WO2013168422A1 - ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 - Google Patents

ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 Download PDF

Info

Publication number
WO2013168422A1
WO2013168422A1 PCT/JP2013/002961 JP2013002961W WO2013168422A1 WO 2013168422 A1 WO2013168422 A1 WO 2013168422A1 JP 2013002961 W JP2013002961 W JP 2013002961W WO 2013168422 A1 WO2013168422 A1 WO 2013168422A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
command value
damping force
control device
load
Prior art date
Application number
PCT/JP2013/002961
Other languages
English (en)
French (fr)
Inventor
匡史 松尾
延男 原
達矢 長田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2014514385A priority Critical patent/JP5922230B2/ja
Priority to EP13787871.6A priority patent/EP2848510B1/en
Priority to US14/399,032 priority patent/US9126652B2/en
Publication of WO2013168422A1 publication Critical patent/WO2013168422A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/08Steering dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • B62K11/04Frames characterised by the engine being between front and rear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/12Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • F16F9/125Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only characterised by adjustment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Definitions

  • the present invention relates to a steering damper control device for controlling a damping force of a steering and a saddle riding type vehicle including the same.
  • the steering damper control device is used for a vehicle equipped with various steerings (steering devices) such as a saddle riding type vehicle.
  • the steering damper control device adjusts the steering damping force.
  • Japanese Patent Application Laid-Open No. 2012-25181 discloses a steering damper control device mounted on a saddle riding type vehicle.
  • the steering damper control device disclosed in the publication includes a damper, a steering angle sensor, and a control unit.
  • the damper generates a damping force of a steering (for example, a steering wheel).
  • the rudder angle sensor detects the rudder angle.
  • the control unit controls the steering damper based on the detection result of the steering angle sensor and adjusts the damping force. Specifically, the control unit generates a damping force from when the rudder angular velocity exceeds a predetermined value until a predetermined time elapses. Thereby, it is suppressed that steering controllability falls, suppressing that a steering is shaken by disturbance.
  • the conventional example having such a configuration has the following problems.
  • the steering damper control device generates a damping force only when the steering angular speed of the steering shaft exceeds a predetermined value. Therefore, depending on the state of the disturbance, it may be difficult to appropriately suppress the steering shake.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steering damper control device that can more appropriately suppress steering vibration and a straddle-type vehicle including the same. To do.
  • the present invention has the following configuration. That is, the present invention provides a damper that generates a damping force acting on a steering wheel, a load information detection unit that detects information related to a load received by a front wheel, a steering angle detection unit that detects a steering angle of the steering, and the load Based on the detection results of the information detection unit and the steering angle detection unit, the first command value, which is a damping force command value corresponding to the rate of change of the load or a value corresponding to the rate of change, and the steering angular velocity And a damping force adjusting unit that adjusts the damping force of the damper according to any one of the second command values that are damping force command values.
  • Both the rate of change of the load on the front wheels and the value corresponding to this rate of change are indicators that are somewhat related to the vibration of the steering due to disturbance. For example, when the load applied to the front wheels increases, the steering tends to be shaken due to the disturbance received by the front wheels.
  • the steering angular velocity is a rate of change of the steering angle of the steering, and directly indicates the vibration of the steering due to disturbance.
  • the damping force adjusting unit includes the first command value corresponding to the rate of change of the load on the front wheels or a value corresponding thereto (hereinafter, referred to as “load rate of change, etc.” as appropriate), and the steering angular speed.
  • the damper is controlled by selectively using one of the second command values according to the above. That is, the damper can be controlled based on the detection result of the load information detection unit, and the damper can be controlled based on the detection result of the steering angle detection unit.
  • the damper can be controlled based on the detection result of the load information detection unit, and the damper can be controlled based on the detection result of the steering angle detection unit.
  • a damping force can be generated when the load applied to the front wheels increases and the steering becomes easy to swing. Thereby, the vibration of the steering can be suppressed proactively.
  • the latter control since a damping force can be generated when the steering is actually vibrating, naturally, the steering vibration can be effectively suppressed.
  • the damping force means the resistance force against the vibration (rotation) of the steering.
  • this damping force vibrates (rotates) the steering wheel when it is not vibrating (rotating). It includes a force (resistance force) that works to prevent you from starting to do.
  • the damping force adjustment unit selects a larger one of the first command value and the second command value.
  • the damping force adjustment unit compares the first and second command values and selects a command value corresponding to a larger damping force. Then, the damper is controlled based on the selected one of the first and second command values. It is assumed that the damping force corresponding to the damping force command value increases as the damping force command value increases.
  • the damping force adjustment unit includes a plurality of types of load control information in which the rate of change of the load or a value corresponding to the rate of change is associated with the damping force command value, and the steering angular velocity.
  • a plurality of types of steering angle control information in which the damping force command values are associated with each other, and the device further specifies the load control information and the steering angle control information referred to by the damping force adjustment unit. It is preferable to provide an information specifying unit for inputting the command.
  • the damping force adjustment unit Since the damping force adjustment unit has a plurality of load control information and a plurality of rudder angle control information, the load control information and the rudder angle control information are properly used according to the situation, and the first and second command values are more appropriately used. Can be determined. Specifically, the damping force adjustment unit determines the first command value by referring to the one load control information specified by the information specifying unit, and refers to the one steering angle control information specified by the information specifying unit. Thus, the second command value is determined. By switching the load control information and the steering angle control information by the information specifying unit, the characteristics of the steering damper control device can be easily changed. Examples of the “situation” include road surface conditions (grip force, slipperiness, flatness, paved / unpaved, etc.), weather or vehicle conditions (weight, speed), and the like.
  • each of the load control information is paired with any one of the rudder angle control information, and the information designating unit designates any one of the pairs.
  • Each load control information is associated with one rudder angle control information. Thereby, a plurality of pairs of one load control information and one rudder angle control information are configured. By inputting a command for designating any pair to the information designating unit, one load control information and one steering angle control information can be designated collectively.
  • the maximum damping force command value in the load control information is smaller than the minimum damping force command value in the steering angle control information.
  • the damper can be controlled substantially only by the second command value that is the damping force command value corresponding to the steering angular speed.
  • the maximum damping force command value in the steering angle control information is smaller than the minimum damping force command value in the load control information.
  • the damper can be controlled substantially only by the first command value that is the damping force command value corresponding to the rate of change of the load or the like.
  • the damping force adjustment unit includes a plurality of types of load control information in which the rate of change of the load or a value corresponding to the rate of change is associated with a damping force command value, and the device It is preferable to further include an information specifying unit for inputting a command for specifying the load control information referred to by the damping force adjusting unit.
  • the damping force adjustment unit Since the damping force adjustment unit has a plurality of load control information, the first command value can be determined more appropriately. Specifically, the damping force adjusting unit determines the first command value with reference to the one load control information specified by the information specifying unit. By switching the load control information by the information specifying unit, the characteristics of the steering damper control device can be easily changed.
  • the damping force adjustment unit has a plurality of types of steering angle control information in which the steering angular speed and a damping force command value are associated with each other, and the device further includes the damping force adjustment unit. It is preferable that an information designating unit for inputting a command for designating the steering angle control information to be referred to is provided.
  • the damping force adjustment unit Since the damping force adjustment unit has a plurality of steering angle control information, the second command value can be determined more appropriately according to the situation. Specifically, the damping force adjusting unit determines the second command value with reference to the steering angle control information specified by the information specifying unit. By switching the steering angle control information by the information designating unit, the characteristics of the steering damper control device can be easily changed.
  • At least one of the load control information is at least a part of a range in which the rate of change of the load or a value corresponding to the rate of change is positive, and the rate of change of the load.
  • the rate of change of the load takes a positive value.
  • the load change rate or the like is positive, the steering tends to swing more easily than when the load change rate or the like is negative.
  • the load change rate and the like increase.
  • the rate of change of the load becomes large, the steering tends to be shaken with a large force.
  • a damping force is generated in at least a part of a range in which the rate of change in load or the like is positive. For this reason, when the steering is likely to vibrate, the damping force can be substantially applied to the steering.
  • the damping force command value increases with an increase in the load change rate or the like in at least a part of a range where the load change rate or the like is positive. For this reason, the damping force can be increased as the disturbance for vibrating the steering is increased. Therefore, even if the load changes sharply, the vibration of the steering can be effectively suppressed.
  • At least one of the rudder angle control information includes a region where the damping force command value increases as the absolute value of the rudder angular velocity increases.
  • the damping force command value increases as the absolute value of the steering angular speed increases in at least a range of the absolute value of the steering angular speed. Therefore, the damping force acting on the steering can be increased as the absolute value of the steering angular velocity increases. For this reason, even if the absolute value of the steering angular velocity is large, the vibration of the steering can be effectively suppressed.
  • the apparatus includes a command value designating unit that receives at least one of a command for designating the first command value and a command for designating the second command value
  • the damping force adjusting unit includes: When a command is input to the command value designating unit, the command value designation among the first command value and the second command value regardless of the magnitude relationship between the first command value and the second command value. It is preferable to select the one specified by the part.
  • the selection process of the first command value and the second command value by the damping force adjusting unit can be easily changed. Specifically, it can be changed to at least one of damper control based only on the detection result of the load information detection unit and damper control based only on the detection result of the steering angle detection unit.
  • the damper flows a current corresponding to one of the magnetic fluid, the first command value selected by the damping force adjusting unit, and the second command value, and the magnetic fluid. It is preferable to provide an electromagnet that applies a magnetic field.
  • the damper generates a damping force due to the shear force of the magnetic fluid, and the electromagnet changes the shear force of the magnetic fluid.
  • the damper is a so-called “shear type”, the damping force when the damping force command value is the minimum value can be minimized. Thereby, when the damping force is the minimum, it is possible to further suppress the deterioration of the steering performance.
  • the load information detection unit is a pressure detection unit that detects the pressure of the suspension of the front wheel, and the damping force adjustment unit sets the first command value according to a change rate of the suspension pressure. It is preferable to determine.
  • Suspension pressure corresponds to the load applied to the front wheels.
  • the change rate of the suspension pressure is a value corresponding to the change rate of the load on the front wheels. Therefore, according to the pressure detection unit, the load information detection unit can be suitably realized.
  • the present invention also includes a steering damper control device, the steering damper control device including a damper that generates a damping force acting on the steering, a load information detection unit that detects information related to a load received by the front wheels, and a steering A steering angle detection unit that detects the steering angle of the vehicle, and a damping force command value corresponding to the rate of change of the load or a value corresponding to the rate of change based on detection results of the load information detection unit and the steering angle detection unit And a damping force adjusting unit that controls the damper according to any one of the first command value and the second command value that is a damping force command value corresponding to the steering angular speed.
  • the steering damper control device including a damper that generates a damping force acting on the steering, a load information detection unit that detects information related to a load received by the front wheels, and a steering A steering angle detection unit that detects the steering angle of the vehicle, and a damping force command value corresponding to the rate of change of the load
  • the damper can be controlled based on the detection result of the load information detection unit, and the damper can be controlled based on the detection result of the rudder angle detection unit. For this reason, it can respond suitably to various shakes of the steering due to various disturbances. Therefore, the burden on the rider who operates the steering can be further reduced.
  • the steering damper control device according to the present invention and the straddle-type vehicle including the steering damper control device can suitably cope with various steering shakes caused by various disturbances. Therefore, the burden on the rider who rides the saddle riding type vehicle can be further reduced.
  • FIG. 1 is a left side view showing an entire motorcycle according to a first embodiment. It is the partially expanded view which showed the attachment state of the steering damper which concerns on Example 1, (a) shows a top view, (b) shows a left view. It is a top view which shows the external appearance of a steering damper.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • 1 is a block diagram illustrating a schematic configuration of a steering damper control device according to Embodiment 1.
  • FIG. It is a figure which shows typically an example of a pressure control map and a steering angle control map. It is the flowchart which showed operation
  • FIG. 6 is a block diagram illustrating a schematic configuration of a steering damper control device according to a second embodiment. It is the flowchart which showed operation
  • FIG. 11A to FIG. 11D are diagrams showing a modified embodiment of the sensor that detects information related to the load received by the front wheels.
  • FIG. 1 is a left side view showing the entire motorcycle according to the first embodiment
  • FIG. 2 is a partially enlarged view showing a state in which the steering damper according to the first embodiment is attached
  • FIG. A figure is shown and (b) shows a left side view.
  • the motorcycle 1 includes a main frame 3.
  • the main frame 3 forms a skeleton of the motorcycle 1.
  • a head pipe 5 is provided at the front end of the main frame 3.
  • the head pipe 5 is formed in an inclined posture corresponding to the caster angle.
  • the head pipe 5 is formed in a hollow shape, and a steering shaft 7 is rotatably inserted into that portion.
  • the steering shaft 7 has an upper end fixed to the upper bracket 9 and a lower end fixed to the under bracket 11.
  • a pair of front forks 13 are attached to both ends of the upper bracket 9 and the under bracket 11 in the left-right direction.
  • a front wheel 15 is rotatably supported on the lower ends of the pair of front forks 13.
  • any one of the front forks 13 is provided with a pressure sensor 16 for detecting the pressure of the front fork 13.
  • the pressure sensor 16 detects the air pressure in an air chamber (not shown) formed in the upper part of the front fork 13.
  • the air chamber is located above the oil surface of the front fork 13.
  • the pressure sensor 16 may be directly or indirectly connected to the air adjustment hole. Thereby, the pressure sensor 16 can be easily attached.
  • the front fork 13 corresponds to the suspension in the present invention.
  • the pressure sensor 16 corresponds to the pressure detector in the present invention.
  • the upper bracket 9 is provided with a pair of handle holders 17 on the upper surface. Each handle holder 17 holds a steering handle 19 via two bolts BL.
  • the steering handle 19 is operated by the operator. When the operator operates the steering handle 19, the steering force is transmitted to the pair of front forks 13 through the steering shaft 7, and the front wheels 15 are steered.
  • the mounting base 21 is fastened to the upper part of the handle holder 17 with the two bolts BL.
  • a steering damper 23 which will be described in detail later, is attached to the attachment base 21 with four bolts BS in advance.
