WO2013168735A1 - 加熱装置 - Google Patents

加熱装置 Download PDF

Info

Publication number
WO2013168735A1
WO2013168735A1 PCT/JP2013/062922 JP2013062922W WO2013168735A1 WO 2013168735 A1 WO2013168735 A1 WO 2013168735A1 JP 2013062922 W JP2013062922 W JP 2013062922W WO 2013168735 A1 WO2013168735 A1 WO 2013168735A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generating
temperature
heat
heating device
temperature detecting
Prior art date
Application number
PCT/JP2013/062922
Other languages
English (en)
French (fr)
Inventor
好信 前村
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN201380024145.9A priority Critical patent/CN104303592B/zh
Priority to DE112013002422.5T priority patent/DE112013002422T5/de
Priority to US14/400,331 priority patent/US20150131980A1/en
Publication of WO2013168735A1 publication Critical patent/WO2013168735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Definitions

  • the present invention relates to a heating device, and more particularly, to a heating device including a housing that forms a flow path of a heat medium between a heat generating portion of a heater.
  • a heater having a heat generating portion that generates heat when energized, a housing in which the heat generating portion is housed and forming a flow path of a heat medium between the heat generating portion, and the flow path 2.
  • a temperature detection unit that detects the temperature of a heat medium and an energization interruption unit that interrupts energization of a heater according to the detected temperature of the heat medium are known.
  • Patent Document 1 by providing a thermostat and a thermal fuse in the site
  • a heating apparatus that prevents the occurrence of emptying.
  • Patent Document 2 by providing a thermal fuse at the energizing terminal, the heat of the heat generating part transmitted through the energizing terminal is cut off from energizing the heater regardless of the liquid level of the heat medium in the flow path.
  • a heating device for preventing air blown is disclosed.
  • Patent Document 3 discloses a heating device in which a convex portion is provided on the inner side of the housing, and a thermal fuse is brought into contact with the heat generating portion through the convex portion of the housing, thereby preventing airing. Yes.
  • the temperature detecting means is brought into contact with the non-heat generating portion of the heater located outside the casing, and the energization to the heater is cut off based on the heat transmitted through the non-heat generating portion. For this reason, the responsiveness of the power interruption means is deteriorated, the heater cannot be stopped quickly, and the accuracy of the air-blow detection is lowered, which may lead to smoke and ignition of the heating device.
  • the heater, the casing, and the temperature detection means are formed of different materials, depending on the temperature environment in which the heating device is used, the temperature is particularly different due to the difference in linear expansion coefficient and linear contraction coefficient of these different materials.
  • the temperature measurement point by the temperature detection means moves and shifts, and there is a risk of further promoting the deterioration of the responsiveness of the energization interruption means, and consequently the fall of the flying detection accuracy. is there.
  • the present invention has been made on the basis of the above-mentioned circumstances, and the object of the present invention is to detect hot air with high accuracy while detecting the temperature of the heat medium, and to cut off energization with excellent responsiveness.
  • An object of the present invention is to provide a heating device with improved reliability by reliably preventing smoke and ignition.
  • a heating device includes a heater having a heat generating portion that generates heat when energized, and a housing that houses the heat generating portion and forms a flow path of a heat medium between the heat generating portion. And a temperature detecting means for detecting the temperature of the heat medium in the flow path, and an energization interrupting means for interrupting energization of the heater according to the temperature of the heat medium detected by the temperature detecting means.
  • the temperature detecting means is in pressure contact with the heat generating portion by an elastic member.
  • the elastic member resists linear expansion and contraction of each of the heat generating unit, the temperature detecting unit, and the casing that act in parallel with a pressing direction of the temperature detecting unit with respect to the heat generating unit. It has an elastic force large enough to press the temperature detecting means against the heat generating part.
  • the temperature detection means is connected to the housing via a seal member, and the elastic member resists the frictional force of the seal member acting in parallel with the pressing direction of the temperature detection means against the heat generating portion. And has an elastic force large enough to press the temperature detecting means against the heat generating portion.
  • the elastic member has an elastic force large enough to press the temperature detecting unit against the heat generating unit against an internal pressure of the flow path acting in parallel with a pressing direction of the temperature detecting unit with respect to the heat generating unit.
  • the casing is in contact with the elastic member via a heat insulating member.
  • the temperature detecting means for detecting the temperature of the heat medium in the flow path of the heat medium, and the energization interruption for cutting off the energization to the heater according to the temperature of the heat medium detected by the temperature detecting means.
  • the temperature detecting means is in press contact with the heat generating part of the heater, so that the heating medium is detected with high accuracy while detecting the temperature of the heat medium, and the energization cut-off with excellent responsiveness. Since it is possible to reliably prevent smoke and ignition, a highly reliable heating device can be provided.
  • FIG. 2 is a cross-sectional view of a main part when the heating device of FIG. 1 is viewed from the AA direction. It is a longitudinal cross-sectional view of the heating apparatus which concerns on the modification of this invention.
  • FIG. 4 is a cross-sectional view of a main part when the heating device of FIG. 3 is viewed from the BB direction of FIG. 3.
  • the heating device 1 includes a heater 2 and a case (housing) 4 in which the heater 2 is accommodated.
  • the heater 2 is a heating wire heater that generates heat when energized, and a coiled shape such as nichrome wire in a bottomed cylindrical metal pipe (heating portion) 6 made of stainless steel, for example.
  • the heating wire 8 is inserted, and the metal pipe 6 is filled with a heat-resistant insulating material 10 such as magnesium oxide having high electrical insulation and thermal conductivity, and the heating wire 8 is sealed.
