분산 구조에서도 프라이머리 기지국과 넌프라이머리 기지국 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러의 RLC PDU (혹은 MAC SDU)가 P-ENB에서 NP-ENB로 혹은 그 반대 방향으로 포워딩 된다. 제1 MAC 분산 구조는 아래와 같은 특징을 가진다.
- GTP 터널을 통해 NP-ENB로부터 P-ENB로 RLC 상태 보고 제어 메시지 (RLC STATUS PDU; RLC PDU의 송수신 상태를 보고하는, 즉 RLC의 ACK/NACK 정보를 수납한 제어 정보)가 전달된다.
- NP-ENB의 MAC 스케줄러는 P-ENB의 RLC 장치에게 RLC PDU 크기를 지시한다. 상기 RLC PDU의 크기는 넌프라이머리 셋 서빙 셀의 장기 채널 상태 (long term channel status)를 반영해서 결정되며, 주기적으로 갱신될 수 있다.
- NP-EPS 베어러 데이터는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀 모두를 통해서 송수신된다. 단말은 NP-EPS 베어러 데이터를 전송함에 있어서, 프라이머리 셋 서빙 셀에서 할당된 전송 자원과 넌프라이머리 셋 서빙 셀에서 할당된 전송을 모두 사용한다.
도 14는 본 명세서의 일 실시 예에 따르는 제2 MAC 분산 구조의 구조도이다.
제2 MAC 분산 구조에 따르면 NP-EPS 베어러(1415)는 S-GW와 P-ENB사이에 설정된다. 또한 NP-DRB(1430)는 P-ENB(1410) 내에 설정된다. RLC 장치의 일부 기능을 담당하는 장치(1435, 이하 하위(low) RLC 장치)는 NP-ENB(1420) 내에 설정된다. 제2 MAC 분산 구조에 따르더라도 프라이머리 기지국(1410)과 넌프라이머리 기지국(1420) 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러(1415)의 RLC PDU(혹은 MAC SDU)가 P-ENB(1410)로부터 NP-ENB(1420)에게로, 혹은 그 반대 방향으로 포워딩 된다. NP-ENB(1420)의 하위 RLC 장치(1435)는 P-ENB(1410)가 전달한 RLC PDU를 현재 채널 상황에 맞춰서 적절한 크기로 재분할(re-segmentation)한다.
도 15는 본 명세서의 일 실시 예에 따르는 데이터 유닛의 구조도이다.
도 14에 대한 설명에서 언급한 RLS PDU의 분할 과정을 도 15를 참조하여 좀 더 자세히 설명한다. P-ENB(1410)의 하위 RLC 장치(1435)는 미리 합의된 소정의 크기인 - 예를 들어 페이로드가 1500 바이트인 - RLC PDU(1505)를 NP-ENB(1420)에게로 전달한다. NP-ENB(1420)의 하위 RLC 장치(1435)는 상기 수신한 RLC PDU(1505)를 버퍼에 저장한다. NP-ENB(1420)의 스케줄러는 임의의 시점에 상기 데이터를 전송하기로 결정하고 전송할 데이터의 크기를 선택한다. 상기 데이터의 크기는 해당 시점의 채널 상황, 스케줄링 상황 등에 의해서 결정된다. 하위 RLC 장치(1435)는 상기 결정된 크기에 맞춰서 RLC PDU(1505)를 재분할해서 상기 재분할된 RLC PDU(1510, 1520)를 MAC 계층 장치에게로 전달한다. 재분할 RLC PDU(1510, 1520) 는 오프셋과 마지막 세그먼트 지시자를 포함하는 세그먼트 헤더(1515, 1525)를 더 포함한다. 여기서 상기 오프셋은 재분할 RLC PDU 페이로드의 0 번째 바이트가 원래 RLC PDU의 몇 번째 바이트인지를 나타내는 정보이고 상기 마지막 세그먼트 지시자는 재분할 RLC PDU가 마지막 세그먼트인지를 나타내는 정보이다. 예를 들어 첫 번째 재분할 RLC PDU(1510)의 페이로드의 0 번째 바이트는 원래 RLC PDU(1505) 페이로드의 0번째 바이트이므로 첫 번째 재분할 RLC PDU(1510)의 세그먼트 헤더(1515)에 포함된 오프셋은 0으로 설정될 수 있다. 또한, 첫 번째 재분할 RLC PDU(1510)는 마지막 세그먼트가 아니므로 세그먼트 헤더(1515)의 마지막 세그먼트 지시자는 'NO'로 설정될 수 있다. 두 번째 재분할 RLC PDU(1520)의 페이로드의 0 번째 바이트는 원래 RLC PDU(1505) 페이로드의 500 번째 바이트이므로 두 번째 재분할 RLC PDU(1520) 세그먼트 헤더(1525)의 오프셋은 500으로 설정될 수 있다. 두 번째 재분할 RLC PDU(1520)는 마지막 세그먼트이므로, 세그먼트 헤더(1525)의 마지막 세그먼트 지시자는 'YES'로 설정된다. 하위 RLC 장치(1435)는 상술한 바와 같이 세그먼트 헤더를 삽입하면서 RLC PDU를 재분할할 수 있다. 추후 이러한 세그먼트들은 세그먼트를 재구성하는 다른 장치 또는 다른 구성부에게 전달되고, 상기 세그먼트 헤더(1515, 1525)에 따라 결합될 수 있다.
상기 RLC 하위 장치(1435)는 순방향 데이터만 처리한다. 역방향 데이터는 RLC 하위 장치(1435)를 거치지 않고 NP-ENB(1420)의 MAC 계층으로부터 P-ENB(1410)의 RLC 장치에게로 곧바로 전달된다.
제2 MAC 분산 구조에서 NP-EPS 베어러(1415)의 데이터는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀을 막론하고 모든 서빙 셀을 통해 송수신된다. 프라이머리 셋 서빙 셀을 통해 송수신되는 순방향 데이터의 RLC PDU 크기는 해당 서빙 셀의 채널 상태와 스케줄링 상황이 고려되어 동적으로 결정되는 반면, 넌 프라이머리 셋 서빙 셀을 통해 송수신되는 순방향 데이터의 RLC PDU 크기는 넌프라이머리 셋 서빙 셀의 장기 채널 상태 (long term channel status)가 반영되어서 결정되며, 한 번 결정된 값은 비교적 오랜 기간 동안 변경되지 않는다. 이하 동적으로 결정된 RLC PDU의 크기를 동적 RLC PDU 크기라 하고, 장기 채널 상태 등이 반영되어서 비교적 장기간 동안 적용되는 RLC PDU의 크기를 정적 RLC PDU 크기라 한다. 역방향 데이터에 대해서는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀을 막론하고 동적 RLC PDU 크기가 적용된다.
도 16은 본 명세서의 일 실시 예에 따르는 제2 MAC 분산 구조에서 RLC 장치 및 MAC 장치의 구조도이다.
P-ENB의 RLC 장치는 RLC 수신 기능 (1605)과 RLC 전송 기능(1610)을 모두 구비한다. RLC 전송 기능은 RLC 재분할 기능(1615)을 포함한다. 상기 RLC 재분할 기능은 RLC 재전송 시 RLC PDU의 크기를 조정하기 위한 것이며, 상기 최초로 전송되는 RLC PDU의 크기는 RLC PDU가 전송되는 시점의 채널 상황/스케줄링 상항에 따라 결정된 동적인 RLC PDU 크기(1620)로 설정된다.
P-ENB의 MAC(1650)은 RLC PDU 전송에 앞서 동적인 RLC PDU 크기(1620)를 결정해서 RLC 전송 기능에게 통보한다. NP-ENB의 MAC (1645)은 SCell 설정 단계 혹은 흐름 제어 단계에서 정적인 RLC PDU 크기를 결정해서 RLC 전송 기능에게 통보한다. RLC 전송 기능은 프라이머리 셋 서빙 셀을 통해 전송될 RLC PDU의 크기는 동적인 RLC PDU 크기(1620)에 맞춰서 설정하고 넌프라이머리 셋 서빙 셀을 통해 전송될 RLC PDU의 크기는 고정 RLC PDU 크기(1630)에 맞춰 설정한다.
RLC 전송 기능(1610)은 소정의 방법을 적용해서 프라이머리 셋 서빙 셀에서 전송할 RLC SDU와 넌프라이머리 셋 서빙 셀에서 전송할 RLC SDU를 결정한다. 예를 들어 프라이머리 셋 서빙 셀의 로드 상황과 넌프라이머리 셋 서빙 셀의 로드 상황이 반영된 비율에 따라 RLC SDU들을 분배할 수 있다. 혹은 NP-EPS 베어러의 데이터 발생량과 넌프라이머리 셋의 예상 전송 속도에 따라 전체 RLC SDU들 중 넌프라이머리 셋 서빙 셀에서 전송할 RLC SDU의 비율을 결정할 수도 있다. 상기 넌프라이머리 셋의 예상 전송 속도는 넌프라이머리 셋의 스케줄러가 셀들의 로드 상황과 단말의 채널 상황, NP-EPS 베어러의 우선 순위/중요도, NP-EPS 베어러의 데이터 발생량 등을 고려해서 결정한 후 프라이머리 기지국에게 알려주는 정보이다. RLC 전송 기능은 프라이머리 셋 서빙 셀로 전송할 RLC SDU들은 동적인 RLC PDU 크기에 따라 RLC PDU로 구성해서 프라이머리 셋 서빙 셀을 통해 전송하고, 넌프라이머리 셋 서빙 셀로 전송할 RLC SDU들은 고정 RLC PDU 크기에 따라 RLC PDU로 구성해서 넌프라이머리 기지국으로 전달한다. RLC 전송 기능은 경우에 따라 재전송 RLC PDU들도 넌프라이머리 기지국으로 전달할 수 있다. 이 경우 전달되는 RLC PDU가 재전송 RLC PDU라는 것을 표시해서, 넌프라이머리 기지국이 상기 재전송 RLC PDU를 우선적으로 전송하도록 한다. GTP 헤더의 사용하지 않는 비트 중 하나를 이용해서 재전송 RLC PDU임을 표시할 수도 있고, 재전송 RLC PDU의 크기를 고정 RLC PDU의 크기와 다르게 설정함으로써 암묵적으로 표시할 수도 있다. 넌프라이머리 기지국은 RLC PDU들을 전송함에 있어서 재전송 RLC PDU를 우선적으로 전송한다.
제2 MAC 분산 구조는 아래와 같은 특징을 가진다.
- GTP 터널을 통해 NP-ENB로부터 P-ENB로 RLC 상태 보고 제어 메시지 (RLC STATUS PDU; RLC PDU의 송수신 상태를 보고하는, 즉 RLC의 ACK/NACK 정보를 수납한 제어 정보)가 전달된다.
- P-ENB의 RLC 장치에게 NP-ENB의 MAC 스케줄러는 정적 RLC PDU 크기를 지시하고 P-ENB의 MAC 스케줄러는 동적 RLC PDU 크기를 지시한다. 정적 RLC PDU의 크기는 넌프라이머리 셋 서빙 셀의 장기 채널 상태 (long term channel status)를 반영해서 결정되며, 주기적으로 갱신될 수 있다.
- NP-EPS 베어러 데이터는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀 모두를 통해서 송수신된다. 단말은 NP-EPS 베어러 데이터를 전송함에 있어서, 프라이머리 셋 서빙 셀에서 할당된 전송 자원과 넌프라이머리 셋 서빙 셀에서 할당된 전송을 모두 사용한다.
- NP-EPS 베어러의 순방향 데이터는 NP-ENP의 하위 RLC 장치에 의해서 적절한 크기로 재분할 된 후 단말에게 전송된다.
도 17은 본 명세서의 일 실시 예에 따르는 제2 RLC 분산 구조의 구조도이다.
제2 RLC 분산 구조에서 NP-EPS 베어러(1715)는 S-GW와 P-ENB사이에, NP-DRB의 일부 즉 PDCP 장치(1730)와 RLC 수신 장치(1733)는 P-ENB(1710)에, RLC 송신 장치 (1735)는 NP-ENB(1720)에 설정되는 구조이다. RLC 수신 장치와 RLC 송신 장치를 분리하는 이유는 다음과 같다. NP-EPS 베어러의 순방향 데이터에 대한 RLC PDU 크기를 넌프라이머리 셋 서빙 셀의 채널 상황 및 스케줄링 결정을 반영해서 결정하기 위해 RLC 송신 장치는 NP-ENB에 위치시킨다. 단말이 NP-EPS 베어러의 역방향 데이터를 전송함에 있어서 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀을 모두 이용하도록 하기 위해 RLC 수신 장치는 P-ENB에 위치시킨다. 만약 RLC 수신 장치가 NP-ENB에 설정되고 단말이 프라이머리 셋 서빙 셀로 RLC PDU를 전송한다면, P-ENB가 상기 RLC PDU를 NP-ENB로 전달해서 RLC 수신 장치에 필요한 조치가 취해진 후 다시 P-ENB로 전달되는 현상이 발생하며, RLC 수신 장치를 P-ENB에 위치시킴으로써 이를 방지한다.
제2 RLC 분산 구조에서도 프라이머리 기지국과 넌프라이머리 기지국 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러의 순방향 PDCP PDU (혹은 RLC SDU)가 P-ENB에서 NP-ENB로 포워딩되고, 역방향 RLC PDU (혹은 MAC SDU)가 NP-ENB에서 P-ENB로 전달된다.
- GTP 터널을 통해 NP-ENB로부터 P-ENB로 RLC 상태 보고 제어 메시지 (RLC STATUS PDU; RLC PDU의 송수신 상태를 보고하는, 즉 RLC의 ACK/NACK 정보를 수납한 제어 정보)가 전달된다.
- NP-EPS 베어러 순방향 데이터는 넌프라이머리 셋 서빙 셀을 통해서 송수신된다. NP-EPS 베어러 역방향 데이터는 프라이머리 셋 서빙 셀 서빙 셀과 넌프라이머리 셋 서빙 셀을 통해서 송수신된다.
도 32는 본 명세서의 일 실시 예에 따르는 다중 PDCP 구조의 구조도이다. 다중 PDCP 구조에서는 NP-EPS 베어러 (3205, 3220)에 대해서 여러 개의 DRB를 설정하는 구조이다. 다중 PDCP 구조를 사용하면 EPS 베어러의 최대 데이터 레이트를 높일 수 있다. 도 32는 송신 장치와 수신 장치를 기준으로 설명된 것이다. 단말과 기지국은 송신 장치와 수신 장치를 모두 구비한다. 순방향에서는 분배 장치 (3210)는 P-ENB에 설정되고 순서 재정렬 장치 (3215)는 단말에 설정된다. 역방향에서는 분배 장치 (3210)는 단말에 설정되고 순서 재정렬 장치 (3215)는 P-ENB에 설정된다. 순방향의 경우 두 개의 DRB 중 하나의 DRB(3225)는 P-ENB에 나머지 하나는 NP-DRB(3230)에 설정된다. 역방향의 경우에도 마찬가지로 한 DRB는 P-ENB에 나머지는 NP-DRB에 설정된다.
분배 장치 (3210)는 NP-EPS 베어러의 트래픽을, NP-EPS 베어러와 연결된 NP-DRB들로 분배하는 동작을 수행한다. 상기 분배 장치는 버퍼를 구비하지 않기 때문에, NP-EPS 베어러의 트래픽이 도착하면 실시간으로 둘 중 하나의 DRB로 분배한다. P-ENB의 분배 장치는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀의 채널 상황 및 스케줄링 상황을 고려해서 트래픽을 분배한다. 좀 더 자세히 설명하면, 분배 장치는 P-ENB의 MAC 스케줄러와 NP-ENB의 MAC 스케줄러로부터 예상 throughput 정보를 주기적으로 수신한다. 그리고 P-ENB의 예상 throughput과 NP-ENB의 예상 throughput의 비율에 따라 트래픽을 분배한다.
단말의 분배 장치는 기지국의 지시에 따라 트래픽을 분배한다. 기지국은 넌프라이머리 셋을 설정하는 제어 메시지 예를 들어 RRC 연결 재구성 메시지 (1855)에 분배 정보를 포함시켜서 단말에게 전달한다. 상기 분배 정보는 프라이머리 셋 서빙 셀로 전송할 데이터의 양(혹은 P-DRB로 전달할 데이터의 양)과 넌프라이머리 셋 서빙 셀로 전송할 데이터의 양(혹은 NP-DRB로 전달할 데이터의 양)사이의 비율과 관계된 정보이다. 상기 정보는 예를 들어 넌프라이머리 셋 서빙 셀로 보낼 데이터의 비율을 특정하는 정보 일 수 있으며, 프라이머리 셋 서빙 셀로 보낼 데이터의 비율은 상기 정보에서 유추할 수 있다. 예를 들어 분배 정보가 90이라면, 소정의 기간 동안 NP-EPS 베어러에서 발생하는 데이터 중 90%는 넌프라이머리 셋 서빙 셀의 DRB로 전달하여야 한다는 것을 의미한다. 프라이머리 셋 서빙 셀의 DRB로 전달하여야 할 데이터의 비율은 따라서 10%이다.
순서 재정렬 동작은 미수신된 NP-EPS 베어러 패킷이 존재하는지 검사해서, 존재한다면 상기 미수신된 NP-EPS 베어러 패킷이 수신될 때까지 최대 소정의 기간 동안 대기하는 동작이다. 상기 미수신된 패킷보다 늦게 발생한 패킷은 상기 미수신 패킷이 해소될 때까지 순서 재정렬 버퍼에서 대기한다. 순서 재정렬 동작을 수행하기 위해서는 일련 번호가 필요하다. 본 명세서에서는 TCP의 일련 번호를 이용해서 순서 재정렬 동작을 수행한다.
다중 PDCP 구조에서도 프라이머리 기지국과 넌프라이머리 기지국 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러의 순방향 PDCP SDU가 P-ENB에서 NP-ENB로 포워딩되고, 역방향 PDCP SDU가 NP-ENB에서 P-ENB로 전달된다.
도 33은 본 명세서의 일 실시 예에 따르는 다중 RLC 구조의 구조도이다. 다중 RLC 구조에서는 NP-EPS 베어러 (3305, 3320)에 대해서 여러 개의 RLC 장치를 설정하는 구조이다. 다중 RLC 구조를 사용하면 EPS 베어러의 최대 데이터 레이트를 높일 수 있다. 도 32는 송신 장치와 수신 장치를 기준으로 설명된 것이다. 단말과 기지국은 송신 장치와 수신 장치를 모두 구비한다. 순방향에서 분배 장치 (3310)는 P-ENB에 설정되고 순서 재정렬 장치 (3315)는 단말에 설정된다. 역방향에서는 분배 장치 (3310)는 단말에 설정되고 순서 재정렬 장치 (3315)는 P-ENB에 설정된다. 순방향의 경우 두 개의 RLC 중 하나의 RLC는 P-ENB에 나머지 하나는 NP-DRB에 설정된다. 역방향의 경우에도 마찬가지로 한 DRB는 P-ENB에 나머지는 NP-DRB에 설정된다. 분배 장치는 PDCP 장치와 RLC 장치 사이에 설정된다. 좀 더 자세히 설명하면 상기 분배 장치는 PDCP 장치 중 특히 PDCP 헤더를 부착하는 장치의 아래에 설정된다. 혹은 상기 분배 장치를 PDCP 장치의 일부로 설정하며, PDCP 장치의 가장 마지막 처리 장치로 구성할 수도 있다.
분배 장치 (3310)는 PDCP PDU를 PDCP 장치와 연결된 RLC 장치로 분배하는 동작을 수행한다. 상기 분배 장치는 버퍼를 구비하지 않기 때문에, PDCP PDU가 생성되면 실시간으로 둘 중 하나의 RLC 장치로 분배한다. P-ENB의 분배 장치는 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀의 채널 상황 및 스케줄링 상황을 고려해서 트래픽을 분배한다. 좀 더 자세히 설명하면, 분배 장치는 P-ENB의 MAC 스케줄러와 NP-ENB의 MAC 스케줄러로부터 예상 throughput 정보를 주기적으로 수신한다. 그리고 P-ENB의 예상 throughput과 NP-ENB의 예상 throughput의 비율에 따라 트래픽을 분배한다.
단말의 분배 장치는 기지국의 지시에 따라 트래픽을 분배한다. 기지국은 넌프라이머리 셋을 설정하는 제어 메시지 예를 들어 RRC 연결 재구성 메시지 (1855)에 분배 정보를 포함시켜서 단말에게 전달한다. 상기 분배 정보는 프라이머리 셋 서빙 셀로 전송할 데이터의 양(혹은 P-DRB로 전달할, 혹은 P-LCH로 전달할 데이터의 양)과 넌프라이머리 셋 서빙 셀로 전송할 데이터의 양(혹은 NP-DRB로 전달할, 혹은 NP-LCH로 전달할 데이터의 양)사이의 비율과 관계된 정보이다. 상기 정보는 예를 들어 넌프라이머리 셋 서빙 셀로 보낼 데이터의 비율을 특정하는 정보 일 수 있으며, 프라이머리 셋 서빙 셀로 보낼 데이터의 비율은 상기 정보에서 유추할 수 있다. 예를 들어 분배 정보가 90이라면, 소정의 기간 동안 NP-EPS 베어러에서 발생하는 데이터 중 90%는 넌프라이머리 셋 서빙 셀의 DRB로 (혹은 RLC 장치로) 전달하여야 한다는 것을 의미한다. 프라이머리 셋 서빙 셀의 DRB로 전달하여야 할 데이터의 비율은 따라서 10%이다.
순서 재정렬 동작은 미수신된 NP-EPS 베어러 패킷이 존재하는지 검사해서, 존재한다면 상기 미수신된 NP-EPS 베어러 패킷이 수신될 때까지 최대 소정의 기간 동안 대기하는 동작이다. 상기 미수신된 패킷보다 늦게 발생한 패킷은 상기 미수신 패킷이 해소될 때까지 순서 재정렬 버퍼에서 대기한다. 순서 재정렬 동작을 수행하기 위해서는 일련 번호가 필요하다. 본 명세서에서는 PDCP SN의 일련 번호를 이용해서 순서 재정렬 동작을 수행한다. 상기 미수신 패킷이 수신될 때까지 대기하는 시간은 기지국이 설정해서 단말에게 통보한다.
상기 순서 재정렬 장치는 RLC 장치와 PDCP 장치 사이에 설정된다. 혹은 상기 순서 재정렬 장치를 PDCP 장치의 일부로 설정하는 것도 가능하다. 이 때 상기 순서 재정렬 장치는 PDCP 수신 장치의 첫 번째 처리 장치로 설정될 수 있다. PDCP 장치는 두 종류의 순서 재정렬 동작을 수행한다. 제 1 순서 재정렬 동작은 핸드 오버와 같이 하위 계층 장치가 재수립되는 경우에만 작동하고, 제 2 순서 재정렬 동작은 상시적으로 작동한다. 상기 제 1 순서 재정렬 동작은 AM 베어러에만 적용가능하며, 제 2 순서 재정렬 동작은 RLC AM 베어러와 UM 베어러 모두에 적용 가능하다. 기지국은 베어러를 설정함에 있어서 상기 베어러에 제 1 순서 재정렬 동작만 적용할지, 제 2 순서 재정렬 동작만 적용할지, 둘 모두 적용할지, 순서 재정렬 동작을 적용하지 않을지 결정하고, 소정의 제어 정보를 이용해서 이를 단말에게 통보한다. 제 1 순서 재정렬 동작 적용 여부는 PDCP status report 생성 여부와 연계해서 결정될 수 있다. 단말은 PDCP status report를 생성하도록 설정된 DRB에 대해서는 제 1 순서 재정렬을 적용한다. 제 1 순서 재정렬 동작은, 하위 계층 장치가 재설정된 후 전달되는 PDCP 패킷들 중 순서 정렬이 필요한 PDCP 패킷들을 순서 재정렬 버퍼에 저장해두고, 이 후 수신되는 PDCP 패킷의 일련 번호만을 참조해서, 저장된 PDCP 패킷들 중 어떤 패킷들을 상위 계층으로 전달할지 판단한다. 제 1 순서 재정렬 동작에서는 일련 번호가 n인 패킷을 수신하면 일련 번호가 n보다 낮은 패킷들은 아직 순서 재정렬이 완료되지 않았다 하더라도 상위 계층으로 전달한다. 제 2 순서 재정렬 동작 적용 여부는 순서 재정렬 타이머가 설정되었는지 여부에 따라 결정된다. 즉 임의의 베어러에 대해서 순서 재정렬 타이머가 설정되면 단말은 상기 베어러에 대해서는 제 2 순서 재정렬 동작을 상시적으로 적용한다. 제 2 순서 재정렬 동작에서는 미수신 패킷이 발견되면 상기 타이머를 구동하고, 상기 타이머가 만료되기 전까지 상기 패킷이 수신되지 않으면, 상기 미수신 패킷 보다 낮은 일련 번호의 패킷들을 상위 계층으로 전달한다. 제 1 순서 재정렬과 제 2 순서 재정렬이 동시에 설정된 베어러에 대해서, 단말은 제 1 순서 재정렬을 먼저 적용한 후 제 2 순서 재정렬을 적용한다. 혹은 제 1 순서 재정렬이 적용되는 동안, 즉 하위 계층이 재설정된 후 일정 기간 동안은 제 2 순서 재정렬은 적용하지 않는다.
다중 RLC 구조에서도 프라이머리 기지국과 넌프라이머리 기지국 사이에 데이터 포워딩을 위한 GTP(GPRS Tunnel Protocol) 터널이 형성되고, 상기 GTP 터널을 통해서 NP-EPS 베어러의 순방향 PDCP PDU가 P-ENB에서 NP-ENB로 포워딩되고, 역방향 PDCP PDU가 NP-ENB에서 P-ENB로 전달된다.
도 18은 본 명세서의 일 실시 예에 따르는 프라이머리 셋 및 넌프라이머리 셋 서빙 셀을 추가하고 DRB를 설정하는 동작의 순서도이다.
단말(1805), 기지국 1 (1815), 기지국 2 (1810)로 구성된 이동 통신 시스템에서 셀 a는 기지국 1에 의해서 제어되고 셀 b와 셀 c는 기지국 2에 의해서 제어된다. 상기 셀 a는 매크로 셀, 상기 셀 b와 셀 c는 피코 셀이다. 단말의 PCell은 셀 a 다. 상기 단말에는 2 개의 EPS 베어러가 설정되어 있다. EPS 베어러 1의 DRB 식별자 (이하 DRB id)는 10, 로지컬 채널 식별자 (이하 LCH id)는 4이고, 지연에 민감한 실시간 서비스, 예를 들어 VoIP 서비스를 제공한다. EPS 베어러 2의 DRB id는 11, LCH id는 5이고, 대량의 데이터 송수신이 수반되는 서비스, 예를 들어 파일 다운로드 서비스를 제공한다. 단말은 PCell을 통해 DRB 10과 DRB 11의 데이터를 송수신한다. (1820)
P-ENB, 즉 기지국 1은 상기 단말에게 피코 셀을 설정하기 위해 단말에게 셀 b 혹은 셀 c를 측정하도록 단말에게 지시한다 (1825). 상기 지시 받은 셀에 대해서 측정을 수행한 단말은, 상기 셀의 채널 품질이 소정의 조건을 충족시키면 측정 결과를 기지국에게 보고한다 (1830). 기지국은 단말에게 측정할 셀을 직접 지시하는 대신 측정할 주파수를 지시할 수도 있다. 즉 1825 단계에서 단말에게 셀 b 혹은 셀 c의 주파수를 측정하도록 지시할 수 있다. 측정 결과 보고는 소정의 RRC 제어 메시지에 수납되어 전송된다. 측정 결과 보고를 트리거하는 소정의 조건은 예를 들어 측정이 지시된 주파수의 주변 셀의 채널 품질이 소정의 기준보다 양호한 상태가 소정의 기간 동안 지속되거나, 측정이 지시된 주파수의 주변 셀의 채널 품질이 PCell의 채널 품질보다 소정의 기준 이상 더 좋은 상태가 소정의 기간 동안 지속되는 것 등이 있다.
단말이 보고한 측정 결과를 참조해서 P-ENB는 기지국 2의 피코 셀을 SCell로 추가하고 (1840), 상기 추가된 SCell에서 EPS 베어러 2의 데이터를 송수신 (혹은 송신)하기로 결정한다(1843).
P-ENB는 NP-ENB에게 SCell 추가를 요청하는 제어 메시지를 전송한다 (1845). 상기 제어 메시지에는 하기 표 5의 정보 중 적어도 일부가 수납될 수 있다.
표 5
이름 설명
SCell 후보 정보 NP-ENB의 셀 들 중 SCell로 설정될 수 있는 셀들의 식별자 및 상기 셀들에 대한 측정 결과. NP-ENB는 상기 측정 결과 및 셀들의 로드 상태 등을 고려해서 어떤 셀을 SCell로 설정할지 결정할 수 있다. 한 기지국에 의해서 제어되는 피코 셀들의 순방향 전파 도달 영역 (coverage)이 유사하다면, NP-ENB는 P-ENB가 제안한 SCell 후보 셀이 아닌 셀을 SCell로 설정할 수도 있다.
TAG id 정보 드리프트 기지국에서 설정될 TAG의 식별자와 관련된 정보. 서빙 기지국에서 이미 사용 중인 식별자가 재사용되는 것을 방지하기 위해서 서빙 기지국이 결정해서 드리프트 기지국에게 알려준다.