  • the steering damper 23 has a function of adjusting the damping force when the operator operates the steering handle 19.
  • a fuel tank 25 is provided on the upper part of the main frame 3.
  • a seat 27 is provided in a portion of the main frame 3 that is behind the fuel tank 25.
  • An engine 29 is disposed in a portion of the main frame 3 below the fuel tank 25.
  • a rear arm 31 is swingably attached to the rear portion of the engine 29. The rear arm 31 rotatably holds a rear wheel 32 at the rear end. The rear wheel 32 transmits the driving force of the engine 29 and causes the motorcycle 1 to travel.
  • FIGS. 3 is a plan view showing the appearance of the steering damper
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the steering damper 23 mainly includes a lower casing portion 33, a rotor portion 35, an electromagnet 37, an upper casing portion 39, and a magnetic fluid chamber 41.
  • the lower casing part 33 and the upper casing part 39 are fixed to each other.
  • the lower casing part 33 and the upper casing part 39 are fixedly supported on the mounting base 21 by four bolts BS.
  • the lower casing part 33 and the upper casing part 39 rotate integrally with the steering shaft 7 and the steering handle 19.
  • the steering shaft 7 and the steering handle 19 are collectively referred to as “steering”.
  • the rotor part 35 includes a disk part 63 having a substantially disk shape and an annular member 69 attached to the outer peripheral surface of the disk part 63.
  • the rotor part 35 is provided between the lower casing part 33 and the upper casing part 39.
  • the rotor part 35 (disk part 63) is supported by the lower casing part 33 and the upper casing part 39 via an oil seal 71 and a bearing 73.
  • the rotor part 35 is rotatable with respect to the lower casing part 33 and the upper casing part 39.
  • the outer peripheral portion (including the annular member 69) of the rotor portion 35 is hermetically sealed by the oil seal 71.
  • the annular member 69 is formed of a magnetic material such as a metal such as iron, nickel, or manganese, or an alloy including iron, nickel, manganese, or the like such as zinc ferrite.
  • One end of the stay arm 105 is attached to the rotor unit 35.
  • the other end side of the stay arm 105 is fixed to the main frame 3 via a stopper 107. That is, the rotor portion 35 is fixedly connected to the main frame 3.
  • a steering angle sensor 109 is attached to the rotor unit 35.
  • the rudder angle sensor 109 detects the rotation angle of the rotor part 35 with respect to the lower casing part 33 and the upper casing part 39.
  • the detection result of the steering angle sensor 109 corresponds to the steering angle of the steering.
  • the rudder angle sensor 109 corresponds to the rudder angle detector in the present invention.
  • the electromagnet 37 is provided between the lower casing part 33 and the upper casing part 39.
  • the electromagnet 37 has an inner diameter slightly larger than the outer diameter of the rotor portion 35 and is disposed so as to surround the outer peripheral surface of the rotor portion 35.
  • the electromagnet 37 is fixed to the lower casing part 33 and the upper casing part 39.
  • the electromagnet 37 includes a bobbin 75, a coil 77, a yoke case 79, and a yoke cap 81.
  • the coil 77 is wound around the bobbin 75 and is sandwiched between the yoke case 79 and the yoke cap 81.
  • a coil wiring 83 is connected to the coil 77.
  • the magnetic fluid chamber 41 is partitioned by a lower casing portion 33, a rotor portion 35, an electromagnet 37, an upper casing portion 39, and an oil seal 71.
  • the magnetic fluid chamber 41 is filled with a magnetic fluid M.
  • magnétique fluid M examples include MR fluid (magnetic viscous fluid: Magneto-rheological fluid), MCF fluid (magnetic mixed fluid: Magnetic fluid), and ER fluid (electro-rheological fluid).
  • MR fluid magnetic viscous fluid: Magneto-rheological fluid
  • MCF fluid magnetic mixed fluid: Magnetic fluid
  • ER fluid electro-rheological fluid
  • the viscosity can be adjusted by applying a magnetic field or an electric field.
  • MR fluid is composed of a slurry in which ferromagnetic fine particles are dispersed in a liquid.
  • the particle size of the ferromagnetic fine particles is usually about several tens of nm or less.
  • the ferromagnetic fine particles can be formed of, for example, a metal such as iron, nickel, or manganese, or an alloy containing iron, nickel, manganese, or the like such as manganese zinc ferrite.
  • the liquid in which the ferromagnetic material is dispersed may be water or an aqueous solution, or may be an organic solvent such as isoparaffin, alkylnaphthalene, or perfluoropolyether.
  • the magnetic fluid M in a state where no magnetic field is applied exhibits a behavior as a Newtonian fluid.
  • each magnetic domain in the magnetic fluid M is magnetically polarized.
  • a binding force is generated between the ferromagnetic fine particles. Accordingly, since the plurality of ferromagnetic fine particles form clusters, the apparent viscosity increases and the shearing force increases.
  • a magnetic field is mainly applied to the magnetic fluid M between the outer peripheral surface of the rotor portion 35 and the inner peripheral surface of the electromagnet 37.
  • the shear force of the magnetic fluid M functions as a damping force that prevents relative rotation of the lower casing portion 33 and the upper casing portion 39 and the rotor portion 35 and attenuates the rotation.
  • the magnitude of the damping force is adjusted by the current supplied to the electromagnet 37.
  • the “damping force” is a force that acts to attenuate the vibration (rotation) of the steering wheel when the steering is vibrating (rotating), and when the steering is not vibrating (rotating). This means both the force (resistance force) acting to prevent the steering from starting to vibrate (rotate).
  • the steering damper 23 corresponds to the damper in the present invention.
  • FIG. 5 is a block diagram illustrating a schematic configuration of the steering damper control device according to the first embodiment.
  • the steering damper control device 201 adjusts the damping force acting on the steering based on the rate of change of the pressure of the front fork 13 (hereinafter referred to as “pressure change rate” as appropriate) and the steering angular speed of the steering.
  • the steering damper control device 201 includes a map designation switch 203 and a controller 205 in addition to the pressure sensor 16, the steering damper 23, and the steering angle sensor 109 described above.
  • the map designation switch 203 accepts a command for designating one pressure control map and one steering angle control map (described later). A command input to the map designation switch 203 is output to the controller 205.
  • the map designation switch 203 is attached to the steering handle 19 (see FIG. 1). The rider can operate the map designation switch 203.
  • the map designation switch 203 corresponds to the information designation unit in this invention.
  • the controller 205 controls the steering damper 23 based on detection results of the pressure sensor 16 and the steering angle sensor 109 and a command from the map designation switch 203.
  • the controller 205 is electrically connected to the pressure sensor 16, the steering angle sensor 109, the map designation switch 203, and the steering damper 23.
  • the controller 205 includes a pressure change rate calculation unit 211, a rudder angular velocity calculation unit 216, a damping force adjustment unit 217, and a damper drive unit 219.
  • the pressure change rate calculation unit 211 calculates the pressure change rate based on the detection result of the pressure sensor 16.
  • the pressure change rate is output to the damping force adjustment unit 217.
  • the pressure change rate calculation unit 211 is preferably configured by an analog circuit.
  • the analog circuit include a differential circuit composed of an operational amplifier, a capacitor, and a resistor. According to the pressure change rate calculation unit 211 configured as described above, the pressure change rate can be calculated continuously in time. Therefore, the temporal transition of the pressure change rate can be obtained with high accuracy.
  • the rudder angular velocity calculation unit 216 calculates a rudder angular velocity, which is a change rate of the rudder angle, based on the detection result of the rudder angle sensor 109.
  • the steering angular velocity is output to the damping force adjustment unit 217.
  • the rudder angular velocity calculation unit 216 is also preferably configured by an analog circuit.
  • the damping force adjusting unit 217 attenuates the steering damper 23 by using either a first command value that is a damping force command value corresponding to the pressure change rate or a second command value that is a damping force command value corresponding to the steering angular speed. Adjust the force.
  • the damping force adjustment unit 217 includes a map switching unit 221, a first command value determination unit 223, a second command value determination unit 225, and a command value selection unit 227.
  • the first command value determining unit 223 has a plurality of types of pressure control maps MP stored in advance.
  • the second command value determination unit 225 has a plurality of types of steering angle control maps MV stored in advance.
  • the first command value determination unit 223 has two pressure control maps MP (MPa, MPb), and the second command value determination unit 225 has two steering angle control maps MV (MVa, MVb). Is shown schematically.
  • the pressure control map MP corresponds to load control information in the present invention.
  • the steering angle control map MV corresponds to the steering angle control information in the present invention.
  • the map switching unit 221 selects one designated pressure control map MP based on a command from the map designation switch 203. In the present embodiment, the map switching unit 221 switches to either the pressure control map MPa or MPb. Similarly, the map switching unit 221 selects one designated steering angle control map MV. In the present embodiment, the map switching unit 221 switches to one of the steering angle control maps MVa and MVb.
  • the first command value determining unit 223 refers to the one pressure control map MP selected by the map switching unit 221 and determines a damping force command value corresponding to the pressure change rate, that is, the first command value.
  • the pressure control map MP is tabular information in which a pressure change rate and a damping force command value are associated with each other.
  • the damping force command value is information that defines the magnitude of the damping force.
  • the magnitude relationship between the damping force command values is the same as the magnitude relationship between the damping forces. That is, as the damping force command value increases, the damping force associated with the damping force command value increases.
  • the second command value determination unit 225 refers to the steering angle control map MV designated by the map switching unit 221 and determines a damping force command value corresponding to the steering angular velocity, that is, the second command value.
  • the rudder angle control map MV is tabular information in which the rudder angular velocity and the damping force command value are associated with each other.
  • the command value selection unit 227 selects the larger one of the first command value and the second command value.
  • the damper drive unit 219 causes a current corresponding to the command value selected by the command value selection unit 227 to flow through the electromagnet 37 (more specifically, the coil 77).
  • the controller 205 described above may be, for example, the ECU of the motorcycle 1. Alternatively, the controller 205 may be provided exclusively for the steering damper control device 201 separately from the ECU.
  • FIG. 6 is a diagram schematically illustrating an example of the pressure control map MP and the steering angle control map MV.
  • Pressure control maps MPa and MPb are graphs with the rate of pressure change as the horizontal axis and the damping force command value as the vertical axis. When the pressure increases, the pressure change rate assumes a positive value, and when the pressure decreases, the pressure change rate assumes a negative value.
  • the steering angle control maps MVa and MVb are graphs with the absolute value of the steering angular velocity as the horizontal axis and the damping force command value as the vertical axis.
  • the pressure control map MPa and the steering angle control map MVa are associated with each other and constitute a pair (set, combination) A.
  • the pressure control map MPb and the steering angle control map MVb are associated with each other and constitute a pair B.
  • the map designation switch 203 can designate the pressure control map MP and the steering angle control map MV all at once by simply selecting one of the pairs A and B.
  • the pressure control map MPa is set as follows. When the pressure change rate is equal to or less than the predetermined value PLa, the damping force command value is minimum.
  • the predetermined value PLa is positive.
  • the damping force command value is larger than the minimum value. More specifically, the damping force command value increases as the pressure change rate increases in a region where the pressure change rate is greater than the predetermined value PLa and equal to or less than the threshold PHa.
  • the threshold PHa is larger than the predetermined value PLa.
  • the damping force command value is a constant value FPa.
  • the constant value FPa is equal to the damping force command value when the pressure change rate is the threshold value PHa. For this reason, the damping force command value is continuous in the vicinity of the threshold PHa. In other words, the damping force command value does not change stepwise in the vicinity of the threshold PHa.
  • the constant value FPa is larger than the minimum value of the damping force command value.
  • the constant value FPa may or may not be the maximum value of the damping force command value. It should be noted that simply “minimum value of damping force command value” means the minimum value in a range that the damping force command value can take. Further, simply “the maximum value of the damping force command value” means the maximum value in the range that the damping force command value can take.
  • the pressure control map MPb has a characteristic curve similar to that of the pressure control map MPa, but the damping force command value is generally lower than that of the pressure control map MPa.
  • the predetermined value PLb in the pressure control map MPb is set to be greater than or equal to the predetermined value PLa in the pressure control map MPa.
  • the constant value FPb in the pressure control map MPb is set to be less than the constant value FPa in the pressure control map MPa.
  • the technical significance of the pressure control maps MPa and MPb is as follows.
  • the pressure change rate is related to some degree to the vibration of the steering due to disturbance. For example, immediately after the pressure of the front fork 13 increases, the steering tends to be shaken by a disturbance received by the front wheels 15. According to the pressure control maps MPa and MPb, even if the steering is not actually shaken, a damping force can be generated when the pressure increases and the steering is easily shaken.
  • the pressure of the front fork 13 increases, for example, when the motorcycle 1 enters a corner or decelerates, or when the front wheel 15 is disturbed by the front wheel 15 riding on a convex portion of the road surface, etc. Is exemplified. However, in any case, the period during which the pressure increases is extremely short and ends in an instant. On the other hand, as the time when the pressure of the front fork 13 does not increase, the following scene is exemplified in addition to immediately after the motorcycle 1 enters the corner. That is, when the motorcycle 1 is traveling at a constant speed, turning corners at a constant speed, accelerating, exiting a corner, or causing the motorcycle 1 to jump, etc. It is.
  • the damping force command value becomes larger than the minimum value only when the pressure change rate is larger than the predetermined value PLa. Otherwise, the damping force command value is the minimum value.
  • the damping force substantially acts on the steering only during a short period (instant) in which the pressure increases at a certain rate or more, and the steering becomes difficult.
  • the greater the pressure change rate the greater the damping force, and the steering becomes more difficult to move.
  • the damping force becomes constant, and the damping force does not become excessively larger than necessary. After the moment described above, the damping force acting on the steering returns to the minimum again, and the steering becomes easier.
  • the pressure of the front fork 13 corresponds to the stroke length (expansion / contraction amount) of the front fork 13 and corresponds to the upward load that the front wheel 15 receives from the road surface.
  • the pressure change rate corresponds to the expansion / contraction speed of the front fork 13 and corresponds to the load change rate of the front wheel 15.
