WO2013005948A2 - 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013005948A2
WO2013005948A2 PCT/KR2012/005171 KR2012005171W WO2013005948A2 WO 2013005948 A2 WO2013005948 A2 WO 2013005948A2 KR 2012005171 W KR2012005171 W KR 2012005171W WO 2013005948 A2 WO2013005948 A2 WO 2013005948A2
Authority
WO
WIPO (PCT)
Prior art keywords
uplink timing
terminal
uplink
base station
cell
Prior art date
Application number
PCT/KR2012/005171
Other languages
English (en)
French (fr)
Other versions
WO2013005948A3 (ko
WO2013005948A9 (ko
Inventor
박성준
천성덕
정성훈
이승준
이영대
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/123,399 priority Critical patent/US9282553B2/en
Publication of WO2013005948A2 publication Critical patent/WO2013005948A2/ko
Publication of WO2013005948A9 publication Critical patent/WO2013005948A9/ko
Publication of WO2013005948A3 publication Critical patent/WO2013005948A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for controlling the uplink timing by a terminal in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), a base station (eNode B; Enb), and a network (E-UTRAN) and connected to an external network (Access Gateway (AG)). It includes.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the following is a method for controlling the uplink timing by the terminal in a wireless communication system and proposes an apparatus therefor.
  • the specific uplink which is a valid time of the uplink timing command Starting a timer in a link timing group; Receiving a removal message of a serving cell included in the specific uplink timing group from the network; And if there is no serving cell included in the specific uplink timing group, stopping the timer.
  • the uplink timing command includes an uplink timing correction value for uplink transmission to the network
  • the method further includes updating an uplink timing by using the uplink timing correction value. It may be characterized by.
  • the method may further include performing uplink transmission to the network according to the updated uplink transmission timing while the timer is running.
  • the uplink timing command is a medium access control (MAC) layer message
  • the removal message of the serving cell is received through a radio resource control (RRC) connection reconfiguration process with the network. It is done.
  • MAC medium access control
  • RRC radio resource control
  • the method may further include receiving a message from the network for setting the specific uplink timing group including one or more serving cells.
  • the specific uplink timing group may be configured only with a secondary serving cell.
  • one or more serving cells included in the specific uplink timing group are applied with the same uplink timing.
  • a terminal in a wireless communication system to which a carrier aggregation technique is applied, can more efficiently control uplink timing.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FIG. 3 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 4 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 5 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 6 is a conceptual diagram illustrating a carrier aggregation technique of the LTE-A system.
  • FIG. 7 and 8 illustrate a downlink second layer structure and an uplink second layer structure when the carrier aggregation technique is applied.
  • 9 to 13 are diagrams illustrating a scenario in which a carrier aggregation technique is applied.
  • FIG. 14 illustrates an example of managing timing advance when a carrier aggregation technique is applied.
  • FIG. 15 illustrates an operation process of a terminal and a base station for timing advance management in a wireless communication system to which a carrier aggregation technique is applied according to an embodiment of the present invention.
  • FIG. 16 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the E-UTRAN consists of cells (eNBs), which cells are connected via an X2 interface.
  • the cell is connected to the terminal through the air interface, and is connected to the Evolved Packet Core (EPC) through the S1 interface.
  • EPC Evolved Packet Core
  • the EPC includes a mobility management entity (MME), a serving-gateway (S-GW), and a packet data network-gateway (PDN-GW).
  • MME mobility management entity
  • S-GW serving-gateway
  • PDN-GW packet data network-gateway
  • FIG. 3 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the second layer includes a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer.
  • the MAC layer of the second layer serves to map various logical channels to various transport channels, and also serves as logical channel multiplexing to map several logical channels to one transport channel.
  • the MAC layer is connected to the upper layer RLC layer in a logical channel, and the logical channel is a control channel for transmitting information of the control plane and information of the user plane according to the type of information transmitted largely. It is divided into a traffic channel transmitting a traffic channel.
  • the RLC layer of the second layer performs segmentation and concatenation of data received from an upper layer to adjust a data size so that the lower layer is suitable for transmitting data in a wireless section.
  • transparent mode TM
  • un-acknowledged mode UM
  • QoS quality of service
  • RB radio bearer
  • AM Acknowledged Mode
  • the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
  • the PDCP layer of the second layer is a header that reduces the size of the IP packet header that contains relatively large and unnecessary control information for efficient transmission in a low bandwidth wireless section when transmitting an IP packet such as IPv4 or IPv6. Performs the header compression function. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent the third party data interception and integrity protection (Integrity protection) to prevent the third party data manipulation.
  • the radio resource control (RRC) layer of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in association with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other.
  • a radio bearer can be roughly divided into two types: a signaling radio bearer (SRB) used to transmit an RRC message in a control plane and a data radio bearer (DRB) used to transmit user data in a user plane.
  • the DRB may be classified into a UM DRB using a UM RLC and an AM DRB using an AM RLC according to a method of operating an RLC.
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If connected, the RRC connected state (RRC_CONNECTED), if not connected, the RRC idle state (RRC_IDLE). It is called.
  • the E-UTRAN can grasp the presence of the UE in the RRC connection state on a cell basis, the E-UTRAN can effectively control the UE.
  • the E-UTRAN cannot grasp the UE of the RRC idle state in the cell unit, and the CN manages the TA unit, which is a larger area unit than the cell. That is, in order to receive a service such as voice or data from the cell, the UE in the RRC idle state needs to transition to the RRC connected state.
  • the terminal when the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell. Only when it is necessary to establish an RRC connection, the UE remaining in the RRC idle state transitions to the RRC connection state by performing an RRC connection establishment process with the RRC of the E-UTRAN. In this case, when the RRC connection needs to be established, an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from the E-UTRAN, a response message should be transmitted.
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • ESM EPS Mobility Management
  • EMM-UNREGISTERED EMM unregistered state
  • the initial terminal is in an EMM unregistered state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the contact procedure is successfully performed, the UE and the MME are in the EMM registration state.
  • ECM_IDLE ECM_CONNECTED
  • ECM_CONNECTED ECM_CONNECTED
  • the E-UTRAN When the terminal is in the ECM idle state, the E-UTRAN does not have the context of the terminal. Accordingly, the UE in the ECM idle state performs a UE-based mobility related procedure such as a cell selection or cell reselection procedure without receiving a command from the network. On the other hand, when the terminal is in the ECM connection state, the mobility of the terminal is managed by the command of the network. In the ECM idle state, when the location of the terminal is different from the location known by the network, the terminal informs the network of the corresponding location of the terminal through a TA update (Tracking Area Update) procedure.
  • TA update Track Area Update
  • One cell constituting the base station (eNB) in the LTE system is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • MCH downlink multicast channel
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • Traffic Channel multicast
  • FIG. 4 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S401). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S402).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S403 to S406).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S403) and receive a response message for the preamble through the PDCCH and the corresponding PDSCH (S404).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S407) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S408) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 5 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the terminal performs a random access procedure as follows.
  • uplink data When uplink data is not synchronized, or when uplink data is generated in a situation where a designated radio resource used for requesting a radio resource is not allocated.
  • a base station allocates a designated random access preamble to a specific terminal, and the terminal provides a non-competitive random access procedure for performing a random access procedure with the random access preamble.
  • a contention based random access procedure in which a user equipment selects one randomly within a specific set and a random access preamble allocated by the base station to a specific user equipment are used.
  • the non-competition based random access process may be used only when requested by the handover process or the command of the base station described above.
  • the UE randomly selects one random access preamble from a set of random access preambles indicated by system information or a handover command, and transmits the random access preamble. Select to send.
  • the base station After the UE transmits the random access preamble as described above, the base station attempts to receive its random access response within the random access response reception window indicated by the system information or the handover command.
  • the random access response information is transmitted in the form of a MAC PDU
  • the MAC PDU is transmitted in a PDSCH.
  • the PDCCH is also delivered to the terminal to properly receive the information delivered to the PDSCH. That is, the PDCCH includes information of a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
  • the UE receives the random access response transmitted to the PDSCH according to the information of the PDCCH as appropriate.
  • the random access response includes a random access preamble identifier, an uplink grant, a temporary C-RNTI (temporary cell identifier), and a timing advance command (TAC).
  • the reason why the random access preamble identifier is required is that since one random access response may include random access response information for one or more terminals, it is known to which UE the UL grant, Temporary C-RNTI, and TAC are valid for. It is to give.
  • the random access preamble identifier corresponds to a random access preamble selected by the random access preamble identifier.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the Temporary C-RNTI.