오프로드될 베어러 정보 넌 프라이머리 셋 서빙 셀 오프로드될 EPS 베어러와 관련된 정보. 요구 QoS 정보, EPS 베어러 식별자 등의 정보 및 아래 정보들이 포함된다.제1 PDCP 분산 구조: PDCP 설정 정보, RLC 설정 정보, DRB id, LCH 정보제2 PDCP 분산 구조: 제1 PDCP 분산 구조와 동일제1 RLC 분산 구조: RLC 설정 정보, DRB id, LCH 정보,제2 RLC 분산 구조: RLC 송신 장치 설정 정보, DRB id, LCH 정보,제1 MAC 분산 구조: LCH 정보제2 MAC 분산 구조: LCH 정보상기 LCH 정보에는 LCH id도 포함된다. RLC 설정 정보는 TS 36.331의 RLC-config에, PDCP 설정 정보는 PDCP-config에, LCH 정보는 logicalChannelConfig에 정의되어 있다. RLC 송신 장치 설정 정보는 RLC-config 중 송신과 관련된 정보다.
호 승낙 제어 관련 정보 드리프트 기지국이 SCELL 추가 요청을 승낙할지 거부할지 판단할 수 있도록 서빙 기지국이 참고 정보를 제공한다. 예를 들어 요구되는 전송률, 예상 상향링크 데이터 양, 예상 하향링크 데이터 양 등이 해당된다.
GTP Tunnel 정보 역방향 데이터 포워딩에 사용될 GTP Tunnel 정보.
NP-ENB는 호 승낙 제어를 수행한다. SCell 추가 요청을 승낙하기로 결정하였다면, SCell을 설정할 셀을 결정하고 NP-DRB를 설정한다. NP-ENB는 P-ENB에서 사용되던 LCH id를 재사용해서 단말이 하나의 MAC만 사용할 수 있도록 한다. 예컨대, NP-ENB는 EPS 베어러 2에 대한 DRB 전체 혹은 DRB의 일부를 설정함에 있어서 LCH id로 5를 할당한다.
단말 MAC의 중요한 기능 중 하나는 여러 DRB의 RLC PDU들을 하나의 MAC PDU에 다중화하거나 역다중화하는 것이다. 상기 다중화 및 역다중화를 위해서는 MAC PDU 헤더의 LCH id가 적절하게 기입되어야 한다. 따라서 P-ENB와 NP-ENB가 서로 일관되지 않게 LCH id를 할당한다면, 예를 들어 서로 다른 DRB에 대해서 동일한 LCH id를 사용한다면, 단말은 P-ENB와 NP-ENB에 대해서 개별적으로 MAC을 설정하여야 한다. 본 명세서에서는 이를 피하기 위해, NP-ENB는 NP-DRB의 LCH id를 할당함에 있어서, P-ENB에서 다른 DRB에 사용하고 있지 않은 LCH id를 할당한다. 예를 들어 해당 DRB에 대해서 P-ENB가 이미 사용하였던 LCH id를 할당할 수 있다.
NP-ENB는 NP-DRB의 DRB id를 할당함에 있어서, P-ENB에서 사용되던 값을 그대로 적용한다. 만약 NP-DRB에 새로운 DRB id가 할당된다면, 단말은 새로운 DRB가 설정된 것으로 판단해서 유해한 동작, 예를 들어 현재 DRB 버퍼에 저장되어 있는 데이터를 폐기하거나 상위 계층으로전달하는 동작을 수행할 수 있기 때문이다.
NP-ENB는 NP-DRB의 PDCP 장치와 RLC 장치를 설정함에 있어서, P-ENB에서 사용했던 PDCP 설정과 RLC 설정을 그대로 적용한다. 다른 설정이 사용되면 단말은 현재 사용 중인 DRB를 해체한 후 새로운 설정에 맞춰 재구성하며, 이는 상기 유해한 동작으로 이어질 수 있기 때문이다.
NP-ENB는 구체적으로 아래와 같이 NP-DRB 전체 혹은 일부를 설정한다.
제1 PDCP 분산 구조 혹은 제2 PDCP 분산 구조라면 PDCP 장치와 RLC 장치 및 LCH를 모두 설정한다. 제1 RLC 분산 구조라면 RLC 장치 및 LCH를 설정한다. 제2 RLC 분산 구조라면 RLC 송신 장치 및 LCH를 설정한다. 제1 MAC 분산 구조라면 LCH를 설정한다. 제2 MAC 분산 구조라면 하위 RLC 송신 장치와 LCH를 설정한다.
NP-ENB는 P-ENB에게 SCELL 추가를 승낙하는 제어 메시지를 전송한다(1850). 상기 제어 메시지에는 하기 표 6의 정보 중 적어도 일부가 수납될 수 있다.
표 6
이름 설명
SCellToAddMod 드리프트 기지국에서 설정된 SCell 들(예를 들어 셀 b와 셀c)과 관련된 정보로, 다음과 같은 정보들로 구성된다. sCellIndex-r10, cellIdentification-r10, radioResourceConfigCommonSCell-r10, radioResourceConfigDedicatedSCell-r10, TAG 관련 정보;
PUCCH SCell에 대한 PUCCH 설정 정보 넌프라이머리 셋에 속하는 SCell 중 적어도 하나의 SCell 에는 PUCCH (Physical Uplink Control Channel)이 설정된다. PUCCH를 통해서는 HARQ feedback이나 CSI (Channel Status Information)이나 SRS (Sounding Reference Signal)나 SR (Scheduling Request) 등의 역방향 제어 정보가 전송된다. 이하 PUCCH가 전송되는 SCell을 PUCCH SCell이라 한다. PUCCH SCell의 식별자 정보와 PUCCH 구성 정보 등이 이 정보의 하위 정보이다.
GTP Tunnel 정보 순방향 데이터 포워딩에 사용될 GTP Tunnel 정보.
단말의 식별자 단말이 넌프라이머리 셋의 SCell에서 사용할 C-RNTI이다. 이하 C-RNTI_NP라 한다.
베어러 설정 정보 오프로드될 베어러의 설정 정보이다. 오프로드가 승낙된 베어러의 리스트와 베어러 별 설정 정보가 포함된다. 베어러의 설정이 동일하다면 승낙된 베어러의 리스트 정보만 포함될 수도 있다. 구조 별로 아래 정보가 추가로 수납된다.제1 MAC 분산 구조: RLC PDU 크기; 해당 시점의 채널 상황 등을 고려해서 설정된 RLC PDU 크기이며, NP-ENB에 의해서 갱신될 수 있다.제2 MAC 분산 구조: 정적 RLC PDU 크기; 하위 RLC 장치가 재분할을 통해 크기를 조절하므로 정적 RLC PDU 크기는 상당히 큰 값으로 설정될 수 있으며, 최초 설정 후 변경되지 않는다.
MAC 설정 정보 넌 프라이머리 셋 서빙 셀에 적용할 각 종 MAC 설정 정보. 예를 들어 DRX 관련 정보, PHR 설정 정보, BSR 설정 정보 등이 있다.
P-ENB는 상기 제어 메시지를 수신하면 서빙 셀 추가를 지시하는 RRC 제어 메시지를 생성해서 단말에게 전송한다(1855). 상기 RRC 제어 메시지에는 하기 표 7의 정보 중 적어도 일부가 포함될 수 있다. P-ENB는 또한 NP-DRB의 데이터 송수신을 아래와 같이 중지한다.
제1/제2 PDCP 분산 구조, 제1/제2 RLC 분산 구조: NP-DRB의 순방향 데이터 전송을 중지.
제1/제2 MAC 분산 구조: NP-DRB의 순방향 데이터 전송 지속
표 7
이름 설명
SCellAddMod 드리프트 기지국이 전달한 정보가 그대로 수납된다. 즉 표 6의 SCellAddMod과 동일한 정보이다. SCell 하나 당 하나의 SCellAddMod 가 수납되며, 상기 정보는 SCellAddModList의 하위 정보이다.
PUCCH SCell에 대한 PUCCH 설정 정보 드리프트 기지국이 전달한 정보가 그대로 수납된다. 즉 표 6의 PUCCH information for PUCCH SCell과 동일한 정보이다.
넌프라이머리 셋 서빙 셀 정보 설정되는 SCell들 중 넌프라이머리 셋에 속하는 SCell들에 관한 정보이다. 상기 SCell들의 식별자들이거나, 넌프라이머리 셋에 속하는 TAG들의 식별자일 수 있다.
단말의 식별자 단말이 넌프라이머리 셋의 서빙 셀에서 사용할 C-RNTI, 즉 C-RNTI_NP.
오프로드 베어러 정보 드리프트 기지국에서 처리할 베어러와 관려된 정보이다. 단말 입장에서는 넌프라이머리 셋의 서빙 셀들을 통해서 송수신할 베어러와 관련된 정보이며, 베어러의 리스트 및 베어러 설정 정보가 포함된다. 베어러 설정이 동일하다면 상기 베어러 설정 정보는 생략될 수도 있다. 상기 베어러의 리스트의 베어러 식별자는 EPS 베어러의 식별자 혹은 DRB id 혹은 LCH id일 수 있다. DRB id라면 예를 들어 11이 시그날링된다.
MAC 설정 정보 넌 프라이머리 셋 서빙 셀과 관련된 각 종 MAC 설정 정보. 예를 들어 DRX 관련 정보, PHR 설정 정보, BSR 설정 정보 등이 있다.
1857 단계에서 단말은 RRC 연결 재구성 제어 메시지를 수신하면 상기 제어 메시지에 수납된 각 종 정보를 이용해서 SCell 및 PHR, BSR 등을 설정한다. 단말은 오프로드 베어러 정보가 수납되어 있다면 아래와 같이 데이터 송수신을 중지한다.
제1 혹은 제2 PDCP 분산 구조, 제1 RLC 분산 구조: NP-DRB의 역방향 데이터 전송을 중지.
제2 RLC 분산 구조, 제1 혹은 제2 MAC 분산 구조: NP-DRB의 역방향 데이터 전송 지속
그리고 제1 혹은 제2 PDCP 분산 구조 또는 제1 혹은 제2 RLC 분산 구조라면 NP-DRB에 대해서 제1 재설정 절차를 수행한다.
단말은 PUCCH SCell과 순방향 동기를 수립한 후 PUCCH SCell에서 랜덤 액세스를 수행한다(1860). 보다 구체적으로, 단말은 PUCCH SCell의 소정의 시구간에 소정의 주파수 자원을 이용해서 랜덤 액세스 프리앰블을 전송하고, 상기 프리앰블을 전송한 시점을 기준으로 정의되는 소정의 시구간 동안 랜덤 액세스 응답 메시지 수신을 시도한다. 유효한 랜덤 액세스 응답 메시지가 수신되면 상기 메시지의 역방향 전송 타이밍 조정 명령 (Timing Advance Command)을 해석해서 역방향 전송 타이밍을 조정한다. 그리고 상기 메시지의 역방향 그랜트 정보에서 지시된 역방향 전송 자원을 이용해서 PUCCH SCell로 MAC PDU를 전송한다. 상기 MAC PDU에는 C-RNTI MAC CE와 BSR MAC CE가 수납되며, C-RNTI MAC CE에는 C-RNTI_NP가 기입된다. BSR MAC CE에는 오프로드 베어러에 저장되어 있는 전송 가능한 데이터의 양을 지시하는 버퍼 상태 정보가 수납된다. C-RNTI MAC CE와 BSR MAC CE는 TS 36.321의 6.1.3에 정의되어 있다. 단말은 PUCCH SCell에서 C-RNTI_NP로 어드레스 된, 최초 전송을 지시하는 PDCCH가 수신되는지 검사한다. 상기 조건을 만족시키는 PDCCH가 소정의 기간 내에 수신되면 단말은 랜덤 액세스가 성공적으로 완료된 것으로 판단하며 아래와 같이 데이터 송수신을 재개한다.
제1 혹은 제2 PDCP 분산 구조 또는 제1 혹은 제2 RLC 분산 구조라면 NP-DRB에 대해서 PDCP STATUS REPORT를 생성해서 넌프라이머리 셋 서빙 셀로 전송한다.
단말은 새롭게 설정된 SCell에서 NP-DRB 데이터 송수신을 수행한다(1865). 제1 혹은 제2 PDCP 분산 구조 또는 제1 혹은 제2 RLC 분산 구조라면 단말은 셋 기반 로지컬 채널 우선화 동작 (Set specific logical channel prioritization)을 적용한다. 제1 혹은 제2 MAC 분산 구조라면 일반적인 로지컬 채널 우선화 동작을 적용한다.
SCell 추가 승낙 제어 메시지를 수신한 P-ENB는 오프로드 할 DRB의 데이터를 NP-ENB로 포워딩하는 절차를 개시한다. P-ENB는 NP-ENB로 SN 상태 메시지를 전송하며(1870), 상기 메시지에는 조건 1을 충족시키는 NP-DRB에 대한 하기 표 8의 정보 중 적어도 일부가 포함될 수 있다.
표 8
이름 설명
UL PDCP PDU 수신 상태 정보 소정의 크기의 비트 맵. n번째 비트는 PDCP SN이 m인 PDCP SDU의 수신 상태를 나타낸다. m = (첫번째 미수신 PDCP SDU의 PDCP SN + n) modulo (Max PDCP SN + 1)
UL COUNT 첫번째 미수신 PDCP SDU의 COUNT. COUNT는 32 비트의 정수이며 PDCP SDU마다 1씩 증가한다. COUNT는 HFN과 PDCP SN이 연접된 값이다.
DL COUNT 아직 PDCP SN이 할당되지 않은 PDCP SDU들 중 첫번째 PDCP SDU에 부여될 COUNT.
[조건 1]
해당 DRB가 RLC AM 모드로 동작하며 PDCP STATUS REPORT를 생성하도록 설정되어 있음.
PDCP STATUS REPORT는 RLC 장치의 재설정으로 인해서 RLC가 일시적으로 ARQ를 수행하지 못할 경우에 패킷 손실을 방지하기 위해서 PDCP 송수신 장치가 주고 받는 제어 메시지이다.
P-ENB는 NP-ENB에게 아래와 같이 데이터 포워딩을 수행한다 (1875).
제1 혹은 제2 PDCP 분산 구조
- 순방향 데이터: 버퍼에 저장되어 있는 PDCP SDU들 중, 전송 성공 여부가 확실하지 않은 PDCP SDU들을 전달한다.
-- 이미 PDCP SN이 할당된 PDCP SDU들은 GTP 헤더에 할당된 PDCP SN 정보를 포함시켜서 NP-ENB로 전송.
-- 아직 PDCP SN이 할당되지 않은 PDCP SDU들은 GTP 헤더에 PDCP SN 정보를 포함시키지 않고 NP-ENB로 전송
- 역방향 데이터
-- 성공적으로 수신되었지만 순서가 정렬되지 않은 PDCP SDU들을 NP-ENB로 전송. 이 때 GTP 헤더에 PDCP SN 정보를 포함시킨다.
제1 혹은 제2 RLC 분산 구조
- 순방향 데이터: 버퍼에 저장되어 있는 PDCP SDU들 중, 전송 성공 여부가 확실하지 않은 PDCP SDU들을 PDCP PDU로 처리해서 전달한다.
-- 이미 PDCP SN이 할당된 PDCP PDU들은 GTP 헤더에 PDCP PDU가 수납되어 있다는 것을 지시하는 정보를 포함시켜서 NP-ENB로 전송.
-- 아직 PDCP SN이 할당되지 않은 PDCP SDU들은 PDCP PDU로 처리하고 GTP 헤더에 PDCP PDU가 수납되어 있다는 것을 지시하는 정보를 포함시켜서 NP-ENB로 전송
- 역방향 데이터는 전달하지 않는다.
데이터 송수신과 관련된 각 구조 별 동작을 정리하면 아래와 같다.
제1 혹은 제2 PDCP 분산 구조
- NP-ENB는 SCell 추가 요청 메시지(1845)를 수신하고 SCell 추가 승낙을 결정하면 NP-DRB를 설정한다.
- P-ENB는 단말에게 RRC 연결 재구성 제어 메시지 (1885)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1885)를 수신하면 NP-DRB의 역방향 데이터 전송을 중지하고 RLC 송수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- P-ENB는 NP-ENB에게 SN 상태 정보(1870)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU 및 수신 버퍼에 저장된 역방향 PDCP SDU에 대한 정보가 수납된다.
- P-ENB는 NP-ENB에게 순방향 PDCP SDU들은 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달하고, 역방향 PDCP SDU들은 역방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다(1875).
- 단말은 넌 프라이머리 셋 서빙 셀과 순방향 동기를 획득하고 PUCCH SCell에서 랜덤 액세스가 완료되면, PDCP Status Report를 생성해서 넌 프라이머리 셋 서빙 셀에서 전송한다. 상기 PDCP Status Report는 PDCP 수신 버퍼에 저장된 순방향 PDCP SDU들을 참조해서 생성된다.
- NP-ENP는 단말에게 역방향 PDCP 수신 버퍼에 저장된 역방향 PDCP SDU들을 참조해서, 혹은 SN 상태 정보를 참조해서 생성된다.
- 단말과 NP-ENB는 넌 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 데이터 송수신을 재개한다.
제1 RLC 분산 구조
- NP-ENB는 SCell 추가 요청 메시지(1845)를 수신하고 SCell 추가 승낙을 결정하면 NP-DRB의 RLC 장치를 설정한다.
- P-ENB는 단말에게 RRC 연결 재구성 제어 메시지 (1885)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 RLC SDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1885)를 수신하면 NP-DRB의 역방향 데이터 전송을 중지하고 RLC 송수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- P-ENB는 NP-ENB에게 SN 상태 정보(1870)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU 및 수신 버퍼에 저장된 역방향 PDCP SDU에 대한 정보가 수납된다.
- P-ENB는 NP-ENB에게 순방향 RLC SDU들은 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달하고, 역방향 RLC SDU들은 역방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다(1875).
- 단말은 넌 프라이머리 셋 서빙 셀과 순방향 동기를 획득하고 PUCCH SCell에서 랜덤 액세스가 완료되면, PDCP Status Report를 생성해서 넌 프라이머리 셋 서빙 셀에서 전송한다. 상기 PDCP Status Report는 PDCP 수신 버퍼에 저장된 순방향 PDCP SDU들을 참조해서 생성된다.
- P-ENP는 단말에게 PDCP STATUS REPORT를 생성해서 전송한다. PDCP STATUS REPORT는 역방향 PDCP 수신 버퍼에 저장된 역방향 PDCP SDU들을 참조해서, 혹은 SN 상태 정보를 참조해서 생성된다.
- 단말과 NP-ENB는 넌 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 데이터 송수신을 재개한다.
제2 RLC 분산 구조
- NP-ENB는 SCell 추가 요청 메시지(1845)를 수신하고 SCell 추가 승낙을 결정하면 NP-DRB의 RLC 전송 장치를 설정한다.
- P-ENB는 단말에게 RRC 연결 재구성 제어 메시지 (1885)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC 수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1885)를 수신하더라도 NP-DRB의 역방향 데이터 전송을 계속 수행한다. 단말은 또한 RLC 송신 장치는 그대로 유지하면서 수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- P-ENB는 NP-ENB에게 SN 상태 정보(1870)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU에 대한 정보, 즉 DL COUNT 정보가 수납된다.
- P-ENB는 NP-ENB에게 순방향 PDCP PDU들을 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다 (1875).
- 단말은 넌 프라이머리 셋 서빙 셀과 순방향 동기를 획득하고 PUCCH SCell에서 랜덤 액세스가 완료되면, PDCP Status Report를 생성해서 넌 프라이머리 셋 서빙 셀에서 전송한다. 상기 PDCP Status Report는 PDCP 수신 버퍼에 저장된 순방향 PDCP SDU들을 참조해서 생성된다.
- NP-ENB는 넌 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 순방향 데이터 송수신을 재개한다.
제1 혹은 제2 MAC 분산 구조
- NP-ENB는 SCell 추가 요청 메시지(1845)를 수신하고 SCell 추가 승낙을 결정하면 NP-DRB의 로지컬 채널을 설정한다.
- P-ENB는 SCell 추가/해제 과정에서 NP-LCH의 순방향 데이터 전송을 중단하지 않고 지속한다.
- 단말은 SCell 추가/해제 과정에서 NP-LCH의 역방향 데이터 전송을 중단하지 않고 지속한다.
- SN 상태 보고 메시지와 PDCP STATUS REPORT는 사용되지 않는다.
도 19는 본 명세서의 일 실시 예에 따르는 SCell을 해제하고 데이터를 송수신하는 동작의 순서도이다.
1865 단계에서 단말은 넌프라이머리 셋 서빙 셀을 통해 NP-DRB의 데이터를 송수신한다.
P-ENB(1815)는 NP-ENB(1810)로 NP-DRB의 순방향 데이터를 포워딩하고 NP-ENB는 P-ENB로 역방향 데이터를 포워딩한다 (1903).
임의의 시점에 단말은 넌 프라이머리 셋 서빙 셀의 채널 품질이 소정의 기준 이하라는 측정 결과를 보고한다 (1905). P-ENB는 넌 프라이머리 셋 서빙 셀 중 일부, 예를 들어 PUCCH SCell의 채널 품질이 소정의 기준 이하라면 넌 프라이머리 셋 서빙 셀들을 모두 해제하기로 결정할 수 있다(1907).
P-ENB는 NP-ENB에게 단말(1805)의 SCell 해제를 요청하는 제어 메시지를 전송한다 (1910). 상기 제어 메시지를 수신한 NP-ENB는 아래 동작을 수행한다 (1913).
- 넌 프라이머리 셋 서빙 셀 중 일부만 해제되며, 해제되는 서빙 셀 중 PUCCH SCell이 포함되지 않는 경우
-- 소정의 MAC CE (Activation/Deactivation MAC CE, TS 36.321 참조)를 전송해서 해제되는 SCell들을 비활성화시킨다.
-- 해제가 지시된 SCell들을 해제한다.
- 넌 프라이머리 셋 서빙 셀 중 일부만 해제되지만 해제되는 서빙 셀 중 PUCCH SCell이 포함되거나 (즉 SCell 해제의 결과로 PUCCH SCell이 부재하거나), 넌 프라이머리 셋 서빙 셀 전체가 해제되는 경우
-- 소정의 MAC CE (이하 제1 MAC CE)를 전송해서 SCell들을 비활성화시키고, PUCCH SCell의 역방향 전송을 금지한다.
-- 모든 넌 프라이머리 셋 서빙 셀들을 해제한다.
-- NP-DRB 데이터 송수신 중지
-- NP-DRB의 RLC 장치 및 PDCP 장치를 재수립
-- 1945 단계로 진행해서 SN 상태 정보 전송
제1 MAC CE는 페이로드 없이 MAC 서브 헤더만으로 구성되는 것으로, 단말에게 아래 동작을 수행할 것을 지시한다.
- 현재 활성화 상태인 넌 프라이머리 셋 서빙 셀들 중, PUCCH SCell을 제외한 나머지 서빙 셀들을 비활성화
- PUCCH SCell의 역방향 전송(예를 들어 채널 상태 지시자 (Channel Quality Indicaotr)나 Scheduling Request나 랜덤 액세스 프리앰블 전송 등) 금지
NP-ENB는 P-ENB에게 SCell 해제를 승낙하는 제어 메시지를 전송한다 (1915).
P-ENB는 단말에게 SCell 해제를 지시하는 제어 메시지를 전송한다 (1920). 상기 제어 메시지에는 해제될 SCell의 식별자 정보 등이 수납된다. 상기 제어 메시지를 수신한 단말은 아래 동작을 수행한다.
- 넌 프라이머리 셋 서빙 셀 중 일부만 해제되며, 해제되는 서빙 셀 중 PUCCH SCell이 포함되지 않는 경우
-- 해제가 지시된 SCell을 해제
-- NP-DRB의 데이터 송수신을 유지
- 넌 프라이머리 셋 서빙 셀 중 일부만 해제되지만 해제되는 서빙 셀 중 PUCCH SCell이 포함되거나 (즉 SCell 해제의 결과로 PUCCH SCell이 부재하거나),, 넌 프라이머리 셋 서빙 셀 전체가 해제되는 경우
-- 프라이머리 셋 서빙 셀 전체를 해제 (1925)
-- NP-DRB 데이터 송수신을 중지하고 제1 재수립 수행 (1930)
-- NP-DRB 데이터 송수신을 재개. 이 때 프라이머리 셋 서빙 셀의 전송 자원만 사용 (1935).
-- NP-DRB에 대해서 PDCP STATUS REPORT 생성 (1940)
이후 단말은 프라이머리 셋 서빙 셀을 통해 NP-DRB 데이터를 송수신한다 (1955).
1945 단계에서 NP-ENB는 P-ENB에게 SN 상태 정보 메시지를 전송하고, 1950 단계에서 데이터를 포워딩한다.
P-ENB는 상기 포워딩된 데이터를 이용해서 단말과 NP-DRB 송수신을 진행한다 (1955).
도 20는 본 명세서의 다른 실시 예에 따르는 SCell을 해제하고 데이터를 송수신하는 동작의 순서도이다.
예를 들어 넌 프라이머리 셋 서빙 셀의 CQI 등을 참조해서 SCell 해제 여부를 NP-ENB가 판단할 수도 있다.
단말은 PUCCH SCell의 PUCCH 전송 자원을 이용해서 현재 활성화 상태인 넌 프라이머리 셋 서빙 셀들의 CQI를 보고한다 (2005).
NP-ENB는 넌 프라이머리 셋 서빙 셀들의 CQI가 열악한 상태가 소정의 기준 이상이 지속되면, 혹은 PUCCH SCell의 CQI가 소정의 열악한 상태가 소정의 기준 이상 지속되면 넌 프라이머리 셋 서빙 셀을 해제하기로 결정한다(2007). NP-ENB는 P-ENB에게 SCell해제를 지시하는 제어 메시지를 전송한다. 상기 제어 메시지를 통해 설정되어 있는 SCell들 중의 일부 혹은 전체가 해제될 수 있다. NP-ENB는 1913 단계 동작을 수행한다. 나머지 단계는 도 19와 동일하다.
데이터 송수신과 관련된 각 구조 별 동작을 정리하면 아래와 같다.
제1 혹은 제2 PDCP 분산 구조
- NP-ENB는 모든 SCell을 해제하는 것과 관련된 제어 메시지, 예를 들어 SCell 해제 승낙 메시지 (1915) 혹은 SCell 해제 메시지 (2010)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1920)를 수신하면 NP-DRB의 역방향 데이터 전송을 중지하고 RLC 송수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 NP-DRB의 역방향 데이터 전송을 곧 바로 재개하고 PDCP STATUS REPORT를 생성해서 프라이머리 셋 서빙 셀로 전송한다.
- NP-ENB는 P-ENB에게 SN 상태 정보(1945)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU 및 수신 버퍼에 저장된 역방향 PDCP SDU에 대한 정보가 수납된다.
- NP-ENB는 P-ENB에게 순방향 PDCP SDU들은 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달하고, 역방향 PDCP SDU들은 역방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다(1950).
- P-ENP는 단말에게 PDCP STATUS REPORT를 생성해서 전송한다. PDCP STATUS REPORT는 역방향 PDCP 수신 버퍼에 저장된 역방향 PDCP SDU들을 참조해서, 혹은 SN 상태 정보를 참조해서 생성된다.
- 단말과 P-ENB는 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 순방향 데이터 송수신을 재개한다.
제1 RLC 분산 구조