  • the pressure change rate is a value (index) corresponding to the change rate of the load received by the front wheel 15. Therefore, in the above description, “the load received by the front wheel 15” may be read instead of “the pressure of the front fork 13”, and “the change rate of the load of the front wheel 15” may be read instead of “the rate of change of pressure”.
  • the pressure control maps MPa and MPb can be used properly according to the situation. Thereby, the damping force of an appropriate magnitude can be generated.
  • the steering is shaken with a relatively large force due to disturbance.
  • a relatively large damping force can be generated by using the pressure control map MPa, and the vibration of the steering can be suitably suppressed.
  • the vibration of the steering due to disturbance is relatively small.
  • the vibration of the steering can be sufficiently suppressed with a relatively small damping force by using the pressure control map MPb. Rather, in this case, the smaller the damping force, the better.
  • the grip is low, the rider tries to sense the grip (ground feeling) of the front wheel 15 through the steering. This is because the smaller the damping force, the easier it is for the rider to obtain an operational feeling.
  • the grip when traveling on a leveled road surface, a paved road surface, a high grip course or the like, or when traveling on fine weather, etc. are exemplified.
  • Examples of the case where the grip is low include running on a rough ground, an unpaved road surface, a low grip course, or running on rainy weather.
  • the standard for properly using the pressure control maps MPa and MPb is not limited to the road surface condition and the weather.
  • the pressure control maps MPa and MPb may be properly used according to the weight and traveling speed of the motorcycle 1.
  • the steering angle control map MVa is set as follows. When the absolute value of the steering angular velocity is equal to or less than the predetermined value VLa, the damping force command value is the minimum. The predetermined value VLa is positive. When the absolute value of the steering angular velocity is larger than the predetermined value VLa, the damping force command value is larger than the minimum value. More specifically, in the region where the absolute value of the steering angular velocity is greater than the predetermined value VLa and is equal to or less than the threshold value VHa, the damping force command value increases as the absolute value of the steering angular velocity increases. The threshold value VHa is larger than the predetermined value VLa.
  • the damping force command value is a constant value FVa.
  • the constant value FVa is equal to the damping force command value when the absolute value of the steering angular velocity is the threshold value VHa. For this reason, the damping force command value is continuous in the vicinity of the threshold value VHa. In other words, the damping force command value does not change stepwise in the vicinity of the threshold value VHa.
  • the constant value FVa is larger than the minimum value of the damping force command value.
  • the constant value FVa may or may not be the maximum value of the damping force command value.
  • the constant value FVa may or may not be substantially equal to the constant value FPa in the pressure control map MPa.
  • the steering angle control map MVb has a characteristic curve similar to that of the steering angle control map MVa, but the damping force command value is generally lower than that of the steering angle control map MVa.
  • the predetermined value VLb in the steering angle control map MVb is set to be equal to or greater than the predetermined value VLa in the steering angle control map MVa.
  • the constant value FVb in the steering angle control map MVb is set to be less than the constant value FVa in the steering angle control map MVa.
  • the constant value FVb may or may not be substantially equal to the constant value FPb in the pressure control map MPb.
  • the technical significance of the steering angle control maps MVa and MVb is as follows. According to the steering angle control maps MVa and MVb, it is possible to generate a damping force when the steering is actually being swung.
  • the damping force acting on the steering is minimum and the steering is easy to move.
  • the damping force substantially acts on the steering and the steering becomes difficult to move.
  • the greater the absolute value of the steering angular velocity the greater the damping force, and the steering becomes more difficult to move.
  • the damping force becomes constant, and the damping force does not become excessively larger than necessary.
  • the steering angle control maps MVa and MVb can be used properly according to the situation. Thereby, the damping force of an appropriate magnitude can be generated.
  • the steering tends to be swung with a relatively large force.
  • the steering angle control map MVa a relatively large damping force can be generated to suitably suppress the vibration of the steering.
  • the grip is low, by using the steering angle control map MVb, the vibration of the steering can be sufficiently suppressed with a relatively small damping force.
  • standard which uses the rudder angle control map MVa and MVb properly is not restricted to a road surface condition or the weather. For example, it may be properly used according to the weight of the motorcycle 1 and the traveling speed.
  • the vibration of the steering occurs in various scenes.
  • the front wheel 15 receives a disturbance from the road surface, or when the rear wheel 32 slides laterally with respect to the traveling direction (in other words, when the rear wheel 32 and the main frame 3 rotate around the steering shaft 7). In such cases, the vibration of the steering occurs.
  • FIG. 7 is a flowchart showing the operation of the steering damper control device 201.
  • Steps S1 to S4 The map switching unit 221 acquires a command input to the map designation switch 203. Based on this command, the pressure control map MP referred to by the first command value determination unit 223 is switched to either the pressure control map MPa or MPb. Similarly, the map referred to by the second command value determination unit 225 is switched to one of the steering angle control maps MVa and MVb.
  • the map switching unit 221 determines whether or not the command input to the map designation switch 203 is a designation for pair A. If the designation is A, the pressure control map MPa and the steering angle control map MVa are determined. Otherwise, the pressure control map MPb and the steering angle control map MVb are determined.
  • Step S5 The pressure change rate calculation unit 211 acquires the detection result of the pressure sensor 16. Then, the pressure change rate is calculated. The calculated pressure change rate is output to the first command value determination unit 223.
  • the first command value determination unit 223 refers to the designated pressure control map MP and determines a damping force command value (first command value) corresponding to the pressure change rate.
  • the rudder angle change rate calculation unit 216 acquires the detection result of the rudder angle sensor 109. Then, the rudder angular velocity is calculated. The calculated rudder angular velocity is output to the second command value determining unit 225.
  • the second command value determination unit 225 refers to the specified steering angle control map MV and determines a damping force command value (second command value) corresponding to the steering angular speed.
  • Step S6 The command value selection unit 227 compares the first command value and the second command value, and determines whether or not the first command value is larger than the second command value. As a result, when the first command value is larger, the process proceeds to step S7. Otherwise, the process proceeds to step S8.
  • Step S7 The command value selection unit 227 selects the first command value and outputs the first command value to the damper drive unit 219.
  • the damper driving unit 219 causes a current corresponding to the first command value to flow through the electromagnet 37 (coil 77).
  • the steering damper 23 generates a damping force corresponding to the current.
  • Step S8 The command value selection unit 227 selects the second command value and outputs the second command value to the damper drive unit 219.
  • the damper driving unit 219 causes a current corresponding to the second command value to flow through the electromagnet 37 (coil 77).
  • the steering damper 23 generates a damping force corresponding to the current.
  • the steering damper 23 is controlled based on the detection result of the pressure sensor 16 and the detection result of the rudder angle sensor 109.
  • the steering damper 23 is controlled by selectively using the first command value, which is a damping force command value according to the pressure change rate, and the second command value, which is a damping force command value according to the steering angular speed. .
  • a damping force can be generated when the pressure increases. Accordingly, when the steering is easily shaken, the steering can be made difficult to move. Further, even if the steering is not actually shaken, the vibration of the steering can be suppressed proactively.
  • the steering angle sensor 109 can generate a damping force when the steering is actually being shaken. Thus, naturally, the vibration of the steering can be effectively suppressed.
  • the steering damper control device 201 it is possible to more appropriately cope with various types of steering shake due to various disturbances.
  • the command value selection unit 227 selects the larger one of the first command value and the second command value.
  • the control based on the detection result of the pressure sensor 16 and the control based on the detection result of the rudder angle sensor 109 can be executed complementarily. That is, even when the steering is not shaken, a damping force can be generated when the pressure change rate is increasing, and the steering is vibrated even when the pressure change rate is not increasing. A damping force can be generated when As a result, for example, when the motorcycle 1 enters a corner or decelerates, vibration of the steering can be suitably prevented, and the rear wheel 32 slides sideways when exiting the corner or accelerating. This can be suitably suppressed.
  • the pressure control maps MPa and MPb can be used properly according to the situation.
  • the steering angle control maps MVa and MVb can be used properly according to the situation.
  • map designation switch 203 Since the map designation switch 203 is provided, it is possible to suitably designate one of the pressure control maps MPa and MPb referred to by the first command value determination unit 223. In addition, any one of the steering angle control maps MVa and MVb referred to by the second command value determination unit 225 can be suitably specified.
  • each pressure control map MP is set as one of the steering angle control maps MV
  • the map designation switch 203 can collectively designate the pressure control map MP and the steering angle control map MV.
  • the pressure control map MP is at least a part of a range in which the pressure change rate is positive, and a region in which the damping force command value increases as the pressure change rate increases (that is, the pressure change rate is a predetermined value PLa / A region larger than PLb and less than or equal to threshold PHa / PHb).
  • the pressure change rate is in the range from the predetermined value PLa / PLb to the threshold value PHa / PHb
  • the damping force command value increases as the pressure change rate increases. Therefore, even if the change in the pressure of the front fork 13 is steep, the vibration of the steering can be effectively suppressed.
  • the greater the pressure change rate the greater the rate of change (slope) of the damping force command value with respect to the pressure change rate, and the damping force increases rapidly. Therefore, the vibration of the steering can be more effectively suppressed.
  • the damping force command value is a constant value FPa / FPb. Therefore, since an excessively large damping force is not generated, the rider's burden can be reduced appropriately.
  • the constant value FPa / FPb is equal to the damping force command value when the pressure change rate is the threshold value PHa / PHb. Therefore, since the magnitude of the damping force command value (damping force) is continuous in the vicinity of the threshold PHa / PHb, it is possible to avoid an unnatural change in steering maneuverability (easy to move).
  • the damping force command value is the minimum value.
  • a damping force is substantially applied to the steering only at the moment when the pressure of the front fork 13 increases at a certain rate. Therefore, it is possible to suitably suppress the steering performance of the steering from being impaired while suppressing the vibration of the steering. Further, when the motorcycle 1 is jumped, the rider can easily turn the steering.
  • the steering angle control map MV includes a region where the damping force command value increases as the absolute value of the steering angular velocity increases (that is, a region greater than the predetermined value VLa / VLb and equal to or less than the threshold value VHa / VHb).
  • the damping force command value increases as the absolute value of the rudder angular velocity increases. Therefore, even if the steering angular speed is high, the vibration of the steering can be effectively suppressed.
  • the damping force command value is a constant value FVa / FVb. Therefore, since an excessively large damping force is not generated, the rider's burden can be reduced appropriately.
  • the constant value FVa / FVb is equal to the damping force command value when the absolute value of the steering angular velocity is the threshold value VHa / VHb. Therefore, since the magnitude of the damping force command value (damping force) is continuous in the vicinity of the threshold value VHa / VHb, it is possible to avoid an unnatural change in steering maneuverability (easy to move).
  • the damping force command value is the minimum value. Therefore, only when the absolute value of the steering angular velocity is larger than the predetermined value VLa / VLb, the damping force is substantially applied to the steering. Therefore, it is possible to suitably suppress the steering performance of the steering from being impaired while suppressing the vibration of the steering. Further, when the motorcycle 1 is jumped, the rider can easily turn the steering.
  • the steering damper 23 Since the steering damper 23 includes the magnetic fluid M and the electromagnet 37 that applies a magnetic field to the magnetic fluid M, the steering damper 23 has a damping force even if the steering is not moving (even if it is not vibrating). Can be generated. Therefore, even if the steering is not actually shaken, the damping force corresponding to the damping force command value can be suitably generated.
  • the steering damper 23 is a “shear type” that uses the shear force of the magnetic fluid M as a damping force, the damping force when the damping force command value is the minimum value can be minimized. Therefore, when the damping force is minimum, it is possible to further reduce the steering operation feeling, and it is possible to further suppress the deterioration of steering maneuverability.
  • the motorcycle 1 includes the steering damper control device 201 as described above, the vibration of the steering can be more suitably suppressed. Thus, the rider can comfortably steer and drive the motorcycle 1.
  • Example 2 of the present invention will be described.
  • the configurations of the motorcycle 1 and the steering damper 23 according to the second embodiment are substantially the same as those of the first embodiment. Therefore, the steering damper control device 201 will be mainly described below.
  • the steering damper control device 201 will be mainly described below.
  • symbol is abbreviate
  • FIG. 8 is a diagram illustrating a schematic configuration of the steering damper control device 201 according to the second embodiment.
  • the steering damper control device 201 further includes a command value designation switch 231.
  • the command value designation switch 231 receives a command for designating a command value to be selected. Specifically, the command value specifying switch 231 receives a command for specifying the first command value, a command for specifying the second command value, and a command for specifying automatic selection. The command input to the command value specifying switch 231 is input to the controller 205. The command value designation switch 231 is attached to the steering handle 19 (not shown). The rider can operate the command value designation switch 231. Command value designation switch 231 corresponds to a command value designation unit in the present invention.
  • the command value selection unit 227 selects either the first command value or the second command value based on the command input to the command value designation switch 231. Specifically, when the command input to the command value specifying switch 231 is a command specifying the first command value, the first command value is set regardless of the magnitude relationship between the first command value and the second command value. select. Similarly, when the command is for designating the second command value, the second command value is forcibly selected. If the command is for specifying automatic selection, the larger one of the first command value and the second command value is selected.
  • FIG. 9 is a flowchart showing the operation of the steering damper control device 201. As shown in the drawing, steps S11 to S16 are further added to the operation of the steering damper control apparatus 201 according to the first embodiment.
  • Steps S1 to S4 The map switching unit 221 switches between the pressure control map MP and the steering angle control map MV based on the command input to the map designation switch 203.
  • Steps S11 and S12 The damping force adjustment unit 217 determines whether the command input to the command value designation switch 231 is automatic selection, the first command value, or the second command value. As a result, in the case of automatic selection, the process proceeds to step S5. In the case of the first command value, the process proceeds to step S13. In the case of the second command value, the process proceeds to step S15.
  • Steps S5 to S8 The first command value determining unit 223 determines the first command value, and the second command value determining unit 225 determines the second command value.
  • the command value selection unit 227 selects the larger one of the first command value and the second command value.
  • the damper driving unit 219 causes a current corresponding to the selected command value to flow through the electromagnet 37 (coil 77).