  • a terminal portion 12 formed by casting and molding silicon or glass is provided, and a lead wire 14 connected to the heating wire 8 is drawn out from the terminal portion 12.
  • the lead wire 14 is electrically connected to an external power supply device (not shown) and constitutes an energization circuit (not shown) for energizing the heating wire 8.
  • an external power supply device not shown
  • an energization circuit not shown for energizing the heating wire 8.
  • FIG. 1 only one heater 2 is shown, but a plurality of heaters 2 may be provided.
  • the case 4 is composed of one or a plurality of cast bodies of, for example, an aluminum alloy, and the heater 2 is housed in the case 4 by hermetically surrounding the ends of the metal pipe 6 via the annular O-rings 16.
  • a clearance is secured between the inner surface 4a of the case 4 and the outer peripheral surface 6a of the metal pipe 6, and this clearance is used as a flow path 18 through which a heat medium as LLC (cooling water, antifreeze) such as ethylene glycol flows.
  • a heat medium inlet pipe 20 and an outlet pipe 22 are provided so as to communicate with the flow path.
  • the heating device 1 schematically configured as described above is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, for example, and in the case of a hybrid vehicle, as an auxiliary heat source that supplies heat so as to compensate for waste heat that the engine lacks,
  • a hybrid vehicle in the case of a hybrid vehicle, as an auxiliary heat source that supplies heat so as to compensate for waste heat that the engine lacks
  • an electric vehicle it is used as an alternative heat source for supplying heat in place of an engine that does not exist, for heating a refrigerant circulating in a refrigeration circuit of a vehicle air conditioner.
  • LLC circulating in a cooling water circuit for cooling the engine flows into the flow path 18 through the inlet pipe 20 and is heated by the heater 2.
  • the heat of the LLC heated by the engine and the heating device 1 is used to heat the refrigerant circulating in the refrigeration circuit provided in the vehicle air conditioner, and the vehicle interior air is cooled and heated by the heated refrigerant.
  • the LLC used for heating the refrigerant flows out of the flow path 18 through the outlet pipe 22 and is returned to the cooling water circuit to cool the engine again.
  • a through hole 24 is drilled in a direction perpendicular to the longitudinal direction of the heater 2 of the case 4, and a temperature sensor (temperature detection means) that detects the temperature of LLC flowing through the flow path 18 in the through hole 24. 26 is inserted.
  • the temperature sensor 26 is a thermistor having a substantially cylindrical appearance covered with, for example, a brass material, and its temperature measurement end portion 28 is in contact with the outer peripheral surface 6 a of the metal pipe 6 of the heater 2 at the front end surface 30. .
  • the temperature sensor 26 can detect not only the LLC temperature but also the surface temperature of the metal pipe 6 which is the heat generating part of the heater 2.
  • An annular groove 32 is formed on the side surface 26 a of the temperature sensor 26, and an O-ring (seal member) 34 is attached to the annular groove 32, and the temperature sensor 26 is inserted into the through hole 24 via each O-ring 34. Airtight connection is fixed.
  • a pressing mechanism 39 for pressing the temperature sensor 26 against the metal pipe 6 is provided.
  • annular flange portion 40 having a larger diameter than the through hole 24 is formed on the side surface 26 a of the temperature sensor 26, and the flange portion 40 is positioned outside the case 4 in the through hole 24.
  • annular fixing portion 42 for fixing the temperature sensor 26 protrudes from the opening edge of the through hole 24 on the outer surface 4 b of the case 4, and an annular snap ring 44 is provided on the inner peripheral surface 42 a of the fixing portion 42. Is inserted.
  • the outer end 36 of the temperature sensor 26 protrudes from the ring hole 44 a of the snap ring 44 in a non-contact state, and the temperature sensor 26 is allowed to move in the hole direction of the through hole 24.
  • a spring (elastic member) 46 is locked to the opposed surfaces of the snap ring 44 and the flange portion 40, and the spring 46 is disposed on the side surface of the temperature sensor 26 on the outer end 36 side of the flange portion 40. 26a is wound around.
  • the spring 46 is formed of, for example, a spring steel material having a predetermined elastic coefficient G. In FIG. 2, the spring 46 is contracted from the natural length to a distance L between the snap ring 44 and the flange portion 40. A predetermined elastic force F based on the elastic modulus G and the distance L acts on the flange portion 40 in the expansion and contraction direction of the spring 46.
  • the flange portion 40 is separated from the outer surface 4b of the case 4 by a distance L1, and the temperature sensor 26 has an end surface 30 on the outer peripheral surface 6a of the metal pipe 6 in the direction indicated by the arrow in FIG. It is pressed and pressed.
  • the metal pipe 6 is made of stainless steel
  • the temperature sensor 26 is made of brass
  • the case 4 is made of an aluminum alloy. These members have different linear expansion and contraction characteristics depending on the temperature environment to which they are exposed. have.
  • the elastic coefficient G is set in advance by selecting the material of the spring 46, and further, the distance L between the snap ring 44 and the flange portion 40 described above in the structure of the case 4 is set in advance. The metal pipe 6 acting in parallel with the pressing direction of the temperature sensor 26, the temperature sensor 26, and the elastic force F against the force F1 due to linear expansion and contraction of the case 4 are adjusted in advance.
  • the elastic coefficient G is set in advance by selecting the material of the spring 46.
  • the spring 46 resists the frictional force F ⁇ b> 2 against the through-hole 24 of the O-ring 34 that acts parallel to the pressing direction of the temperature sensor 26 against the metal pipe 6. It is adjusted in advance to provide an elastic force F that presses the metal pipe 6 against the metal pipe 6.
  • the elastic modulus G is set in advance by selecting the material of the spring 46, and the distance L is set in advance in the structure of the case 4.
  • the spring 46 is adjusted in advance to have an elastic force F that presses the temperature sensor 26 against the metal pipe 6 against the internal pressure P of the flow path 18 acting in parallel with the pressing direction of the temperature sensor 26 against the metal pipe 6. ing.
  • the temperature sensor 26 pressed against the metal pipe 6 by such an elastic force F is electrically connected to an inverter (not shown) by a lead wire 38 drawn from the outer end portion 36, and the inverter includes the above-described power supply device and An energization control for turning on / off energization of the heater 2 is performed via the energization circuit according to the temperature of the LLC and / or the surface temperature of the metal pipe 6 detected by the temperature sensor 26 (energization interruption means).