- NP-ENB는 모든 SCell을 해제하는 것과 관련된 제어 메시지, 예를 들어 SCell 해제 승낙 메시지 (1915) 혹은 SCell 해제 메시지 (2010)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 RLC SDU로 재조립되어서 P-ENB의 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1920)를 수신하면 NP-DRB의 역방향 데이터 전송을 중지하고 RLC 송수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- 단말은 NP-DRB의 역방향 데이터 전송을 곧 바로 재개하고 PDCP STATUS REPORT를 생성해서 프라이머리 셋 서빙 셀로 전송한다.
- NP-ENB는 P-ENB에게 SN 상태 정보(1945)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU 및 수신 버퍼에 저장된 역방향 PDCP SDU에 대한 정보가 수납된다.
- NP-ENB는 P-ENB에게 순방향 RLC SDU들은 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달하고, 역방향 RLC SDU들은 역방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다(1950).
- P-ENB는 단말에게 PDCP STATUS REPORT를 생성해서 전송한다. PDCP STATUS REPORT는 역방향 PDCP 수신 버퍼에 저장된 역방향 PDCP SDU들을 참조해서, 혹은 SN 상태 정보를 참조해서 생성된다.
- 단말과 P-ENB는 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 순방향 데이터 송수신을 재개한다.
제2 RLC 분산 구조
- NP-ENB는 모든 SCell을 해제하는 것과 관련된 제어 메시지, 예를 들어 SCell 해제 승낙 메시지 (1915) 혹은 SCell 해제 메시지 (2010)를 전송하면 NP-DRB의 순방향 데이터 전송을 중지하고 RLC 수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 역방향 RLC 패킷들이 RLC SDU로 재조립되어서 P-ENB의 PDCP 장치로 전달된다.
- 단말은 RRC 연결 재구성 제어 메시지 (1920)를 수신하더라도 NP-DRB의 역방향 데이터 전송을 계속 수행한다. 단말은 또한 RLC 송신 장치는 그대로 유지하면서 수신 장치를 재수립한다. 결과적으로 RLC 수신 장치에 저장되어 있던 순방향 RLC 패킷들이 PDCP PDU로 재조립되어서 PDCP 장치로 전달된다.
- NP-ENB는 P-ENB에게 SN 상태 정보(1945)를 전송한다. 상기 SN 상태 정보에는 PDCP 송신 버퍼에 저장되어 있는 순방향 PDCP SDU에 대한 정보, 즉 DL COUNT가 수납된다.
- NP-ENB는 P-ENB에게 순방향 RLC SDU들을 순방향 데이터 포워딩을 위한 GTP 터널을 이용해서 전달한다 (1950).
- 단말과 P-ENB는 프라이머리 셋 서빙 셀의 전송 자원을 사용해서 NP-DRB의 순방향 데이터 송수신을 재개한다.
제1 혹은 제2 MAC 분산 구조
- NP-ENB는 모든 SCell을 해제하는 것과 관련된 제어 메시지, 예를 들어 SCell 해제 승낙 메시지 (1915) 혹은 SCell 해제 메시지 (2010)를 전송하면 NP-DRB의 로지컬 채널을 해제한다.
- P-ENB는 SCell 추가/해제 과정에서 NP-LCH의 순방향 데이터 전송을 중단하지 않고 지속한다.
- 단말은 SCell 추가/해제 과정에서 NP-LCH의 역방향 데이터 전송을 중단하지 않고 지속한다.
- SN 상태 보고 메시지와 PDCP STATUS REPORT는 사용되지 않는다.
도 21은 본 명세서의 일 실시 예에 따르는 비화/역비화 과정을 나타낸다.
PDCP 분산 구조 1과 PDCP 분산 구조 2에서는 NP-ENB가 NP-DRB 데이터에 대한 비화/역비화를 수행한다. 비화/역비화에 대해서 좀 더 자세히 설명하면, PDCP 송신 장치는 아래 인풋들을 EEA (EPS Encryption Algorithm)가 설치된 비화 엔진(2105)에 입력해서, 비화하고자 하는 평문 (2115)와 동일한 크기를 가지는 키스트림 블록(2110)을 생성한다. 상기 비화하고자 하는 평문은 PDCP SDU다.
COUNT는 HFN과 PDCP SN이 연접된 32비트 정수다. 0으로 초기화된 후 PDCP SDU마다 1씩 증가한다. BEARER는 DRB id와 관련된 것으로 PDCP SDU와 관련된 DRB의 id에서 1을 감한 것이다. DIRECTION은 순방향과 역방향 중 어떤 방향의 데이터인지에 따라 결정되는 1 비트 정보이다. LENGTH는 요구되는 키스트림 블록의 길이다. KEY는 비화키로 소정의 알고리즘에 의해서 KeNB로부터 유도되며 KUPenc라 한다.
키스트림 블록(2110)과 PDCP SDU(2115)에 소정의 연산, 예를 들어 exclusive OR 연산을 취해 비화된 텍스트(2120)가 생성된다. PDCP 수신 장치는 상기 비화된 텍스트 (PDCP PDU의 페이로드)를 동일한 절차와 인풋을 통해 생성된 키 스트림 블록(2135)와 소정의 연산을 취해서 원래의 평문(2140)으로 복구한다.
PDCP 분산 구조에서는 NP-ENP가 순방향 PDCP SDU를 비화하고 역방향 PDCP SDU를 역비화하며, NP-ENB도 KEY를 소유한다. NP-ENB와 P-ENB가 독립적으로 KEY를 관리하면 단말의 복잡도가 증가하는 문제가 있기 때문에 본 명세서에서는 P-ENB가 NP-ENB에게 KEY 생성과 관련된 정보를 제공하고, NP-ENB가 상기 정보를 이용해서 KEY를 생성하도록 한다.
좀 더 자세히 설명하면, P-ENB는 KeNB라는 일종의 루트 키를 사용해서 KEY를 생성한다. 단말과 기지국은 호 설정 과정, 혹은 핸드 오버 과정 등을 통해 상기 KeNB를 공유하고 상기 KeNB로부터 KEY를 생성한 후 DRB 데이터의 비화 및 역비화를 수행한다.
임의의 시점에 임의의 DRB 예를 들어 DRB 11이 NP-ENB로 오프로드되면, P-ENB는 NP-ENB에게 비화/역비화 수행에 필요한 정보를 제공한다. 상기 정보로는 아래와 같은 것들이 있다.
- KeNB: 현재 사용 중인 KEY 생성에 사용된 루트 키
- BEARER: NP-DRB의 DRB id에서 1을 감소시킨 값. 상기 예에서는 10. BEARER를 알려주는 대신 NP-DRB에 할당되어야 하는 DRB id를 알려주는 것도 가능하다.
- COUNT: NP-DRB에서 사용 중인 COUNT값. 순방향 COUNT와 역방향 COUNT가 모두 시그널링된다.
KeNB와 BEARER (혹은 DRB id)는 SCELL 추가 요청 제어 메시지 (1845)에 포함되어 NP-ENB에게 전달될 수 있다.
COUNT는 SN 상태 정보 제어 메시지 (1870)에 포함되어 NP-ENB에게 전달될 수 있다.
NP-ENB는 상기 KeNB를 소정의 키 생성 기능 (KDF, Key Delivery Function)에 입력해서 KEY를 생성한다. 그리고 상기 KEY를 이용해서 NP-DRB의 순방향 데이터 비화 및 역방향 데이터 역비화를 수행한다.
NP-ENB는 NP-DRB 데이터의 비화/역비화를 수행함에 있어서, BEARER로 상기 NP-DRB의 DRB id가 아니라 SCELL 추가 요청 제어 메시지에서 제공된 BEARER 값을 적용한다.
NP-ENB는 SN 상태 정보 제어 메시지에서 제공된 DL COUNT를 이용해서 NP-DRB 순방향 PDCP SDU에 적용할 COUNT를 결정한다. 그리고 PDCP SDU를 전송할 때마다 혹은 비화할 때마다 COUNT를 1씩 증가시킨다.
NP-ENB는 SN 상태 정보 제어 메시지에서 제공된 UL COUNT를 이용해서 NP-DRB 역방향 PDCP SDU에 적용할 COUNT를 결정한다.
임의의 시점에 넌 프라이머리 셋 서빙 셀을 해제하고 NP-DRB를 NP-ENB에서 P-ENB로 이동하기로 결정하면, NP-ENB는 P-ENB에게 SN 상태 제어 메시지(1945)를 전송한다. 상기 SN 상태 제어 메시지에는 DL COUNT와 UL COUNT가 수납된다. NP-ENB는 아직 PDCP SN이 할당되지 않은 첫번째 순방향 PDCP SDU에게 적용되어야 하는 COUNT를 DL COUNT에 수납한다. NP-ENB는 첫번째 미수신 PDCP SDU에게 적용되어야 하는 COUNT를 UL COUNT에 수납한다.
LTE 이동 통신 시스템에서 연결 상태 단말의 이동성은 기지국에 의해서 제어된다. 기지국이 핸드 오버를 명령하지 않는 이상 단말은 현재 서빙 셀에서 통상적인 동작, 예를 들어 PDCCH 감시, PUCCH 전송 등을 수행한다. 예기치 않은 오류로 인해 기지국이 단말에게 핸드 오버를 명령하기도 전에 서빙 무선 링크 상태가 정상적인 통신이 불가능한 상태까지 열화되면 단말은 현재 서빙 셀에서 교착 상태에 빠진다. 이를 방지하기 위해서 단말은 현재 서빙 셀의 채널 상태를 감시하고 소정의 조건이 충족되면 단말이 자신의 이동성을 스스로 제어하게 된다. 이를 무선 채널 감시(radio link monitoring)이라 한다.
단말은 프라이머리 셋과 넌프라이머리 셋에 대해서 무선 채널 감시를 독립적으로 수행한다. 단말은 프라이머리 셋의 소정의 서빙 셀과 넌프라이머리 셋의 소정의 서빙 셀, 예를 들어 PCell과 PUCCH SCell의 채널 상태를 감시한다. 상기 서빙 셀의 채널 상태가 소정의 기준 이하인 상태가 소정의 기준 기간 이상 지속되면 무선 링크 이상이 감지된 것(radio link problem detection)으로 판단한다.
무선 링크 이상 감지 조건은 아래와 같다.
<PCell의 무선 링크 이상 감지 조건>
PCell에 대해서 비동기 지시자가 제1 N310번 연속으로 발생. PCell에 대한 비동기 지시자는 PCell의 소정의 채널 혹은 신호 (예를 들어 셀 기준 신호, Cell Reference Signal)의 수신 품질을 기준으로 산정한 PDCCH 오류 비율이 소정의 기준, 예를 들어 10%이상인 상황이 소정의 기간, 예를 들어 200 ms이상 지속되면 발생한다.
단말은 제1 N310을 PCell의 SIB2에서 획득한다.
<PUCCH SCell의 무선 링크 이상 감지 조건>
PUCCH SCell에 대해서 비동기 지시자가 제2 N310번 연속으로 발생. PUCCH SCell에 대한 비동기 지시자는 PUCCH SCell의 소정의 채널 혹은 신호 (예를 들어 셀 기준 신호, Cell Reference Signal)의 수신 품질을 기준으로 산정한 PDCCH 오류 비율이 소정의 기준, 예를 들어 10%이상인 상황이 소정의 기간, 예를 들어 200 ms이상 지속되면 발생한다.
단말은 제2 N310을 아래와 같이 획득하고 사용한다.
<제2 N310 획득/사용 방법>
PUCCH SCell을 설정하는 RRC 연결 재설정 메시지 (1920)에 임시 제2 N310이 수납되어 단말에게 전송된다.
단말은 상기 임시 제2 N310을 소정의 시점까지 사용한다. 상기 소정의 시점은 단말이 PUCCH SCell의 시스템 정보를 획득해서 PUCCH SCell의 시스템 정보로부터 제2 N310을 획득하는 시점이다.
단말은 상기 소정의 시점부터 제2 N310을 사용한다.
단말은 PUCCH SCell 무선 링크 이상 감지 조건 2를 사용할 수도 있다.
<PUCCH SCell의 무선 링크 이상 감지 조건>
PUCCH SCell의 소정의 채널 혹은 신호 (예를 들어 셀 기준 신호, Cell Reference Signal)및 상기 신호의 전송 전력을 기준으로 계산한 경로 손실이 소정의 기준 이상이면 무선 링크 이상이 감지된 것으로 판단한다. 단말은 경로 손실 계산에 3 계층 여과 (Layer 3 filtering, TS 36.331 5.5.3.2 참조)를 적용할 수 있다.
무선 링크 이상 판단 기준 값은 PUCCH SCell을 설정하는 RRC 연결 재설정 메시지 (1920)에 포함되어서 단말에게 전달될 수 있다.
도 22는 본 명세서의 일 실시 예에 따르는 무선 링크 감시 과정의 순서도이다.
단말은 무선 링크 이상이 감지되면 (2205, 2210), 무선 링크 이상이 감지된 서빙 셀이 PCell인지 PUCCH SCell인지 검사해서 아래와 같이 동작한다.
무선 링크 이상이 감지된 서빙 셀이 PCell이라면 단말은 프라이머리 셋 서빙 셀의 역방향 전송을 중지하고 제1 T310 타이머를 구동한다. 제1 T310 타이머는 PCell의 SIB2를 통해 방송된다.
무선 링크 이상이 감지된 서빙 셀이 PUCCH SCell이라면 단말은 넌프라이머리 셋 서빙 셀의 역방향 전송, 예를 들어 PUCCH SCell의 PUCCH 전송과 넌프라이머리 셋 서빙 셀의 SRS 전송을 중지하고, 넌프라이머리 셋 서빙 셀들을 비활성화한다. 이 때 단말은 상기 비활성화되는 서빙 셀들의 sCellDeactviationTimer를 중지하지 않고 계속 구동한다. 단말은 제2 T310 타이머를 구동하며, 단말은 제2 T310 타이머를 아래와 같이 획득하고 사용한다.
<제2 T310 획득/사용 방법>
PUCCH SCell을 설정하는 RRC 연결 재설정 메시지 (1920)에 임시 제2 T310이 수납되어 단말에게 전송된다.
단말은 상기 임시 제2 T310을 소정의 시점까지 사용한다. 상기 소정의 시점은 단말이 PUCCH SCell의 시스템 정보를 획득해서 PUCCH SCell의 시스템 정보로부터 제2 T310을 획득하는 시점이다.
단말은 상기 소정의 시점부터 제2 T310을 사용한다.
단말은 T310이 구동되는 동안 관련된 서빙 셀이 회복되는지 감시한다.
<PCell의 무선 링크 회복 조건>
PCell에 대해서 동기 지시자가 제1 N311번 연속으로 발생. PCell에 대한 동기 지시자는 PCell의 소정의 채널 혹은 신호 (예를 들어 셀 기준 신호, Cell Reference Signal)의 수신 품질을 기준으로 산정한 PDCCH 오류 비율이 소정의 기준, 예를 들어 5%이상인 상황이 소정의 기간, 예를 들어 100 ms이상 지속되면 발생한다.
단말은 제1 N311을 PCell의 SIB2에서 획득한다.
<PUCCH SCell의 무선 링크 회복 조건>
PUCCH SCell에 대해서 동기 지시자가 제2 N311번 연속으로 발생. PUCCH SCell에 대한 동기 지시자는 PUCCH SCell의 소정의 채널 혹은 신호 (예를 들어 셀 기준 신호, Cell Reference Signal)의 수신 품질을 기준으로 산정한 PDCCH 오류 비율이 소정의 기준, 예를 들어 5%이상인 상황이 소정의 기간, 예를 들어 100 ms이상 지속되면 발생한다.
제2 N311을 획득하고 사용하는 방법은 제2 N310을 획득하고 사용하는 방법과 동일하다.
단말은 무선 링크 회복 조건이 충족되면 무선 링크 회복이 감지된 서빙 셀이 PCell인지 PUCCH SCell인지 검사해서 아래와 같이 동작한다.
무선 링크 회복이 감지된 서빙 셀이 PCell이라면 단말은 프라이머리 셋 서빙 셀의 역방향 전송을 재개하고 현재 RRC 연결을 유지한다. 무선 링크 회복이 감지된 서빙 셀이 PUCCH SCell이라면 단말은 넌프라이머리 셋 서빙 셀의 역방향 전송, 예를 들어 PUCCH SCell의 PUCCH 전송과 넌프라이머리 셋 서빙 셀의 SRS 전송을 재개하고 T310이 구동되기 전에 활성화 상태였던 넌프라이머리 셋 SCell들 중, sCellDeactivationTimer가 아직 중지되지 않은 SCell들을 활성화시킨다.
T310이 만료될 때까지 서빙 셀이 회복되지 않으면 단말은 T310이 만료된 서빙 셀이 PCell인지 PUCCH SCell인지 검사해서 아래와 같이 동작한다. T310이 만료된 서빙 셀이 PCell이라면, 단말은 무선 링크 실패를 선언하고 제1 T311을 구동한다. 단말은 넌 프라이머리 셋 서빙 셀의 역방향 전송도 중지하고 RRC 연결 재수립 과정을 개시한다. RRC 연결 재수립 과정은 단말이 통신을 재개할 셀을 검색해서 상기 셀과 소정의 RRC 제어 메시지를 주고 받아서 RRC 연결을 재개하는 과정을 의미하며 TS36.331 5.3.7에 기재되어 있다. 제1 T311 타이머는 PCell의 SIB2에 포함되어서 방송된다. T310이 만료된 서빙 셀이 PUCCH SCell이라면, 단말은 넌프라이머리 셋 서빙 셀들이 더 이상 사용 가능하지 않은 것으로 판단하고 소정의 RRC 제어 메시지를 생성한다. 상기 RRC 제어 메시지에는 PUCCH SCell에 대한 측정 결과가 포함되거나 PUCCH SCell에 무선 링크 문제가 발생했다는 정보를 포함한다.
T311이 만료되기 전에 서빙 셀이 회복되면 단말은 T311을 중지하고 회복된 서빙 셀이 PCell인지 PUCCH SCell인지 검사해서 아래와 같이 동작한다. T311이 만료되기 전 회복된 서빙 셀이 PCell이라면, 즉 T311이 만족되기 전에 통신을 재개할 셀을 발견하면, 단말은 상기 셀과 RRC 연결 재수립 과정을 개시한다. T311이 만료되기 전 회복된 서빙 셀이 PUCCH SCell이라면, 단말은 기지국에게 PUCCH SCell이 회복되었다는 정보를 수납한 RRC 제어 메시지를 생성해서 프라이머리 셋 서빙 셀을 통해 기지국으로 전송한다.
T311이 만료되면(2235, 2240) 단말은 T311이 만료된 서빙 셀이 PCell인지 PUCCH SCell인지 검사해서 아래와 같이 동작한다. T311이 만료된 서빙 셀이 PCell이라면 단말은 아이들 상태로 천이하고, 상위 계층에게 무선 채널에 문제가 있어서 RRC 연결이 해제되었다는 것을 통보한다. T311이 만료된 서빙 셀이 PUCCH SCell이라면 단말은 해당 넌프라이머리 셋 서빙 셀들을 해제하고, 넌 프라이머리 셋 서빙 셀들이 해제되었다는 정보를 수납한 RRC 제어 메시지를 생성해서 프라이머리 셋 서빙 셀을 통해 기지국으로 전송한다.
PUCCH SCell에 대한 변형된 무선 링크 감시 동작을 취할 수도 있다.
<PUCCH SCell에 대한 변형된 무선 링크 감시 동작>
무선 링크 이상이 감지되면 넌프라이머리 셋 서빙 셀에서의 역방향 전송은 중지하되, PDCCH는 감시한다. 그리고 PDSCH가 스케줄링되면 PDSCH를 수신해서 처리한다. 다만 HARQ 피드백은 전송하지 않는다. T310이 구동되는 동안 PUCCH SCell이 회복되는지 감시한다. T310이 만료될 때까지 PUCCH SCell이 회복되지 않으면 T311을 시작하고 넌 프라이머리 셋 서빙 셀들을 비활성화시킨다. T311이 구동되는 동안 PUCCH SCell이 회복되는지 감시한다. 혹은 넌 프라이머리 셋 서빙 셀들 중 회복되는 서빙 셀이 있는지 감시한다. T311이 만료될 때까지 넌 프라이머리 셋 서빙 셀들 중 회복되는 서빙 셀이 하나도 없으면 넌 프라이머리 셋 서빙 셀들을 해제한다. T311이 만료되기 전에 회복되는 넌 프라이머리 셋 서빙 셀이 하나라도 있으면 T311을 중지하고 이를 보고하는 RRC 제어 메시지를 생성해서 전송한다.
무선 링크 실패는 T310 만료뿐만 아니라 다양한 이벤트에 대해서 선언될 수 있다. 단말에 넌프라이머리 셋 서빙 셀이 설정되어 있을 경우와 그렇지 않을 경우, 단말은 상이하게 무선 링크 실패를 선언한다.
도 23은 본 명세서의 일 실시 예에 따르는 RLF 감지 과정의 순서도이다.
도 23을 참조해서 좀 더 자세히 설명하면, 2305 단계에서 단말은 RLF 감지 동작을 개시하고 수행한다. RLF 감지 동작은 단말에 RRC 연결이 설정되면 개시되어서 RRC 연결이 해제될 때까지 지속된다.
2310 단계에서 단말은 현재 시점에 넌프라이머리 셋 서빙 셀이 설정되어 있는지 검사한다. 설정되어 있지 않다면 2315 단계로, 설정되어 있다면 2330 단계로 진행한다.
2315 단계에서 단말은 해당 시점에 T310이 만료되었는지 검사해서 만료되지 않았다면 2320 단계로 만료되었다면 2345 단계로 진행한다. 2320 단계에서 단말은 랜덤 액세스 문제가 발생하였는지 검사해서, 발생하였다면 2345 단계로 진행하고 발생하지 않았다면 2325 단계로 진행한다. 전술한 바와 같이 PCell에서 진행된 랜덤 액세스가 실패하면 (구체적으로, PCell에서 프리앰블을 PreambleTransMax 번 전송했지만 랜덤 액세스가 성공하지 못하면), 단말은 RLF가 발생한 것으로 판단한다. 2325 단계에서 단말은 현재 설정되어 있는 모든 무선 베어러 중 RLC 최대 전송 회수 제한 (혹은 최대 재전송 회수 제한)에 도달한 베어러가 있는지 검사한다. 최대 재전송 회수 제한에 도달한 베어러가 있다면, 역방향에 심각한 오류가 발생한 것을 의미하므로 단말은 2345 단계로 진행한다. RLC 최대 전송 회수 제한에 도달한 베어러가 없다면 단말은 2305 단계로 복귀한다. 요약하자면, 단말은 상기 3 가지 조건 중 하나라도 만족하면 RLF가 발생한 것으로 판단하고 2345 단계로 진행하고 상기 3 가지 조건 중 하나도 만족하지 않으면 2305 단계로 복귀해서 RLF 감지 동작을 지속한다.
넌프라이머리 셋이 설정되어 있다면, 단말은 2310 단계에서 2330 단계로 진행한다. 2330 단계에서 단말은 PCell의 T310타이머가 만료되었는지 검사해서, 그렇다면 2345 단계로 그렇지 않다면 2335 단계로 진행한다. 단말은 PCell이 아닌 다른 셀, 예를 들어 PUCCH SCell의 T310 타이머 만료여부는 고려하지 않는다. 2335 단계에서 단말은 PCell의 랜덤 액세스에 문제가 발생하였는지 검사한다. 그렇다면 2345 단계로 그렇지 않다면 2340 단계로 진행한다. 2340 단계에서 단말은 P-DRB 및 SRB (Signaling Radio Bearer, RRC 메시지가 송수신되는 무선 베어러) 중 RLC 최대 (재)전송 회수 제한에 도달한 베어러가 있는지 검사한다. 있다면 2345 단계로 진행하고 없다면 2305 단계로 진행해서 RLF 감지 동작을 지속한다. 단말은 NP-DRB의 RLC에서 RLC 최대 (재)전송 회수 제한에 도달하였다 하더라도 2340 단계의 조건이 충족된 것으로 판단하지 않는다. 요약하자면, 단말은 상기 3 가지 조건 중 하나라도 만족하면 RLF가 발생한 것으로 판단하고 2345 단계로 진행하고 상기 3 가지 조건 중 하나도 만족하지 않으면 2305 단계로 복귀해서 RLF 감지 동작을 지속한다.
RLC최대 재전송 회수 도달 여부는 넌프라이머리 셋 서빙 셀이 설정되지 않은 경우에만 고려할 수도 있다. 즉, 2340 단계는 수행하지 않고, 2335 단계에서 조건이 충족되지 않으면 곧 바로 2305 단계로 복귀할 수 있다.
2345 단계에서 단말은 RLF 보고서에 기입할 정보를 생성한다. RLF 보고서는 RLF가 발생했을 때의 상황을 기록한 RRC 제어 메시지이며, 향후 망에서 네트워크의 문제점을 파악할 수 있도록, RRC 연결을 재설정한 후 단말이 기지국에게 전송한다. RLF 보고서에는 다음과 같은 정보들이 수납된다. RLF가 발생한 시점의 등록 PLMN (registered PLMN, RPLMN)의 식별자, RLF가 발생한 시점의 서빙 셀(또는 PCell) 혹은 RLF가 발생한 시점의 가장 최근의 서빙 셀 (또는 PCell)에 대한 순방향 채널 측정 결과, RLF가 발생한 시점의 주변 셀에 대한 순방향 채널 측정 결과, RLF가 발생한 시점의 GPS 좌표 정보.
2350 단계에서 단말은 RRC 연결 재수립 과정을 개시한다.
PDCP 분산 구조 혹은 RLC 분산 구조의 경우, 단말은 셋 별 로지컬 채널 우선화 과정(Set specific logical channel prioritization, 혹은 Component Carrier specific logical channel prioritization)을 수행한다. 셋 별 로지컬 채널 우선화 과정이란, 역방향 그랜트가 수신된 서빙 셀에 따라서 어떤 데이터를 전송할지 결정하는 것을 의미한다.
도 24는 본 명세서의 일 실시 예에 따르는 LCP 과정의 순서도이다.
2405 단계에서 RRC 연결 재설정 메시지를 수신한다. 상기 RRC 연결 재설정 메시지는 넌프라이머리 셋 서빙 셀을 설정하는 것일 수 있다. 2410 단계에서 단말은 상기 RRC 연결 재설정의 결과로 NP-LCH가 존재하는지 검사해서, 존재하지 않는다면 2415 단계로 존재한다면 2420 단계로 진행한다. 상기 RRC 연결 재설정의 결과로 기존의 NP-LCH가 P-LCH로 변환되거나 P-LCH가 NP-LCH로 변환될 수 있으며, 소정의 로지컬 채널이 P-LCH인지 NP-LCH인지 여부는, DRB의 경우에는 1 비트 지시자로 특정될 수 있고 SRB의 경우 항상 P-LCH이다. 2415 단계에서 단말은 향후 역방향 그랜트를 수신하면 일반적인 LCP를 적용해서 어떤 데이터를 전송할지 결정한다. 일반적인 LCP란 역방향 그랜트가 어떤 서빙 셀에서 수신되었는지, 혹은 어떤 서빙 셀에 대한 것인지를 고려하지 않고, 데이터의 우선 순위와 전송할 데이터의 양을 고려해서 전송할 데이터를 결정하는 것을 의미한다.
2420 단계에서 단말은 NP-LCG를 결정한다. LCG는 버퍼 상태 보고의 단위가 되는 것으로, 하나 혹은 하나 이상의 LCH들의 집합이다. 기지국은 유사한 우선 순위를 가지는 LCH들을 LCG로 구성하며, 단말에게 소정의 제어 메시지를 사용해서 어떤 LCH이 어떤 LCG에 속하는지 시그날링한다. 단말은 LCG들 중 NP-LCH로만 구성된 LCG를 NP-LCG로 결정한다.
2425 단계에서 단말은 P-LCH를 결정한다. P-LCG는 P-LCH로만 구성된 LCG들이다.
2430 단계에서 임의의 서빙 셀로부터 역방향 그랜트를 수신하면 단말은 2435 단계로 진행한다. 2435 단계에서 단말은 상기 역방향 그랜트가 수신된 서빙 셀이 프라이머리 셋 서빙 셀인지 검사한다. 혹은 상기 역방향 그랜트가 프라이머리 셋 서빙 셀에 대한 것인지 검사한다. 프라이머리 셋 서빙 셀에 대한 것이라면 단말은 2445 단계로 진행해서 P-LCH를 대상으로 프라이머리 셋 LCP를 수행한다. 상기 역방향 그랜트가 프라이머리 셋 서빙 셀에 대한 것이 아니라면 (즉 넌프라이머리 셋 서빙 셀에 대한 것이라면), 단말은 2440 단계로 진행해서 NP-LCH를 대상으로 넌프라이머리 셋 LCP를 수행한다.
<프라이머리 셋 LCP>
단말은 우선 순위를 고려해서 프라이머리 셋 서빙 셀로 전송할 데이터들 중 어떤 데이터를 전송할지 결정한다. 우선 순위는 다음과 같다.