  • Steps S13 and S14 The first command value determination unit 223 determines the first command value, and the command value selection unit 227 selects the first command value.
  • the damper driving unit 219 causes a current corresponding to the first command value to flow through the electromagnet 37 (coil 77).
  • the steering damper 23 generates a damping force corresponding to the current.
  • Steps S15 and S16 The second command value determination unit 225 determines the second command value, and the command value selection unit 227 selects the second command value.
  • the damper driving unit 219 causes a current corresponding to the second command value to flow through the electromagnet 37 (coil 77).
  • the steering damper 23 generates a damping force corresponding to the current.
  • the command value specifying switch 231 since the command value specifying switch 231 is provided, the selection process of the first command value and the second command value by the damping force adjusting unit 217 can be easily changed.
  • the steering damper 23 is controlled based only on the first command value corresponding to the pressure change rate, or the steering damper 23 is controlled based only on the second command value corresponding to the steering angle sensor 109. it can.
  • the steering damper 23 can be controlled based on the larger one of the first command value and the second command value.
  • the control mode of the steering damper control device 201 can be easily changed.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the map designation switch 203 is provided, but the present invention is not limited to this. That is, the map designation switch 203 may be omitted.
  • the pressure control map MP and / or the steering angle control map MV may be changed based on the steering angular speed, the vehicle speed, or the like.
  • the process of switching the pressure control map MP and the steering angle control map MV is omitted, the first command value determining unit 223 refers to the preset pressure control map MP, and the second command value determining unit 225 is preset. You may change so that the steering angle control map MV currently performed may be referred.
  • the first command value determination unit 223 has two types of pressure control maps MPa and MPb, but is not limited thereto.
  • the first command value determination unit 223 may be changed to have three or more pressure control maps MP, or the first command value determination unit 223 may be changed to have a single pressure control map MP. .
  • the second command value determination unit 225 may be similarly changed.
  • the pressure control map MP is illustrated, but the pressure control map MP can be changed as appropriate.
  • the damping force command value may be changed so as to increase at a constant rate as the pressure change rate increases in a region larger than a predetermined value PLa / PLb and not more than the threshold PHa / PHb.
  • the predetermined value PLa / PLb may be changed to zero.
  • the damping force command value may be changed so as not to be constant even when the pressure change rate is larger than the threshold value PHa / PHb.
  • the steering angle control map MV can be similarly changed.
  • the pair A and the pair B of the pressure control map MP and the steering angle control map MV are exemplified, but the present invention is not limited to this. You may change so that the following pairs of pressure control map MP and steering angle control map MV may be provided.
  • FIG. 10 is a schematic diagram illustrating an example of a pressure control map MP and a steering angle control map MV according to a modified embodiment.
  • the pair C includes a pressure control map MPa and a steering angle control map MVc
  • the pair D includes a pressure control map MPc and a steering angle control map MVa.
  • the damping force command value is always the minimum regardless of the pressure change rate.
  • the steering angle control map MVc always has the minimum damping force command value regardless of the steering angular speed.
  • the first command value in the steering angle control map MVc is always greater than or equal to the second command value. Therefore, by designating the pair C, the steering damper 23 can be controlled based only on the first command value corresponding to the pressure change rate.
  • the second command value is always greater than or equal to the first command value. Therefore, by designating the pair D, the steering damper 23 can be controlled based only on the second command value corresponding to the steering angular speed.
  • both the pair C and D may be provided, or only one of the pair C and D may be provided. Further, the pair A, B may be provided, or at least one of the pair A, B may be omitted.
  • an instruction for designating either the pair A or B is input to the map designation switch 203, but the present invention is not limited to this.
  • a command for designating one of the pressure control maps MPa and MPb and a command for designating either the steering angle control map MVa or MVb may be individually input to the map designation switch 203.
  • the command value designation switch 231 accepts three types of commands (first command value, second command value, and automatic selection), but is not limited thereto. .
  • the pressure sensor 16 is illustrated as the load information detection unit, but is not limited thereto.
  • it can be appropriately changed to another detection unit that detects information related to the load received by the front wheel 15.
  • FIGS. 11A to 11D are diagrams showing a modified embodiment of the load information detection unit that detects information related to the load received by the front wheel 15.
  • FIGS. 11A to 11D are enlarged views of a part of the front fork 13 when the motorcycle 1 is viewed from the front.
  • strain gauges 241 and 242 for detecting a load received by the axle 240 may be provided.
  • the strain gauges 241 and 242 are preferably disposed on the upper and lower portions of the axle 240 of the front wheel 15, respectively. Thereby, the load received by the axle 240 can be detected with high accuracy.
  • the load received by the axle 240 corresponds to the load received by the front wheel 15. Therefore, the rate of change of the load received by the front wheel 15 can be obtained from the detection results of the strain gauges 241 and 242.
  • a speed sensor 243 for detecting the expansion / contraction speed of the front fork 13 may be provided.
  • the speed sensor 243 may be configured to include a coil or the like, and may detect the expansion / contraction speed of the front fork 13 based on a change in magnetic flux.
  • the speed sensor 243 may be an optical surface speed sensor using a laser beam or the like.
  • the expansion / contraction speed of the front fork 13 is a value corresponding to the rate of change of the load on the front wheel 15.
  • an acceleration sensor 245 for detecting the acceleration in the axial direction (extension / contraction direction) of the front fork 13 may be provided.
  • the detection result of the acceleration sensor 245 corresponds to a result obtained by further differentiating the rate of change of the load on the front wheel 15 with respect to time. Therefore, a value corresponding to the rate of change of the load received by the front wheel 15 can be obtained from the detection result of the acceleration sensor 245.
  • an acceleration sensor 247 for detecting the acceleration in the vertical direction of the axle 240 may be provided.
  • the detection result of the acceleration sensor 247 corresponds to a result obtained by further differentiating the load change rate of the front wheels 15 with respect to time. Therefore, a value corresponding to the rate of change of the load received by the front wheel 15 can be obtained from the detection result of the acceleration sensor 247.