  • the terminal applies the TAC, and stores the Temporary C-RNTI.
  • the uplink grant data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • the data included in the uplink grant essentially an identifier of the terminal should be included.
  • the contention-based random access process it is not possible to determine which terminals perform the random access process in the base station, because the terminal needs to be identified for future collision resolution.
  • there are two methods for including the identifier of the terminal there are two methods for including the identifier of the terminal.
  • the terminal transmits its cell identifier through the uplink.
  • the terminal transmits its own unique identifier (eg, S-TMSI or Random Id). In general, the unique identifier is longer than the cell identifier. If the terminal transmits data through the UL Grant, it initiates a timer (contention resolution timer) for conflict resolution.
  • the terminal After the terminal transmits data including its identifier through an uplink grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the terminal determines that the random access procedure has been normally performed and ends the random access procedure.
  • the terminal determines that the random access procedure has been normally performed and ends the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and ends the random access procedure.
  • the random access process compared to the contention-based random access process, by receiving the random access response information in the contention-free random access process, it is determined that the random access process is normally performed, and ends the random access process.
  • the non-competition based random access procedure may exist firstly in the case of the handover procedure and secondly, in the case requested by the command of the base station.
  • the contention-based random access procedure may be performed in both cases.
  • a method of receiving the random access preamble includes a handover command and a PDCCH command.
  • the terminal transmits the preamble to the base station after receiving the random access preamble assigned to only the base station from the base station.
  • the method of receiving the random access response information is the same as in the contention-based random access procedure.
  • FIG. 6 is a conceptual diagram illustrating a carrier aggregation technique of the LTE-A system.
  • the LTE-A technical standard is an IMT-Advanced candidate technology of the International Telecommunication Union (ITU), and is designed to meet the IMT-Advanced technology requirements of the ITU. Accordingly, in LTE-A, discussions are being made to expand the bandwidth compared to the existing LTE system in order to satisfy the requirements of the ITU.
  • a carrier that can have in an existing LTE system is defined as a component carrier (hereinafter referred to as a CC), and it is discussed to bundle up to five such CCs.
  • a serving cell may consist of one downlink CC and one uplink CC. Alternatively, the serving cell may be configured with one downlink CC.
  • CC can have a bandwidth of up to 20MHz, like the LTE system, it is a concept that can extend the bandwidth up to 100MHz.
  • CA The technique of using a plurality of CCs in this manner is referred to as CA.
  • a serving cell providing a security input and mobility information of the NAS layer to establish and re-establish an RRC connection is a main serving cell (PCell). : It is called Primary Serving Cell and other cells are called Secondary Serving Cell (SCell).
  • FIG. 7 and 8 illustrate a downlink second layer structure and an uplink second layer structure when the carrier aggregation technique is applied.
  • the CA scheme affects a lot of the MAC layer, especially the MAC layer.
  • the MAC layer of the LTE-A system must perform operations related to the plurality of HARQ entities.
  • each HARQ entity is independently processed by a transport block, the CA can transmit or receive a plurality of transport blocks at the same time through a plurality of CCs.
  • the time that the signal transmitted from the terminal reaches the base station may vary according to the radius of the cell, the position of the terminal in the cell, and the moving speed of the terminal. In other words, if the base station does not manage the transmission timing for each terminal, there is a possibility that the transmission signal of the terminal may cause an interference effect on the transmission signal transmitted by another terminal, and the error rate of the received signal increases on the base station side.
  • the time that the transmitted signal reaches the base station will be longer than the arrival time of the signal transmitted by the terminal in the center of the cell.
  • the transmission time of the terminal in the cell center to the base station will be relatively shorter than the transmission of the terminal at the cell edge.
  • timing advance management On the base station side, in order to prevent interference effects, data or signals transmitted by all terminals in a cell must be received within every valid time boundary, so the base station must adjust the transmission timing of the terminal appropriately according to the situation of the terminal. This adjustment is called timing advance management.
  • One way to manage timing advance may be a random access operation. That is, the base station receives a random access preamble transmitted by the terminal through a random access operation process, and calculates a timing advance value for speeding up or slowing down the transmission timing of the terminal using the reception information of the random access preamble. In addition, the calculated timing advance value is informed to the terminal through a random access response, and the terminal updates the uplink transmission timing by using the timing advance value.
  • the base station receives a sounding reference signal (SRS) periodically or arbitrarily transmitted by the terminal, calculates a timing advance value of the terminal through the received signal, and informs the terminal. . Accordingly, the terminal updates its transmission timing.
  • SRS sounding reference signal
  • the base station measures transmission timing of the terminal through a random access preamble or sounding reference signal, calculates a timing value to be corrected, and informs the terminal.
  • a timing advance value (that is, a timing value to be corrected) transmitted by the base station to the terminal is called a timing advance command (TAC).
  • TAC timing advance command
  • the timing advance command is processed at the MAC layer.
  • the terminal since the terminal does not always exist only in a fixed position, the transmission timing of the terminal is changed every time according to the speed and position of the terminal.
  • timing advance timer TAT
  • the terminal when the terminal receives a timing advance command from the base station, the terminal starts a timing advance timer.
  • the terminal is in the uplink timing with the base station only while the timing advance timer is in operation.
  • the value of the timing advance timer may be transmitted through an RRC signal such as system information or radio bearer reconfiguration.
  • the terminal restarts the timing advance timer if a new timing advance command is received from the base station while the timing advance timer is in operation.
  • the terminal assumes that the uplink timing does not coincide with the base station, and the terminal assumes that any uplink signals except for the random access preamble, for example, PUSCH and PUCCH signals, are excluded. Do not send.
  • 9 to 13 are diagrams illustrating a scenario in which a carrier aggregation technique is applied.
  • FIG. 9 is a scenario in which the F1 cell and the F2 cell are overlapped at the same location and provide the same coverage, and the F1 cell and the F2 cell provide services in the same frequency band.
  • FIG. 10 illustrates a scenario in which the F1 cell and the F2 cell are overlapped at the same position, but the coverage of the F2 cell is smaller than that of the F1 cell due to a large path loss.
  • the F2 cell provides sufficient coverage, and the F2 cell can be used for increased throughput. Mobility is performed based on the coverage of the F1 cell, and relates to a case where the F1 cell and the F2 cell provide services in different frequency bands.
  • FIG. 11 is a scenario for increasing the throughput of a cell boundary by having the F1 cell and the F2 cell overlapped at the same position, but having the antennas of the F2 cell directed toward the cell boundary of the F1 cell. Similarly, mobility is performed based on the coverage of the F1 cell, and the F1 cell and the F2 cell are related to a case of providing a service in different frequency bands.
  • FIG. 12 is a case where the F1 cell is a macro cell and the F2 cell is a remote radio head (RRH) used for throughput improvement in a hot spot. Mobility is performed based on the coverage of the F1 cell, and relates to a case where the F1 cell and the F2 cell provide services in different frequency bands.
  • FIG. 13 is similar to FIG. 10, but a case where a frequency selective repeater is built up so that the coverage of a specific carrier frequency is extended.
  • FIG. 14 illustrates an example of managing timing advance when a carrier aggregation technique is applied.
  • FIG. 14 shows an example in which a TAG is configured according to the similarity of the amount of change in timing advance, and timing advance management is applied to each TAG.
  • the terminal When the terminal receives the TAC from the base station, it starts the TAT, and assumes that the uplink timing is correct between the terminal and the base station only while the TAT is operating. As shown in FIG. 14, the terminal using the CA scheme manages time synchronization for each TAG, and accordingly, the TAT operates for each TAG. That is, all serving cells in the same TAG apply the same timing advance change amount, and when the TAT expires, no uplink transmission except for the preamble for random access is impossible through the serving cell of the corresponding TAG.
  • a terminal using a CA function by configuring a plurality of serving cells follows the following principle when adjusting a timing advance.
  • Each TAG has one reference cell for timing uplink timing and may have a different TAT value for each TAG.
  • a TAG including a PCell is a pTAG (primary TAG), and a TAG consisting only of a SCell without a PCell is referred to as a sTAG (secondary TAG).
  • the timing advance control of pTAG is based on the timing advance control method in the existing LTE system, and the PCell becomes the reference cell.
  • the corresponding SCell can start the random access process only by the command of the base station. Although uplink transmission is required, the random access process cannot be started without a command from the base station.