1. C-RNTI MAC CE 혹은 RRC 연결 요청 (RRC connection request) 메시지나 RRC 연결 재수립 요청 (RRC connection reestablishment request)메시지 같은 CCCH SDU (Common Control Channel Service Data Unit)
2. P-LCG의 버퍼 상태를 수납한 정규 BSR 혹은 주기적 BSR (혹은 패딩 BSR이 아닌 BSR)
3. 프라이머리 셋 서빙 셀들에 대한 PHR(Power Headroom Report)
4. CCCH를 제외한 나머지 P-LCH의 전송 가능한 데이터
단말은 1/2/3의 데이터가 존재한다면 다음과 같이 전송 여부를 판단한다.
1번부터 할당 받은 전송 자원의 양, 혹은 전송 가능한 데이터의 양과 전송할 데이터의 양을 비교한다. 전송할 데이터가 있으며, 전송할 데이터의 양이 전송 가능한 데이터의 양보다 크다면 다음 우선 순위로 이동하고, 작다면 전송할 데이터만큼 전송 자원을 할당하고, 전송 가능한 데이터의 양을 그에 맞춰 갱신한다.
단말은 1/2/3에 대해서 전송 자원을 할당한 후, 여전히 전송 자원이 남아 있다면 4 번 데이터에 대해서 우선 순위에 따라서, 남아 있는 전송 자원이 존재하지 않을 때까지 전송 자원을 할당한다.
<넌프라이머리 셋 LCP>
단말은 우선 순위를 고려해서 프라이머리 셋 서빙 셀로 전송할 데이터들 중 어떤 데이터를 전송할지 결정한다. 우선 순위는 다음과 같다.
1. NP-LCG의 버퍼 상태를 수납한 정규 BSR 혹은 주기적 BSR (혹은 패딩 BSR이 아닌 BSR)
2. 넌프라이머리 셋 서빙 셀들에 대한 PHR(Power Headroom Report)
3. NP-LCH의 전송 가능한 데이터
단말은 1/2의 데이터가 존재한다면 다음과 같이 전송 여부를 판단한다.
1번부터 할당 받은 전송 자원의 양, 혹은 전송 가능한 데이터의 양과 전송할 데이터의 양을 비교한다. 전송할 데이터가 있으며, 전송할 데이터의 양이 전송 가능한 데이터의 양보다 크다면 다음 우선 순위로 이동하고, 작다면 전송할 데이터만큼 전송 자원을 할당하고, 전송 가능한 데이터의 양을 그에 맞춰 갱신한다.
단말은 1/2에 대해서 전송 자원을 할당한 후, 여전히 전송 자원이 남아 있다면 3 번 데이터에 대해서 우선 순위에 따라서, 남아 있는 전송 자원이 존재하지 않을 때까지 전송 자원을 할당한다.
PHR은 기지국이 단말에 대해 임의의 서빙 셀에서 역방향 전송을 스케줄링 함에 있어서 단말의 역방향 전송 출력 관련 상황을 참조할 수 있도록 하기 위한 것이다. PHR에는 서빙 셀에 대해 단말이 적용할 수 있는 최대 전송 출력 정보와 상기 최대 전송 출력 및 현재 사용 중인 전송 출력 사이의 차이 값 (파워 헤드룸)이 수납된다. 프라이머리 셋 서빙 셀은 P-ENB에 의해서, 넌프라이머리 셋 서빙 셀은 NP-ENB에 의해서 스케줄링된다. 따라서 프라이머리 셋 서빙 셀에 대한 PHR은 P-ENB에게, 넌프라이머리 셋 서빙 셀에 대한 PHR은 NP-ENB에게 전달되어야 한다. 본 명세서에서 단말은 임의의 시점에 PHR이 트리거되면, 상기 PHR이 프라이머리 셋 서빙 셀에 대한 것(이하 P-PHR)인지 넌프라이머리 셋 서빙 셀에 대한 것(이하 NP-PHR)인지를 고려해서 동작을 수행한다.
도 25는 본 명세서의 일 실시 예에 따르는 PHR 트리거 및 전송 과정을 도시한 도면이다.
도 25를 참조하여 좀 더 자세히 설명하면, 단말(2505)은 PHR이 트리거되면(2520) 전송 가능한 첫 번째 시점, 즉 NP-ENB 혹은 P-ENB로부터 PHR을 전송하기에 충분한 양의 전송 자원을 할당하는 역방향 그랜트(2525)를 수신하면 PHR을 생성해서 전송한다 (2530). 단말은 프라이머리 셋 서빙 셀에 대한 PHR(P-PHR)과 넌프라이머리 셋 서빙 셀에 대한 PHR (NP-PHR)을 함께 생성해서 전송하고, 상기 PHR을 수신한 기지국은, 다른 기지국에게 필요한 PHR, 예를 들어 P-PHR을 다른 기지국, 예를 들어 P-ENB에게 전송한다(2535). 이 때 NP-ENB는 상기 PHR과 관련된 시점 정보, 예를 들어 P-PHR이 성공적으로 수신된 서브 프레임의 SFN과 서브 프레임 번호 혹은 P-PHR을 수납한 MAC PDU의 최초 전송이 시작된 서브 프레임의 SFN과 서브 프레임 번호를 상대편 기지국에게 함께 전달할 수 있다. 상기 PHR 정보를 수신한 P-ENB는 상기 정보를 이용해서 단말의 채널 상황을 파악한다. 단말이 프라이머리 셋 서빙 셀을 통해 P-ENB에게 PHR을 전송하면, P-ENB는 NP-PHR을 상기 시간 정보와 함께 NP-ENB에게 전달한다.
또 다른 방법으로, 단말은 PHR이 트리거되면 PHR을 생성해서 프라이머리 셋 서빙 셀을 통해 한 번 전송하고 넌프라이머리 셋 서빙 셀을 통해 다시 한 번 전송할 수 있다. 단말은 PHR이 트리거되면 (2540), PHR을 전송할 수 있는 충분한 양의 전송 자원이 할당되는 UL 그랜트가 수신될때까지 대기한다. 상기 조건을 충족시키는 UL 그랜트가 수신되면 (2545), 단말은 P-PHR과 NP-PHR을 모두 포함하는 PHR을 생성해서 전송한다 (2550). 넌프라이머리 셋 서빙 셀이 설정되지 않으면 단말은 PHR을 전송한 후 트리거된 PHR을 취소한다. 넌프라이머리 셋 서빙 셀이 설정되었다면 단말은 PHR을 전송한 후 트리거된 PHR을 곧 바로 취소하지 않고, PHR이 소정의 기간 내에 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀로 모두 전송된 경우에만 PHR을 취소한다. 혹은 PHR을 취소하되, 모든 셋으로 PHR이 전송되지 않았다면, 상기 PHR이 전송되지 않은 셋에서 역방향 그랜트가 수신되면 PHR을 다시 트리거한다. 단말은 NP-ENB로만, 혹은 넌프라이머리 셋 서빙 셀로만 PHR을 전송하였으므로 PHR을 취소하지 않고 대기하다가 P-ENB로부터 PHR을 전송하기에 충분한 전송 자원을 할당하는 UL 그랜트가 수신되면 (2555), 프라이머리 셋 서빙 셀로 P-PHR과 NP-PHR을 전송한 후 PHR을 취소한다.
또 다른 방법으로 단말은 PHR 트리거 여부를 셋 별로 관리하고, PHR이 트리거된 셋의 서빙 셀로 PHR을 전송한 후 PHR을 취소한다.
예를 들어 2565 단계에 NP-PHR이 트리거되면, 단말은 넌프라이머리 셋 서빙 셀로부터 상기 NP-PHR을 전송할 수 있는 충분한 양의 전송 자원을 할당하는 UL 그랜트가 수신되면 (2570), NP-PHR을 생성해서 전송하고(2575), 상기 NP-PHR을 취소한다. 향후 임의의 시점에 P-PHR이 트리거되면 (2580) 단말은 프라이머리 셋 서빙 셀로부터 상기 P-PHR을 전송할 수 있는 충분한 양의 전송 자원을 할당하는 UL 그랜트가 수신되면 (2585), P-PHR을 생성해서 전송하고(2590), 상기 P-PHR을 취소한다.
2520 단계와 2540 단계에서 PHR이 트리거된다는 것은 아래 조건 중 하나가 만족된다는 것을 의미한다.
<PHR 트리거 조건>
- 아래 조건을 만족시키는 서빙 셀의 경로 손실이 소정의 기준 값 이상 변경.
-- 활성화 상태인 서빙 셀
-- 경로 손실 참조 셀로 설정된 서빙 셀
-- 단말이 역방향 전송을 위한 전송 자원을 할당 받은 서빙 셀.
- 소정의 타이머가 만료되면 트리거됨. 상기 타이머는 PHR이 전송될 때마다 재구동됨
- 역방향이 설정된 서빙 셀이 활성화됨
임의의 셀 A가 또 다른 임의의 셀 B에 대해서 경로 손실 참조 셀로 설정된다는 것은, 셀 B의 역방향 전송 출력을 설정함에 있어서 셀 A의 경로 손실을 참조한다는 것을 의미한다. 기지국은 소정의 제어 메시지를 사용해서 경로 손실 관계를 설정할 수 있다.
2565 단계에서 NP-PHR이 트리거된다는 것은 아래 조건 중 하나가 만족된다는 것을 의미한다.
<NP-PHR 트리거 조건>
- 아래 조건을 만족시키는 서빙 셀의 경로 손실이 소정의 기준 값 이상 변경. 소정의 기준 값은 RRC ㅇ녀결 재구성 메시지 (1855)에 의해서 설정됨.
-- 활성화 상태인 넌프라이머리 셋 서빙 셀
-- 경로 손실 참조 셀로 설정된 서빙 셀
-- 단말이 역방향 전송을 위한 전송 자원을 할당 받은 서빙 셀.
- 소정의 타이머가 만료되면 트리거됨. 상기 타이머는 NP-PHR이 전송될 때마다 재구동됨. 상기 타이머는 RRC 연결 재구성 메시지 (1855)에 의해서 설정됨.
- 역방향이 설정된 넌프라이머리 셋 서빙 셀이 활성화됨
2580 단계에서 P-PHR이 트리거된다는 것은 아래 조건 중 하나가 만족된다는 것을 의미한다.
<P-PHR 트리거 조건>
- 아래 조건을 만족시키는 서빙 셀의 경로 손실이 소정의 기준 값 이상 변경.
-- 활성화 상태인 프라이머리 셋 서빙 셀
-- 경로 손실 참조 셀로 설정된 서빙 셀
-- 단말이 역방향 전송을 위한 전송 자원을 할당 받은 서빙 셀.
- 소정의 타이머가 만료되면 트리거됨. 상기 타이머는 P-PHR이 전송될 때마다 재구동됨. 상기 타이머는 RRC 연결 재구성 메시지 (1855)에 의해서 설정됨.
- 역방향이 설정된 프라이머리 셋 서빙 셀이 활성화됨
PHR은 MAC CE의 일종으로 MAC 서브 헤더와 페이로드로 구성된다. MAC 서브 헤더에는 MAC CE의 종류를 나타내는 LCID (Logical Channel ID)가 수납되고, 페이로드에는 가용 전송 출력 (Power Headroom; 이하 PH) 정보와 최대 전송 출력 (이하 PCMAX) 정보 등이 수납된다.
PHR 포맷은 일반 PHR 포맷과 확장 PHR 포맷으로 구분된다. 일반 PHR 포맷에는 한 서빙 셀의 PH 정보만을 수납하며 페이로드의 길이는 1 바이트, LCID 11010에 의해서 특정된다. 확장 PHR 포맷에는 여러 서빙 셀의 PH 정보 및 PCMAX 정보가 수납되며 페이로드의 길이는 가변적이고 LCID 11001에 의해서 특정된다.
본 명세서에서는 P-PHR과 NP-PHR을 위해서 별도의 LCID를 사용하지 않고, PHR이 수납된 위치 혹은 PHR이 전송되는 서빙 셀에 따라서 P-PHR 혹은 NP-PHR이 구별된다.
예를 들어 하나의 MAC PDU에 두 개의 PHR이 수납되어 있다면 첫번째 PHR이 P-PHR, 두번째 PHR이 NP-PHR이다. 프라이머리 셋 서빙 셀로 전송되는 MAC PDU에 하나의 PHR이 수납되어 있다면 상기 PHR은 P-PHR이다. 넌프라이머리 셋 서빙 셀로 전송되는 MAC PDU에 하나의 PHR이 수납되어 있다면 상기 PHR은 NP-PHR이다.
P-PHR은 일반적인 PHR 포맷을 사용하거나 확장된 PHR 포맷을 사용한다. 프라이머리 셋 서빙 셀과 관련된 RRC 연결 재구성 메시지 (520)에서 일반 포맷과 확장된 포맷 중 하나가 P-PHR의 포맷으로 지시된다.
NP-PHR은 일반적인 PHR 포맷을 사용하거나 확장된 PHR 포맷을 사용한다. 넌프라이머리 셋 서빙 셀과 관련된 RRC 연결 재구성 메시지 (635)에서 일반 포맷과 확장된 포맷 중 하나가 NP-PHR의 포맷으로 지시된다.
도 26은 본 명세서의 일 실시 예에 따르는 PHR 포맷을 설명한 도면이다.
일반 P-PHR (2605)는 LCID 11010에 의해서 특정되고, 6 비트의 PH 정보가 수납된다. 상기 6 비트 PH 필드에는 PCell의 타입 1 PH이 수납된다. 타입 1 PH은 임의의 서빙 셀의 PCMAX와 해당 셀의 PUSCH 요구 전송 출력 사이의 차이를 나타내는 값으로 36.321의 테이블 6.1.3.6-1에 정의되어 있다.
일반 NP-PHR (2625)는 LCID 11010에 의해서 특정되고, 6 비트의 PH 정보가 수납된다. 상기 6 비트 PH 필드에는 PUCCH SCell의 타입 1 PH이 수납된다. 즉 PUCCH SCell의 PUSCH 요구 전송 출력과 PUCCH SCell의 PCMAX 사이의 차이를 나타내는 값이 수납된다.
확장된 P-PHR (2610)은 LCID 11001에 의해서 특정되고 첫번째 바이트는 어떤 프라이머리 셋 SCell의 PH 정보가 수납되어 있는지 나타내는 비트맵을 수납한다. 예를 들어 C3 비트가 1로 설정되었다면 인덱스가 3인 SCell의 PH 정보가 수납되어 있음을 의미한다.
소정의 조건이 충족되면 PCell의 타입 2 PH(2611)이 수납된다. 프라이머리 셋에 대해서, 혹은 PCell에 대해서 PUSCH와 PUCCH의 동시 전송이 설정되어 있으면 상기 조건이 충족된 것이다. 상기 PUSCH와 PUCCH의 동시 전송은 단말의 하드 웨어 구조에 따라 가능하거나 불가능하다. 단말은 기지국의 명령에 따라 자신의 성능을 보고하며, 상기 성능 보고 정보에 PUSCH와 PUCCH 동시 전송 지지 여부를 포함시킨다.
타입 2 PH은 PCell 혹은 PUCCH SCell의 PCMAX에서 PUSCH 요구 전송 출력 및 PUCCH 요구 전송 출력을 합한 것을 감산한 것으로 TS 36.213의 5.1.1.2에 정의되어 있다.
PCMAX (2612)는 P-PHR이 전송될 서브 프레임에 PCell에서 PUCCH 전송이 실재하는 경우에 수납되고 그렇지 않으면 수납되지 않는다. 상기 PCMAX의 존재 여부는 관련된 V 필드에 의해서 지시된다.
PCell의 타입 1 PH (2613)는 항상 존재하는 필드이며 PCell의 PCMAX에서 PUSCH 전송 출력을 감산한 것이다.
PCMAX (2614)는 P-PHR이 전송될 서브 프레임에 PCell에서 PUSCH 전송이 실재하는 경우에 수납되고 그렇지 않으면 수납되지 않는다.
이 후에는 P-PHR이 전송될 서브 프레임에 활성화 상태인 프라이머리 셋 SCell들의 PH이 SCell의 인덱스가 낮은 순서대로 수납된다. 그리고 해당 SCell에서 PUSCH 전송이 실재한다면 PH이 수납된 바이트의 다음 바이트에 PCMAX가 수납된다.
확장된 NP-PHR (2630)은 LCID 11001에 의해서 특정되고 첫번째 바이트는 어떤 넌프라이머리 셋 SCell의 PH 정보가 수납되어 있는지 나타내는 비트맵을 수납한다. 예를 들어 C7 비트가 1로 설정되었다면 인덱스가 7인 SCell의 PH 정보가 수납되어 있음을 의미한다.
소정의 조건이 충족되면 PUCCH SCell의 타입 2 PH(2631)이 수납된다. 넌프라이머리 셋에 대해서, 혹은 PUCCH SCell에 대해서 PUSCH와 PUCCH의 동시 전송이 설정되어 있으면 상기 조건이 충족된 것이다. 상기 PUSCH와 PUCCH의 동시 전송은 단말의 하드 웨어 구조에 따라 가능하거나 불가능하다. 단말은 기지국의 명령에 따라 자신의 성능을 보고하며, 상기 성능 보고 정보에 PUSCH와 PUCCH 동시 전송 지지 여부를 포함시킨다.
PCMAX (2632)는 NP-PHR이 전송될 서브 프레임에 PCell에서 PUCCH 전송이 실재하는 경우에 수납되고 그렇지 않으면 수납되지 않는다. 상기 PCMAX의 존재 여부는 관련된 V 필드에 의해서 지시된다.
PUCCH SCell의 타입 1 PH (2633)는 항상 존재하는 필드이며 PUCCH SCell의 PCMAX에서 PUSCH 요구 전송 출력을 감산한 것이다.
PCMAX (2634)는 NP-PHR이 전송될 서브 프레임에 PUSCH SCell에서 PUSCH 전송이 실재하는 경우에 수납되고 그렇지 않으면 수납되지 않는다.
이 후에는 NP-PHR이 전송될 서브 프레임에 활성화 상태인 넌프라이머리 셋 SCell들의 PH이 SCell의 인덱스가 낮은 순서대로 수납된다. 그리고 해당 SCell에서 PUSCH 전송이 실재한다면 PH이 수납된 바이트의 다음 바이트에 PCMAX가 수납된다.
P-ENB와 NP-ENB는 상대편 기지국의 역방향 스케줄링 상황을 실시간으로 파악하지 못한다. 이는 P-ENB와 NP-ENB가 동일한 시구간에서 역방향 전송을 스케줄링함으로써 단말의 전체 전송 출력이 단말의 최대 전송 출력을 초과하는 문제를 야기할 수 있다. 이런 상황이 발생하지 않도록 본 명세서에서는 NP-ENB와 P-ENB는 서로 독점적으로 사용할 수 있는 시구간과 공동으로 사용할 시구간을 사용하는 방법을 제시한다.
도 27은 본 명세서의 일 실시 예에 따르는 서브 프레임 패턴을 결정하는 과정을 도시한 도면이다.
임의의 시점에 P-ENB(2715)는 단말(2705)에게 NP-ENB(2710)의 서빙 셀들을 추가하기로 결정한다. P-ENB는 단말이 상기 NP-ENB 서빙 셀의 주위에 있는지 확인하기 위해서 단말에게 넌프라이머리 셋 서빙 셀을 측정할 것을 지시하는 제어 메시지를 전송한다 (2725). 상기 제어 메시지는 1815 제어 메시지와 동일한 것으로 소정의 기준 셀과 넌프라이머리 셋 서빙 셀 간의 타이밍 차이를 보고할 것을 지시하는 정보를 추가로 포함할 수 있다. 상기 기준 셀은 예를 들어 PCell일 수 있다.
상기 제어 메시지를 수신한 단말은 P-ENB가 지시한 셀 혹은 주파수에 대해서 측정을 수행한다. 그리고 상기 주파수에서 가장 좋은 셀의 측정 결과가 소정의 조건을 만족시키면, 상기 셀의 타이밍 차이를 측정하고 TDD UL/DL 설정 정보를 획득한다.
TDD UL/DL 설정 정보란, 해당 셀에서 UL 서브 프레임과 DL 서브 프레임의 패턴을 특정하는 정보로 TS 36.211의 테이블 4.2-2에 정의되어 있다.
도 28은 본 명세서의 일 실시 예에 따르는 타이밍 차이를 설명한 도면이다.
기준 셀과 임의의 주변 셀의 타이밍 차이는 PCell의 소정의 서브 프레임, 예를 들어 서브 프레임 0과 주변 셀의 동일한 서브 프레임 사이의 시간 상의 거리(2805) 및 상기 서브 프레임이 속하는 SFN들 사이의 차이, 예컨대 {[x+1] - [y+1]}로 정의된다.
단말은 측정 결과 보고 메시지를 P-ENB로 전송한다. 상기 메시지는 1820 메시지와 동일한 것이며, 기준 셀과 주변 셀 간의 타이밍 차이 정보와 주변 셀의 TDD UL/DL 설정 정보가 추가로 포함될 수 있다.
P-ENB는 상기 정보를 바탕으로 어떤 서브 프레임을 P-ENB 서브 프레임으로 사용하고 어떤 서브 프레임을 NP-ENB 서브 프레임으로 사용하고 어떤 서브 프레임을 공동 서브 프레임으로 사용할지 결정한다. 상기 정보는 예를 들어 40 비트 혹은 70 비트의 비트맵으로 구성될 수 있다. 첫번째 비트맵은 P-ENB 서브 프레임을 특정하고, 두번째 비트맵은 NP-ENB 서브 프레임을 특정한다. P-ENB 서브 프레임에도 속하지 않고 NP-ENB 서브 프레임에도 속하지 않는 서브 프레임은 공통 서브 프레임이다.
P-ENB는 아래 원칙에 따라서 임의의 서브 프레임의 종류를 결정한다.
- 프라이머리 셋 서빙 셀에서는 DL 서브 프레임이고 넌프라이머리 셋 서빙 셀에서는 UL 서브 프레임이라면 해당 서브 프레임은 NP-ENB 서브 프레임으로 결정한다.
- 프라이머리 셋 서빙 셀에서는 UL 서브 프레임이고 넌프라이머리 셋 서빙 셀에서는 DL 서브 프레임이라면 해당 서브 프레임은 P-ENB 서브 프레임으로 결정한다.
- 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀이 모두 UL 서브 프레임인 서브 프레임은 일부는 P-ENB 서브 프레임으로 나머지는 NP-ENB로 결정한다.
- 프라이머리 셋 서빙 셀과 넌프라이머리 셋 서빙 셀이 모두 DL 서브 프레임인 서브 프레임은 일부는 P-ENB 서브 프레임으로 나머지는 NP-ENB로 결정한다.
2745 단계에 P-ENB는 NP-ENB에게 SCell 추가를 요청하는 제어 메시지를 전송한다. 상기 제어 메시지는 1845 단계의 제어 메시지와 동일한 것이며, 서브 프레임 패턴 제안 정보가 추가로 수납될 수 있다. 상기 서브 프레임 패턴 제안 정보는 P-ENB 서브 프레임을 지시하는 비트맵, NP-ENB 서브 프레임을 지시하는 비트맵 정보 및, 공통 서브 프레임에서 P-ENB가 사용할 최대 전송 출력 값을 포함한다.
2750 단계에서 NP-ENB는 P-ENB에게 SCell 추가 승낙 제어 메시지를 전송한다. 상기 제어 메시지는 1850 단계의 제어 메시지와 동일한 것이며, 서브 프레임 패턴 승낙 여부에 대한 정보가 추가로 포함될 수 있다.
P-ENB는 단말에게 SCell 추가를 지시하는 RRC 연결 재구성 메시지를 전송한다 (1855). NP-ENB는 단말에게 역방향 전송을 스케줄링함에 있어서 NP-ENB 서브 프레임을 우선적으로 사용하고, 필요하다면 제한된 전송 출력을 적용해서 공통 서브 프레임을 사용한다 (2760). P-ENB는 단말에게 역방향 전송을 스케줄링함에 있어서 P-ENB 서브 프레임을 우선적으로 사용하고, 필요하다면 제한된 전송 출력을 적용해서 공통 서브 프레임을 사용한다 (2765).
도 29는 본 명세서의 일 실시 예에 따르는 단말 구조를 도시한 도면이다.
도 29을 참조하면, 본 명세서의 일 실시 예에 따른 단말은 송수신부(2905), 제어부(2910), 다중화 및 역다중화부(2915), 제어 메시지 처리부(2930), 각 종 상위 계층 처리부(2920, 2925) 를 포함한다.
상기 송수신부(2905)는 서빙 셀의 하향 링크 채널로 데이터 및 소정의 제어 신호를 수신하고 상향 링크 채널로 데이터 및 소정의 제어 신호를 전송한다. 다수의 서빙 셀이 설정된 경우, 송수신부(2905)는 상기 다수의 서빙 셀을 통한 데이터 송수신 및 제어 신호 송수신을 수행한다.
다중화 및 역다중화부(2915)는 상위 계층 처리부(2920, 2925)나 제어 메시지 처리부(2930)에서 발생한 데이터를 다중화하거나 송수신부(2905)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(2920, 2925)나 제어 메시지 처리부(2930)로 전달하는 역할을 한다. P-ENB와 NP-ENB에 독립적인 다중화 및 역다중화부 (혹은 MAC 장치)가 설정되지만, 단말에는 하나의 다중화 및 역다중화부 (혹은 MAC 장치)가 설정된다.
제어 메시지 처리부(2930)는 RRC 계층 장치이며 기지국으로부터 수신된 제어 메시지를 처리해서 필요한 동작을 취한다. 예를 들어 RRC 제어 메시지를 수신해서 랜덤 액세스 관련 정보 등을 제어부로 전달한다.
상위 계층 처리부(2920, 2925)는 서비스 별로 구성될 수 있다. FTP(File Transfer Protocol)나 VoIP(Voice over Internet Protocol) 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(2915)로 전달하거나 상기 다중화 및 역다중화부(2915)로부터 전달된 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다.
제어부(2910)는 송수신부(2905)를 통해 수신된 스케줄링 명령, 예를 들어 역방향 그랜트들을 확인하여 적절한 시점에 적절한 전송 자원으로 역방향 전송이 수행되도록 송수신부(2905)와 다중화 및 역다중화부(2915)를 제어한다. 제어부는 또한 SCell 설정과 관련된 제반 절차, 무선 링크 감시 동작과 관련된 제반 절차, PHR과 관련된 제반 절차 등을 총괄한다. 보다 구체적으로 도 5 내지 도 28에 도시되어 있는 단말 동작 관련 필요한 제어 동작을 수행한다.
도 30은 본 명세서의 일 실시 예에 따르는 P-ENB 구조를 도시한 도면이다.
본 명세서의 일 실시 예에 따르는 P-ENB는 송수신부 (3005), 제어부(3010), 다중화 및 역다중화부 (3020), 제어 메시지 처리부 (3035), 각 종 상위 계층 처리부 (3025, 3030) 및 스케줄러(3015)를 포함할 수 있다.
송수신부(3005)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(3005)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다.
다중화 및 역다중화부(3020)는 상위 계층 처리부(3025, 3030)나 제어 메시지 처리부(3035)에서 발생한 데이터를 다중화하거나 송수신부(3005)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(3025, 3030)나 제어 메시지 처리부(3035), 혹은 제어부 (3010)로 전달하는 역할을 한다. 제어 메시지 처리부(3035)는 단말이 전송한 제어 메시지를 처리해서 필요한 동작을 취하거나, 단말에게 전달할 제어 메시지를 생성해서 하위 계층으로 전달한다.
상위 계층 처리부(3025, 3030)는 베어러 별로 구성될 수 있으며 S-GW 혹은 또 다른 기지국에서 전달된 데이터를 RLC PDU로 구성해서 다중화 및 역다중화부(3020)로 전달하거나 다중화 및 역다중화부(3020)로부터 전달된 RLC PDU를 PDCP SDU로 구성해서 S-GW 혹은 다른 기지국으로 전달한다. NP-DRB의 전체 혹은 일부에 해당하는 상위 계층 처리부 (3030)가 P-ENB에 설정된다.
스케줄러는 단말의 버퍼 상태, 채널 상태 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
제어부는 또한 SCell 설정과 관련된 제반 절차 등을 총괄한다. 보다 구체적으로 도 5 내지 도 28에서 P-ENB가 수행해야 할 동작에 필요한 제어 동작을 수행한다.
도 31은 본 명세서의 일 실시 예에 따르는 NP-ENB 구조를 도시한 도면이다. 본 명세서의 일 실시 예에 따른 NP-ENB는, 송수신부 (3105), 제어부(3110), 다중화 및 역다중화부 (3120), 제어 메시지 처리부 (3135), 각 종 상위 계층 처리부 (3130), 스케줄러(3115)를 포함할 수 있다.
송수신부(3105)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(3105)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다.
다중화 및 역다중화부(3120)는 상위 계층 처리부(3125, 3130)나 제어 메시지 처리부(3135)에서 발생한 데이터를 다중화하거나 송수신부(3105)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(3130) 혹은 제어부 (3110)로 전달하는 역할을 한다. 제어 메시지 처리부(3135)는 P-ENB가 전송한 제어 메시지를 처리해서 필요한 동작을 취한다.
NP-DRB의 전체 혹은 일부에 해당하는 상위 계층 처리부 (3030)가 NP-ENB에 설정된다.
스케줄러는 단말의 버퍼 상태, 채널 상태 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
제어부는 또한 SCell 설정과 관련된 제반 절차 등을 총괄한다. 보다 구체적으로 도 5 내지 도 28에서 NP-ENB가 수행해야 할 동작에 필요한 제어 동작을 수행한다.