  • a stroke sensor for detecting the stroke amount of the front fork 13 may be provided in place of the pressure sensor 16.
  • the stroke amount of the front fork 13 corresponds to the load that the front wheel 15 receives. Therefore, the rate of change of the load received by the front wheel 15 can be obtained from the detection result of the stroke sensor.
  • the various sensors 241, 242, 243, 245, 247, and the stroke sensor described above correspond to the load information detection unit in the present invention.
  • the pressure change rate calculation unit 211 is provided in the controller 205, but is not limited thereto.
  • the pressure change rate calculation unit 211 may be changed to be provided integrally with the pressure sensor 16.
  • the rudder angle change rate calculation unit 216 may be changed so as to be provided integrally with the rudder angle sensor 109.
  • the structure of the steering damper 23 is illustrated, but the present invention is not limited to this. That is, the structure of the steering damper 23 may be changed as appropriate. Further, the entire magnetic fluid chamber 41 may be filled with the magnetic fluid M, a part of the magnetic fluid chamber 41 may be the magnetic fluid M, and the other may be air or the like.
  • the motorcycle 1 is the motorcycle 1 including the single front wheel 15 and the single rear wheel 32, but is not limited thereto.
  • it may be changed to a three-wheeled vehicle having two front wheels or a three-wheeled vehicle having two rear wheels.
  • you may change into the four-wheeled vehicle which has two front wheels and two rear wheels.
  • the present invention can also be applied to a motorcycle such as a scooter or a moped other than the scooter type, a straddle-type vehicle such as an ATV (All Terrain Vehicle (four-wheel buggy)), and a snowmobile.
  • the configuration of the front fork 13 can be appropriately selected and changed.
  • the suspension may be configured by a suspension mechanism other than the front fork 13.
  • the motorcycle 1 includes the engine 29 as a power source, but is not limited thereto.
  • the power source may be changed to include an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

【解決手段】ステアリングダンパ制御装置201は、ステアリングに作用する減衰力を発生するステアリングダンパ23と、前輪のサスペンションの圧力を検出する圧力センサ16と、ステアリングの舵角を検出する舵角センサ109と、圧力センサ16および舵角センサ109の各検出結果に基づいて、圧力変化率に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによって前記ステアリングダンパ23の減衰力を調整する減衰力調整部217と、を備えている。

Description

ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
 本発明は、ステアリングの減衰力を制御するステアリングダンパ制御装置及びそれを備えた鞍乗型車両に関する。
 ステアリングダンパ制御装置は、鞍乗型車両など種々のステアリング(操舵装置)を備える乗り物に利用される。ステアリングダンパ制御装置は、ステアリングの減衰力を調整する。
 特開2012-25181号公報は、鞍乗型車両に搭載されるステアリングダンパ制御装置を開示する。同公報が開示するステアリングダンパ制御装置は、ダンパと、舵角センサと、制御部とを備える。ダンパは、ステアリング(例えば、ハンドル)の減衰力を発生する。舵角センサは舵角を検知する。制御部は、舵角センサの検知結果に基づいてステアリングダンパを制御し、減衰力を調整する。具体的には、制御部は、舵角速度が所定値を超えたときから所定時間が経過するまでの間、減衰力を発生させる。これにより、外乱によってステアリングが振られることを抑制しつつ、ステアリングの操縦性が低下することを抑制している。
特開2012-25181号公報
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 ステアリングに作用する外乱は多様であり、衝撃の大きさや鋭さ(急峻さ)などが異なる。これに対して、ステアリングダンパ制御装置は、ステアリングシャフトの舵角速度が所定値を超えたときにのみに減衰力を発生する。よって、外乱の態様によっては、ステアリングの振れを適切に抑制することが困難な場合も生じ得る。
 本発明は、このような事情に鑑みてなされたものであって、ステアリングの振動を一層好適に抑制することができるステアリングダンパ制御装置及びそれを備えた鞍乗型車両を提供することを目的とする。
 この発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明は、ステアリングに作用する減衰力を発生するダンパと、前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、ステアリングの舵角を検出する舵角検出部と、前記荷重情報検出部および前記舵角検出部の各検出結果に基づいて、前記荷重の変化率または前記変化率に相当する値に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによって前記ダンパの減衰力を調整する減衰力調整部と、を備えているステアリングダンパ制御装置である。
 [作用・効果]前輪の荷重の変化率およびこの変化率に相当する値のいずれも、外乱によるステアリングの振動と、ある程度関連性がある指標である。たとえば、前輪にかかる荷重が増大すると、前輪が受ける外乱によってステアリングが振られやすい傾向がある。舵角速度は、ステアリングの舵角の変化率であり、外乱によるステアリングの振動を直接的に示す。
 上述の構成では、減衰力調整部は、前輪の荷重の変化率またはこれに相当する値(以下、適宜に「荷重の変化率等」と呼ぶ)に応じた第1指令値、及び、舵角速度に応じた第2指令値のいずれかを選択的に用いてダンパを制御する。すなわち、荷重情報検出部の検出結果に基づいてダンパを制御することもでき、舵角検出部の検出結果に基づいてダンパを制御することもできる。前者の制御によれば、前輪にかかる荷重が増大し、ステアリングが振られやすくなった時に減衰力を発生させることができる。これにより、ステアリングの振動を予防的に抑制することができる。後者の制御によれば、現実にステアリングが振動している時に減衰力を発生させることができるので、当然ながら、ステアリングの振動を有効に抑制することができる。
 このため、多様な外乱によるステアリングの種々の振れに好適に対応でき、ステアリングの振動を一層好適に抑制することができる。
 なお、減衰力は、ステアリングの振動(回転)に対する抵抗力の意味である。この減衰力は、ステアリングが振動(回転)しているときにステアリングの振動(回転)を減衰させるように働く力のほかに、ステアリングが振動(回転)していないときにステアリングが振動(回転)し始めることを阻止するように働く力(抵抗力)を含む。
 上述した発明において、前記減衰力調整部は、前記第1指令値、及び、前記第2指令値のうち、大きい方を選択することが好ましい。
 減衰力調整部は、第1、第2指令値を比較し、より大きな減衰力に対応する指令値を選択する。そして、第1、第2指令値のうち、選択された一方に基づいてダンパを制御する。なお、減衰力指令値が大きくなるほど、減衰力指令値に対応する減衰力は大きくなるものとする。
 また、上述した発明において、前記減衰力調整部は、前記荷重の変化率または前記変化率に相当する値と、前記減衰力指令値とを対応付けた複数種類の荷重制御情報と、前記舵角速度と前記減衰力指令値とを対応付けた複数種類の舵角制御情報を有し、前記装置は、さらに、前記減衰力調整部が参照する前記荷重制御情報および前記舵角制御情報を指定するための命令を入力する情報指定部を備えることが好ましい。
 減衰力調整部は、複数の荷重制御情報および複数の舵角制御情報を有しているので、状況に応じて荷重制御情報および舵角制御情報を使い分け、第1、第2指令値を一層適切に決定することができる。具体的には、減衰力調整部は、情報指定部によって指定された1の荷重制御情報を参照して第1指令値を決定し、情報指定部によって指定された1の舵角制御情報を参照して第2指令値を決定する。情報指定部によって荷重制御情報および舵角制御情報をそれぞれ切り替えることにより、ステアリングダンパ制御装置の特性を容易に変更することができる。なお、「状況」とは、路面状態(グリップ力、滑りやすさ、平坦さ、舗装/未舗装など)、天候または車両状態(重量、速度)等が例示される。
 また、上述した発明において、前記荷重制御情報のそれぞれは、前記舵角制御情報のいずれかと対になっており、前記情報指定部は、前記対のいずれか1つを指定することが好ましい。
 各荷重制御情報はそれぞれ1の舵角制御情報と関連付けられている。これにより、1の荷重制御情報と1の舵角制御情報とからなる複数の対が構成されていている。情報指定部にいずれかの対を指定する命令を入力することによって、1の荷重制御情報および1の舵角制御情報を一括して指定することができる。
 また、上述した発明において、前記対のいずれかにおいては、荷重制御情報における最大の減衰力指令値が、舵角制御情報における最小の減衰力指令値よりも小さいことが好ましい。
 この対では、第1指令値が第2指令値以上となることはない。よって、この対を指定することにより、実質的に、舵角速度に応じた減衰力指令値である第2指令値のみによってダンパを制御することができる。
 また、上述した発明において、前記対のいずれかにおいては、舵角制御情報における最大の減衰力指令値が、荷重制御情報における最小の減衰力指令値よりも小さいことが好ましい。
 この対では、第2指令値が第1指令値以上となることはない。よって、この対を指定することにより、実質的に、荷重の変化率等に応じた減衰力指令値である第1指令値のみによってダンパを制御することができる。
 また、上述した発明において、前記減衰力調整部は、前記荷重の変化率または前記変化率に相当する値と、減衰力指令値とを対応付けた複数種類の荷重制御情報を有し、前記装置は、さらに、前記減衰力調整部が参照する前記荷重制御情報を指定するための命令を入力する情報指定部を備えることが好ましい。
 減衰力調整部は、複数の荷重制御情報を有しているので、第1指令値を一層適切に決定することができる。具体的には、減衰力調整部は、情報指定部によって指定された1の荷重制御情報を参照して第1指令値を決定する。情報指定部によって荷重制御情報を切り替えることにより、ステアリングダンパ制御装置の特性を容易に変更することができる。
 また、上述した発明において、前記減衰力調整部は、前記舵角速度と減衰力指令値とを対応付けた複数種類の舵角制御情報を有し、前記装置は、さらに、前記減衰力調整部が参照する前記舵角制御情報を指定するための命令を入力する情報指定部を備えることが好ましい。
 減減衰力調整部は、複数の舵角制御情報を有しているので、状況に応じて第2指令値を一層適切に決定することができる。具体的には、減衰力調整部は、情報指定部によって指定された舵角制御情報を参照して第2指令値を決定する。情報指定部によって舵角制御情報を切り替えることにより、ステアリングダンパ制御装置の特性を容易に変更することができる。
 また、上述した発明において、前記荷重制御情報の少なくともいずれかは、前記荷重の変化率または前記変化率に相当する値が正である範囲の少なくとも一部の領域であって、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、減衰力指令値が大きくなる領域を含むことが好ましい。
 前輪に対して略上向きに働く荷重が増大するとき、荷重の変化率等が正の値をとる。荷重の変化率等が正であるときには、荷重の変化率等が負であるときに比べて、ステアリングは振られやすい傾向がある。また、荷重の増大が急峻であるほど、荷重の変化率等が大きくなる。荷重の変化率等が大きくなると、ステアリングは大きな力で振られやすい傾向がある。上述の荷重制御情報によれば、荷重の変化率等が正である範囲の少なくとも一部において、減衰力を発生させる。このため、ステアリングが振動しやすいときに、減衰力をステアリングに実質的に作用させることができる。また、上述の荷重制御情報によれば、荷重の変化率等が正である範囲の少なくとも一部において、荷重の変化率等の増加に伴って減衰力指令値が増加する。このため、ステアリングを振動させる外乱が大きいほど、減衰力を大きくすることができる。よって、荷重の変化が急峻である場合であっても、ステアリングの振動を効果的に抑制することができる。
 また、上述した発明において、前記舵角制御情報の少なくともいずれかは、前記舵角速度の絶対値が大きくなるにしたがって、減衰力指令値が大きくなる領域を含むことが好ましい。
 舵角速度の絶対値が大きいほど、ステアリングは大きな力で振られている傾向がある。上述の舵角制御情報によれば、少なくとも舵角速度の絶対値の一部の範囲において、舵角速度の絶対値の増大に伴って減衰力指令値が増大する。よって、舵角速度の絶対値が大きくなるほど、ステアリングに作用する減衰力を大きくすることができる。このため、舵角速度の絶対値が大きい場合であっても、ステアリングの振動を効果的に抑制することができる。
 また、上述した発明において、前記第1指令値を指定するための命令及び前記第2指令値を指定するための命令の少なくともいずれかを受け付ける指令値指定部を備え、前記減衰力調整部は、前記指令値指定部に命令が入力されたときは、前記第1指令値および前記第2指令値の大小関係に関わらず、前記第1指令値および前記第2指令値のうち、前記指令値指定部によって指定された方を選択することが好ましい。
 指令値指定部を備えているので、減衰力調整部による第1指令値及び第2指令値の選択処理を容易に変更することができる。具体的には、荷重情報検出部の検出結果のみに基づくダンパの制御、及び、舵角検出部の検出結果のみに基づくダンパの制御の少なくともいずれかに変更することができる。
 また、上述した発明において、前記ダンパは、磁性流体と、前記減衰力調整部によって選択された前記第1指令値、及び、前記第2指令値のいずれかに応じた電流が流れ、前記磁性流体に対して磁場を与える電磁石と、を備えていることが好ましい。
 磁性流体に対して磁場を与えると、磁性流体の粘性が変化し、減衰力が実質的に発生する。このため、ステアリングが現実に動いてなくても(振動していなくても)、ダンパはステアリングに減衰力を作用させることができる。
 また、上述した発明において、前記ダンパは、磁性流体のせん断力によって減衰力を発生し、前記電磁石は、前記磁性流体のせん断力を変化させることが好ましい。