  • the base station may add or remove the SCell in the sTAG of the terminal as needed. If the last SCell in the sTAG is removed, there will be no SCell in the sTAG. However, if the TAT of the sTAG is operating at the time of the last SCell removal, the TAT continues to operate until the expiration time. In this case, when the base station adds the SCell to the sTAG of the terminal again, since the TAT is operating, the complexity of the base station implementation is increased.
  • the terminal may use the wrong TA value when transmitting a signal in the uplink of the SCell. That is, when the base station adds the SCell to the sTAG, it is necessary to delay the addition of the SCell until the TAT expires or add the SCell to the new sTAG.
  • the base station sets a TAG to the terminal, adds a serving cell to the TAG, provides a valid TAC for the TAG to the terminal, and the terminal starts or restarts the TAT. Subsequently, the base station removes or modifies the last serving cell of the TAG so that when there is no serving cell in the TAG, the terminal proposes to stop the operation of the TAT of the corresponding TAG.
  • the TAG to which the present invention is applied is preferably sTAG, and more preferably, the serving cell to be added, removed and modified in the sTAG is SCell.
  • the process of configuring the TAG and adding, removing, or modifying a serving cell to the TAG may be implemented through an RRC connection reconfiguration operation.
  • the UE stops the TAT operation of the TAG all transmissions other than the random access preamble transmission are prohibited on the uplink of the serving cell included in the TAG or included in the TAG until the TAC valid for the TAG is received.
  • FIG. 15 illustrates an operation process of a terminal and a base station for timing advance management in a wireless communication system to which a carrier aggregation technique is applied according to an embodiment of the present invention.
  • step 1501 the base station adds a TAG and a SCell to the terminal through an RRC connection reconfiguration process.
  • the TAG and the SCell are referred to as TAG (a) and SCell (x), respectively. Therefore, as shown in step 1502, it can be seen that SCell (x) exists in the TAG (a).
  • step 1503 the base station provides the terminal with a valid TAC for the TAG (a). Accordingly, the terminal initiates a TAT corresponding to the TAG (a) as in step 1504.
  • step 1505 the base station adds an SCell (y) through the RRC connection reconfiguration process.
  • the SCell (y) is set to be included in the TAG (a). Accordingly, it can be seen that SCell (x) and SCell (y) exist in the TAG (a) as in step 1502.
  • the base station deletes the SCell (y) and the SCell (x) configured in the terminal through the RRC connection resetting process as in steps 1507 and 1509.
  • SCell (y) and SCell (x) are sequentially deleted in TAG (a) as in steps 1508 and 1510.
  • the UE stops operating the TAT of the TAG (a) as in step 1511.
  • the terminal when all the serving cells are removed in the TAG set by the base station to the terminal, the terminal has proposed to stop the TAT of the TAG. Accordingly, when the base station adds a serving cell in the TAG again, the TAT is in operation, thereby solving a problem in which the terminal generates interference by using an incorrect TA value, and the base station positions the uplink receiving antenna of the serving cell. Since it is not necessary to consider information such as, etc., it is possible to facilitate base station implementation.
  • FIG. 16 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1600 includes a processor 1610, a memory 1620, an RF module 1630, a display module 1640, and a user interface module 1650.
  • the communication device 1600 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1600 may further include necessary modules. In addition, some modules in the communication device 1600 may be classified into more granular modules.
  • the processor 1610 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1610 may refer to the contents described with reference to FIGS. 1 to 15.
  • the memory 1620 is connected to the processor 1610 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1630 is connected to the processor 1610 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1630 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1640 is connected to the processor 1610 and displays various information.
  • the display module 1640 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1650 is connected to the processor 1610 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method and apparatus for controlling the uplink timing by the terminal in the wireless communication system as described above have been described with reference to an example applied to the 3GPP LTE system, but can be applied to various wireless communication systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법이 개시된다. 구체적으로, 상기 방법은, 네트워크로부터 특정 상향링크 타이밍 그룹을 위한 상향링크 타이밍 명령을 수신하면, 상기 상향링크 타이밍 명령의 유효 시간인 상기 특정 상향링크 타이밍 그룹의 타이머를 개시하는 단계; 상기 네트워크로부터 상기 특정 상향링크 타이밍 그룹에 포함된 서빙 셀의 제거 메시지를 수신하는 단계; 및 상기 특정 상향링크 타이밍 그룹에 포함된 서빙 셀이 없는 경우, 상기 타이머를 중지하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; Enb), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 실시예인, 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법은, 네트워크로부터 특정 상향링크 타이밍 그룹을 위한 상향링크 타이밍 명령을 수신하면, 상기 상향링크 타이밍 명령의 유효 시간인 상기 특정 상향링크 타이밍 그룹의 타이머를 개시하는 단계; 상기 네트워크로부터 상기 특정 상향링크 타이밍 그룹에 포함된 서빙 셀의 제거 메시지를 수신하는 단계; 및 상기 특정 상향링크 타이밍 그룹에 포함된 서빙 셀이 없는 경우, 상기 타이머를 중지하는 단계를 포함하는 것을 특징으로 한다.
여기서, 상기 상향링크 타이밍 명령은 상기 네트워크로의 상향링크 전송을 위한 상향링크 타이밍 보정 값을 포함하며, 상기 방법은 상기 상향링크 타이밍 보정 값을 이용하여, 상향링크 타이밍을 갱신하는 단계를 더 포함하는 것을 특징으로 할 수 있다. 또한, 상기 타이머가 구동하는 동안, 상기 갱신된 상향링크 전송 타이밍에 따라 상기 네트워크로 상향링크 전송을 수행하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 상향링크 타이밍 명령은 MAC(Medium Access Control) 계층 메시지이며, 상기 서빙 셀의 제거 메시지는 상기 네트워크와의 RRC (Radio Resource Control) 연결 재설정 (Connection Reconfiguration) 과정을 통하여 수신되는 것을 특징으로 한다.
나아가, 하나 이상의 서빙 셀을 포함하는 상기 특정 상향링크 타이밍 그룹을 설정하기 위한 메시지를 상기 네트워크로부터 수신하는 단계를 더 포함할 수 도 있다.
한편, 상기 특정 상향링크 타이밍 그룹은 부 (Secondary) 서빙셀로만 구성될 수 있다.
여기서, 상기 특정 상향링크 타이밍 그룹에 포함된 하나 이상의 서빙 셀들은 동일한 상향링크 타이밍이 적용되는 것을 특징으로 한다.
[유리한 효과]
본 발명의 실시예에 따르면 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말은 상향링크 타이밍을 보다 효율적으로 제어할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 개념적으로 도시하는 도면이다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 4는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 5는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE-A 시스템의 반송파 집성 기법을 설명하기 위한 개념도이다.
도 7 및 도 8 각각은 반송파 집성 기법이 적용될 경우의 하향링크 제 2 계층 구조 및 상향링크 제 2 계층 구조를 도시한다.
도 9 내지 도 13은 반송파 집성 기법이 적용되는 시나리오를 예시하는 도면들이다.
도 14는 반송파 집성 기법이 적용되는 경우 타이밍 어드밴스를 관리하는 예를 도시한다.
도 15는 본 발명의 실시예에 따라 반송파 집성 기법이 적용된 무선 통신 시스템에서 타이밍 어드밴스 관리를 위한 단말과 기지국의 동작 과정을 예시한다.
도 16은 본 발명의 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 개념적으로 도시하는 도면이다. 특히 E-UTRAN시스템은 기존 UTRAN시스템에서 진화한 시스템이다. E-UTRAN은 셀(eNB)들로 구성되며, 셀들은 X2 인터페이스를 통해 연결된다. 셀은 무선 인터페이스를 통해 단말과 연결되며, S1 인터페이스를 통해 EPC(Evolved Packet Core)에 연결된다.
EPC에는 MME(Mobility Management Entity), S-GW(Serving-Gateway) 및 PDN-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, PDN-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이이다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제 1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제 2 계층에는 매체접속제어 (Medium Access Control; MAC) 계층, 무선링크제어 (Radio Link Control; RLC) 계층 및 패킷 데이터 수렴 프로토콜(Packet Data Convergence Protocol; PDCP) 계층이 존재한다. 제 2 계층의 MAC 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위 계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어 평면의 정보를 전송하는 제어채널 (Control Channel)과 사용자 평면의 정보를 전송하는 트래픽채널 (Traffic Channel)로 구분된다.
또한, 제 2 계층의 RLC 계층은 상위 계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위 계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선 베어러 (Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장할 수 있도록 하기 위해 투명 모드(Transparent Mode, TM), 무응답 모드 (Un-acknowledged Mode, UM), 및 응답 모드 (Acknowledged Mode, AM)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청 (Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.