Claims (8)

  1. 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)의 통신 방법에 있어서,
    상기 P-ENB이 아닌 다른 기지국(NP-ENB)의 서빙 셀을 위한 논-프라이머리(NP)-EPS(Evolved Packet System) 베어러를 통해 서빙 게이트웨이로부터 패킷을 수신하는 단계;
    상기 수신한 패킷을 이용해 제1 RLC PDU(Radio Link Control Packet Data Unit)를 생성하는 단계; 및
    상기 생성한 제1 RLC PDU를 상기 NP-ENB에게 전달하는 단계를 포함하는 통신 방법.
  2. 제1항에 있어서,
    상기 NP-ENB로부터 MAC(Media Access Control) SDU(Service Data Unit)를 수신하는 단계;
    상기 MAC SDU로부터 그에 상응하는 제2 RLC PDU를 생성하는 단계; 및
    상기 제2 RLC PDU를 변환하여 상기 NP-EPS 베어러를 통해 상기 서빙 게이트웨이에게 송신하는 단계를 더 포함하는 통신 방법.
  3. 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)이 아닌 기지국(NP-ENB)의 통신 방법에 있어서,
    상기 P-ENB로부터 RLC PDU(Radio Link Control Packet Data Unit)를 수신하는 단계;
    상기 수신한 RLC PDU를 이용해 재분할된 RLC PDU를 생성하는 단계; 및
    상기 재분할된 RLC PDU를 신호로 변환하여 상기 단말에게 송신하는 단계를 포함하는 통신 방법.
  4. 제3항에 있어서,
    상기 단말로부터 신호를 수신하는 단계;
    상기 신호를 이용하여 MAC(Media Access Control) SDU(Service Data Unit)을 생성하는 단계; 및
    상기 MAC SDU를 상기 P-ENB에게 송신하는 단계를 더 포함하는 통신 방법.
  5. 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)의 통신 장치에 있어서,
    상기 P-ENB이 아닌 다른 기지국(NP-ENB)의 서빙 셀을 위한 논-프라이머리(NP)-EPS(Evolved Packet System) 베어러를 통해 서빙 게이트웨이로부터 패킷을 수신하는 통신부; 및
    상기 수신한 패킷을 이용해 제1 RLC PDU(Radio Link Control Packet Data Unit)를 생성하는 제어부를 포함하고
    상기 통신부는 상기 생성한 제1 RLC PDU를 상기 NP-ENB에게 전달하는 것을 특징으로 하는 통신 장치.
  6. 제5항에 있어서,
    상기 통신부는 상기 NP-ENB로부터 MAC(Media Access Control) SDU(Service Data Unit)를 수신하고,
    상기 제어부는 상기 MAC SDU로부터 그에 상응하는 제2 RLC PDU를 생성하고,
    상기 통신부는 상기 제2 RLC PDU를 변환하여 상기 NP-EPS 베어러를 통해 상기 서빙 게이트웨이에게 송신하는 것을 특징으로 하는 통신 장치.
  7. 단말(UE)의 프라이머리 셀(PCell)을 제어하는 기지국(P-ENB)이 아닌 기지국(NP-ENB)의 통신 장치에 있어서,
    상기 P-ENB로부터 RLC PDU(Radio Link Control Packet Data Unit)를 수신하는 통신부; 및
    상기 수신한 RLC PDU를 이용해 재분할된 RLC PDU를 생성하는 제어부를 포함하고,
    상기 통신부는 상기 재분할된 RLC PDU를 신호로 변환하여 상기 단말에게 송신하는 것을 특징으로 하는 통신 장치.
  8. 제7항에 있어서,
    상기 통신부는 상기 단말로부터 신호를 수신하고,
    상기 제어부는 상기 신호를 이용하여 MAC(Media Access Control) SDU(Service Data Unit)을 생성하고,
    상기 통신부는 상기 MAC SDU를 상기 P-ENB에게 송신하는 것을 특징으로 하는 통신 장치.
PCT/KR2013/004113 2012-05-09 2013-05-09 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치 WO2013169048A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147031376A KR102184046B1 (ko) 2012-05-09 2013-05-09 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
US14/399,723 US20150181593A1 (en) 2012-05-09 2013-05-09 Method and apparatus for transceiving data using plurality of carriers in mobile communication system
EP13788466.4A EP2849368B1 (en) 2012-05-09 2013-05-09 Method and apparatus for transceiving data using plurality of carriers in mobile communication system
CN201380036294.7A CN104412532A (zh) 2012-05-09 2013-05-09 用于在移动通信系统中使用多个载波收发数据的方法和装置
US15/259,888 US10187193B2 (en) 2012-05-09 2016-09-08 Method and apparatus for transceiving data using plurality of carriers in mobile communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261644645P 2012-05-09 2012-05-09
US61/644,645 2012-05-09
US201261645591P 2012-05-10 2012-05-10
US61/645,591 2012-05-10
US201261646888P 2012-05-14 2012-05-14
US61/646,888 2012-05-14
US201261649910P 2012-05-21 2012-05-21
US61/649,910 2012-05-21
US201261653026P 2012-05-30 2012-05-30
US61/653,026 2012-05-30
US201261658617P 2012-06-12 2012-06-12
US61/658,617 2012-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/399,723 A-371-Of-International US20150181593A1 (en) 2012-05-09 2013-05-09 Method and apparatus for transceiving data using plurality of carriers in mobile communication system
US15/259,888 Division US10187193B2 (en) 2012-05-09 2016-09-08 Method and apparatus for transceiving data using plurality of carriers in mobile communication system