 ダンパはいわゆる「せん断型」であるので、減衰力指令値が最小値であるときの減衰力を極力小さくすことができる。これにより、減衰力が最小であるときには、ステアリングの操縦性が低下することをより一層抑制することができる。
 また、上述した発明において、前記荷重情報検出部は、前輪のサスペンションの圧力を検出する圧力検出部であり、前記減衰力調整部は、サスペンションの圧力の変化率に応じて前記第1指令値を決定することが好ましい。
 サスペンションの圧力は、前輪が受ける荷重に相当する。サスペンションの圧力の変化率は、前輪の荷重の変化率に相当する値である。よって、圧力検出部によれば、荷重情報検出部を好適に実現することができる。
 また、本発明は、ステアリングダンパ制御装置を備え、前記ステアリングダンパ制御装置は、ステアリングに作用する減衰力を発生するダンパと、前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、ステアリングの舵角を検出する舵角検出部と、前記荷重情報検出部および前記舵角検出部の検出結果に基づいて、前記荷重の変化率または前記変化率に相当する値に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによって前記ダンパを制御する減衰力調整部と、を備えている鞍乗型車両である。
 [作用・効果]荷重情報検出部の検出結果に基づいてダンパを制御することもでき、舵角検出部の検出結果に基づいてダンパを制御することもできる。このため、多様な外乱によるステアリングの種々の振れに好適に対応することができる。よって、ステアリングを操作するライダーの負担を一層軽減させることができる。
 本発明に係るステアリングダンパ制御装置及びそれを備えた鞍乗型車両によれば、多様な外乱によるステアリングの種々の振れに好適に対応できる。よって、鞍乗型車両に乗車するライダーの負担を一層軽減させることができる。
実施例1に係る自動二輪車の全体を示す左側面図である。 実施例1に係るステアリングダンパの取り付け状態を示した一部拡大図であり、(a)は平面図を示し、(b)は左側面図を示す。 ステアリングダンパの外観を示す平面図である。 図3のA-A矢視断面図である。 実施例1に係るステアリングダンパ制御装置の概略構成を示すブロック図である。 圧力制御マップおよび舵角制御マップの一例を模式的に示す図である。 ステアリングダンパ制御装置の動作を示したフローチャートである。 実施例2に係るステアリングダンパ制御装置の概略構成を示すブロック図である。 ステアリングダンパ制御装置の動作を示したフローチャートである。である。 変形実施例に係る圧力制御マップ及び舵角制御マップの一例を示す模式図である。 図11(a)乃至図11(d)は、前輪が受ける荷重に関連する情報を検出するセンサの変形実施例を示す図である。
 以下、図面を参照して本発明の一実施例について説明する。なお、以下の説明においては、「鞍乗型車両」として自動二輪車を例にとって説明する。
 <自動二輪車の構成>
 図1は、実施例1に係る自動二輪車の全体を示す左側面図であり、図2は、実施例1に係るステアリングダンパの取り付け状態を示した一部拡大図であり、(a)は平面図を示し、(b)は左側面図を示す。
 自動二輪車1は、メインフレーム3を備えている。メインフレーム3は、自動二輪車1の骨格を形成している。メインフレーム3の前端には、ヘッドパイプ5が設けられている。このヘッドパイプ5は、キャスター角に応じた傾斜姿勢で形成されている。ヘッドパイプ5は、中空に形成されており、その部分にステアリングシャフト7が回動自在に挿入されている。ステアリングシャフト7は、その上端部をアッパブラケット9に固定され、その下端部をアンダブラケット11に固定されている。アッパブラケット9とアンダブラケット11の左右方向における両端側には、一対のフロントフォーク13が取り付けられている。一対のフロントフォーク13の下端部には、前輪15が回転可能に支持されている。
 いずれか一方のフロントフォーク13には、フロントフォーク13の圧力を検出する圧力センサ16が設けられている。圧力センサ16は、フロントフォーク13内の上部に形成される空気室(不図示)のエア圧力を検出する。空気室は、フロントフォーク13のオイルの油面の上方に位置している。エア圧力を調整するため、または、エアバルブを取り付けるためのエア調整孔がフロントフォーク13に形成されている場合、このエア調整孔に圧力センサ16を直接的にまたは間接的に接続してもよい。これにより、圧力センサ16を簡易に取り付けることができる。フロントフォーク13は、この発明におけるサスペンションに相当する。圧力センサ16は、この発明における圧力検出部に相当する。
 アッパブラケット9は、上面に一対のハンドルホルダ17が設けられている。各ハンドルホルダ17は、それぞれ2本のボルトBLを介してステアリングハンドル19を保持している。ステアリングハンドル19は、操縦者によって操作される。操縦者がステアリングハンドル19を操作すると、その操舵力がステアリングシャフト7を介して、一対のフロントフォーク13に伝達されて前輪15が操舵される。
 ハンドルホルダ17の上部には、取り付け基台21が上記2本のボルトBLで共締め固定される。なお、この際、この取り付け基台21には、詳細を後述するステアリングダンパ23が予め4本のボルトBSで取り付けられている。このステアリングダンパ23は、操縦者がステアリングハンドル19を操作した際における減衰力を調整する機能を備えている。
 メインフレーム3の上部には、燃料タンク25が設けられている。メインフレーム3のうち、燃料タンク25の後方にあたる部分には、シート27が設けられている。メインフレーム3のうちの燃料タンク25の下方にあたる部分には、エンジン29が配置されている。エンジン29の後部には、リアアーム31が揺動可能に取り付けられている。リアアーム31は、その後端部に後輪32を回転可能に保持している。後輪32は、エンジン29の駆動力が伝達されて、自動二輪車1を走行させる。
 <ステアリングダンパの構成>
 次に、図3、図4を参照して、上述したステアリングダンパ23について詳述する。なお、図3は、ステアリングダンパの外観を示す平面図であり、図4は、図3のA-A矢視断面図である。
 図3、図4に示すように、ステアリングダンパ23は、主として、下ケーシング部33と、ロータ部35と、電磁石37と、上ケーシング部39と、磁性流体室41とを備えている。
 下ケーシング部33と上ケーシング部39とは互いに固定されている。下ケーシング部33及び上ケーシング部39は、4本のボルトBSによって取り付け基台21に固定的に支持されている。下ケーシング部33及び上ケーシング部39は、ステアリングシャフト7やステアリングハンドル19と一体に回転する。本明細書では、ステアリングシャフト7及びステアリングハンドル19を「ステアリング」と総称する。
 ロータ部35は、略円盤形状を有する円板部63と、円板部63の外周面に取り付けられる環状部材69を有する。ロータ部35は、下ケーシング部33と上ケーシング部39との間に設けられている。ロータ部35(円板部63)は、オイルシール71及びベアリング73を介して、下ケーシング部33及び上ケーシング部39に支持されている。ロータ部35は、下ケーシング部33及び上ケーシング部39に対して回転可能である。また、オイルシール71によって、ロータ部35の外周部分(環状部材69を含む)が密閉されている。環状部材69は、例えば、鉄、ニッケル、マンガンなどの金属、または、亜鉛フェライトなどの鉄やニッケル、マンガンなどを含む合金などの磁性体で形成されている。
 ロータ部35には、ステイアーム105の一端側が取り付けられている。ステイアーム105の他端側は、ストッパ107を介してメインフレーム3に固定されている。すなわち、ロータ部35は、メインフレーム3に固定的に連結されている。ステアリングハンドル19がメインフレーム3に対して回転すると、下ケーシング部33及び上ケーシング部39がロータ部35に対して回転する。
 ロータ部35には舵角センサ109が取り付けられている。舵角センサ109は、下ケーシング部33及び上ケーシング部39に対するロータ部35の回転角度を検出する。舵角センサ109の検出結果は、ステアリングの舵角に相当する。舵角センサ109は、この発明における舵角検出部に相当する。
 電磁石37は、下ケーシング部33と上ケーシング部39との間に設けられている。電磁石37は、ロータ部35の外径より若干大きな内径を有し、ロータ部35の外周面を囲むように配置されている。電磁石37は、下ケーシング部33、及び、上ケーシング部39に固定されている。電磁石37は、ボビン75とコイル77とヨークケース79とヨークキャップ81とを備えている。コイル77はボビン75に巻かれるとともに、ヨークケース79およびヨークキャップ81よって挟まれている。コイル77には、コイル用配線83が接続されている。
 磁性流体室41は、下ケーシング部33とロータ部35と電磁石37と上ケーシング部39とオイルシール71とによって仕切られている。磁性流体室41には、磁性流体Mが充填されている。
 磁性流体Mとしては、MR流体(磁性粘性流体:Magneto-rheological fluid)や、MCF流体(磁気混合流体:Magnetic compound fluid)、ER流体(電気粘性流体:Electro-rheological fluid)などが挙げられる。いずれも磁界や電界を印加することにより、粘性を調整することができるものである。
 MR流体は、強磁性体微粒子が液体中に分散されたスラリーからなる。強磁性体微粒子の粒径は、通常、数十nm程度以下である。強磁性体微粒子は、例えば、鉄やニッケル、マンガンなどの金属、またはマンガン亜鉛フェライトなどの鉄やニッケル、マンガンなどを含む合金などにより形成することができる。強磁性体を分散させる液体は、水や水溶液であってもよいし、イソパラフィン、アルキルナフタレン、パーフルオロポリエーテルなどの有機溶媒などであってもよい。
 磁場が印加されていない状態では、磁性流体M内の強磁性体微粒子は、ほぼ均一に分散された状態にある。このため、一般的には、磁場が印加されていない状態の磁性流体Mは、ニュートン流体としての挙動を示す。一方、磁場が印加されると、磁性流体M内の各磁区が磁気的に分極する。このため、例えば、MR流体においては、強磁性体微粒子間に結合力が生じる。したがって、複数の強磁性体微粒子がクラスターを形成するので、見かけ上の粘性が増大し、せん断力が増大する。
 電磁石37(コイル77)に電流を流し、磁性流体Mに磁場を与えると、主としてロータ部35の外周面と電磁石37の内周面との間の磁性流体Mに磁界が印加される。磁性流体Mのせん断力は、下ケーシング部33及び上ケーシング部39と、ロータ部35との相対的な回転を阻止し、回転を減衰させる減衰力として働く。減衰力が大きくなるほど、ステアリングは動きにくくなり、減衰力が小さいほどステアリングは動きやすくなる。減衰力の大きさは、電磁石37に供給する電流によって調整される。
 なお、本明細書では、「減衰力」は、ステアリングが振動(回転)しているときにステアリングの振動(回転)を減衰させるように働く力、および、ステアリングが振動(回転)していないときにステアリングが振動(回転)し始めることを阻止するように働く力(抵抗力)の双方を意味する。
 ステアリングダンパ23は、この発明におけるダンパに相当する。
 <コントローラの構成>
 図5は、実施例1に係るステアリングダンパ制御装置の概略構成を示すブロック図である。ステアリングダンパ制御装置201は、フロントフォーク13の圧力の変化率(以下、適宜「圧力変化率」と呼ぶ)およびステアリングの舵角速度に基づいて、ステアリングに作用する減衰力を調整する。ステアリングダンパ制御装置201は、上述した圧力センサ16、ステアリングダンパ23および舵角センサ109のほかに、マップ指定スイッチ203とコントローラ205とを備えている。
 マップ指定スイッチ203は、1の圧力制御マップおよび1の舵角制御マップ(後述)を指定するための命令を受け付ける。マップ指定スイッチ203に入力された命令は、コントローラ205に出力される。マップ指定スイッチ203は、ステアリングハンドル19に取り付けられている(図1参照)。ライダーは、マップ指定スイッチ203を操作することができる。マップ指定スイッチ203は、この発明における情報指定部に相当する。
 コントローラ205は、圧力センサ16及び舵角センサ109の各検出結果と、マップ指定スイッチ203からの命令とに基づいて、ステアリングダンパ23を制御する。コントローラ205は、圧力センサ16、舵角センサ109、マップ指定スイッチ203、及び、ステアリングダンパ23と電気的に接続されている。
 コントローラ205は、圧力変化率演算部211と、舵角速度演算部216と、減衰力調整部217と、ダンパ駆動部219とを備えている。
 圧力変化率演算部211は、圧力センサ16の検出結果に基づいて、圧力変化率を算出する。圧力変化率は、減衰力調整部217に出力される。
 圧力変化率演算部211は、アナログ回路で構成されていることが好ましい。アナログ回路としては、オペアンプとコンデンサと抵抗とによって構成される微分回路などが例示される。このように構成される圧力変化率演算部211によれば、圧力変化率を時間的に連続して算出することができる。よって、圧力変化率の時間的な推移を精度よく得ることができる。
 舵角速度演算部216は、舵角センサ109の検出結果に基づいて、舵角の変化率である舵角速度を算出する。舵角速度は、減衰力調整部217に出力される。舵角速度演算部216も、アナログ回路で構成されていることが好ましい。
 減衰力調整部217は、圧力変化率に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによってステアリングダンパ23の減衰力を調整する。
 減衰力調整部217は、マップ切替部221と、第1指令値決定部223と、第2指令値決定部225と、指令値選択部227とを備えている。第1指令値決定部223は、予め記憶されている複数種類の圧力制御マップMPを有する。第2指令値決定部225は、予め記憶されている複数種類の舵角制御マップMVを有する。図5では、第1指令値決定部223が2つの圧力制御マップMP(MPa、MPb)を有し、第2指令値決定部225が2つの舵角制御マップMV(MVa、MVb)を有することを模式的に示す。圧力制御マップMPは、この発明における荷重制御情報に相当する。舵角制御マップMVは、この発明における舵角制御情報に相当する。
 マップ切替部221は、マップ指定スイッチ203の命令に基づいて、指定された1の圧力制御マップMPを選択する。本実施例では、マップ切替部221は、圧力制御マップMPa、MPbのいずれかに切り替える。同様に、マップ切替部221は、指定された1の舵角制御マップMVを選択する。本実施例では、マップ切替部221は、舵角制御マップMVa、MVbのいずれかに切り替える。
 第1指令値決定部223は、マップ切替部221によって選択された1の圧力制御マップMPを参照し、圧力変化率に応じた減衰力指令値、すなわち、第1指令値を決定する。圧力制御マップMPは、圧力変化率と減衰力指令値とが対応付けられた表形式の情報である。減衰力指令値は減衰力の大きさを規定する情報である。減衰力指令値の大小関係は、減衰力の大小関係と同じである。すなわち、減衰力指令値が大きくなるほど、減衰力指令値に対応付けられる減衰力は大きくなるものとする。
 第2指令値決定部225は、マップ切替部221によって指定された舵角制御マップMVを参照し、舵角速度に応じた減衰力指令値、すなわち、第2指令値を決定する。舵角制御マップMVは、舵角速度と減衰力指令値とが対応付けられた表形式の情報である。
 指令値選択部227は、第1指令値と第2指令値のうち、大きい方を選択する。
 ダンパ駆動部219は、指令値選択部227によって選択された指令値に応じた電流を電磁石37(より具体的にはコイル77)に流す。
 上述したコントローラ205は、例えば、自動二輪車1のECUであってもよい。あるいは、コントローラ205は、ECUとは別に、ステアリングダンパ制御装置201専用に設けてられていてもよい。
 <圧力制御マップと舵角制御マップ>
 圧力制御マップMPおよび舵角制御マップMVについてさらに詳細に説明する。図6は、圧力制御マップMPおよび舵角制御マップMVの一例を模式的に示す図である。
 圧力制御マップMPa、MPbは、圧力変化率を横軸とし、減衰力指令値を縦軸としたグラフである。圧力が増大するとき、圧力変化率は正の値をとるものとし、圧力が減少するとき、圧力変化率が負の値をとるものとする。舵角制御マップMVa、MVbは、舵角速度の絶対値を横軸とし、減衰力指令値を縦軸としたグラフである。
 圧力制御マップMPaと舵角制御マップMVaとは、互いに関連付けられており、対(セット、組み合わせ)Aを構成する。同様に、圧力制御マップMPbと舵角制御マップMVbとは、互いに関連づけられており、対Bを構成する。このため、マップ指定スイッチ203は、対A、Bのいずれかを選択するだけで、圧力制御マップMPおよび舵角制御マップMVを一挙に指定することができる。
 圧力制御マップMPaは、次のように設定されている。圧力変化率が所定値PLa以下のとき、減衰力指令値は最小である。所定値PLaは正である。圧力変化率が所定値PLaより大きいとき、減衰力指令値は最小値より大きい。より詳しくは、圧力変化率が所定値PLaより大きく、閾値PHa以下の領域では、圧力変化率が大きくなるにしたがって減衰力指令値が大きくなる。なお、閾値PHaは所定値PLaより大きい。圧力変化率が所定値PLaから閾値PHaまでの領域では、圧力変化率が大きくなるにしたがって、圧力変化率の増加量に対する減衰力指令値の増大量の比(変化の割合)が大きくなる。圧力変化率が閾値PHaより大きいときは、減衰力指令値は一定値FPaである。一定値FPaは、圧力変化率が閾値PHaであるときの減衰力指令値と等しい。このため、閾値PHaの近傍において減衰力指令値は連続している。換言すれば、閾値PHaの近傍において減衰力指令値がステップ状に変化しない。なお、一定値FPaは、減衰力指令値の最小値より大きい。一定値FPaは、減衰力指令値の最大値であってもよいし、そうでなくてもよい。なお、単に「減衰力指令値の最小値」というときは、減衰力指令値がとりうる範囲における最小値を意味する。また、単に「減衰力指令値の最大値」というときは、減衰力指令値がとりうる範囲における最大値を意味する。