마지막으로, 제 2 계층의 PDCP 계층은 IPv4나 IPv6와 같은 IP 패킷 전송 시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3 자의 데이터 감청을 방지하는 암호화(Ciphering)와 제 3 자의 데이터 조작을 방지하는 무결성 보호(Integrity protection)로 구성된다.
제 3 계층의 무선 자원제어(Radio Resource Control; RRC) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다.
무선 베어러 (Radio Bearer; RB)는 제어 평면에서 RRC 메시지를 전송하는데 사용되는 SRB (Signaling Radio Bearer)와 사용자 평면에서 사용자 데이터를 전송하는데 사용되는 DRB (Data Radio Bearer) 두 가지로 크게 구분할 수 있으며, 이 중 DRB는 사용하는 RLC의 동작 방식에 따라 UM RLC를 사용하는 UM DRB와 AM RLC를 사용하는 AM DRB로 구분될 수 있다.
이하 단말의 RRC 상태와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는지 여부를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 휴지 상태(RRC_IDLE)라고 부른다.
E-UTRAN은 RRC 연결 상태의 단말의 존재를 셀 단위에서 파악할 수 있기 때문에 단말을 효과적으로 제어할 수 있다. 반면에 E-UTRAN은 RRC 휴지 상태의 단말을 셀 단위에서 파악할 수 없으며, 셀 보다 더 큰 지역 단위인 TA 단위로 CN이 관리한다. 즉, RRC 휴지 상태의 단말이 셀로부터 음성이나 데이터와 같은 서비스를 받기 위해서는 RRC 연결 상태로 상태 천이하여야 한다.
특히 사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 휴지 상태에 머무른다. RRC 휴지 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있는 경우에야 비로소 E-UTRAN의 RRC과 RRC 연결 설정 (RRC connection establishment) 과정을 수행하여 RRC 연결 상태로 천이한다. 여기서 RRC 연결을 맺을 필요가 있는 경우란 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지를 전송해야 하는 경우 등을 들 수 있다.
한편, RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다. NAS 계층에서는 단말의 이동성 관리를 위하여 EMM(EPS Mobility Management) 등록 상태(EMM-REGISTERED) 및 EMM 미등록 상태(EMM-UNREGISTERED) 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에 적용된다. 초기 단말은 EMM 미등록 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 접촉(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 접촉 절차가 성공적으로 수행되면 단말 및 MME는 EMM 등록 상태가 된다.
또한 NAS 계층에서는 단말과 EPC 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management) 휴지 상태(ECM_IDLE) 및 ECM 연결 상태(ECM_CONNECTED) 두 가지가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM 휴지 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM 연결 상태가 된다. ECM 휴지 상태에 있는 MME는 E-UTRAN과 S1 연결을 맺으면 ECM 연결 상태가 된다.
단말이 ECM 휴지 상태에 있을 때에는 E-UTRAN은 단말의 정보(context)를 가지고 있지 않다. 따라서 ECM 휴지 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택 또는 셀 재선택 절차와 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM 연결 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM 휴지 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 TA 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
LTE 시스템에서 기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다.
한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 4는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S401). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S402).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S403 내지 단계 S406). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S403), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S404). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S407) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S408)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 5는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
이하에서는 랜덤 액세스 과정(Random Access Procedure)에 관하여 보다 상세히 설명한다. 단말이 랜덤 액세스 과정을 수행하는 경우는 아래와 같다.
- 단말이 기지국과의 연결 (RRC Connection)이 없어, 초기 접속 (initial access)을 하는 경우
- 단말이 핸드오버과정에서, 타겟 셀로 처음 접속하는 경우
- 기지국의 명령에 의해 요청되는 경우
- 상향링크의 시간동기가 맞지 않거나, 무선자원을 요청하기 위해 사용되는 지정된 무선자원이 할당되지 않은 상황에서, 상향링크로의 데이터가 발생하는 경우
- 무선 연결 실패 (radio link failure) 또는 핸드오버 실패 (handover failure) 시 복구 과정의 경우
LTE 시스템에서는 기지국이 특정 단말에게 지정된 랜덤 액세스 프리앰블 (dedicated random access preamble)을 할당하고, 단말은 상기 랜덤 액세스 프리앰블로 랜덤 액세스 과정을 수행하는 비경쟁 랜덤 액세스 과정을 제공한다. 다시 말해서, 랜덤 액세스 프리앰블을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나를 선택하여 사용하는 경쟁 기반 랜덤 액세스 과정 (contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비경쟁 기반 랜덤 액세스 과정 (non-contention based random access procedure)이 있다. 상기 두 랜덤 액세스 과정의 차이점은 차후에 설명 할 경쟁으로 인한 충돌 문제 발생 여부에 있다. 그리고, 비경쟁 기반 랜덤 액세스 과정은, 위에서 기술한 핸도오버 과정이나 기지국의 명령에 의해 요청되는 경우에만 사용될 수 있다.
경쟁 기반 랜덤 액세스에서는 단말은 시스템 정보 또는 핸드오버 명령 (Handover Command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH 자원을 선택하여, 전송한다.
단말은 상기와 같이 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 수신 윈도우 내에서 자신의 랜덤 액세스 응답의 수신을 시도한다. 좀더 자세하게, 랜덤 액세스 응답 정보는 MAC PDU의 형식으로 전송되며, 상기 MAC PDU는 PDSCH로 전달된다. 또한 상기 PDSCH로 전달되는 정보를 단말이 적절하게 수신하기 위해 PDCCH도 함께 전달된다. 즉, PDCCH는 상기 PDSCH를 수신해야 하는 단말의 정보와, 상기 PDSCH의 무선자원의 주파수 그리고 시간 정보, 그리고 상기 PDSCH의 전송 형식 등이 포함되어 있다.
일단 단말이 자신에게 오는 PDCCH의 수신에 성공하면, 상기 PDCCH의 정보들에 따라 PDSCH로 전송되는 랜덤 액세스 응답을 적절히 수신한다. 그리고 상기 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 식별자, 상향링크 그랜트, Temporary C-RNTI (임시 셀 식별자) 그리고 타이밍 어드밴스 명령(TAC)들이 포함된다. 상기에서 랜덤 액세스 프리앰블 식별자가 필요한 이유는, 하나의 랜덤 액세스 응답에는 하나 이상의 단말들을 위한 랜덤 액세스 응답 정보가 포함될 수 있기 때문에, 상기 상향링크 그랜트, Temporary C-RNTI 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위한 것이다. 상기 랜덤 액세스 프리앰블 식별자는 자신이 선택한 랜덤 액세스 프리앰블과 일치한다.
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, Temporary C-RNTI를 저장한다. 또한, 상향링크 그랜트를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다. 상기 상향링크 그랜트에 포함되는 데이터 중에, 필수적으로 단말의 식별자가 포함되어야 한다. 경쟁 기반 랜덤 액세스 과정에서는 기지국에서 어떠한 단말들이 상기 랜덤액세스 과정을 수행하는지 판단할 수 없는데, 차후에 충돌해결을 하기 위해서는 단말을 식별해야 하기 때문이다. 또한 상기 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다.
첫 번째 방법은 단말이 상기 랜덤 액세스 과정 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자를 가지고 있었다면, 단말은 상기 상향링크를 통해 자신의 셀 식별자 전송한다. 반면에, 만약 랜덤 액세스 과정 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자 (예를 들면, S-TMSI 또는 Random Id)를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 셀 식별자보다 길다. 단말은 상기 UL Grant를 통해 데이터를 전송하였다면, 충돌 해결을 위한 타이머 (contention resolution timer)를 개시 한다.
단말이 랜덤 액세스 응답에 포함된 상향링크 그랜트를 통해 자신의 식별자를 포함한 데이터를 전송 한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 상향링크 그랜트를 통해 전송된 자신의 식별자가 셀 식별자인 경우, 자신의 셀 식별자를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자인 경우에는, 랜덤 액세스 응답에 포함된 Temporary C-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그
후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 셀 식별자를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 과정이 수행되었다고 판단하고, 랜덤 액세스 과정을 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 Temporary 셀 식별자를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 과정이 수행되었다고 판단하고, 랜덤 액세스 과정을 종료한다.
부가적으로, 경쟁 기반 랜덤 액세스 과정에 비해서, 비경쟁 기반 랜덤 액세스 과정에서는 랜덤 액세스 응답 정보를 수신함으로써, 랜덤 액세스 과정이 정상적으로 수행되었다고 판단하고, 랜덤 액세스 과정을 종료한다.