  • the temperature of the LLC is controlled to an appropriate range by the temperature sensor 26, so that the heater 2 does not rise abnormally.
  • the LLC is not present or very small in the flow path 18 due to reasons such as no supply of LLC to the cooling water circuit or leakage of LLC from the cooling water circuit, the heat from the heater 2 is reduced. Since there is no heat medium to be transmitted or the heat medium is in a small amount, the heating device 1 may be in an empty state and the temperature of the heater 2 itself may rise abnormally.
  • the temperature sensor 26 Even if such an empty state occurs, in the conventional case where the temperature sensor 26 is not in contact with the metal pipe 6 and is disposed at a position where only the temperature of the LLC is detected, the temperature sensor 26 exists around the temperature sensor 26. The responsiveness of the temperature sensor 26 deteriorates due to the heat insulation effect due to the air that is generated, and as a result of delaying the air detection, the temperature in the flow path 18 continues to rise, and as a result, the heating device 1 may emit smoke and ignite.
  • the temperature sensor 26 is directly pressed and brought into contact with the outer peripheral surface 6a of the metal pipe 6 that is the heat generating portion of the heater 2, and is disposed in the flow path 18 through which LLC flows, whereby the liquid LLC.
  • the temperature of the LLC is dominant, while when the LLC is not present in the flow path 18 or when the amount is small, the heater 2 is focused on. Energization control using the fact that the temperature of itself is dominant is performed.
  • the normal energization control can be performed without stopping the protection of the heating device 1, while the LLC does not exist in the flow path 18 or in a small amount.
  • the temperature sensor 26 is pressed and urged against the metal pipe 6 by the elastic force F of the spring 46, so that it is reliably detected that the temperature sensor 26 is always in contact with the metal pipe 6 and the abnormality is detected.
  • the heating device 1 can be protected and stopped quickly and reliably. Therefore, it is possible to provide the heating device 1 with improved reliability by detecting air blow with high accuracy and speed while performing normal energization control by the temperature sensor 26 and reliably preventing smoke and ignition.
  • the elastic force F by the spring 46 is set in advance to a load that resists the force F1 caused by linear expansion and contraction of the metal pipe 6, the temperature sensor 26, and the case 4 acting in parallel with the pressing direction of the temperature sensor 26 against the metal pipe 6.
  • the metal pipe 6, the temperature sensor 26, and the case 4 are formed of different materials, and the heating device 1 is used in a severe temperature environment, and even if it is affected by thermal expansion or contraction, temperature measurement is performed.
  • the tip surface 30 of the end portion 28 is always brought into contact with the outer peripheral surface 6a of the metal pipe 6, so that the air blowing can be detected with high accuracy and speed, and smoke generation can be reliably prevented.
  • the elastic force F by the spring 46 is set to a load that resists the frictional force F2 of the O-ring 34 with respect to the through-hole 24 and the internal pressure P of the flow path 18, the movement of the temperature sensor 26 by the elastic force F is these.
  • the front end surface 30 of the temperature measurement end portion 28 can be reliably brought into contact with the outer peripheral surface 6a of the metal pipe 6 without being obstructed by the frictional force F2 and the internal pressure P.
  • the present invention is not limited to the heating device 1 of the above embodiment, and various modifications can be made.
  • the pressing mechanism 39 of the temperature sensor 26 is not limited to the above embodiment, and may be the pressing mechanism 48 shown in FIGS. 3 and 4.
  • the flange portion 40 of the temperature sensor 26 is positioned in the through hole 24 so as to be smaller than the diameter of the through hole 24, and the screw 50 is attached to the outer surface 4 b of the case 4 instead of the fixing portion 42 and the snap ring 44.
  • the lid member 52 to be fastened may be provided, and the spring 46 may be locked by the flange portion 40 and the lid member 52.
  • a more simplified pressing mechanism 48 can be provided, and the productivity of the heating device 1 can be provided. Can be increased.
  • an annular heat insulating member 54 is provided between the lid member 52 and the spring 46, and the spring 46 is brought into contact with the back surface 52 a of the lid member 52 via the heat insulating member 54. You may make it. In this case, heat in the flow path 18 can be prevented from being radiated from the spring 46 that is in contact with the temperature sensor 26 via the lid member 52, and the thermal efficiency of the heating device 1 can be increased.
  • the configuration having the heat insulating member 54 can also be applied to the pressing mechanism 39 shown in FIGS. 1 and 2.
  • the spring 46 was used as an elastic member which generates the elastic force F in the press mechanisms 39 and 48, it is not limited to this. Specifically, a cup-shaped disc spring or an elastic body such as rubber may be used as long as the elastic force F can be generated.
  • the metal pipe 6 was made from stainless steel
  • the temperature sensor 26 was made from brass
  • the case 4 was made from aluminum alloy, it is not limited to these materials, any of these The member may be the same material. Even in this case, by using an elastic member in which the elastic force F is set in advance, the movement of the temperature sensor 26 by the elastic force F is hindered by the force F1, the frictional force F2, and the internal pressure P due to linear expansion and contraction.
  • the tip surface 30 of the temperature measurement end portion 28 can be reliably brought into contact with the outer peripheral surface 6a of the metal pipe 6 without any problem.
  • the temperature sensor 26 is used as the temperature detection means, and the inverter that controls energization is used as the energization cutoff means.
  • a temperature fuse or the like that is integrally provided with the temperature detection means and the energization cutoff means is pressed against the metal pipe 6. You may make it contact.
  • the heating device 1 of the present invention can be used not only in a vehicle air conditioner for a hybrid vehicle or an electric vehicle, but also as a heat source for other uses.
  • Heating device 1 Heating device 2 Heater 4 Case (housing) 6 Metal pipe (heat generating part) 18 channel 26 temperature sensor (temperature detection means) 34 O-ring (seal member) 46 Spring (elastic member) 54 Heat insulation member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Resistance Heating (AREA)