 圧力制御マップMPbは、圧力制御マップMPaと似た特性曲線を有するが、圧力制御マップMPaに比べて減衰力指令値が全体的に低い。具体的には、圧力制御マップMPbにおける所定値PLbは、圧力制御マップMPaにおける所定値PLa以上に設定されている。また、圧力制御マップMPbにおける一定値FPbは、圧力制御マップMPaにおける一定値FPa未満に設定されている。
 この圧力制御マップMPa、MPbの技術的意義は、次の通りである。圧力変化率は、外乱によるステアリングの振動と、ある程度関連性がある。たとえば、フロントフォーク13の圧力が増大した直後に、前輪15が受ける外乱によってステアリングが振られやすい傾向がある。圧力制御マップMPa、MPbによれば、現実にステアリングが振られていなくても、圧力が増大し、ステアリングが振られやすい状態になった時点で、減衰力を発生させることができる。
 ここで、フロントフォーク13の圧力が増大する時としては、例えば自動二輪車1がコーナーに入るときや減速するとき、または、前輪15が路面の凸部に乗り上げる等により前輪15が外乱を受けたときが例示される。ただし、いずれの場合であっても、圧力が増大する期間は極めて短く、一瞬で終了する。他方、フロントフォーク13の圧力が増大しない時としては、自動二輪車1がコーナーに入った直後などのほかに、次のような場面が例示される。すなわち、自動二輪車1を一定速度で走行しているとき、コーナーを一定速度で旋回走行しているとき、加速しているとき、コーナーを出るとき、あるいは、自動二輪車1をジャンプさせているとき等である。
 上述した圧力制御マップMPa、MPbによれば、圧力変化率が所定値PLaより大きいときのみ、減衰力指令値は最小値より大きくなる。そうでないときには、減衰力指令値は最小値である。その結果、圧力が一定以上の割合で増大する僅かな期間(瞬間)のみ、減衰力が実質的にステアリングに作用し、ステアリングが動きにくくなる。その際、圧力変化率が大きいほど、減衰力は大きくなり、ステアリングは一層動きにくくなる。ただし、圧力変化率がさらに大きくなると、減衰力は一定となり、減衰力が必要以上に過大となることはない。上述した瞬間を過ぎると、ステアリングに作用する減衰力は再び最小に戻り、ステアリングは動きやくなる。
 なお、フロントフォーク13の圧力は、フロントフォーク13のストローク長(伸縮量)に相当し、前輪15が路面から受ける上向き荷重に相当する。圧力変化率は、フロントフォーク13の伸縮速度に相当し、前輪15の荷重の変化率に相当する。圧力変化率が正であるとき、フロントフォーク13は収縮中であり、前輪15の荷重は増大中である。このように、圧力変化率は、前輪15が受ける荷重の変化率に相当する値(指標)である。よって、上述した説明において、「フロントフォーク13の圧力」の代わりに「前輪15が受ける荷重」と読み替え、「圧力変化率」の代わりに「前輪15の荷重の変化率」と読み替えてもよい。
 また、2種の圧力制御マップMPa、MPbを備えることによって、状況に応じて圧力制御マップMPa、MPbを使い分けることができる。これにより、適切な大きさの減衰力を発生させることができる。
 例えば、前輪15と路面とのグリップが比較的に高く、前輪15が滑りにくい場合には、ステアリングは外乱によって比較的に大きな力で振られる。このような場合、圧力制御マップMPaを用いることにより、比較的に大きな減衰力を発生させることができ、ステアリングの振動を好適に抑制することができる。
 また、例えば、前輪15と路面とのグリップが比較的に低く、前輪15が滑りやすい場合には、外乱によるステアリングの振動は比較的に小さい。そもそも、外乱を受けても、前輪15が向きを変えずにそのまま滑ってしまえば、ステアリングの振動自体が起こりにくい。このような場合、圧力制御マップMPbを用いることにより、比較的に小さな減衰力で、ステアリングの振動を十分に抑制できる。むしろ、この場合には、減衰力が小さいほど好ましい。グリップが低いとき、ライダーはステアリングを通じて前輪15のグリップ(接地感)を感得しようとする。その際、減衰力が小さいほど、ライダーは操作感を得やすいからである。
 なお、グリップが高い場合としては、整地された路面、舗装された路面またはハイグリップコース等を走行するときや、晴天時に走行するときなどが例示される。グリップが低い場合としては、荒れ地、未舗装の路面またはローグリップコース等を走行するときや、雨天時に走行するときなどが例示される。
 また、圧力制御マップMPa、MPbを使い分ける基準は、路面状態や天候に限られない。例えば、自動二輪車1の重量や走行速度に応じて、圧力制御マップMPa、MPbを使い分けてもよい。
 舵角制御マップMVaは、次のように設定されている。舵角速度の絶対値が所定値VLa以下のときは、減衰力指令値は最小である。所定値VLaは正である。舵角速度の絶対値が所定値VLaより大きいとき、減衰力指令値は最小値より大きい。より詳しくは、舵角速度の絶対値が所定値VLaより大きく、閾値VHa以下の領域では、舵角速度の絶対値が大きくなるにしたがって減衰力指令値が大きくなる。なお、閾値VHaは所定値VLaより大きい。所定値VLaから閾値VHaまでの領域では、舵角速度の絶対値が大きくなるにしたがって、舵角速度の絶対値の増加量に対する減衰力指令値の増大量の比(変化の割合)が大きくなる。舵角速度の絶対値が閾値VHaより大きいときは、減衰力指令値は一定値FVaである。一定値FVaは、舵角速度の絶対値が閾値VHaであるときの減衰力指令値と等しい。このため、閾値VHaの近傍において減衰力指令値は連続している。換言すれば、閾値VHaの近傍において減衰力指令値がステップ状に変化しない。なお、一定値FVaは、減衰力指令値の最小値より大きい。一定値FVaは、減衰力指令値の最大値であってもよいし、そうでなくてもよい。また、一定値FVaは、圧力制御マップMPaにおける一定値FPaと略等しくてもよいし、そうでなくてもよい。
 舵角制御マップMVbは、舵角制御マップMVaと似た特性曲線を有するが、舵角制御マップMVaに比べて減衰力指令値が全体的に低い。具体的には、舵角制御マップMVbにおける所定値VLbは、舵角制御マップMVaにおける所定値VLa以上に設定されている。また、舵角制御マップMVbにおける一定値FVbは、舵角制御マップMVaにおける一定値FVa未満に設定されている。一定値FVbは、圧力制御マップMPbにおける一定値FPbと略等しくてもよいし、そうでなくてもよい。
 舵角制御マップMVa、MVbの技術的意義は、次の通りである。舵角制御マップMVa、MVbによれば、現実にステアリングが振られている時に、減衰力を発生させることができる。
 具体的には、舵角速度の絶対値が所定値VLa以下のときは、ステアリングに作用する減衰力は最小であり、ステアリングは動きやすい。舵角速度の絶対値が所定値VLaより大きいときは、減衰力が実質的にステアリングに作用し、ステアリングが動きにくくなる。その際、舵角速度の絶対値が大きいほど、減衰力が大きくなり、ステアリングは一層動きにくくなる。ただし、舵角速度の絶対値がさらに大きくなると、減衰力が一定となり、減衰力が必要以上に過大となることはない。
 これら2種の舵角制御マップMVa、MVbを備えることによって、状況に応じて舵角制御マップMVa、MVbを使い分けることができる。これにより、適切な大きさの減衰力を発生させることができる。
 例えば、前輪15と路面とのグリップが比較的に高い場合には、ステアリングは比較的大きな力で振られる傾向がある。換言すれば、グリップが高い場合にステアリングがある舵角速度で振られたときには、グリップが低い場合にステアリングが同じ舵角速度で振られるときに比べて、ステアリングはより大きな力で振られていることが多い。よって、グリップが高い場合、舵角制御マップMVaを用いることにより、比較的に大きな減衰力を発生させて、ステアリングの振動を好適に抑制することができる。他方、グリップが低い場合、舵角制御マップMVbを用いることにより、比較的に小さな減衰力で、ステアリングの振動を十分に抑制できる。
 なお、舵角制御マップMVa、MVbを使い分ける基準は、路面状態や天候に限られない。例えば、自動二輪車1の重量や走行速度に応じて、使い分けてもよい。
 また、ステアリングの振動は、種々の場面で発生する。前輪15が路面から外乱を受けたときのほか、後輪32が進行方向に対して横方向にスライドしたとき(言い換えれば、後輪32及びメインフレーム3がステアリングシャフト7を中心に回転したとき)などにおいても、ステアリングの振動は発生する。
 <ステアリングダンパ制御装置の動作>
 次に、実施例1に係るステアリングダンパ制御装置201の動作について説明する。図7は、ステアリングダンパ制御装置201の動作を示したフローチャートである。
 ステップS1乃至S4
 マップ切替部221は、マップ指定スイッチ203に入力された命令を取得する。そして、この命令に基づいて、第1指令値決定部223が参照する圧力制御マップMPを、圧力制御マップMPa、MPbのいずれかに切り替える。同様に、第2指令値決定部225が参照するマップを、舵角制御マップMVa、MVbのいずれかに切り替える。
 具体的には、マップ切替部221は、マップ指定スイッチ203に入力された命令が対Aの指定であるか否かを判断する。対Aの指定である場合には、圧力制御マップMPaおよび舵角制御マップMVaに決定する。そうでない場合には、圧力制御マップMPbおよび舵角制御マップMVbに決定する。
 ステップS5
 圧力変化率演算部211は、圧力センサ16の検出結果を取得する。そして、圧力変化率を算出する。算出された圧力変化率は、第1指令値決定部223に出力される。第1指令値決定部223は、指定された圧力制御マップMPを参照し、圧力変化率に応じた減衰力指令値(第1指令値)を決定する。
 同様に、舵角変化率演算部216は、舵角センサ109の検出結果を取得する。そして、舵角速度を算出する。算出された舵角速度は、第2指令値決定部225に出力される。第2指令値決定部225は、指定された舵角制御マップMVを参照し、舵角速度に応じた減衰力指令値(第2指令値)を決定する。
 ステップS6
 指令値選択部227は、第1指令値と第2指令値とを比較し、第1指令値が第2指令値に比べて大きいか否かを判断する。その結果、第1指令値の方が大きい場合は、ステップS7に進む。そうでない場合は、ステップS8に進む。
 ステップS7
 指令値選択部227は、第1指令値を選択し、第1指令値をダンパ駆動部219に出力する。ダンパ駆動部219は、第1指令値に応じた電流を電磁石37(コイル77)に流す。ステアリングダンパ23は、電流に応じた減衰力を発生する。
 ステップS8
 指令値選択部227は、第2指令値を選択し、第2指令値をダンパ駆動部219に出力する。ダンパ駆動部219は、第2指令値に応じた電流を電磁石37(コイル77)に流す。ステアリングダンパ23は、電流に応じた減衰力を発生する。
 このように、実施例1に係るステアリングダンパ制御装置201によれば、圧力センサ16の検出結果、及び、舵角センサ109の検出結果に基づいてステアリングダンパ23を制御する。換言すれば、圧力変化率に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値を選択的に用いてステアリングダンパ23を制御する。
 圧力センサ16の検出結果に基づけば、圧力が増大している時に、減衰力を発生させることができる。これにより、ステアリングが振られやすくなると、ステアリングを動きにくくすることができる。また、ステアリングが実際に振られていなくても、ステアリングの振動を予防的に抑制することができる。
 また、舵角センサ109によれば、ステアリングが実際に振られている時に、減衰力を発生させることができる。これにより、当然ながら、ステアリングの振動を有効に抑制することができる。
 このように、ステアリングダンパ制御装置201によれば、多様な外乱によるステアリングの種々の振れに対して、一層好適に対応することができる。
 また、指令値選択部227は、第1指令値、及び、第2指令値のうち、大きい方を選択する。これにより、圧力センサ16の検出結果に基づく制御と、舵角センサ109の検出結果に基づく制御を互いに補完的に実行することができる。すなわち、ステアリングが振られていない場合であっても圧力変化率が増大しているときには減衰力を発生させることができ、かつ、圧力変化率が増大していない場合であってもステアリングが振動しているときには減衰力を発生させることができる。これにより、例えば、自動二輪車1がコーナーに入るときや減速するとき等においては、ステアリングの振動を好適に予防でき、かつ、コーナーを出る時や加速するとき等においては、後輪32が横滑りすることを好適に抑制することができる。
 第1指令値決定部223は、複数種類の圧力制御マップMPa、MPbを有しているので、状況に応じて圧力制御マップMPa、MPbを使い分けることができる。
 第2指令値決定部225は、複数種類の舵角制御マップMVa、MVbを有しているので、状況に応じて舵角制御マップMVa、MVbを使い分けることができる。
 マップ指定スイッチ203を備えているので、第1指令値決定部223が参照する圧力制御マップMPa、MPbのいずれかを好適に指定することができる。また、第2指令値決定部225が参照する舵角制御マップMVa、MVbのいずれかを好適に指定することができる。
 各圧力制御マップMPはそれぞれ、いずれかの舵角制御マップMVとセットになっているので、マップ指定スイッチ203は、圧力制御マップMPと舵角制御マップMVを一括して指定することができる。
 圧力制御マップMPは、圧力変化率が正である範囲の少なくとも一部であって、圧力変化率が大きくなるにしたがって、減衰力指令値が大きくなる領域(すなわち、圧力変化率が所定値PLa/PLbより大きく、閾値PHa/PHb以下の領域)を含む。換言すれば、圧力変化率が所定値PLa/PLbから閾値PHa/PHbまでの範囲では、圧力変化率の増加に伴って減衰力指令値が増大する。よって、フロントフォーク13の圧力の変化が急峻である場合であっても、ステアリングの振動を効果的に抑制することができる。特に、この領域では、圧力変化率が大きいほど、圧力変化率に対する減衰力指令値の変化の割合(傾き)が大きくなり、減衰力が急激に大きくなる。よって、ステアリングの振動を一層効果的に抑制することができる。
 また、圧力変化率が閾値PHa/PHbより大きいときは、減衰力指令値は一定値FPa/FPbである。よって、必要以上に過大な減衰力が発生することがないので、ライダーの負担を好適に軽減することができる。特に、一定値FPa/FPbは、圧力変化率が閾値PHa/PHbであるときの減衰力指令値と等しい。よって、閾値PHa/PHbの近傍において減衰力指令値(減衰力)の大きさが連続しているので、ステアリングの操縦性(動きやすさ)が不自然に変化することを回避できる。
 また、圧力変化率が所定値PLa/PLbより小さいときは、減衰力指令値は最小値である。これにより、フロントフォーク13の圧力が一定以上の割合で増大している瞬間のみ、ステアリングに減衰力を実質的に作用させる。よって、ステアリングの振動を抑制しつつ、ステアリングの操縦性が損なわれることを好適に抑制することができる。また、自動二輪車1をジャンプさせたときに、ライダーはステアリングを容易に切ることができる。
 舵角制御マップMVは、舵角速度の絶対値が大きくなるにしたがって、減衰力指令値が大きくなる領域(すなわち、所定値VLa/VLbより大きく、閾値VHa/VHb以下の領域)を含む。換言すれば、舵角速度の絶対値が所定値VLa/VLbから閾値VHa/VHbまでの範囲では、舵角速度の絶対値の増加に伴って減衰力指令値が増大する。よって、舵角速度が大きい場合であっても、ステアリングの振動を効果的に抑制することができる。特に、この領域では、舵角速度の絶対値が大きいほど、舵角速度の絶対値に対する減衰力指令値の変化の割合(傾き)が大きくなり、減衰力が急激に大きくなる。よって、ステアリングの振動を一層効果的に抑制することができる。
 また、舵角速度の絶対値が閾値VHa/VHbより大きいときは、減衰力指令値は一定値FVa/FVbである。よって、必要以上に過大な減衰力が発生することがないので、ライダーの負担を好適に軽減することができる。特に、一定値FVa/FVbは、舵角速度の絶対値が閾値VHa/VHbであるときの減衰力指令値と等しい。よって、閾値VHa/VHbの近傍において減衰力指令値(減衰力)の大きさが連続しているので、ステアリングの操縦性(動きやすさ)が不自然に変化することを回避できる。
 また、舵角速度の絶対値が所定値VLa/VLb以下のときは、減衰力指令値は最小値である。これにより、舵角速度の絶対値が所定値VLa/VLbより大きいときのみ、ステアリングに減衰力を実質的に作用させる。よって、ステアリングの振動を抑制しつつ、ステアリングの操縦性が損なわれることを好適に抑制することができる。また、自動二輪車1をジャンプさせたときに、ライダーはステアリングを容易に切ることができる。
 ステアリングダンパ23は、磁性流体Mと、磁性流体Mに対して磁場を与える電磁石37とを備えているので、ステアリングが動いていなくても(振動していなくても)、ステアリングダンパ23に減衰力を発生させることができる。よって、現実にステアリングが振られていなくても、減衰力指令値に応じた減衰力を好適に発生させることができる。