앞에서 언급한 바와 같이, 비경쟁 기반 랜덤 액세스 과정은, 첫 번째로 핸드오버 과정의 경우와 두 번째로, 기지국의 명령에 의해 요청되는 경우에서 존재할 수 있다. 물론, 상기 두 경우에서 경쟁 기반 랜덤 액세스 과정이 수행될 수 도 있다. 먼저, 비경쟁 기반의 랜덤 액세스 과정을 위해서는 충돌의 가능성이 없는 지정된 랜덤 액세스 프리앰블을 기지국으로부터 수신 받는 것이 중요하다. 상기 랜덤 액세스 프리앰블을 지시 받는 방법으로는, 핸드오버 명령과 PDCCH 명령이 있다. 단말은 자신에게만 지정된 랜덤 액세스 프리앰블을 기지국으로부터 할당 받은 후에, 상기 프리앰블을 기지국으로 전송한다.
랜덤 액세스 응답 정보를 수신하는 방법은 경쟁 기반 랜덤 액세스과정에서와 동일하다.
이하에서는 LTE-A 시스템의 반송파 집성 기법(Carrier Aggregation; 이하 CA라고 약칭함)에 대해 설명한다.
도 6은 LTE-A 시스템의 반송파 집성 기법을 설명하기 위한 개념도이다.
LTE-A 기술 표준은 ITU (International Telecommunication Union)의 IMT-Advanced 후보 기술로써, ITU의 IMT-Advanced 기술 요구사항에 부합되도록 설계되고 있다. 이에 따라, LTE-A에서는 ITU의 요구사항을 만족시키기 위하여 기존 LTE 시스템 대비 대역폭을 확장하는 논의가 진행 중이다. LTE-A시스템에서 대역폭을 확장하기 위하여, 기존 LTE 시스템에서 가질 수 있는 반송파를 콤포넌트 반송파 (Component Carrier; 이하 CC라고 칭함)라고 정의하고, 이러한 CC를 최대 5개까지 묶어서 사용할 수 있도록 논의 되고 있다. 참고적으로 서빙 셀 (Serving Cell)은 하나의 하향링크 CC와 하나의 상향링크 CC로 구성될 수 있다. 또는 서빙 셀은 하나의 하향링크 CC로 구성될 수 있다. CC는 LTE시스템과 같이 최대 20MHz의 대역폭을 가질 수 있기 때문에, 최대 100MHz까지 대역폭을 확장할 수 있는 개념이다. 이처럼 복수개의 CC를 묶어서 사용하는 기술은 CA라고 지칭한다.
CA 기법이 적용될 경우, 단말과 네트워크 사이에는 하나의 RRC 연결(Connection)만이 존재한다. 단말이 사용할 수 있도록 구성된 복수 개의 서빙 셀 중, RRC 연결을 설정(establishment) 및 재설정(re-establishment) 하기 위해 보안 입력 및 NAS 계층의 이동성(mobility) 정보를 제공하는 서빙 셀을 주서빙셀 (PCell: Primary Serving Cell) 이라고 하며, 이외의 셀은 부서빙셀 (SCell: Secondary Serving Cell) 이라고 한다.
도 7 및 도 8 각각은 반송파 집성 기법이 적용될 경우의 하향링크 제 2 계층 구조 및 상향링크 제 2 계층 구조를 도시한다.
도 7 및 도 8을 참조하면, CA 기법은 제 2 계층 중 특히 MAC 계층에 많은 영향을 미치게 된다. 예를 들어, CA에서는 복수개의 CC를 사용하고, 하나의 HARQ 개체는 하나의 CC를 관리하기 때문에, LTE-A 시스템의 MAC 계층은 복수개의 HARQ 개체와 관련된 동작들 수행되어야 한다. 또한, 각 HARQ 개체들은 독립적으로 전송 블록(Transport Block)이 처리되기 때문에, CA에서는 복수개의 CC를 통해 복 수개의 전송 블록을 동일한 시간에 송신 또는 수신할 수 있게 된다.
다음은 LTE 시스템에서의 상향링크 (Uplink)의 타이밍 어드밴스 관리 (Timing Advance Maintenance)에 대하여 설명한다.
OFDM 기술을 기반으로 하는 LTE 시스템에서는 단말이 전송한 신호가 기지국까지 도달하는 시간은 셀의 반경, 셀 내의 단말의 위치, 단말의 이동속도에 따라 달라질 수 있다. 즉, 기지국이 단말마다 송신 타이밍을 각각 관리하지 않으면, 단말의 송신 신호가 다른 단말이 전송한 송신 신호에 간섭 작용을 발생시킬 가능성이 존재하여, 기지국 측에서 수신 신호의 오류률이 증가하게 된다.
좀 더 구체적으로 설명하면, 셀 가장자리에서 송신을 시도하는 단말의 경우, 상기 송신된 신호가 기지국에 도달하는 시간은 셀 중앙에 있는 단말이 송신한 신호의 도달 시간보다 길 것이다. 반대로 셀 중앙에 있는 단말의 송신이 기지국에 도착하는 시간은 셀 가장자리에 있는 단말의 송신보다 상대적으로 짧을 것이다.
기지국 측면에서는 간섭영향을 막기 위하여 셀 내의 모든 단말들이 전송한 데이터 또는 신호들이 매 유효 시간 경계 내에서 수신될 수 있도록 해야 하기 때문에, 기지국은 단말의 상황에 맞춰 상기 단말의 전송 타이밍을 적절히 조절해야만 하고, 이러한 조절을 타이밍 어드밴스 관리라고 한다.
타이밍 어드밴스를 관리하는 한가지 방법으로 랜덤 액세스 동작이 될 수 있다. 즉, 랜덤 액세스 동작과정을 통해 기지국은 단말이 전송하는 랜덤 액세스 프리앰블을 수신하게 되고, 상기 랜덤 액세스 프리앰블의 수신 정보를 이용하여, 단말의 전송 타이밍을 빠르게 혹은 느리게 하기 위한 타이밍 어드밴스 값을 계산한다. 그리고 랜덤 액세스 응답을 통해 단말에게 계산된 타이밍 어드밴스 값을 알려주고, 단말은 상기 타이밍 어드밴스 값을 이용하여, 상향링크 전송 타이밍을 갱신하게 된다.
또 다른 방법으로는, 기지국은 단말이 주기적 혹은 임의적으로 전송하는 사운딩 참조 신호(SRS; Sounding Reference Signal)를 수신하고, 상기 수신된 신호를 통해 상기 단말의 타이밍 어드밴스 값을 계산하여, 단말에게 알려준다. 이에 따라, 단말은 자신의 전송 타이밍을 갱신하게 된다.
앞에서 설명한 바와 같이 기지국은 랜덤 액세스 프리앰블 또는 사운딩 기준 신호를 통해 단말의 전송 타이밍을 측정하고, 보정할 타이밍 값을 계산하여 단말에게 알려준다. 기지국이 단말에게 전송하는 타이밍 어드밴스 값 (즉, 보정할 타이밍 값)을 타이밍 어드밴스 명령(TAC: Timing Advance Command) 이라고 부른다. 상기 타이밍 어드밴스 명령은 MAC 계층에서 처리한다. 그리고, 단말은 항상 고정된 위치에만 존재하지 않기 때문에, 단말이 이동하는 속도와 위치 등에 따라 단말의 전송 타이밍은 매번 바뀌게 된다.
이런 점을 고려하여, 단말은 기지국으로부터 한번 타이밍 어드밴스 명령을 받으면, 특정 시간 동안에만 상기 타이밍 어드밴스 명령이 유효하다고 가정해야 한다. 이를 위해 사용되는 것이 타이밍 어드밴스 타이머(TAT: Time Advance Timer)이다. 즉, 단말은 기지국으로부터 타이밍 어드밴스 명령을 수신하면, 타이밍 어드밴스 타이머를 개시하게 된다. 그리고, 상기 타이밍 어드밴스 타이머가 동작 중에만, 단말은 기지국과 상향링크 타이밍이 맞아 있다고 가정한다. 상기 타이밍 어드밴스 타이머의 값은 시스템 정보 또는 무선 베어러 재설정(Radio Bearer Reconfiguration)등과 같은 RRC 신호를 통해 전달 될 수 있다. 또한, 단말은 타이밍 어드밴스 타이머가 동작 중에, 새로운 타이밍 어드밴스 명령을 기지국으로부터 수신하였다면, 타이밍 어드밴스 타이머를 재 개시 하게 된다. 그리고, 타이밍 어드밴스 타이머가 만료되거나, 타이밍 어드밴스 타이머가 동작하지 않는 때에는 단말은 기지국과 상향링크 타이밍이 맞지 않다고 가정하고, 단말은 랜덤 액세스 프리앰블을 제외한 어떠한 상향링크 신호, 예를 들어 PUSCH 및 PUCCH 신호의 전송을 하지 않는다.