Publications (2)

Publication Number Publication Date
WO2013169048A2 true WO2013169048A2 (ko) 2013-11-14
WO2013169048A3 WO2013169048A3 (ko) 2013-12-27

Family

ID=49550870

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2012/006250 WO2013168850A1 (ko) 2012-05-09 2012-08-07 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
PCT/KR2013/003921 WO2013168946A1 (ko) 2012-05-09 2013-05-06 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
PCT/KR2013/004113 WO2013169048A2 (ko) 2012-05-09 2013-05-09 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
PCT/KR2013/004109 WO2013169046A1 (ko) 2012-05-09 2013-05-09 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/006250 WO2013168850A1 (ko) 2012-05-09 2012-08-07 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
PCT/KR2013/003921 WO2013168946A1 (ko) 2012-05-09 2013-05-06 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004109 WO2013169046A1 (ko) 2012-05-09 2013-05-09 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치

Country Status (6)

Country Link
US (10) US9806873B2 (ko)
EP (7) EP2849501B1 (ko)
KR (4) KR20150018531A (ko)
CN (2) CN104412532A (ko)
ES (1) ES2740048T3 (ko)
WO (4) WO2013168850A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936173A (zh) * 2014-03-18 2015-09-23 华为技术有限公司 密钥生成方法、主基站、辅基站及用户设备
WO2016022668A1 (en) * 2014-08-05 2016-02-11 Qualcomm Incorporated Timing alignment procedures for dual pucch
EP3245829A4 (en) * 2015-01-13 2018-08-15 LG Electronics Inc. Method for de-configuring a scell from pucch resource in a carrier aggregation system and a device therefor
US10440611B2 (en) 2015-02-09 2019-10-08 Huawei Technologies Co., Ltd. RLC data packet offloading method and base station
US10813099B2 (en) 2014-01-28 2020-10-20 Huawei Technologies Co., Ltd. Radio bearer configuration method and system
US20210204153A1 (en) * 2014-07-23 2021-07-01 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
EP3528564B1 (en) * 2013-12-26 2021-09-08 NTT DoCoMo, Inc. User terminal and radio communication method