Abstract

 通電により発熱する発熱部(6)を有するヒータ(2)と、発熱部が収容され、該発熱部との間に熱媒体の流路(18)を形成する筐体(4)と、流路にて熱媒体の温度を検出する温度検出手段(26)と、温度検出手段にて検出された熱媒体の温度に応じてヒータへの通電を遮断する通電遮断手段とを備え、温度検出手段は発熱部に押圧接触されている。

Description

加熱装置
 本発明は加熱装置に関し、特にヒータの発熱部との間に熱媒体の流路を形成する筐体を備えた加熱装置に関する。
 この種の加熱装置には、通電により発熱する発熱部を有するヒータと、この発熱部が収容され、該発熱部との間に熱媒体の流路を形成する筐体と、この流路にて熱媒体の温度を検出する温度検出手段と、この検出された熱媒体の温度に応じてヒータへの通電を遮断する通電遮断手段とを備えたものが知られている。
 そして、特許文献1には、サーモスタットや温度ヒューズを発熱部の発熱面と同一面上の筐体外の部位に設けることにより、温度ヒューズの誤作動を防止しながら、流路に熱媒体が存在しない場合に発生する空焚きを防止した加熱装置が開示されている。
 また、特許文献2には、温度ヒューズを通電端子に設けることにより、通電端子を介して伝達される発熱部の熱によって、流路における熱媒体の液位に関係なくヒータへの通電を遮断し、空焚きを防止する加熱装置が開示されている。
 また、特許文献3では、筐体の内側に凸となる凸部を設け、この筐体の凸部を介して温度ヒューズを発熱部と接触させることで空焚きを防止した加熱装置が開示されている。
特許第4561319号公報 特許第4293091号公報 特許第3395571号公報
 しかしながら、上記特許文献1~3では、何れも筐体外に位置するヒータの非発熱部に温度検出手段を接触させ、非発熱部を介して伝達された熱に基づいてヒータへの通電を遮断するため、通電遮断手段の応答性が悪化し、ヒータを迅速に停止することができず、また、空焚き検知の精度が低下し、ひいては加熱装置の発煙発火に至るおそれがある。
 また、ヒータ、筐体、及び温度検出手段がそれぞれ異なる材質で形成されている場合、加熱装置が使用される温度環境によっては、これら異なる材質の線膨張係数及び線収縮係数の相違によって、特に温度検出手段が筐体側にねじ等で締結されている場合には、温度検出手段による温度測定点が移動してずれ、通電遮断手段の応答性悪化、ひいては空焚き検知精度低下を更に助長するおそれがある。
 本発明は上述の事情に基づいてなされたもので、その目的とするところは、熱媒体の温度を検出しながら空焚きを高精度に検出し、応答性に優れた通電遮断を行うことができ、発煙発火を確実に防止することにより信頼性を高めた加熱装置を提供することにある。
 上記の目的を達成するため、本発明の加熱装置は、通電により発熱する発熱部を有するヒータと、前記発熱部が収容され、該発熱部との間に熱媒体の流路を形成する筐体と、前記流路にて前記熱媒体の温度を検出する温度検出手段と、前記温度検出手段にて検出された前記熱媒体の温度に応じて前記ヒータへの通電を遮断する通電遮断手段とを備え、前記温度検出手段は前記発熱部に弾性部材により押圧接触されている。
 好ましくは、前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記発熱部、前記温度検出手段、及び前記筐体のそれぞれの線膨張及び線収縮に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有する。
 好ましくは、前記温度検出手段は前記筐体にシール部材を介して接続され、前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記シール部材の摩擦力に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有する。
 好ましくは、前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記流路の内圧に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有する。
 好ましくは、前記筐体は前記弾性部材と断熱部材を介して接触されている。
 本発明によれば、熱媒体の流路にて熱媒体の温度を検出する温度検出手段と、前記温度検出手段にて検出された熱媒体の温度に応じてヒータへの通電を遮断する通電遮断手段とを備え、前記温度検出手段がヒータの発熱部に押圧接触されていることにより、熱媒体の温度を検出しながら空焚きを高精度に且つ確実に検出し、応答性に優れた通電遮断を行うことができ、発煙発火を確実に防止することができるため、信頼性の高い加熱装置を提供することができる。
本発明の一実施形態に係る加熱装置の縦断面図である。 図1の加熱装置をA-A方向から見た要部断面図である。 本発明の変形例に係る加熱装置の縦断面図である。 図3の加熱装置を図3のB-B方向から見た要部断面図である。
 以下、図面に基づいて本発明の加熱装置に係る一実施形態について説明する。
 図1に概略的に示されるように、加熱装置1はヒータ2、及びヒータ2が収容されるケース(筐体)4を備えている。
 図2に概略的に示されるように、ヒータ2は、通電により発熱する電熱線ヒータであり、有底円筒状の例えばステンレス鋼製の金属パイプ(発熱部)6内にニクロム線などのコイル状の電熱線8を挿入し、金属パイプ6内に高い電気絶縁性及び熱伝導性を有する酸化マグネシウムなどの耐熱絶縁材10を加圧充填して電熱線8を封入することで形成されている。
 金属パイプ6の一端開口部には、シリコンやガラスなどを鋳込みモールド成形した端子部12が設けられ、端子部12からは電熱線8に接続されたリード線14が引き出されている。リード線14は外部の図示しない電源装置に電気的に接続され、電熱線8に通電するための図示しない通電回路を構成している。なお、図1ではヒータ2は1本しか示されていないが、ヒータ2を複数本設けても良い。