CA 기법에서의 타이밍 어드밴스 관리를 설명하기 위하여, 우선 CA 기법이 적용 가능한 시나리오에 관하여 설명한다.
도 9 내지 도 13은 반송파 집성 기법이 적용되는 시나리오를 예시하는 도면들이다.
우선, 도 9는 F1 셀 및 F2 셀은 동일한 위치에 겹쳐서 구성되고 동일한 커버리지를 제공하는 시나리오이며, F1 셀 및 F2 셀은 동일한 주파수 대역으로 서비스를 제공한다.
다음으로, 도 10은 F1 셀 및 F2 셀은 동일한 위치에 겹쳐서 구성되지만, 큰 경로 손실 등의 이유로 F2 셀의 커버리지가 F1 셀에 비하여 작은 경우의 시나리오이다. 이와 같은 경우, F2 셀만이 충분한 커버리지를 제공하고, F2 셀은 쓰루풋 증가를 위하여 이용될 수 있다. 이동성(Mobility)는 F1 셀의 커버리지에 기반하여 수행되며, F1 셀 및 F2 셀은 서로 다른 주파수 대역으로 서비스를 제공하는 경우에 관한 것이다.
도 11은, F1 셀 및 F2 셀은 동일한 위치에 겹쳐서 구성되지만, F2 셀의 안테나가 F1 셀의 셀 경계를 향하도록 방향성을 갖도록 하여 셀 경계의 쓰루풋 증가를 위한 시나리오이다. 마찬가지로, 이동성(Mobility)는 F1 셀의 커버리지에 기반하여 수행되며, F1 셀 및 F2 셀은 서로 다른 주파수 대역으로 서비스를 제공하는 경우에 관한 것이다.
또한, 도 12는, F1 셀은 마크로 셀이고, F2 셀은 핫 스팟(Hot Spot))에서의 쓰루풋 개선을 위하여 사용되는 RRH(Remote Radio Head)인 경우이다. 이동성(Mobility)는 F1 셀의 커버리지에 기반하여 수행되며, F1 셀 및 F2 셀은 서로 다른 주파수 대역으로 서비스를 제공하는 경우에 관한 것이다. 마지막으로, 도 13은, 상기 도 10과 유사하지만, 주파수 선택적 리피터가 구축되어, 특정 반송파 주파수의 커버리지가 확장되는 경우이다.
상술한 반송파 집성 기법이 적용되는 시나리오들 중 도 10 내지 도 13에서 설명하는 시나리오에서는 다중 타이밍 어드밴스 관리가 필요하다.
도 14는 반송파 집성 기법이 적용되는 경우 타이밍 어드밴스를 관리하는 예를 도시한다. 특히, 도 14에서는 타이밍 어드밴스 변화량의 유사성에 따라 TAG를 구성하고, 각 TAG 별로 타이밍 어드밴스 관리를 적용한 예를 도시한다.
단말은 기지국으로부터 TAC를 수신하면, TAT를 개시하며, TAT가 동작하는 중에만 단말과 기지국은 상향링크 타이밍이 맞았다고 가정한다. 도 14와 같이, CA 기법을 사용하는 단말에서는 각 TAG 별로 시간동기를 관리하고, 따라서 각 TAG 별로 TAT 가 동작한다. 즉, 동일한 TAG내의 모든 서빙 셀들은 동일한 타이밍 어드밴스 변화량을 적용하며, TAT가 만료되었을 경우, 해당 TAG의 서빙 셀을 통해서는 랜덤 액세스를 위한 프리엠블을 제외한 어느 상향링크 전송이 불가능하다.
복수 개의 서빙 셀을 구성하여 CA 기능을 이용하는 단말은 타이밍 어드밴스를 조정할 때 다음과 같은 원칙을 따른다.
1) 각 TAG에는 상향링크 타이밍을 맞추기 위한 하나의 참조 셀(timing reference cell)이 있고, 각 TAG 별로 상이한 TAT 값을 가질 수 있다.
2) PCell을 포함하는 TAG는 pTAG (primary TAG)이고 PCell이 포함되지 않고 SCell로만 구성된 TAG는 sTAG (secondary TAG)으로 칭한다.
3) pTAG의 타이밍 어드밴스 제어는 기존 LTE 시스템에서의 타이밍 어드밴스 제어 방법에 따르며, PCell이 참조 셀이 된다
4) sTAG에 속한 SCell이 최초로 상향링크 타이밍을 맞출 때에는 기지국의 명령에 의해서만 해당 SCell이 랜덤 액세스 프로세스를 시작할 수 있다. 상향링크 전송이 필요하더라도 기지국의 명령 없이 랜덤 액세스 프로세스를 시작할 수 없다.
5) PCell과 SCell 모두 랜덤 액세스 과정을 통해 상향링크 타이밍을 맞출 때에는 비경쟁 랜덤 액세스 과정을 수행한다.
6) pTAG의 TAT가 동작하지 않으면, 나머지 TAG의 TAT도 동작할 수 없다.
한편, 기지국은 필요에 따라 단말의 sTAG 내의 SCell을 추가 또는 제거할 수 있다. sTAG내의 마지막 SCell이 제거되면, sTAG 내에 SCell이 존재하지 않게 된다. 하지만, 마지막 SCell 제거 시점에 sTAG의 TAT가 동작 중이라면, 상기 TAT는 만료 시점까지 동작을 지속하게 된다. 이 경우, 기지국이 단말의 상기 sTAG에 SCell을 다시 추가할 때, TAT가 동작하고 있기 때문에, 기지국 구현의 복잡도가 증가하게 된다.
예를 들어, sTAG에 마지막으로 제거된 SCell과 상향링크 신호를 수신하는 안테나의 위치가 다른 SCell을 추가하는 경우, 서로 다른 TA 값이 필요하지만, 만약 TAT가 동작 중이라면, 새로 추가된 SCell은 기존의 TA 값이 즉시 적용되어, 단말이 해당 SCell의 상향링크로 신호를 전송할 때 잘못된 TA 값을 이용하게 될 수 있다. 즉, 기지국은 상기 sTAG로 SCell을 추가 할 때, TAT가 만료될 때까지 SCell의 추가를 지연하거나, 새로운 sTAG에 SCell을 추가 해야 한다.
따라서, 본 발명에서 기지국은 TAG를 단말에게 설정하고, 서빙 셀을 상기 TAG에 추가하고, 상기 TAG에 유효한 TAC를 단말에게 제공하며, 단말은 TAT를 개시 또는 재개시한다. 이후, 기지국이 상기 TAG 의 마지막 서빙 셀을 제거 또는 수정하여, 상기 TAG 내에 서빙 셀이 존재하지 않은 경우에, 단말은 해당 TAG의 TAT의 동작을 중지하는 것을 제안한다. 본 발명이 적용되는 TAG는 sTAG인 것이 바람직하며, sTAG내에 추가, 제거 및 수정되는 서빙 셀은 SCell인 것이 보다 바람직하다.
또한, TAG의 설정과 TAG에 서빙 셀을 추가, 제거, 수정하는 과정은 RRC 연결 재설정 동작을 통하여 구현될 수 있다. 나아가, 단말이 TAG의 TAT 동작을 중지하면, 해당 TAG에 유효한 TAC를 수신 전까지, 해당 TAG에 포함되거나, 포함될 서빙셀의 상향링크로 랜덤 액세스 프리앰블 전송 이외의 모든 전송이 금지된다.
도 15는 본 발명의 실시예에 따라 반송파 집성 기법이 적용된 무선 통신 시스템에서 타이밍 어드밴스 관리를 위한 단말과 기지국의 동작 과정을 예시한다.
도 15를 참조하면, 단계 1501에서 기지국은 RRC 연결 재설정 과정을 통해 단말에게 TAG 및 SCell을 추가한다. 도 15에서는 상기 TAG와 SCell을 각각 TAG (a), SCell (x)로 칭한다. 따라서, 단계 1502와 같이 TAG (a)에 SCell (x)이 존재하는 것을 알 수 있다.