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462800A1 (en) * 2007-11-05 2019-04-03 Telefonaktiebolaget LM Ericsson (publ) Improved timing alignment in an lte system
KR20180003635A (ko) 2010-12-03 2018-01-09 인터디지탈 패튼 홀딩스, 인크 멀티 무선 액세스 기술 캐리어 결합을 수행하는 방법, 장치 및 시스템
KR102092579B1 (ko) 2011-08-22 2020-03-24 삼성전자 주식회사 이동통신 시스템에서 복수 개의 주파수 밴드 지원 방법 및 장치
RU2613173C2 (ru) 2012-01-09 2017-03-15 Самсунг Электроникс Ко., Лтд. Способ и устройство для регистрации
US20140334371A1 (en) 2012-01-27 2014-11-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
KR102041429B1 (ko) * 2012-05-07 2019-11-27 삼성전자 주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
WO2013168850A1 (ko) 2012-05-09 2013-11-14 삼성전자 주식회사 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
US9814075B2 (en) 2012-05-09 2017-11-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
US9661526B2 (en) 2012-05-21 2017-05-23 Samsung Electronics Co., Ltd Method and device for transmitting and receiving data in mobile communication system
CN103428690B (zh) * 2012-05-23 2016-09-07 华为技术有限公司 无线局域网络的安全建立方法及系统、设备
CN103516493B (zh) * 2012-06-19 2018-07-06 中兴通讯股份有限公司 数据传输方法及装置
WO2014000193A1 (zh) * 2012-06-27 2014-01-03 富士通株式会社 设备内共存配置信息的处理方法、装置和系统
US8913518B2 (en) * 2012-08-03 2014-12-16 Intel Corporation Enhanced node B, user equipment and methods for discontinuous reception in inter-ENB carrier aggregation
EP2888918B1 (en) 2012-08-23 2020-11-18 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites
CN104584633B (zh) * 2012-08-23 2018-12-18 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
US9019843B2 (en) * 2012-09-13 2015-04-28 International Business Machines Corporation Utilizing stored data to reduce packet data loss in a mobile data network with data breakout at the edge
US9544880B2 (en) 2012-09-28 2017-01-10 Blackberry Limited Methods and apparatus for enabling further L1 enhancements in LTE heterogeneous networks
US8923880B2 (en) 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
WO2014077756A1 (en) * 2012-11-13 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for enabling cell activation in a network
CN103338518B (zh) * 2012-12-31 2016-12-28 上海华为技术有限公司 一种发送rrc信令的方法、基站和系统
WO2014110810A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 传输数据的方法、基站和用户设备
WO2014124558A1 (zh) * 2013-02-18 2014-08-21 华为技术有限公司 一种用户设备组切换方法、设备和系统
KR20140107088A (ko) * 2013-02-27 2014-09-04 주식회사 케이티 스몰셀 환경에서 단말의 버퍼상태보고 전송방법 및 장치
WO2014157393A1 (ja) * 2013-03-27 2014-10-02 京セラ株式会社 移動通信システム、基地局及びユーザ端末
PL2802185T3 (pl) * 2013-04-01 2020-05-18 Innovative Sonic Corporation Sposób i urządzenie do dodawania komórek obsługujących w systemie komunikacji bezprzewodowej
US10305626B2 (en) * 2013-04-05 2019-05-28 Qualcomm Incorporated Enhanced transmission time interval bundling design for machine type communications
WO2014166094A1 (zh) * 2013-04-11 2014-10-16 富士通株式会社 介质访问控制层实体的处理方法、用户设备以及通信系统
US10892879B2 (en) * 2013-05-10 2021-01-12 Hfi Innovation Inc. Enhanced mechanism of scheduling request to multiple schedulers in a wireless network with multiple connectivity
EP2983434B1 (en) * 2013-05-17 2020-03-04 Huawei Technologies Co., Ltd. Service data distribution method, access network equipment and terminal
KR20140141443A (ko) * 2013-05-31 2014-12-10 이노베이티브 소닉 코포레이션 무선 통신 시스템에서 스몰 셀 향상들을 위한 TTI (Transmission Time Interval) 번들링을 위한 방법 및 장치
EP2824986B1 (en) * 2013-07-11 2023-03-22 Fujitsu Limited Buffer status reporting in small cell networks
EP3010297B1 (en) * 2013-07-12 2018-11-28 Huawei Technologies Co., Ltd. Method for changing cell state, user equipment, and base station
EP3024293B1 (en) * 2013-08-07 2018-05-23 Huawei Technologies Co., Ltd. Method, apparatus and host for configuring secondary cell
US20150043489A1 (en) * 2013-08-09 2015-02-12 Innovative Sonic Corporation Method and apparatus for small cell enhancement in a wireless communication system
WO2015018075A1 (en) * 2013-08-09 2015-02-12 Mediatek Inc. Method to determine the starting subframe of data channel
KR20150020018A (ko) 2013-08-14 2015-02-25 삼성전자주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
US10117224B2 (en) * 2013-09-20 2018-10-30 Qualcomm Incorporated MAC subheader for D2D broadcast communication for public safety
CN110536485B (zh) * 2013-09-27 2022-12-23 Sk电信有限公司 支持双连接的用户设备
EP2854444A1 (en) 2013-09-27 2015-04-01 Panasonic Intellectual Property Corporation of America Efficient uplink scheduling mechanism for dual connectivity
WO2015056946A1 (ko) 2013-10-14 2015-04-23 엘지전자 주식회사 무선 통신 시스템에서의 커버리지 개선 방법 및 이를 위한 장치
WO2015060543A1 (en) 2013-10-23 2015-04-30 Lg Electronics Inc. Method for reporting a radio link problem and a device therefor
KR102157798B1 (ko) * 2013-10-29 2020-09-18 삼성전자 주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2015065457A1 (en) * 2013-10-31 2015-05-07 Nokia Corporation User equipment power optimization
KR102208633B1 (ko) * 2013-11-01 2021-01-28 삼성전자 주식회사 단말에서 시스템 프레임 번호를 획득하기 위한 방법, 단말 및 이동 통신 시스템
CN110087216B (zh) * 2013-11-08 2021-11-30 富士通互联科技有限公司 一种用于获取系统信息的方法和用户设备
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US9942820B2 (en) * 2013-12-02 2018-04-10 Apple Inc. Systems and methods for cross-cell carrier aggregation for coverage balance improvement
US9386460B2 (en) * 2013-12-02 2016-07-05 Apple Inc. Systems and methods for carrier aggregation deployment and organization in unlicensed bands
WO2015093747A1 (en) 2013-12-20 2015-06-25 Lg Electronics Inc. Method for power headroom reporting and device therefor
US10292196B2 (en) * 2013-12-23 2019-05-14 Apple Inc. Radio link control duplication for carrier aggregation
JP6081350B2 (ja) * 2013-12-26 2017-02-15 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN111491305B (zh) 2014-01-29 2023-04-28 三星电子株式会社 移动通信系统中的随机接入方法和设备
CN104811929B (zh) * 2014-01-29 2020-01-14 北京三星通信技术研究有限公司 处理基站间载波聚合的激活/去激活的方法及设备
US9713044B2 (en) * 2014-01-30 2017-07-18 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
JP6042569B2 (ja) * 2014-01-31 2016-12-14 京セラ株式会社 通信制御装置、マスタ基地局及びユーザ端末
US9635655B2 (en) * 2014-02-24 2017-04-25 Intel Corporation Enhancement to the buffer status report for coordinated uplink grant allocation in dual connectivity in an LTE network
EP3120645B1 (en) * 2014-03-21 2022-05-11 Nokia Solutions and Networks Oy Cross reporting of empty or non-empty buffers in dual connectivity
EP3133860B1 (en) * 2014-04-18 2018-08-22 NTT DoCoMo, Inc. User device and uplink-transmission-power-information transmission method
US9755726B2 (en) * 2014-04-21 2017-09-05 Alcatel Lucent Method and apparatus for improved multi-carrier communication
US10141983B2 (en) 2014-05-08 2018-11-27 Samsung Electronics Co., Ltd. Method for activating pSCell and SCell in mobile communication system supporting dual connectivity
EP3133890B1 (en) * 2014-05-08 2018-10-24 Huawei Technologies Co., Ltd. Data scheduling method and device
EP3346735B1 (en) * 2014-05-09 2021-02-17 HFI Innovation Inc. Optimized mechanism for paging transmission and reception
US10104709B2 (en) 2014-05-29 2018-10-16 Lg Electronics Inc. Method for supporting dual connectivity and device using same
US9706469B2 (en) * 2014-06-03 2017-07-11 Intel Corporation Radio resource control (RRC) protocol for cell selection and traffic steering for integrated WLAN/3GPP radio access technologies
US10609663B2 (en) * 2014-07-11 2020-03-31 Qualcomm Incorporated Techniques for reporting timing differences in multiple connectivity wireless communications
US10070364B2 (en) * 2014-07-21 2018-09-04 Intel IP Corporation Neighbor cell system information provisioning
CN105471763B (zh) * 2014-09-04 2020-09-15 中兴通讯股份有限公司 控制报文传输方法及装置
WO2016038763A1 (ja) 2014-09-12 2016-03-17 日本電気株式会社 無線局、無線端末、及び端末測定のための方法
WO2016068642A1 (en) * 2014-10-30 2016-05-06 Lg Electronics Inc. Method and apparatus for performing rrm measurements in unlicensed band in wireless communication system
PT3216300T (pt) * 2014-11-04 2018-11-14 Ericsson Telefon Ab L M Dispositivo de comunicação sem fios, nó de rede e métodos associados para melhorar transmissões de acesso aleatório
WO2016093579A1 (en) * 2014-12-09 2016-06-16 Samsung Electronics Co., Ltd. Method and apparatus for controlling multiple processors to reduce current consumption
JP2018050086A (ja) * 2015-01-28 2018-03-29 シャープ株式会社 端末装置、集積回路、および、通信方法
CN106031277B (zh) * 2015-01-29 2018-11-30 华为技术有限公司 无线承载重配置方法、建立方法、用户设备和基站
US10484979B2 (en) * 2015-02-27 2019-11-19 Qualcomm Incorporated Fast enhanced component carrier activation
US10334447B2 (en) * 2015-02-27 2019-06-25 Qualcomm Incorporated Discontinuous reception procedures with enhanced component carriers
CN112969227B (zh) 2015-03-06 2024-04-05 三星电子株式会社 执行和报告测量的方法和装置
KR101987525B1 (ko) * 2015-03-09 2019-06-12 주식회사 케이티 채널상태정보 전송 방법 및 그 장치
US9820264B2 (en) * 2015-03-09 2017-11-14 Ofinno Technologies, Llc Data and multicast signals in a wireless device and wireless network
US9843955B2 (en) 2015-03-09 2017-12-12 Ofinno Technologies, Llc Radio configuration in a carrier aggregation
US9924526B2 (en) 2015-03-09 2018-03-20 Ofinno Technologies, Llc Radio resource control mechanism in a wireless device and wireless network
US9980204B2 (en) * 2015-03-16 2018-05-22 Ofinno Technologies, Llc Channel state information transmission
US10869344B2 (en) 2015-03-19 2020-12-15 Acer Incorporated Method of radio bearer transmission in dual connectivity
CN107409412B (zh) * 2015-03-27 2021-06-29 夏普株式会社 用于辅小区上的物理上行控制信道的系统和方法
WO2016163059A1 (ja) * 2015-04-08 2016-10-13 日本電気株式会社 無線端末及び無線局並びにこれらの方法
JP6510069B2 (ja) * 2015-04-10 2019-05-08 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数のサービングセルをサポートするワイヤレス通信システムにおけるキャリアに関する制御情報のマッピング
CN108353317B (zh) * 2015-04-10 2021-09-03 三星电子株式会社 用于在移动通信系统中接收mac pdu的方法和装置
KR102237511B1 (ko) * 2015-04-29 2021-04-07 삼성전자주식회사 무선 통신 시스템에서 단말의 통신 제어 방법 및 장치
US10104584B2 (en) * 2015-05-14 2018-10-16 Blackberry Limited Uplink data splitting
JP6813481B2 (ja) * 2015-05-15 2021-01-13 京セラ株式会社 無線端末及び基地局
CN106304399B (zh) 2015-05-15 2020-12-04 夏普株式会社 用户设备及其方法以及由eutran执行的方法
CN106304398B (zh) 2015-05-15 2021-08-27 夏普株式会社 用于重配置数据承载的方法和用户设备
CN107852638B (zh) * 2015-07-06 2021-03-12 Lg 电子株式会社 在双连接中取消缓冲器状态报告或者调度请求的方法及其设备
US10433328B2 (en) 2015-07-20 2019-10-01 Lg Electronics Inc. Method for receiving a signal in wireless communication system and a device therefor
WO2017024561A1 (en) * 2015-08-12 2017-02-16 Nokia Solutions And Networks Oy Pucch region determination and usage for mtc
KR102507645B1 (ko) 2015-08-12 2023-03-08 삼성전자 주식회사 이동통신 시스템에서 비연속 수신 모드 적용 시 유효 기간 타이머를 이용하여 시스템 정보를 관리하는 방법 및 장치
CN106452705B (zh) * 2015-08-13 2021-03-02 索尼公司 无线通信系统中的电子设备和无线通信方法
WO2017051807A1 (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ 基地局及び通知方法
WO2017052284A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method and apparatus for performing a discontinuous reception
EP3354078A1 (en) * 2015-10-19 2018-08-01 Huawei Technologies Co., Ltd. A user device, network node, method and computer program product
BR112018010608A2 (pt) 2015-11-30 2018-11-13 Ericsson Telefon Ab L M método para redefinir um temporizador de alinhamento de tempo de uma rede de comunicação sem fio, equipamento de usuário e nó de rede correspondentes
US11082933B2 (en) * 2015-11-30 2021-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Method for redefining a time alignment timer of a wireless communication network, corresponding user equipment and network node
WO2017115109A1 (en) * 2015-12-29 2017-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Multi-stage reception monitoring
US10506605B2 (en) * 2016-01-29 2019-12-10 Research & Business Foundation Sungkyunkwan University Random access method considering a coverage level, subcarrier spacing configuration and/or multi-tone configuration in internet of things environment
US10637630B2 (en) * 2016-03-07 2020-04-28 Lg Electronics Inc. Method for transmitting and receiving uplink/downlink data in wireless communication system and apparatus therefor
JP7001582B2 (ja) * 2016-03-25 2022-01-19 株式会社Nttドコモ 基地局及びセル設定方法
US11115837B2 (en) * 2016-03-25 2021-09-07 Lg Electronics, Inc. Method and device for transmitting data unit, and method and device for receiving data unit
US10021596B2 (en) 2016-03-30 2018-07-10 Industrial Technology Research Institute Communication system, communication device, base station and method thereof for D2D communications
US20190090229A1 (en) * 2016-03-31 2019-03-21 Nec Corporation Radio access network node, external node, and method therefor
WO2017192171A1 (en) * 2016-05-06 2017-11-09 Intel IP Corporation Uplink data request and uplink splitting signaling
EP3252985B1 (en) * 2016-06-02 2019-07-31 LG Electronics Inc. Method and apparatus for transmitting uplink data in wireless communication system
RU2705227C1 (ru) * 2016-06-15 2019-11-06 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для передачи и приема беспроводного сигнала в системе беспроводной связи
US10813028B2 (en) 2016-07-21 2020-10-20 Kt Corporation Method for performing mobility process of NB-IoT terminal, and apparatus therefor
CN110036682B (zh) * 2016-09-14 2022-07-26 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
US10440691B2 (en) 2016-09-30 2019-10-08 Kt Corporation Method for controlling connection status of UE and apparatus thereof
CN108024269B (zh) * 2016-11-04 2021-05-07 中国移动通信有限公司研究院 一种小区测量配置信息发送、接收方法及装置
RU2735132C1 (ru) * 2016-12-22 2020-10-28 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ связи, оконечное устройство и сетевое устройство
CN106888078B (zh) * 2016-12-26 2019-03-12 中国移动通信有限公司研究院 前传网络的数据传输方法及装置
JP6868110B2 (ja) * 2017-01-14 2021-05-12 華為技術有限公司Huawei Technologies Co.,Ltd. 不連続受信管理方法および装置
US11101935B2 (en) * 2017-03-24 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for transmitting packet data units
US11184938B2 (en) * 2017-03-24 2021-11-23 Lg Electronics Inc. Method and device for requesting RRC connection
CN108809491B (zh) * 2017-05-04 2020-02-18 维沃移动通信有限公司 系统信息传输方法、终端及网络侧设备
US20180343689A1 (en) * 2017-05-26 2018-11-29 Mediatek Inc. Method And Apparatus For Handling Problem Cell In Mobile Communications
CN109150415B (zh) * 2017-06-15 2022-01-21 夏普株式会社 基站、用户设备和相关方法
CN109150451B (zh) 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统
EP3662701B1 (en) 2017-07-31 2022-05-04 Telefonaktiebolaget LM Ericsson (publ) Cell selection by service group
US10314055B1 (en) * 2017-09-25 2019-06-04 Sprint Communications Company L.P. Component carrier assignment using sector power ratio
CN110012555B (zh) * 2018-01-04 2021-04-20 维沃移动通信有限公司 辅小区状态的指示方法及通信设备
US11627582B2 (en) * 2018-01-04 2023-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Method, network device and terminal device for semi-persistent scheduling
CN110035556B (zh) * 2018-01-11 2020-10-16 维沃移动通信有限公司 通信业务过程冲突的处理方法及终端
US11259268B2 (en) * 2018-01-22 2022-02-22 Qualcomm Incorporated Conveying presence of enhanced paging mechanism
US11297674B2 (en) * 2018-02-14 2022-04-05 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
JP2021514126A (ja) * 2018-02-15 2021-06-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) フル構成で接続を再開するための方法、ネットワークノード、無線デバイス、およびコンピュータプログラム製品
US11533767B2 (en) * 2018-02-19 2022-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Activation of secondary cells for carrier aggregation and dual connectivity
KR102057605B1 (ko) 2018-04-19 2019-12-19 유부스 주식회사 프라이팬
WO2019220606A1 (ja) * 2018-05-17 2019-11-21 株式会社Nttドコモ ネットワークノード
WO2020029109A1 (zh) * 2018-08-08 2020-02-13 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端、网络设备
AU2018436721A1 (en) * 2018-08-17 2021-03-25 Guangdong Oppo Mobile Telecommunications Corp.,Ltd. Discontinuous transmission method and device
BR112021004440A2 (pt) * 2018-09-27 2021-05-25 Nokia Technologies Oy recuperação de falha de feixe para célula de serviço
US11432324B2 (en) 2019-02-08 2022-08-30 Qualcomm Incorporated Fallback procedures for two-step random access procedures
US11877333B2 (en) * 2019-02-14 2024-01-16 Lg Electronics Inc. Fast cell setup for dual connectivity
CN111698768B (zh) * 2019-03-15 2021-07-09 华为技术有限公司 通信方法及其装置
US11658792B2 (en) 2019-03-28 2023-05-23 Qualcomm Incorporated Methods and apparatus to facilitate PDCCH monitoring in carrier aggregation for lower power consumption
US11483768B2 (en) * 2019-03-28 2022-10-25 Qualcomm Incorporated Methods and apparatus to facilitate PDCCH monitoring in carrier aggregation for lower power consumption
US11470669B2 (en) * 2019-03-28 2022-10-11 Lg Electronics Inc. Method of operating transmitting UE in relation to RLF reporting in wireless communication system
CN111757548B (zh) * 2019-03-29 2022-05-24 华为技术有限公司 通信方法和通信装置
US10965349B2 (en) * 2019-09-03 2021-03-30 Cisco Technology, Inc. Reliability by switching between antenna states
US11191031B2 (en) 2019-09-15 2021-11-30 Qualcomm Incorporated Path-loss estimation using path-loss reference signal activation and deactivation
EP4030827A4 (en) * 2019-09-30 2022-08-31 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
EP3944656B1 (en) * 2019-12-17 2023-07-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Entering drx active time for drx groups
KR20210100479A (ko) 2020-02-06 2021-08-17 삼성전자주식회사 이동 통신 시스템에서 대역폭 설정 방법 및 장치
US11523301B2 (en) * 2020-04-20 2022-12-06 Qualcomm Incorporated Physical uplink control channel with buffer status report
US11758513B2 (en) 2020-04-20 2023-09-12 Qualcomm Incorporated Physical uplink control channel with uplink message short data field
US20220014955A1 (en) * 2020-07-10 2022-01-13 Qualcomm Incorporated User equipment (ue) measurement gap request and release for power savings and multiple subscriber identity module (msim) measurements
WO2023210983A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024034707A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 수신기 모델에 대한 온라인 학습을 수행하기 위한 장치 및 방법
WO2024073171A1 (en) * 2022-09-29 2024-04-04 Qualcomm Incorporated Message for network entity discontinuous reception or discontinuous transmission
WO2024094889A1 (en) * 2022-11-04 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Inactivity timer during cell discontinuous transmission/reception