 一方、ケース4は、1又は複数の例えばアルミニウム合金の鋳造体から構成され、ケース4内には金属パイプ6の両端近傍を環状のOリング16を介して気密に囲繞することでヒータ2が収容されている。ケース4の内面4aと金属パイプ6の外周面6aとの間にはクリアランスが確保され、このクリアランスはエチレングリコールなどのLLC(冷却水、不凍液)としての熱媒体が流れる流路18として使用される。また、ケース4の外面4bの適宜位置には、熱媒体の入口パイプ20と出口パイプ22とが流路に連通するように突設されている。
 このように概略構成される加熱装置1は、例えばハイブリッド自動車や電気自動車などの車両に搭載され、ハイブリッド自動車の場合には、エンジンの不足する廃熱を補うようにして熱供給する補助熱源として、電気自動車の場合には、存在しないエンジンに代わって熱供給する代替熱源として、車両用空調装置の冷凍回路を循環する冷媒などの加熱に用いられる。
 例えばハイブリッド自動車の場合には、エンジン冷却用の図示しない冷却水回路を循環するLLCが流路18に入口パイプ20を介して流入され、ヒータ2により加熱される。エンジン及び加熱装置1で加熱されたLLCの熱は、車両用空調装置に設けられた冷凍回路を循環する冷媒の加熱に用いられ、この加熱された冷媒によって車室内空気の冷暖房が行われる。冷媒の加熱に供したLLCは、流路18から出口パイプ22を介して流出されて冷却水回路に戻され、エンジンを再び冷却する。
 ここで、本実施形態では、ケース4のヒータ2の長手方向と垂直方向に貫通孔24が穿孔され、貫通孔24には流路18を流れるLLCの温度を検出する温度センサ(温度検出手段)26が挿入されている。温度センサ26は、例えば真鍮材で被われた略円柱形状の外観を有するサーミスタであって、その温度測定端部28が先端面30においてヒータ2の金属パイプ6の外周面6aに接触されている。これより温度センサ26はLLCの温度のみならずヒータ2の発熱部である金属パイプ6の表面温度をも検出可能である。
 また、温度センサ26の側面26aには環状溝32が形成され、環状溝32にはOリング(シール部材)34が装着されており、温度センサ26は各Oリング34を介して貫通孔24に気密に接続固定されている。
 また、本実施形態では、温度センサ26を金属パイプ6に押圧付勢するための押圧機構39を備えている。
 詳しくは、温度センサ26の側面26aには貫通孔24よりも大径となる環状のフランジ部40が形成され、フランジ部40は貫通孔24においてケース4の外側に位置づけられている。一方、ケース4の外面4bにおける貫通孔24の開口縁には、温度センサ26を固定するための環状の固定部42が突設され、固定部42の内周面42aには環状のスナップリング44が嵌め込まれている。スナップリング44のリング孔44aからは温度センサ26の外端部36が非接触状態で突出され、温度センサ26は貫通孔24の孔方向において移動が許容されている。
 更に、スナップリング44とフランジ部40とには、これらの互いの対向面にばね(弾性部材)46が係止され、ばね46は、フランジ部40の外端部36側において温度センサ26の側面26aに巻回装着されている。
 ばね46は所定の弾性係数Gを有する例えばばね鋼材から形成され、図2においては、ばね46は自然長からスナップリング44とフランジ部40との間の距離Lに縮められた状態となっており、フランジ部40にはばね46の伸縮方向に弾性係数G及び距離Lに基づく所定の弾性力Fが作用している。この状態においてフランジ部40はケース4の外面4bからL1の距離だけ離間しており、温度センサ26はその先端面30が金属パイプ6の外周面6aに図2に示される矢印方向に弾性力Fで押圧付勢されている。
 上述したように、金属パイプ6はステンレス鋼製、温度センサ26は真鍮製、ケース4はアルミニウム合金製であり、これら各部材は、曝される温度環境下によってそれぞれ異なる線膨張及び線収縮の特性を有している。しかし、ばね46の材質の選定により弾性係数Gを予め設定し、更にケース4の構造において上述したスナップリング44とフランジ部40との距離Lを予め設定することにより、ばね46は、金属パイプ6に対する温度センサ26の押圧方向に平行に作用する金属パイプ6、温度センサ26、ケース4の線膨張及び線収縮による力F1に抗する弾性力Fを備えるべく予め調整されている。
 また、温度センサ26は、金属パイプ6に弾性力Fで押圧付勢されるに際し、ケース4の外面4bとフランジ部40とが上述した距離L1を有して離間していることにより、温度センサ26の移動がその押圧方向に平行に許容されている。しかし、温度センサ26に装着されたOリング34が貫通孔24に密着することで流路18の気密性が保持されているため、ばね46の材質の選定により弾性係数Gを予め設定し、更にケース4の構造において距離Lを予め設定することにより、ばね46は、金属パイプ6に対する温度センサ26の押圧方向に平行に作用するOリング34の貫通孔24に対する摩擦力F2に抗して温度センサ26を金属パイプ6に押圧する弾性力Fを備えるべく予め調整されている。
 また、流路18にはLLCを含む熱媒体の内圧Pが作用しているため、ばね46の材質の選定により弾性係数Gを予め設定し、更にケース4の構造において距離Lを予め設定することにより、ばね46は、金属パイプ6に対する温度センサ26の押圧方向に平行に作用する流路18の内圧Pに抗して温度センサ26を金属パイプ6に押圧する弾性力Fを備えるべく予め調整されている。
 このような弾性力Fで金属パイプ6に押圧される温度センサ26は、その外端部36から引き出されたリード線38によって図示しないインバータに電気的に接続され、インバータは、上述した電源装置及び通電回路を介し、温度センサ26にて検出されるLLCの温度及び/又は金属パイプ6の表面温度に応じて、ヒータ2への通電をオンオフする通電制御を行う(通電遮断手段)。