다음으로, 단계 1503에서 기지국은 상기 TAG (a)에 유효한 TAC를 단말에게 제공한다. 이에 따라 단말은 단계 1504와 같이 상기 TAG (a)에 해당하는 TAT를 개시한다. 또한, 단계 1505에서 기지국은 RRC 연결 재설정 과정을 통해 SCell (y)를 추가한다. 상기 SCell (y)는 TAG (a)에 포함되도록 설정되어 있다. 따라서, 단계 1502와 같이 TAG (a)에 SCell (x)과 SCell (y)가 존재하는 것을 알 수 있다.
계속하여, 기지국은 단계 1507과 단계 1509와 같이 RRC 연결 재설정 과정을 통해 단말에게 설정된 SCell (y)와 SCell (x)를 삭제한다. 결과적으로, 단계 1508 및 단계 1510와 같이 TAG (a)에서 SCell (y)와 SCell (x)가 순차적으로 삭제된 것을 알 수 있다.
마지막으로, 단말은 TAG (a)에 더 이상 서빙 셀, 보다 구체적으로 SCell 이 존재하지 않는 경우, 단계 1511과 같이 상기 TAG (a)의 TAT를 동작을 멈춘다.
본 발명에서는 기지국이 단말에게 설정된 TAG 내에 모든 서빙 셀이 제거되는 경우, 단말은 해당 TAG의 TAT를 중지하는 것을 제안하였다. 이에 따라, 기지국은 상기 TAG 내에 다시 서빙 셀을 추가할 때, TAT가 동작 중이라서, 단말이 잘못된 TA 값을 이용하여 간섭을 발생시키는 문제를 해결하고, 또한 기지국이 서빙 셀의 상향링크 수신 안테나 위치등과 같은 정보를 고려하지 않아도 되기 때문에, 기지국 구현을 용의하게 할 수 있다.
도 16은 본 발명의 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 16을 참조하면, 통신 장치(1600)는 프로세서(1610), 메모리(1620), RF 모듈(1630), 디스플레이 모듈(1640) 및 사용자 인터페이스 모듈(1650)을 포함한다.
통신 장치(1600)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1600)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1600)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1610)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1610)의 자세한 동작은 도 1 내지 도 15에 기재된 내용을 참조할 수 있다.
메모리(1620)는 프로세서(1610)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1630)은 프로세서(1610)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1630)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1640)은 프로세서(1610)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1640)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1650)은 프로세서(1610)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (9)

  1. 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법에 있어서,
    네트워크로부터 특정 상향링크 타이밍 그룹을 위한 상향링크 타이밍 명령을 수신하면, 상기 상향링크 타이밍 명령의 유효 시간인 상기 특정 상향링크 타이밍 그룹의 타이머를 개시하는 단계;
    상기 네트워크로부터 상기 특정 상향링크 타이밍 그룹에 포함된 하나 이상의 서빙 셀의 제거 메시지를 수신하고, 상기 특정 상향링크 타이밍 그룹에서 상기 하나 이상의 서빙 셀을 제거하는 단계; 및
    상기 특정 상향링크 타이밍 그룹에 포함된 서빙 셀이 없는 경우, 상기 타이머를 중지하는 단계를 포함하는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  2. 제 1 항에 있어서,
    상기 상향링크 타이밍 명령은,
    상기 네트워크로의 상향링크 전송을 위한 상향링크 타이밍 보정 값을 포함하는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  3. 제 2 항에 있어서,
    상기 상향링크 타이밍 보정 값을 이용하여, 상향링크 타이밍을 갱신하는 단계를 더 포함하는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  4. 제 3 항에 있어서,
    상기 타이머가 구동하는 동안, 상기 갱신된 상향링크 타이밍에 따라 상기 네트워크로 상향링크 전송을 수행하는 단계를 더 포함하는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  5. 제 1 항에 있어서,
    상기 상향링크 타이밍 명령은,
    MAC(Medium Access Control) 계층 메시지인 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  6. 제 1 항에 있어서,
    상기 서빙 셀의 제거 메시지는,
    상기 네트워크와의 RRC (Radio Resource Control) 연결 재설정 (Connection Reconfiguration) 과정을 통하여 수신되는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  7. 제 1 항에 있어서,
    상기 특정 상향링크 타이밍 그룹은,
    부 (Secondary) 서빙셀로만 구성되는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  8. 제 1 항에 있어서,
    하나 이상의 서빙 셀을 포함하는 상기 특정 상향링크 타이밍 그룹을 설정하기 위한 메시지를 상기 네트워크로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
  9. 제 1 항에 있어서,
    상기 특정 상향링크 타이밍 그룹에 포함된 하나 이상의 서빙 셀들은,
    동일한 상향링크 타이밍이 적용되는 것을 특징으로 하는,
    상향링크 타이밍 제어 방법.
PCT/KR2012/005171 2011-07-04 2012-06-29 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치 WO2013005948A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/123,399 US9282553B2 (en) 2011-07-04 2012-06-29 Method for terminal to control uplink timing in a wireless communication system, and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161504245P 2011-07-04 2011-07-04
US61/504,245 2011-07-04

Publications (3)

Publication Number Publication Date
WO2013005948A2 true WO2013005948A2 (ko) 2013-01-10
WO2013005948A9 WO2013005948A9 (ko) 2013-02-07
WO2013005948A3 WO2013005948A3 (ko) 2013-04-11

Family

ID=47437533

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/005171 WO2013005948A2 (ko) 2011-07-04 2012-06-29 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치
PCT/KR2012/005274 WO2013005972A2 (ko) 2011-07-04 2012-07-03 무선 통신 시스템에서 단말이 타이밍 어드밴스 그룹을 제어하는 방법 및 이를 위한 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005274 WO2013005972A2 (ko) 2011-07-04 2012-07-03 무선 통신 시스템에서 단말이 타이밍 어드밴스 그룹을 제어하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (2) US9282553B2 (ko)
WO (2) WO2013005948A2 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2013013995A (es) * 2011-06-13 2014-03-12 Ericsson Telefon Ab L M Metodo y aparato para configurar mediciones de tiempo incrementadas que implican enlances de radio multiples.
US8395985B2 (en) * 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
EP2742748A4 (en) * 2011-08-12 2015-08-26 Intel Corp SYSTEM AND METHOD FOR UPLINK POWER CONTROL IN A WIRELESS COMMUNICATION SYSTEM
KR102092579B1 (ko) 2011-08-22 2020-03-24 삼성전자 주식회사 이동통신 시스템에서 복수 개의 주파수 밴드 지원 방법 및 장치
WO2013066102A1 (en) * 2011-11-03 2013-05-10 Pantech Co., Ltd. Apparatus and method for performing uplink synchronization in multiple component carrier system
US9161322B2 (en) 2012-01-25 2015-10-13 Ofinno Technologies, Llc Configuring base station and wireless device carrier groups
US8964683B2 (en) 2012-04-20 2015-02-24 Ofinno Technologies, Llc Sounding signal in a multicarrier wireless device
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
US8526389B2 (en) 2012-01-25 2013-09-03 Ofinno Technologies, Llc Power scaling in multicarrier wireless device
KR101885540B1 (ko) * 2012-03-23 2018-09-11 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 동기화 장치 및 방법
US9084270B2 (en) 2012-04-01 2015-07-14 Ofinno Technologies, Llc Radio access for a wireless device and base station
US9215678B2 (en) 2012-04-01 2015-12-15 Ofinno Technologies, Llc Timing advance timer configuration in a wireless device and a base station
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
US8934438B2 (en) 2012-04-01 2015-01-13 Ofinno Technologies, Llc Uplink transmission timing advance in a wireless device and base station
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US8958342B2 (en) 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
US8964593B2 (en) 2012-04-16 2015-02-24 Ofinno Technologies, Llc Wireless device transmission power
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
EP3337079A1 (en) 2012-04-16 2018-06-20 Comcast Cable Communications, LLC Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups
US9179425B2 (en) 2012-04-17 2015-11-03 Ofinno Technologies, Llc Transmit power control in multicarrier communications
KR20150018531A (ko) 2012-05-09 2015-02-23 삼성전자주식회사 이동통신 시스템에서 불연속 수신을 제어하는 방법 및 장치
US9179457B2 (en) 2012-06-20 2015-11-03 Ofinno Technologies, Llc Carrier configuration in wireless networks
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
US9210619B2 (en) 2012-06-20 2015-12-08 Ofinno Technologies, Llc Signalling mechanisms for wireless device handover
US8971298B2 (en) 2012-06-18 2015-03-03 Ofinno Technologies, Llc Wireless device connection to an application server
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US9113387B2 (en) * 2012-06-20 2015-08-18 Ofinno Technologies, Llc Handover signalling in wireless networks
US9084228B2 (en) 2012-06-20 2015-07-14 Ofinno Technologies, Llc Automobile communication device
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
EP2911449B1 (en) * 2012-10-19 2018-06-06 Fujitsu Limited Method and device for cell handover and reconfiguration
MX351198B (es) 2013-04-12 2017-10-05 Ericsson Telefon Ab L M Un metodo y dispositivo inalambrico para proveer comunicacion de dispositivo a dispositivo.