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845198A (en) 1996-06-28 1998-12-01 At&T Wireless Services Inc. Method for optimal selection among multiple providers in a wireless communications service environment
US5898681A (en) 1996-09-30 1999-04-27 Amse Subsidiary Corporation Methods of load balancing and controlling congestion in a combined frequency division and time division multiple access communication system using intelligent login procedures and mobile terminal move commands
US6006091A (en) 1996-12-12 1999-12-21 Telefonaktiebolaget Lm Ericsson (Publ) System and method of informing a radio telecommunications network of the operating capabilities of a mobile terminal located therein
JP3116893B2 (ja) 1998-03-26 2000-12-11 日本電気株式会社 セルラシステム
NO20006720L (no) 2000-12-29 2002-07-01 Ericsson Telefon Ab L M Fremgangsmåte for opprettholdelse av forbindelse i GPRS-nett
US6917602B2 (en) 2002-05-29 2005-07-12 Nokia Corporation System and method for random access channel capture with automatic retransmission request
US7239884B2 (en) 2003-01-23 2007-07-03 Motorola, Inc. Method for providing improved access times for a communication device
EP1583292A1 (en) 2004-03-30 2005-10-05 Matsushita Electric Industrial Co., Ltd. Delayed base station relocation in distributed radio access networks
JP2006113767A (ja) 2004-10-14 2006-04-27 Sony Corp 情報処理システム、および、情報処理方法、並びに、プログラム
US7689227B2 (en) 2005-03-02 2010-03-30 Qualcomm Incorporated Method and apparatus for hashing over multiple frequency bands in a communication system
KR101265594B1 (ko) 2005-08-23 2013-05-22 엘지전자 주식회사 무선 이동통신 시스템에서 상향링크 억세스 채널을 통한메시지 전송 및 수신 방법
US7756548B2 (en) 2005-09-19 2010-07-13 Qualcomm Incorporated Methods and apparatus for use in a wireless communications system that uses a multi-mode base station
US8095144B2 (en) 2006-03-01 2012-01-10 Qualcomm Incorporated Method and apparatus for hashing over multiple frequency bands in a communication system
US8010105B2 (en) 2006-05-19 2011-08-30 Research In Motion Limited System and method for facilitating accelerated network selection using a weighted network list
US20080010677A1 (en) 2006-06-26 2008-01-10 Nokia Corporation Apparatus, method and computer program product providing improved sequence number handling in networks
US8346313B2 (en) 2006-08-01 2013-01-01 Qualcomm Incorporated Dynamic warm-up time for a wireless device in idle mode
US8295243B2 (en) 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
KR100938090B1 (ko) 2006-10-19 2010-01-21 삼성전자주식회사 이동통신 시스템에서 핸드오버 수행 방법 및 장치
BRPI0718367A2 (pt) 2006-10-31 2013-11-12 Qualcomm Inc Aparelho e método de acesso aleatório para comunicação sem fio
WO2008060097A1 (en) 2006-11-15 2008-05-22 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving ciphered packet in mobile communication system
KR101312876B1 (ko) 2006-12-13 2013-09-30 삼성전자주식회사 이동통신시스템에서 단말기의 측정 방법 및 장치
EP3499957B1 (en) * 2007-02-05 2020-03-25 Nec Corporation Inter base station handover method and communication terminal
KR101260079B1 (ko) 2007-02-06 2013-05-02 엘지전자 주식회사 무선 통신 시스템의 랜덤 액세스 방법
US20080226074A1 (en) 2007-03-15 2008-09-18 Interdigital Technology Corporation Method and apparatus for ciphering packet units in wireless communications
WO2008115447A2 (en) 2007-03-15 2008-09-25 Interdigital Technology Corporation Methods and apparatus to facilitate security context transfer, rohc and pdcp sn context reinitialization during handover
EP1973355A1 (en) 2007-03-19 2008-09-24 Nokia Siemens Networks Gmbh & Co. Kg Method and apparatus for configuring mode timers
RU2477021C2 (ru) 2007-03-30 2013-02-27 Нтт Досомо, Инк. Система мобильной связи, базовая станция, терминал пользователя и способ управления терминалом пользователя
KR101377954B1 (ko) 2007-06-13 2014-03-26 엘지전자 주식회사 시스템 정보 수신 방법
US8830950B2 (en) 2007-06-18 2014-09-09 Qualcomm Incorporated Method and apparatus for PDCP reordering at handoff
WO2009018318A2 (en) 2007-08-02 2009-02-05 Interdigital Patent Holdings, Inc. Packet data convergence protocol procedures
WO2009022860A1 (en) 2007-08-13 2009-02-19 Lg Electronics Inc. Method for performing handover in wireless communication system
JP2009055356A (ja) 2007-08-27 2009-03-12 Ntt Docomo Inc 移動通信システムにおける基地局装置、移動局装置および基地局制御方法
KR101531523B1 (ko) * 2007-09-21 2015-06-29 엘지전자 주식회사 패킷 재정렬 방법 및 패킷 재전송 방법
JP5103113B2 (ja) 2007-09-21 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置
WO2009046041A2 (en) 2007-10-01 2009-04-09 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing various pdcp and layer 2 operations
TW201021488A (en) 2007-12-07 2010-06-01 Interdigital Patent Holdings Method and apparatus for supporting configuration and control of the RLC and PDCP sub-layers
US8280375B2 (en) 2008-01-25 2012-10-02 Texas Instruments Incorporated System and method for managing radio link failures
US8355336B2 (en) 2008-02-13 2013-01-15 Qualcomm Incorporated Methods and apparatus for formatting headers in a communication frame
KR101094431B1 (ko) 2008-02-28 2011-12-15 한국전자통신연구원 이동 통신 시스템에서 전력 절약 동작 관리 방법
US8488521B2 (en) 2008-03-14 2013-07-16 Interdigital Patent Holdings, Inc. Behavior for wireless transmit/receive unit and MAC control elements for LTE DRX operations
US8249004B2 (en) 2008-03-14 2012-08-21 Interdigital Patent Holdings, Inc. Coordinated uplink transmission in LTE DRX operations for a wireless transmit receive unit
KR101163275B1 (ko) 2008-03-17 2012-07-05 엘지전자 주식회사 Pdcp 상태 보고 전송 방법
EP2292052B1 (en) 2008-03-21 2014-08-06 BlackBerry Limited Method and user equipment for configuring a long drx cycle in a lte ( e-utra) mobile communications network
US8121045B2 (en) 2008-03-21 2012-02-21 Research In Motion Limited Channel quality indicator transmission timing with discontinuous reception
US8437291B2 (en) 2008-03-24 2013-05-07 Lg Electronics Inc. Method for configuring different data block formats for downlink and uplink
US8155067B2 (en) * 2008-03-24 2012-04-10 Interdigital Patent Holdings, Inc. Method and apparatus for signaling the release of a persistent resource
HUE049903T2 (hu) * 2008-04-25 2020-11-30 Blackberry Ltd Eljárás és rendszer nem-folytonos vétel vezérlésre vezeték nélküli hálózatban
KR101554444B1 (ko) 2008-04-25 2015-09-18 인터디지탈 패튼 홀딩스, 인크 2개의 캐리어 상에서 동시에 수신하고 듀얼 셀 고속 다운링크 액세스에서 불연속 송신 및 수신을 수행하기 위한 방법 및 장치
CN101572945B (zh) 2008-04-29 2011-08-24 中国移动通信集团公司 一种信道质量指示的发送资源确定方法与装置
US7957298B2 (en) 2008-06-18 2011-06-07 Lg Electronics Inc. Method for detecting failures of random access procedures
US8681806B2 (en) 2008-06-23 2014-03-25 Koninklijke Philips N.V. Method for communicating in a network and radio stations associated
US8396037B2 (en) 2008-06-23 2013-03-12 Htc Corporation Method for synchronizing PDCP operations after RRC connection re-establishment in a wireless communication system and related apparatus thereof
JP5106275B2 (ja) 2008-06-30 2012-12-26 株式会社東芝 無線通信装置及び無線通信方法
US8942165B2 (en) * 2008-08-01 2015-01-27 Qualcomm Incorporated System and method for distributed multiple-input multiple-output (MIMO) in a wireless communication system
US9357563B2 (en) 2008-08-12 2016-05-31 Google Technology Holdings LLC Preventing misuse of random access procedure in wireless communication system
US8228851B2 (en) 2008-11-03 2012-07-24 Htc Corporation Method for handling random access response reception and an E-UTRAN and user equipment thereof
US20100113010A1 (en) 2008-11-03 2010-05-06 Qualcomm Incorporated Reprioritization of wireless networks for reselection to support voice call
KR101503842B1 (ko) * 2008-11-03 2015-03-18 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
KR20100052064A (ko) 2008-11-10 2010-05-19 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
WO2010071509A1 (en) 2008-12-17 2010-06-24 Telefonaktiebolaget L M Ericsson (Publ) Controlling radio emission from a mobile terminal in a critical area
WO2010074441A2 (en) 2008-12-26 2010-07-01 Lg Electronics Inc. Method of releasing radio bearer in wireless communication system and receiver
CN103796270A (zh) 2009-01-29 2014-05-14 三星电子株式会社 在用户设备处发送缓冲器状态报告的方法及用户设备
WO2010093172A2 (en) 2009-02-13 2010-08-19 Samsung Electronics Co., Ltd. Handover method and apparatus in a wireless communication system including femto cells
US8095143B2 (en) 2009-02-13 2012-01-10 Telefonaktiebolaget L M Ericsson Random access channel (RACH) reconfiguration for temporarily extended cell coverage
US8811284B2 (en) 2009-03-16 2014-08-19 Lg Electronics Inc. Method and apparatus for supporting carrier aggregation
CN101841889B (zh) 2009-03-19 2014-11-05 中兴通讯股份有限公司 随机接入信息的获取方法及用户设备
US9839001B2 (en) 2009-03-23 2017-12-05 Apple Inc. Methods and apparatus for optimizing paging mechanisms and publication of dynamic paging mechanisms
KR101645304B1 (ko) 2009-03-24 2016-08-03 삼성전자주식회사 이동통신 시스템에서 데이터 중복 재전송에 따른 동작 방법 및 장치
US9166746B2 (en) 2009-03-24 2015-10-20 Samsung Electronics Co., Ltd. Operating method and apparatus according to data duplicate retransmission in mobile communication system
KR101485807B1 (ko) 2009-04-01 2015-01-28 삼성전자주식회사 무선 통신 시스템의 랜덤 액세스 방법 및 장치
KR100968037B1 (ko) 2009-04-21 2010-07-07 엘지전자 주식회사 무선 통신 시스템에서 무선 베어러를 관리하는 방법 및 장치
CN102415174B (zh) 2009-04-24 2015-11-25 诺基亚公司 具有对通信的部分支持的接入控制
JP5023170B2 (ja) 2009-04-27 2012-09-12 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP5038350B2 (ja) * 2009-04-27 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
KR101582196B1 (ko) 2009-04-29 2016-01-04 삼성전자 주식회사 이동통신 시스템에서 네트워크의 랜덤 액세스 프리엠블 및 자원 최적화 장치 및 방법
KR101669966B1 (ko) * 2009-05-11 2016-10-27 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치
KR101607336B1 (ko) 2009-06-07 2016-03-30 엘지전자 주식회사 무선 통신 시스템에서 rb 설정 방법 및 장치
CN101925121B (zh) 2009-06-10 2014-03-19 中兴通讯股份有限公司 一种分组数据汇聚协议层重建的方法和装置
US8825066B2 (en) 2009-06-16 2014-09-02 Nokia Corporation Apparatus and method for interworking between multiple frequency band modes
EP2443870B1 (en) 2009-06-17 2014-10-15 InterDigital Patent Holdings, Inc. Method and apparatus for performing handover with a relay node
CN101931981B (zh) 2009-06-18 2013-08-28 华为技术有限公司 一种最小化路测日志测量方法及装置
EP3905580A1 (en) 2009-06-18 2021-11-03 Interdigital Patent Holdings, Inc. Method and apparatuses for operating in a discontinuous reception (drx) mode employing carrier aggregation
EP2265077B1 (en) 2009-06-18 2012-03-21 Panasonic Corporation Enhanced random access procedure for mobile communications
EP2443877B1 (en) * 2009-06-19 2019-05-15 BlackBerry Limited Mobile station association procedures with type ii relays
KR101707683B1 (ko) 2009-06-24 2017-02-16 엘지전자 주식회사 무선 통신 시스템상에서 단말의 측정 보고를 네트워크로 전송하는 방법
US8213610B2 (en) 2009-06-25 2012-07-03 Nokia Corporation Generation of key streams in wireless communication systems
GB2483577B (en) 2009-06-26 2013-12-25 Lg Electronics Inc Method of logging measurement result at handover failure in wireless communication system
US20110038313A1 (en) 2009-08-12 2011-02-17 Electronics And Telecommunications Research Institute Enhanced communication apparatus for providing enhanced concatenation, segmentation and reassembly of service data units
EP2465301B1 (en) 2009-08-14 2017-03-22 Hilco Patent Acquisition 55, LLC Methods and apparatus to support voice solutions for data centric terminals
CN102239728B (zh) 2009-08-14 2013-09-25 华为技术有限公司 数据处理方法和装置
CA2775371C (en) 2009-09-25 2018-03-13 Research In Motion Limited System and method for multi-carrier network operation
US8797942B2 (en) 2009-09-25 2014-08-05 Telefonaktiebolaget Lm Ericsson (Publ) Random access with full coverage on selected resources
CN102036348B (zh) 2009-09-30 2014-01-01 中兴通讯股份有限公司 一种不连续接收配置方法及系统
KR101746525B1 (ko) * 2009-10-01 2017-06-14 한국전자통신연구원 멀티 캐리어 구조를 사용하는 이동통신 시스템에서의 단말기 전력소모 감소 방법
WO2011063244A2 (en) * 2009-11-19 2011-05-26 Interdigital Patent Holdings, Inc. Component carrier activation/deactivation in multi-carrier systems
CN102639692B (zh) * 2009-11-30 2015-02-04 普拉里斯坦有限公司 来源于胎盘的贴壁细胞及其在疾病治疗中的应用
KR101789328B1 (ko) 2010-01-13 2017-11-21 엘지전자 주식회사 무선통신 시스템에서의 이벤트 발생 알림 방법 및 장치
KR101674221B1 (ko) 2010-01-28 2016-11-09 엘지전자 주식회사 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
KR101674222B1 (ko) 2010-02-09 2016-11-09 엘지전자 주식회사 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
KR20140116554A (ko) * 2010-02-12 2014-10-02 인터디지탈 테크날러지 코포레이션 다중 사이트 간의 데이터 분할
KR102309346B1 (ko) * 2010-02-12 2021-10-08 인터디지탈 패튼 홀딩스, 인크 셀-에지 사용자 성능을 향상시키고 하향링크 협력 컴포넌트 캐리어를 통해 무선 링크 실패 조건을 시그널링하는 방법 및 장치
US20110201307A1 (en) 2010-02-15 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Access control for m2m devices
KR101664279B1 (ko) 2010-02-16 2016-10-12 삼성전자주식회사 무선 통신 시스템에서 불연속 수신을 위한 제어 방법 및 장치
US9473966B2 (en) 2010-02-16 2016-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Enabling reporting of non-real-time MDT measurements
US8441973B2 (en) 2010-02-17 2013-05-14 Telefonaktiebolaget L M Ericsson (Publ) Fast dormancy requests in communication systems
KR20110108226A (ko) * 2010-03-26 2011-10-05 삼성전자주식회사 이동 통신 시스템에서 캐리어를 활성화하는 방법 및 장치
US8953540B2 (en) 2010-03-29 2015-02-10 Lg Electronics Inc. Method and apparatus for efficient feedback in a wireless communication system supporting multiple antennas
EP2553854B1 (en) 2010-04-01 2014-03-26 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for controlling the deactivation of transmission carriers
KR20110113484A (ko) 2010-04-09 2011-10-17 주식회사 팬택 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법
CA2736735C (en) 2010-04-11 2014-06-17 Lg Electronics Inc. Apparatus and method of performing measurements logging in wireless communication system
CN102870455B (zh) 2010-04-29 2016-06-01 交互数字专利控股公司 使用个人无线装置进行网络测试
WO2011139053A2 (en) * 2010-05-01 2011-11-10 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
EP2567482B1 (en) * 2010-05-03 2018-11-07 Samsung Electronics Co., Ltd Method and system of transfering data in a carrier aggregation environment
KR101705672B1 (ko) 2010-05-04 2017-02-23 삼성전자주식회사 이동통신 시스템에서 채널 측정 정보의 기록 방법 및 장치
WO2011149920A2 (en) * 2010-05-25 2011-12-01 Interdigital Patent Holdings, Inc. Retuning gaps and scheduling gaps in discontinuous reception
US10404427B2 (en) 2010-06-09 2019-09-03 Samsung Electronics Co., Ltd. Mobile communication system and packet control method in the mobile communication system
US9591503B2 (en) 2010-06-16 2017-03-07 Nokia Solutions And Networks Oy Measurements logging and transmission at a user equipment of a mobile communications system
KR20110137652A (ko) 2010-06-17 2011-12-23 삼성전자주식회사 무선 통신 시스템 및 그의 사용자 단말기와 이동성 관리 엔티티 간 연결 방법
US9106380B2 (en) 2010-06-21 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for signaling of parameters in a wireless network
US20130114579A1 (en) 2010-07-12 2013-05-09 Lg Electronics Inc. Data transmission method, related base station and user equipment
KR101699023B1 (ko) * 2010-07-14 2017-01-23 주식회사 팬택 다중 요소 반송파 시스템에서 핸드오버의 수행장치 및 방법
DE102010031679A1 (de) * 2010-07-22 2012-01-26 Robert Bosch Gmbh Drucksensor sowie Verfahren zum Herstellen eines Drucksensors
US9480098B2 (en) * 2010-08-16 2016-10-25 Htc Corporation Handling radio resource control connection reconfiguration and related communication device
EP2421325A1 (en) * 2010-08-18 2012-02-22 HTC Corporation Method of applying discontinuous reception operation (DRX) in carrier aggregation and related communication device
EP2609695B1 (en) 2010-08-27 2019-10-02 LG Electronics Inc. Mac pdu signaling and operating methods for access class barring and back-off control for large-scale radio access network
KR101863927B1 (ko) 2010-09-26 2018-07-05 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
CN102448151B (zh) * 2010-09-30 2016-05-18 索尼公司 非连续接收方法、移动台、基站和无线通信系统
US20120082107A1 (en) * 2010-10-05 2012-04-05 Ou Meng-Hui Method and apparatus for implicit scell deactivation in a wireless communication system
EP2442610B1 (en) * 2010-10-13 2017-12-06 Alcatel Lucent In-sequence delivery of upstream user traffic during handover
US20120092286A1 (en) 2010-10-19 2012-04-19 Microsoft Corporation Synthetic Gesture Trace Generator
EP2445279B1 (en) * 2010-10-21 2018-12-05 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
US8737333B2 (en) 2010-11-08 2014-05-27 Acer Incorporated Method of power reporting and communication device thereof
US8792376B2 (en) * 2011-01-11 2014-07-29 Samsung Electronics Co., Ltd. Secondary carrier activation/deactivation method and apparatus for mobile communication system supporting carrier aggregation
WO2012108811A1 (en) 2011-02-08 2012-08-16 Telefonaktiebolaget L M Ericsson (Publ) Signaling for legacy terminal operation in harmonized bands
CN102638896B (zh) * 2011-02-15 2017-07-21 中兴通讯股份有限公司 一种确定分量载波优先级别的方法及系统
WO2012115412A2 (en) * 2011-02-21 2012-08-30 Samsung Electronics Co., Ltd. Method and apparatus for activating or deactivating secondary carriers in time division duplex mobile communication system using carrier aggregation
EP2501057A1 (en) * 2011-03-17 2012-09-19 Panasonic Corporation Dynamic PUSCH deactivation/activation for component carriers of a relay node
WO2012134138A2 (ko) 2011-03-28 2012-10-04 엘지전자 주식회사 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
US9467959B2 (en) * 2011-04-01 2016-10-11 Mediatek, Inc. Method of maintaining multiple timing advance
JP2014514831A (ja) * 2011-04-01 2014-06-19 インターデイジタル パテント ホールディングス インコーポレイテッド ネットワークへの接続性を制御する方法および装置
CN102740445B (zh) 2011-04-02 2015-04-08 上海贝尔股份有限公司 用于载波聚合场景下的切换方法
EP2698932B1 (en) 2011-04-11 2017-08-30 Samsung Electronics Co., Ltd. Method and apparatus for efficiently transmitting information acquired by a terminal to a base station
US9271281B2 (en) * 2011-05-06 2016-02-23 Innovation Sonic Corporation Method and apparatus to improve inter-band carrier aggregation (CA) in TDD (time division duplex) mode
KR101479896B1 (ko) * 2011-06-06 2015-01-06 후지쯔 가부시끼가이샤 기지국
WO2013005948A2 (ko) * 2011-07-04 2013-01-10 엘지전자 주식회사 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치
AU2011373436B2 (en) 2011-07-18 2017-01-12 Nokia Solutions And Networks Oy Determination of the timing advance group
US20150296542A1 (en) 2011-08-11 2015-10-15 Blackberry Limited Performing random access in carrier aggregation
US8705556B2 (en) * 2011-08-15 2014-04-22 Blackberry Limited Notifying a UL/DL configuration in LTE TDD systems
US8917579B2 (en) 2011-08-18 2014-12-23 Seiko Epson Corporation Manufacturing method of timepiece dial, timepiece dial, and timepiece
CN102271373B (zh) 2011-08-30 2017-09-15 中兴通讯股份有限公司 X2切换方法及装置
TW201320796A (zh) * 2011-09-06 2013-05-16 Innovative Sonic Corp 在無線通訊系統中執行提前時序群組變更的方法及裝置
US20140241250A1 (en) 2011-10-02 2014-08-28 Lg Electronics Inc. Method of selectively reporting measurement result in wireless communication system and apparatus for the same
US9198200B2 (en) * 2011-10-04 2015-11-24 Google Technology Holdings LLC Method for contention based random access on a secondary carrier
US9237419B2 (en) 2011-10-08 2016-01-12 Lg Electronics Inc. Method for reporting position information together with other information in a wireless communication system and apparatus for supporting same
WO2013055084A1 (en) 2011-10-11 2013-04-18 Lg Electronics Inc. Method for logging measurement result in wireless communication system and apparatus for the same
CN103096355B (zh) 2011-11-02 2015-11-25 华为技术有限公司 一种处理随机接入参数的方法及设备
US8948158B2 (en) * 2011-11-04 2015-02-03 Interdigital Patent Holdings, Inc. Methods of multiple point HSDPA transmission in single or different frequencies
US9615281B2 (en) 2011-11-04 2017-04-04 Lg Electronics Inc. Method of transmitting and receiving signal to and from network at UE in wireless communication system and apparatus for the same
US9686814B2 (en) * 2011-11-07 2017-06-20 Industrial Technology Research Institute Method of reference cell maintenance
US8446844B1 (en) * 2011-12-04 2013-05-21 Ofinno Technologies, Llc Handover in multicarrier wireless networks
US8929319B2 (en) 2011-12-23 2015-01-06 Blackberry Limited Updating scheduling request resources
CN103797872B (zh) * 2011-12-31 2017-06-16 富士通株式会社 避免时间提前量组重配后上行干扰的方法及装置
WO2013104416A1 (en) 2012-01-11 2013-07-18 Nokia Siemens Networks Oy Secondary cell preparation for inter- site carrier aggregation
US20130188600A1 (en) * 2012-01-20 2013-07-25 Acer Incorporated Method of Reference Cell Change
US9237537B2 (en) * 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
US8995405B2 (en) 2012-01-25 2015-03-31 Ofinno Technologies, Llc Pathloss reference configuration in a wireless device and base station
US9167519B2 (en) * 2012-01-31 2015-10-20 Apple Inc. Methods and apparatus for power saving in discontinuous reception—adaptive neighbor cell search duration
WO2013115622A1 (ko) * 2012-02-03 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 주기적 채널 상태 정보 전송 방법 및 장치
US9414409B2 (en) 2012-02-06 2016-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
US20150009923A1 (en) * 2012-02-07 2015-01-08 Nokia Corporation Method and Apparatus to Report and Handle Buffer Status for User Equipment Working in Inter-Site Carrier Aggregation Mode
EP2813023A1 (en) * 2012-02-10 2014-12-17 Nokia Solutions and Networks Oy Inter-site carrier aggregation
JP5437422B2 (ja) 2012-03-13 2014-03-12 株式会社Nttドコモ 無線基地局及び移動局
CN104170493B (zh) * 2012-03-23 2018-09-07 联发科技股份有限公司 移动通信网络中分配调度请求资源的方法以及装置
PL2832149T3 (pl) * 2012-03-30 2019-06-28 Nokia Solutions And Networks Oy Urządzenia, sposoby i produkty programów komputerowych zapewniające lepsze przekazanie w sytuacjach międzylokacyjnej agregacji nośników
US8964590B2 (en) 2012-04-01 2015-02-24 Ofinno Technologies, Llc Random access mechanism for a wireless device and base station
US20130272139A1 (en) 2012-04-16 2013-10-17 Innovative Sonic Corporation Method and apparatus for logging instances of a ue failing to establish connection in a wireless communication network
KR102041429B1 (ko) 2012-05-07 2019-11-27 삼성전자 주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
WO2013168850A1 (ko) * 2012-05-09 2013-11-14 삼성전자 주식회사 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
WO2014010993A1 (en) 2012-07-12 2014-01-16 Lg Electronics Inc. Method and apparatus for applying a discontinuous reception (drx) cycle in a wireless communication system
CN104584633B (zh) 2012-08-23 2018-12-18 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
TW201414346A (zh) * 2012-09-19 2014-04-01 Innovative Sonic Corp 在無線通訊系統中改善進化b節點間載波聚合的方法和通訊設備
JP6180102B2 (ja) 2012-11-29 2017-08-16 株式会社Nttドコモ 移動通信方法、無線基地局及び移動局
WO2014110813A1 (en) * 2013-01-18 2014-07-24 Mediatek Inc. Mechanism of rlf handling in small cell networks
US9439112B2 (en) * 2013-02-01 2016-09-06 Mediatek, Inc. Low overhead mobility in local area wireless network
EP2989727B1 (en) * 2013-04-24 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Drx method with tdm limitation and user equipment using the same
JP2015142363A (ja) 2014-01-30 2015-08-03 株式会社Nttドコモ 移動局、再接続要求方法、基地局及び再接続要求処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528564B1 (en) * 2013-12-26 2021-09-08 NTT DoCoMo, Inc. User terminal and radio communication method
US10813099B2 (en) 2014-01-28 2020-10-20 Huawei Technologies Co., Ltd. Radio bearer configuration method and system
US20170005795A1 (en) * 2014-03-18 2017-01-05 Huawei Technologies Co., Ltd. Key Generation Method, Master eNodeB, Secondary eNodeB and User Equipment
CN104936173B (zh) * 2014-03-18 2022-02-25 华为技术有限公司 密钥生成方法、主基站、辅基站及用户设备
CN104936173A (zh) * 2014-03-18 2015-09-23 华为技术有限公司 密钥生成方法、主基站、辅基站及用户设备
US11722914B2 (en) * 2014-07-23 2023-08-08 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
US20210204153A1 (en) * 2014-07-23 2021-07-01 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
US10462758B2 (en) 2014-08-05 2019-10-29 Qualcomm Incorporated Timing alignment procedures for dual PUCCH
US11191044B2 (en) 2014-08-05 2021-11-30 Qualcomm Incorporated Timing alignment procedures for dual PUCCH
WO2016022668A1 (en) * 2014-08-05 2016-02-11 Qualcomm Incorporated Timing alignment procedures for dual pucch
US10165526B2 (en) 2015-01-13 2018-12-25 Lg Electronics Inc. Method for de-configuring a SCell from PUCCH resource in a carrier aggregation system and a device therefor
EP3245829A4 (en) * 2015-01-13 2018-08-15 LG Electronics Inc. Method for de-configuring a scell from pucch resource in a carrier aggregation system and a device therefor
US10440611B2 (en) 2015-02-09 2019-10-08 Huawei Technologies Co., Ltd. RLC data packet offloading method and base station

Also Published As

Publication number Publication date
WO2013168850A1 (ko) 2013-11-14
EP2849501A4 (en) 2016-01-20
US10778402B2 (en) 2020-09-15
EP2849359A1 (en) 2015-03-18
US11405169B2 (en) 2022-08-02
US20150117287A1 (en) 2015-04-30
EP2849501A9 (en) 2015-04-29
EP3742864A1 (en) 2020-11-25
EP2849368A4 (en) 2016-02-24
US20200036502A1 (en) 2020-01-30
KR20150021498A (ko) 2015-03-02
EP2849359A4 (en) 2016-02-17
US10129005B2 (en) 2018-11-13
EP3742864B1 (en) 2022-03-30
EP3567791A1 (en) 2019-11-13
US9806873B2 (en) 2017-10-31
US20180317277A1 (en) 2018-11-01
KR102184046B1 (ko) 2020-11-27
US20200328868A1 (en) 2020-10-15
CN107257551A (zh) 2017-10-17
US10187193B2 (en) 2019-01-22
EP2849501B1 (en) 2020-09-30
EP2849368A2 (en) 2015-03-18
EP2849368B1 (en) 2020-07-01
US20170006587A1 (en) 2017-01-05
WO2013169048A3 (ko) 2013-12-27
KR102037493B1 (ko) 2019-10-29
US20150117286A1 (en) 2015-04-30
KR20150020167A (ko) 2015-02-25
US9544896B2 (en) 2017-01-10
US20150099501A1 (en) 2015-04-09
US9485765B2 (en) 2016-11-01
WO2013168946A1 (ko) 2013-11-14
US10567144B2 (en) 2020-02-18
EP2849367B1 (en) 2020-08-26
KR20130125721A (ko) 2013-11-19
EP3567791B1 (en) 2023-01-04
EP2849359B1 (en) 2019-07-03
US20150181593A1 (en) 2015-06-25
EP2849367A4 (en) 2016-02-24
EP2849367A1 (en) 2015-03-18
KR102158359B1 (ko) 2020-09-21
CN104412532A (zh) 2015-03-11
EP2849501A1 (en) 2015-03-18
US10560246B2 (en) 2020-02-11
KR20150018531A (ko) 2015-02-23
EP4170957A1 (en) 2023-04-26
CN107257551B (zh) 2021-05-04
US20170150447A1 (en) 2017-05-25
ES2740048T3 (es) 2020-02-05
US20170048053A1 (en) 2017-02-16
WO2013169046A1 (ko) 2013-11-14

Similar Documents

Publication Publication Date Title
WO2013169048A2 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2020159222A1 (ko) 차세대 이동 통신 시스템에서 전력 소모 절감을 위한 링크 별 활성화 및 비활성화 방법 및 장치
WO2015023128A1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
WO2019190245A1 (en) Apparatus and method for measurement in wireless communication system
WO2016186401A1 (ko) 이동 통신 시스템에서 스케줄링 요청을 송수신하는 방법 및 장치
WO2014027852A1 (ko) 이동통신 시스템에서 핸드 오버를 수행하는 방법 및 장치
WO2014098534A1 (ko) 이동통신시스템에서의 송수신장치 및 방법
WO2019225888A1 (ko) 차세대 이동통신 시스템에서 sdap 제어 pdu를 구분해서 처리하는 방법 및 장치
WO2015115854A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2017078258A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2016144055A1 (en) Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems
WO2013176473A1 (ko) 이동통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2015142104A1 (en) Method and apparatus for transmitting/receiving signal in mobile communication system supporting a plurality of carriers
WO2013022318A2 (ko) 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 전송하는 방법 및 장치
WO2015046976A1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
EP3100376A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2022086121A1 (ko) 이동 통신 시스템에서 멀티캐스트/브로드캐스트 서비스를 지원하는 방법 및 장치
WO2022211444A1 (en) Method and apparatus for providing service in wireless communication system
WO2021256898A1 (ko) 차세대 이동 통신 시스템에서 멀티캐스트 서비스를 위한 이동성 지원 방법 및 장치
WO2021210937A1 (ko) 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 고려한 부분 대역폭 스위칭 방법 및 장치
WO2020009414A1 (ko) 이동 통신 시스템에서 통신 방법 및 장치
WO2021215770A1 (ko) 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 고려한 phr 트리거링 방법과 phr 구성 방법 및 장치
EP3777302A1 (en) Apparatus and method for measurement in wireless communication system
WO2022149898A1 (ko) 차세대 이동 통신 시스템에서 daps 핸드오버를 수행할 때 발생할 수 있는 오류를 방지하는 방법 및 장치
WO2023140668A1 (ko) 무선 이동 통신 시스템에서 갭 설정 정보에 따라 스몰 갭을 설정하고 스몰 갭 동작을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788466

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013788466

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031376

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14399723

Country of ref document: US