 この通電制御では、流路18にLLCが存在する場合、温度センサ26によってLLCの温度が適正範囲に制御されるため、ヒータ2が異常に温度上昇することはない。
 一方、従来において、冷却水回路へのLLCの未供給状態や冷却水回路からのLLCの漏洩等の理由により、流路18にLLCが存在しないか或いは非常に少ない場合、ヒータ2からの熱を伝達する熱媒体が存在しない、或いは熱媒体が少量の状態となるため、加熱装置1が空焚き状態となってヒータ2自体の温度が異常上昇してしまうという不具合が生じ得る。このような空焚き状態が生じても、温度センサ26が金属パイプ6に非接触であってLLCの温度のみを検出する位置に配置されている従来の場合には、温度センサ26の周囲に存在する空気による断熱効果によって温度センサ26の応答性が悪化し、空焚き検知が遅延した結果、流路18内の温度が上昇し続け、ひいては加熱装置1の発煙発火に至るおそれがある。
 これに対し本実施形態では、温度センサ26をヒータ2の発熱部である金属パイプ6の外周面6aに直接に押圧接触させ、且つLLCが流れる流路18に配置することにより、液体であるLLCと空気である気体との伝熱性の差異に着目し、流路18にLLCが存在するときにはLLCの温度が支配的になる一方、流路18にLLCが存在しない、或いは少量であるときにはヒータ2自体の温度が支配的になることを利用した通電制御が行われる。
 以上のように本実施形態では、流路18にLLCが存在するときには加熱装置1を保護停止せずに通常の通電制御を行うことができる一方、流路18にLLCが存在しない、或いは少量であるときには、温度センサ26が金属パイプ6にばね46による弾性力Fで押圧付勢されていることにより、温度センサ26を金属パイプ6に常時接触させた状態で確実に空焚きを検知し、異常処理を行うことで加熱装置1を迅速且つ確実に保護停止することができる。従って、温度センサ26による通常の通電制御を行いながら、空焚きを高精度且つ迅速に検知し、発煙発火を確実に防止することにより信頼性を高めた加熱装置1を提供することができる。
 特に、ばね46による弾性力Fが金属パイプ6に対する温度センサ26の押圧方向に平行に作用する金属パイプ6、温度センサ26、ケース4の線膨張及び線収縮による力F1に抗する荷重に予め設定されることにより、金属パイプ6、温度センサ26、ケース4が異なる材質で形成され、加熱装置1が過酷な温度環境下で使用され、熱膨張や熱収縮の影響を受けたとしても、温度測定端部28の先端面30を金属パイプ6の外周面6aに常時接触させ、空焚きを高精度且つ迅速に検知し、発煙発火を確実に防止することができる。
 また、ばね46による弾性力Fは、貫通孔24に対するOリング34の摩擦力F2、及び流路18の内圧Pに抗する荷重に設定されるため、弾性力Fによる温度センサ26の移動がこれら摩擦力F2及び内圧Pに阻害されることなく温度測定端部28の先端面30を金属パイプ6の外周面6aに確実に接触させることができる。
 本発明は、上記実施形態の加熱装置1に制約されるものではなく、種々の変形が可能である。
 例えば、温度センサ26の押圧機構39は上記実施形態に限らず、図3及び図4に示される押圧機構48であっても良い。
 具体的には、温度センサ26のフランジ部40を貫通孔24の孔径よりも小さくして貫通孔24に位置付け、更に、固定部42及びスナップリング44の代わりにケース4の外面4bにねじ50で締結される蓋部材52を設け、フランジ部40と蓋部材52とでばね46を係止するとしても良い。この場合には、温度センサ26の押圧機構39における上述した距離L1を確保するという構造上の制約が排除されるため、より簡素化した押圧機構48を提供可能であり、加熱装置1の生産性を高めることができる。
 また、図3及び図4に示されるように、蓋部材52とばね46との間に環状の断熱部材54を設け、ばね46が断熱部材54を介して蓋部材52の裏面52aに当接されるようにしても良い。この場合には、温度センサ26に接触されるばね46から蓋部材52を介して流路18内の熱が放熱されるのを抑制可能であり、加熱装置1の熱効率を高めることができる。なお、この断熱部材54を有する構成は図1及び図2に示される押圧機構39にも適用可能である。
 また、上記実施形態及び変形例では、押圧機構39,48において弾性力Fを発生させる弾性部材としてばね46を用いたが、これに限定されない。具体的には、弾性力Fを発生可能であればカップ状の皿ばねであってもよいし、ゴム等の弾性体であっても良い。
 また、上記実施形態及び変形例では、金属パイプ6はステンレス鋼製、温度センサ26は真鍮製、ケース4はアルミニウム合金製としたが、これらの材質に限定されないし、これらのうちの何れかの部材が同じ材質であっても良い。この場合であっても、弾性力Fを予め設定した弾性部材を用いることにより、弾性力Fによる温度センサ26の移動が線膨張及び線収縮による力F1、摩擦力F2、内圧Pに阻害されることなく温度測定端部28の先端面30を金属パイプ6の外周面6aに確実に接触させることができる。
 更には、金属パイプ6、温度センサ26、ケース4を含む押圧機構39,48、ひいては加熱装置1の構成部品の寸法公差及び組立公差を吸収可能な弾性力Fを設定することにより、これら寸法公差及び組立公差を厳密に管理しなくとも、温度測定端部28の先端面30を金属パイプ6の外周面6aに確実に接触可能である。
 また、上記実施形態では、温度センサ26を温度検出手段とし、通電制御を行うインバータを通電遮断手段としているが、温度検出手段及び通電遮断手段を一体に備えた温度ヒューズなどを金属パイプ6に押圧接触させても良い。
 また、本発明の加熱装置1は、ハイブリッド自動車や電気自動車の車両用空調装置に組み込むのみならず、他の用途の熱源としても利用可能であるのは勿論である。
  1  加熱装置
  2  ヒータ
  4  ケース(筐体)
  6  金属パイプ(発熱部)
 18  流路
 26  温度センサ(温度検出手段)
 34  Oリング(シール部材)
 46  ばね(弾性部材)
 54  断熱部材