JP6196379B2 (ja) 2013-08-09 2017-09-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線通信システムにおけるダイレクト制御シグナリング
PL3031257T3 (pl) * 2013-08-09 2018-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Sposób i urządzenie do sygnalizowania niedopasowania czasowego
KR101824824B1 (ko) * 2013-09-18 2018-02-01 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 클러스터들에서의 캐리어 주파수 핸들링
US10356699B2 (en) 2013-09-18 2019-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cell search in clusters
KR102159391B1 (ko) 2013-10-18 2020-09-23 삼성전자주식회사 이동통신 시스템에서 상향링크 랜덤 접속 절차 제어 방법 및 장치
WO2015056991A1 (ko) * 2013-10-18 2015-04-23 삼성전자 주식회사 이동통신 시스템에서 상향링크 랜덤 접속 절차 제어 방법 및 장치
US9756593B2 (en) 2014-05-12 2017-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Handling timing differences in timing advance groups in a communication device
CN105282783B (zh) * 2014-07-22 2020-03-27 中兴通讯股份有限公司 一种双连接中功率余量报告的上报方法、装置和系统
WO2016070386A1 (zh) * 2014-11-06 2016-05-12 华为技术有限公司 参考信号测量方法,干扰测量方法、功率控制方法及装置
WO2016117937A1 (en) * 2015-01-22 2016-07-28 Lg Electronics Inc. Method for initiating a random access procedure in a carrier aggregation system and a device therefor
KR20170134465A (ko) * 2015-04-07 2017-12-06 퀄컴 인코포레이티드 모바일 디바이스들에서 타이밍 어드밴스 값들의 조정
US10015757B2 (en) * 2015-09-14 2018-07-03 Ofinno Technologies, Llc Uplink timing advance configuration of a wireless device and base station
US10321420B2 (en) * 2015-09-14 2019-06-11 Ofinno, Llc Uplink transmission timing of a wireless device
US11272546B2 (en) 2017-08-08 2022-03-08 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving uplink control information and for requesting random access in wireless communication system
EP3659382A4 (en) * 2017-08-08 2020-10-28 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING INFORMATION FOR REQUESTING RANDOM ACCESS IN A WIRELESS COMMUNICATION SYSTEM

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766078B2 (ja) * 2003-07-16 2006-04-12 株式会社東芝 移動通信端末装置の間欠受信方法、移動通信端末装置の発呼方法及び移動通信端末装置
TWI410150B (zh) * 2005-08-23 2013-09-21 Nokia Corp 在srnc中,具有dsch/e-dch服務胞改變狀態下,當rl增加/rl刪除狀態同時地觸發時,iub/iur hsdpa/hsupa行動程序之改良結構
BRPI0819128A2 (pt) * 2007-10-30 2015-05-05 Ericsson Telefon Ab L M Métodos de ajuste de sincronização de enlace ascendente para um nób, para um controlador de rede de rádio em um sistema de comunicação e para um equipamento de usuário de um acesso por múltipla divisão de código de banda larga, nób, controlador de rede de rádio, e , equipamento de usuário.
JP5538802B2 (ja) * 2008-11-04 2014-07-02 三菱電機株式会社 通信方法、移動体通信システム、移動端末および基地局制御装置
US20110223903A1 (en) * 2008-11-07 2011-09-15 Nokia Siemens Network Oy Apparatus And Method For Synchronization
US8644260B2 (en) * 2009-05-01 2014-02-04 Qualcomm Incorporated Apparatus and method for increasing reliability of serving cell change
US9002354B2 (en) * 2009-06-12 2015-04-07 Google Technology Holdings, LLC Interference control, SINR optimization and signaling enhancements to improve the performance of OTDOA measurements
US8634313B2 (en) 2009-06-19 2014-01-21 Qualcomm Incorporated Method and apparatus that facilitates a timing alignment in a multicarrier system
EP2524550B1 (en) * 2010-01-15 2020-03-04 Telefonaktiebolaget LM Ericsson (publ) Uplink synchronization processing
JP2011199386A (ja) * 2010-03-17 2011-10-06 Fujitsu Ltd 無線装置の制御装置及び方法、並びに基地局装置
US9084195B2 (en) * 2010-04-01 2015-07-14 Nokia Technologies Oy Multiple timing advance and carrier aggregation
KR20110113897A (ko) * 2010-04-12 2011-10-19 주식회사 팬택 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 타이밍 그룹에 대한 정보를 송수신하는 방법 및 장치
US9467959B2 (en) * 2011-04-01 2016-10-11 Mediatek, Inc. Method of maintaining multiple timing advance
US8837304B2 (en) * 2011-04-08 2014-09-16 Sharp Kabushiki Kaisha Devices for multi-group communications
MX2013013995A (es) * 2011-06-13 2014-03-12 Ericsson Telefon Ab L M Metodo y aparato para configurar mediciones de tiempo incrementadas que implican enlances de radio multiples.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: 'Discussion on TA group management' R2-113285 3GPP TSG RAN WG2 MEETING #74 09 May 2011, *
'InterDigital Communications, ''Support for multiple Timing Advance in LTE CA''' R2-113255 3GPP TSG RAN WG2 MEETING #74, R2-113255 09 May 2011, *
ITRI: 'Considerations on TAT for Multiple TAs' R2-113193 3GPP TSG RAN WG2 MEETING #74 09 May 2011, *
LG ELECTRONICS INC: 'Considerations for multiple timing advances in Rel-11' R2-113254 3GPP TSG RAN WG2 MEETING #74 09 May 2011, *
PANASONIC: 'Time Alignment in case of multiple TA' R2-112819 3GPP TSG RAN WG2 MEETING #74 09 May 2011, *
SAMSUNG: 'Further discussions of Issues with Multiple-TA' R2-113124 3GPP TSG RAN WG2 MEETING #74 09 May 2011, *

Also Published As

Publication number Publication date
WO2013005972A2 (ko) 2013-01-10
US9155092B2 (en) 2015-10-06
WO2013005948A3 (ko) 2013-04-11
US9282553B2 (en) 2016-03-08
WO2013005972A9 (ko) 2013-05-02
US20140105192A1 (en) 2014-04-17
WO2013005948A9 (ko) 2013-02-07
US20140120920A1 (en) 2014-05-01
WO2013005972A3 (ko) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2013005948A9 (ko) 무선 통신 시스템에서 단말이 상향링크 타이밍을 제어하는 방법 및 이를 위한 장치
WO2016167570A1 (en) Method for changing coverage enhanced mode in wireless communication system and an apparatus therefor
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2013043008A2 (ko) 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
WO2013137667A1 (ko) Tag에 포함된 셀의 비활성화 타이머를 제어하는 방법 및 장치
WO2012134138A2 (ko) 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
WO2012153993A2 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 타임 정렬 타이머를 적용하는 방법 및 장치
WO2011118997A2 (en) Method of transceiving signal in wireless communication system and apparatus thereof
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2013168938A1 (en) A method and apparatus of controlling cell deactivation in a wireless communication system
WO2011159126A2 (ko) 무선 통신 시스템에서 단말이 잔여전력 정보를 송신하는 방법 및 이를 위한 장치
WO2012169756A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치
WO2012138171A2 (ko) 무선 통신 시스템에서 단말이 네트워크와 연결을 설정하는 방법 및 이를 위한 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2012134099A2 (ko) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 이를 위한 장치
WO2018169327A1 (ko) 무선 통신 시스템에서 ack/nack 송수신 방법 및 이를 위한 장치
WO2016144082A1 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2018004296A2 (ko) 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치
WO2018093113A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2013141656A1 (ko) 무선 통신 시스템에서 단말의 plmn 정보 저장 방법 및 이를 위한 장치
WO2017222351A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2016195411A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2018101738A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2019031797A1 (en) METHOD FOR REALIZING A RANDOM ACCESS PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14123399

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808171

Country of ref document: EP

Kind code of ref document: A2