Claims (5)

  1.  通電により発熱する発熱部を有するヒータと、
     前記発熱部が収容され、該発熱部との間に熱媒体の流路を形成する筐体と、
     前記流路にて前記熱媒体の温度を検出する温度検出手段と、
     前記温度検出手段にて検出された前記熱媒体の温度に応じて前記ヒータへの通電を遮断する通電遮断手段と
    を備え、
     前記温度検出手段は前記発熱部に弾性部材により押圧接触されていることを特徴とする加熱装置。
  2.  前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記発熱部、前記温度検出手段、及び前記筐体のそれぞれの線膨張及び線収縮に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有することを特徴とする請求項1に記載の加熱装置。
  3.  前記温度検出手段は前記筐体にシール部材を介して接続され、
     前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記シール部材の摩擦力に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有することを特徴とする請求項1又は2に記載の加熱装置。
  4.  前記弾性部材は、前記発熱部に対する前記温度検出手段の押圧方向に平行に作用する前記流路の内圧に抗して前記温度検出手段を前記発熱部に押圧可能な大きさの弾性力を有することを特徴とする請求項1乃至3の何れかに記載の加熱装置。
  5.  前記筐体は前記弾性部材と断熱部材を介して接触されていることを特徴とする請求項1乃至4の何れかに記載の加熱装置。
PCT/JP2013/062922 2012-05-10 2013-05-08 加熱装置 WO2013168735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380024145.9A CN104303592B (zh) 2012-05-10 2013-05-08 加热装置
DE112013002422.5T DE112013002422T5 (de) 2012-05-10 2013-05-08 Heizvorrichtung
US14/400,331 US20150131980A1 (en) 2012-05-10 2013-05-08 Heating Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108325A JP6029851B2 (ja) 2012-05-10 2012-05-10 加熱装置
JP2012-108325 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168735A1 true WO2013168735A1 (ja) 2013-11-14

Family

ID=49550769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062922 WO2013168735A1 (ja) 2012-05-10 2013-05-08 加熱装置

Country Status (5)

Country Link
US (1) US20150131980A1 (ja)
JP (1) JP6029851B2 (ja)
CN (1) CN104303592B (ja)
DE (1) DE112013002422T5 (ja)
WO (1) WO2013168735A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648725A (zh) * 2019-10-10 2021-04-13 博格华纳路德维希堡有限公司 连续流加热器及用于制造连续流加热器的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051196A1 (en) * 2017-09-08 2019-03-14 Commscope Technologies Llc ENCLOSURE OF HEAT DISSIPATION
WO2021010550A1 (ko) * 2019-07-16 2021-01-21 대우전자부품(주) 온도 퓨즈의 결합 구조가 개선된 배터리용 냉각수 가열 장치
KR102134236B1 (ko) * 2019-07-16 2020-07-16 대우전자부품(주) 온도 퓨즈의 결합 구조가 개선된 배터리용 냉각수 가열 장치
KR102148527B1 (ko) * 2019-07-16 2020-08-27 대우전자부품(주) 온도 퓨즈에 대한 단열 차폐 구조를 갖는 배터리용 냉각수 가열 장치
KR102134233B1 (ko) * 2019-07-16 2020-07-16 대우전자부품(주) 온도 감지 센서의 이탈 방지 구조를 갖는 배터리용 냉각수 가열 장치
KR102276204B1 (ko) * 2020-04-02 2021-07-12 김영덕 온도 감지기 및 이를 구비한 유체 라인 히팅 자켓

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122453A (ja) * 1984-11-19 1986-06-10 Matsushita Electric Ind Co Ltd 電気瞬間湯沸器
JPH10132380A (ja) * 1996-09-09 1998-05-22 Nichias Corp 流体加熱装置
JP2000035248A (ja) * 1998-07-17 2000-02-02 Komatsu Electronics Kk 薬液加熱装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK98523C (da) * 1960-11-03 1964-04-20 Danfoss As Termostatisk ventil til opvarmnings- og køleanlæg.
DE3839244C2 (de) * 1988-02-24 1993-12-09 Webasto Ag Fahrzeugtechnik Heizgerät, insbesondere Fahrzeugzusatzheizgerät
JP3519264B2 (ja) * 1997-02-17 2004-04-12 松下電器産業株式会社 自動車用空調制御装置
DE10051867A1 (de) * 2000-10-19 2002-04-25 Eberspaecher J Gmbh & Co Heizgerät, insbesondere Fahrzeugheizgerät, mit Temperaturfühler
JP4698064B2 (ja) * 2001-05-22 2011-06-08 クマガイ電工株式会社 水槽等の加熱装置
CN101737556A (zh) * 2008-11-27 2010-06-16 全龙浩 可清洗阀芯的自动温控阀
JP2011226675A (ja) * 2010-04-16 2011-11-10 Toto Ltd 元止め式電気温水器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122453A (ja) * 1984-11-19 1986-06-10 Matsushita Electric Ind Co Ltd 電気瞬間湯沸器
JPH10132380A (ja) * 1996-09-09 1998-05-22 Nichias Corp 流体加熱装置
JP2000035248A (ja) * 1998-07-17 2000-02-02 Komatsu Electronics Kk 薬液加熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648725A (zh) * 2019-10-10 2021-04-13 博格华纳路德维希堡有限公司 连续流加热器及用于制造连续流加热器的方法

Also Published As

Publication number Publication date
CN104303592A (zh) 2015-01-21
DE112013002422T5 (de) 2015-01-29
JP2013235760A (ja) 2013-11-21
US20150131980A1 (en) 2015-05-14
CN104303592B (zh) 2016-08-24
JP6029851B2 (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2013168735A1 (ja) 加熱装置
JP6029850B2 (ja) 加熱装置
JP5851930B2 (ja) 加熱装置
KR102476376B1 (ko) 전기차량의 냉각수 가열장치
JP2008224553A (ja) サーミスタ取付体
JP2002178741A (ja) 加熱装置
JP5999631B2 (ja) 加熱装置
JP6480116B2 (ja) ウォッシャー液の加熱装置
JP5998412B2 (ja) 車両用液体加熱装置
ES2690727T3 (es) Dispositivo de calefacción eléctrico
JP6429719B2 (ja) サーモアクチュエータ
JP2019003439A (ja) 熱感知器
TWI601921B (zh) Heating device
JP2011027466A (ja) センサ組立体
JP4165061B2 (ja) 結露防止装置
JP2007278184A (ja) 電動圧縮機用保護装置
JP2006083739A (ja) オイルレベルセンサ及び電動圧縮機
KR100999672B1 (ko) 차량용 실내온도 조절장치
JP3173145U (ja) 水槽用ヒーター装置
US9547224B2 (en) Projector with a therm-sensitive component for overheating protection
JP2015020605A (ja) 車両用加熱装置
JP2006078094A (ja) 冷蔵庫
JP3267930B2 (ja) 鑑賞魚水槽用ヒーター装置
KR20130032674A (ko) 열팽창을 이용한 가스렌지용 과열방지장치
JPH1183036A (ja) 電気ストーブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400331

Country of ref document: US

Ref document number: 112013002422

Country of ref document: DE

Ref document number: 1120130024225

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788522

Country of ref document: EP

Kind code of ref document: A1