 ステアリングダンパ23は、磁性流体Mのせん断力を減衰力として利用する「せん断型」であるので、減衰力指令値が最小値であるときの減衰力を極力小さくすことができる。よって、減衰力が最小であるときには、ステアリングの操作感を一層軽くすることができ、ステアリングの操縦性が低下することをより一層抑制することができる。
 自動二輪車1は、上述したようなステアリングダンパ制御装置201を備えているので、ステアリングの振動を一層好適に抑制できる。よって、ライダーは、ステアリングを快適に操縦し、自動二輪車1を走行させることができる。
 次に、本発明の実施例2について説明する。本実施例2に係る自動二輪車1およびステアリングダンパ23の構成は、実施例1と略同様である。よって、以下では、主としてステアリングダンパ制御装置201を説明する。なお、実施例1と同じ構成については同符号を付すことで詳細な説明を省略する。
 図8は、実施例2のステアリングダンパ制御装置201の概略構成を示す図である。ステアリングダンパ制御装置201は、さらに、指令値指定スイッチ231を備えている。
 <コントローラの構成>
 指令値指定スイッチ231は、選択される指令値を指定するための命令を受け付ける。具体的には、指令値指定スイッチ231は、第1指令値を指定するための命令、第2指令値を指定するための命令、及び、自動選択を指定するための命令を受け付ける。指令値指定スイッチ231に入力された命令は、コントローラ205に入力される。指令値指定スイッチ231は、ステアリングハンドル19に取り付けられている(不図示)。ライダーは、指令値指定スイッチ231を操作することができる。指令値指定スイッチ231は、この発明における指令値指定部に相当する。
 指令値選択部227は、指令値指定スイッチ231に入力された命令に基づいて、第1指令値および第2指令値のいずれかを選択する。具体的には、指令値指定スイッチ231に入力された命令が第1指令値を指定する命令であるときは、第1指令値及び第2指令値の大小関係に関係なく、第1指令値を選択する。第2指令値を指定する命令であるときも、同様に、強制的に第2指令値を選択する。自動選択を指定する命令であるときは、第1指令値及び第2指令値のうちいずれか大きい方を選択する。
 <ステアリングダンパ制御装置の動作>
 次に、実施例2に係るステアリングダンパ制御装置201の動作について説明する。図9は、ステアリングダンパ制御装置201の動作を示したフローチャートである。図示するように、ステップS11乃至16が、実施例1に係るステアリングダンパ制御装置201の動作にさらに追加されている。
 ステップS1乃至S4
 マップ切替部221は、マップ指定スイッチ203に入力された命令に基づいて、圧力制御マップMPおよび舵角制御マップMVをそれぞれ切り替える。
 ステップS11、S12
 減衰力調整部217は、指令値指定スイッチ231に入力された命令が、自動選択、第1指令値、及び、第2指令値のいずれであるかを判断する。その結果、自動選択の場合、ステップS5に進む。第1指令値の場合、ステップS13に進む。第2指令値の場合、ステップS15に進む。
 ステップS5乃至S8
 第1指令値決定部223は第1指令値を決定し、第2指令値決定部225は第2指令値を決定する。指令値選択部227は、第1指令値および第2指令値のうち、大きい方を選択する。ダンパ駆動部219は、選択された指令値に応じた電流を電磁石37(コイル77)に流す。
 ステップS13、S14
 第1指令値決定部223は第1指令値を決定し、指令値選択部227は、第1指令値を選択する。ダンパ駆動部219は、第1指令値に応じた電流を電磁石37(コイル77)に流す。ステアリングダンパ23は、電流に応じた減衰力を発生する。
 ステップS15、S16
 第2指令値決定部225は第2指令値を決定し、指令値選択部227は、第2指令値を選択する。ダンパ駆動部219は、第2指令値に応じた電流を電磁石37(コイル77)に流す。ステアリングダンパ23は、電流に応じた減衰力を発生する。
 実施例2に係るステアリンダンパ制御装置によると、上述した実施例1と同様に、多様な外乱によるステアリングの種々の振れに対して、一層好適に対応することができる。
 また、指令値指定スイッチ231を備えているので、減衰力調整部217による第1指令値及び第2指令値の選択処理を容易に変更することができる。具体的には、圧力変化率に応じた第1指令値のみに基づいてステアリングダンパ23を制御させたり、舵角センサ109に応じた第2指令値のみに基づいてステアリングダンパ23を制御させることができる。あるいは、第1指令値及び第2指令値のうち、大きい方に基づいてステアリングダンパ23を制御させることができる。このように、ステアリングダンパ制御装置201の制御モードを容易に変更することができる。
 この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例1、2では、マップ指定スイッチ203を備えていたが、これに限られない。すなわち、マップ指定スイッチ203を省略してもよい。この変形実施例において、舵角速度や車速等に基づいて、圧力制御マップMPおよび/または舵角制御マップMVを切り替えるように変更してもよい。あるいは、圧力制御マップMPおよび舵角制御マップMVを切り替える処理を省略し、第1指令値決定部223は予め設定されている圧力制御マップMPを参照し、第2指令値決定部225は予め設定されている舵角制御マップMVを参照するように変更してもよい。
 (2)上述した実施例1、2では、第1指令値決定部223は、2種類の圧力制御マップMPa、MPbを有していたが、これに限られない。3以上の圧力制御マップMPを有するように第1指令値決定部223を変更してもよいし、単一の圧力制御マップMPを有するように第1指令値決定部223を変更してもよい。第2指令値決定部225についても同様に変更してもよい。
 (3)上述した実施例1、2では、圧力制御マップMPを例示したが、圧力制御マップMPを適宜に変更することができる。例えば、所定値PLa/PLbより大きく、閾値PHa/PHb以下の領域において、圧力変化率が大きくなるにしたがって、前記減衰力指令値が一定の割合で大きくなるように変更してもよい。また、所定値PLa/PLbを零に変更してもよい。あるいは、圧力変化率が閾値PHa/PHbより大きいときであっても、減衰力指令値が一定とならないように変更してもよい。舵角制御マップMVについても同様に変更することができる。
 (4)上述した実施例1、2では、圧力制御マップMP及び舵角制御マップMVの対A、対Bを例示したが、これに限られない。次のような圧力制御マップMP及び舵角制御マップMVの対を備えるように変更してもよい。
 図10を参照する。図10は、変形実施例に係る圧力制御マップMP及び舵角制御マップMVの一例を示す模式図である。図示するように、対Cは、圧力制御マップMPaと舵角制御マップMVcからなり、対Dは、圧力制御マップMPcと舵角制御マップMVaからなる。圧力制御マップMPcは、圧力変化率に関わらず、減衰力指令値が常に最小である。舵角制御マップMVcは、舵角速度に関わらず、減衰力指令値が常に最小である。
 このように、舵角制御マップMVcにおける減衰力指令値の最大値は、圧力制御マップMPaにおける減衰力指令値の最小値以下であるので、第1指令値は必ず第2指令値以上となる。したがって、対Cを指定することによって、圧力変化率に応じた第1指令値のみに基づいてステアリングダンパ23を制御することができる。
 同様に、圧力制御マップMPcにおける減衰力指令値の最大値は、舵角制御マップMVaにおける減衰力指令値の最小値以下であるので、第2指令値は必ず第1指令値以上となる。したがって、対Dを指定することによって、舵角速度に応じた第2指令値のみに基づいてステアリングダンパ23を制御することができる。
 なお、この変形実施例の場合、対C、Dの双方を備えていてもよいし、対C、Dの一方のみを備えてもよい。また、対A、Bを備えてもよいし、対A、Bの少なくとも一方を省略してもよい。
 (5)上述した上述した実施例1、2では、マップ指定スイッチ203に、対A、Bのいずれかを指定するための命令を入力したが、これに限られない。マップ指定スイッチ203に、圧力制御マップMPa、MPbのいずれかを指定するための命令と、舵角制御マップMVa、MVbのいずれかを指定するための命令をそれぞれ個別に入力してもよい。
 (6)上述した実施例2では、指令値指定スイッチ231は、3種の命令(第1指令値、第2指令値、及び、自動選択)を受け付けるものであったが、これに限られない。たとえば、2種の命令を受け付けるように変更してもよい。例えば、第1指令値および自動選択のいずれかを指定する命令を受け付けるように変更してもよいし、第2指令値および自動選択のいずれかを指定する命令を受け付けるように変更してもよい。あるいは、第1指令値および第2指令値のいずれかを指定する命令を受け付けるように変更してもよい。
 (7)上述した実施例1、2では、荷重情報検出部として圧力センサ16を例示したが、これに限られない。例えば、前輪15が受ける荷重に関連する情報を検出する他の検出部に適宜に変更することができる。
 図11を参照する。図11(a)乃至(d)は、前輪15が受ける荷重に関連する情報を検出する荷重情報検出部の変形実施例を示す図である。図11(a)乃至(d)は、自動二輪車1を正面から見たときのフロントフォーク13の一部を拡大した図である。
 図11(a)に示すように、車軸240が受ける荷重を検出する歪みゲージ241、242を備えてもよい。各歪みゲージ241、242は、それぞれ前輪15の車軸240の上部および下部に配置されることが好ましい。これにより、車軸240が受ける荷重を精度良く検出することができる。なお、車軸240が受ける荷重は、前輪15が受ける荷重に相当する。よって、歪みゲージ241、242の検出結果から、前輪15が受ける荷重の変化率を得ることができる。
 図11(b)に示すように、フロントフォーク13の伸縮速度を検出する速度センサ243を備えてもよい。速度センサ243は、コイル等を含んで構成され、磁束の変化に基づいてフロントフォーク13の伸縮速度を検出するものであってもよい。あるいは、速度センサ243は、レーザー光等による光学式の表面速度センサであってもよい。なお、フロントフォーク13の伸縮速度は、前輪15の荷重の変化率に相当する値である。
 図11(c)に示すように、フロントフォーク13の軸方向(伸縮方向)の加速度を検出する加速度センサ245を備えてもよい。なお、加速度センサ245の検出結果は、前輪15の荷重の変化率をさらに時間微分したものに相当する。よって、加速度センサ245の検出結果から、前輪15が受ける荷重の変化率に相当する値を得ることができる。
 図11(d)に示すように、車軸240の上下方向の加速度を検出する加速度センサ247を備えてもよい。なお、加速度センサ247の検出結果は、前輪15の荷重の変化率をさらに時間微分したものに相当する。よって、加速度センサ247の検出結果から、前輪15が受ける荷重の変化率に相当する値を得ることができる。
 また、図示を省略するが、圧力センサ16に代えて、フロントフォーク13のストローク量を検出するストロークセンサを備えてもよい。なお、フロントフォーク13のストローク量は、前輪15が受ける荷重に相当する。よって、ストロークセンサの検出結果から、前輪15が受ける荷重の変化率を得ることができる。
 上述した各種センサ241、242、243、245、247、及び、ストロークセンサは、それぞれ、この発明における荷重情報検出部に相当する。
 (8)上述した実施例1、2では、圧力変化率演算部211はコントローラ205に設けられていたが、これに限られない。例えば、圧力変化率演算部211を圧力センサ16と一体に設けるように変更してもよい。同様に、舵角変化率演算部216を、舵角センサ109と一体に設けるように変更してもよい。
 (9)上述した実施例1、2では、ステアリングダンパ23の構造を例示したが、これに限られない。すなわち、ステアリングダンパ23の構造を適宜に変更してもよい。また、磁性流体室41の全部を磁性流体Mで満たしてもよいし、磁性流体室41の一部を磁性流体Mとし、その他をエア等としてもよい。
 (10)上述した実施例では、自動二輪車1は単一の前輪15と単一の後輪32を備えた自動二輪車1であったが、これに限られない。例えば、2つの前輪を有する三輪車両や、2つの後輪を有する三輪車両に変更してもよい。あるいは、2つの前輪と2つの後輪を有する四輪車両に変更してもよい。また、例えば、スクータ、スクータタイプ以外のモペットなどの自動二輪車、ATV(All Terrain Vehicle(全地形型車両)四輪バギー)、スノーモービルなどの鞍乗型車両であっても適用することができる。これらの変形実施例では、フロントフォーク13の構成を適宜に選択、変更することができる。また、フロントフォーク13以外の懸架機構によってサスペンションを構成してもよい。
 (11)上述した実施例では、自動二輪車1は動力源としてエンジン29を備えていたが、これに限られない。例えば、動力源として、電動モータを含むように変更してもよい。
 (12)上述した実施例および上記(1)から(11)で説明した各変形実施例については、さらに各構成を他の変形実施例の構成に置換または組み合わせるなどして適宜に変更してもよい。
 1 … 自動二輪車
 3 … メインフレーム
 5 … ヘッドパイプ
 7 … ステアリングシャフト(ステアリング)
 13 … 一対のフロントフォーク
 16 … 圧力センサ(圧力検出部、荷重情報検出部)
 19 … ステアリングハンドル(ステアリング)
 23 … ステアリングダンパ
 37 … 電磁石
 41 … 磁性流体室
 77 … コイル
 109 … 舵角センサ(舵角検出部)
 201 … ステアリングダンパ制御装置
 203 … マップ指定スイッチ(情報指定部)
 205 … コントローラ
 211 … 圧力変化率演算部
 216 … 舵角速度演算部
 217 … 減衰力調整部
 219 … ダンパ駆動部
 221 … マップ切替部
 223 … 第1指令値決定部
 225 … 第2指令値決定部
 227 … 指令値選択部
 231 … 指令値指定スイッチ(指令値指定部)
 240 … 車軸
 241、242 … 歪みゲージ(荷重情報検出部)
 243 … 速度センサ(荷重情報検出部)
 245、247 … 加速度センサ(荷重情報検出部) 
 MP、MPa、MPb、MPc … 圧力制御マップ(荷重制御情報)
 MV、MVa、MVb、MVc … 舵角制御マップ(舵角制御情報)
 PLa、PLb … 所定値
 PHa、PHb … 閾値
 FPa、FPb … 一定値
 VLa、VLb … 所定値
 VHa、VHb … 閾値
 FVa、FVb … 一定値
 A、B、C、D … 対
 M … 磁性流体

Claims (15)

  1.  ステアリングに作用する減衰力を発生するダンパと、
     前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、
     ステアリングの舵角を検出する舵角検出部と、
     前記荷重情報検出部および前記舵角検出部の各検出結果に基づいて、前記荷重の変化率または前記変化率に相当する値に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによって前記ダンパの減衰力を調整する減衰力調整部と、
     を備えているステアリングダンパ制御装置。
  2.  請求項1に記載のステアリングダンパ制御装置において、
     前記減衰力調整部は、前記第1指令値、及び、前記第2指令値のうち、大きい方を選択するステアリングダンパ制御装置。
  3.  請求項1または2に記載のステアリングダンパ制御装置において、
     前記減衰力調整部は、前記荷重の変化率または前記変化率に相当する値と、前記減衰力指令値とを対応付けた複数種類の荷重制御情報と、前記舵角速度と前記減衰力指令値とを対応付けた複数種類の舵角制御情報を有し、
     前記装置は、さらに、前記減衰力調整部が参照する前記荷重制御情報および前記舵角制御情報を指定するための命令を入力する情報指定部を備えるステアリングダンパ制御装置。
  4.  請求項3に記載のステアリングダンパ制御装置において、
     前記荷重制御情報のそれぞれは、前記舵角制御情報のいずれかと対になっており、
     前記情報指定部は、前記対のいずれか1つを指定するステアリングダンパ制御装置。
  5.  請求項4に記載のステアリングダンパ制御装置において、
     前記対のいずれかにおいては、荷重制御情報における最大の減衰力指令値が、舵角制御情報における最小の減衰力指令値よりも小さいステアリングダンパ制御装置。
  6.  請求項4または5に記載のステアリングダンパ制御装置において、
     前記対のいずれかにおいては、舵角制御情報における最大の減衰力指令値が、荷重制御情報における最小の減衰力指令値よりも小さいステアリングダンパ制御装置。
  7.  請求項1または2に記載のステアリングダンパ制御装置において、
     前記減衰力調整部は、前記荷重の変化率または前記変化率に相当する値と、減衰力指令値とを対応付けた複数種類の荷重制御情報を有し、
     前記装置は、さらに、前記減衰力調整部が参照する前記荷重制御情報を指定するための命令を入力する情報指定部を備えるステアリングダンパ制御装置。
  8.  請求項1または2に記載のステアリングダンパ制御装置において、
     前記減衰力調整部は、前記舵角速度と減衰力指令値とを対応付けた複数種類の舵角制御情報を有し、
     前記装置は、さらに、前記減衰力調整部が参照する前記舵角制御情報を指定するための命令を入力する情報指定部を備えるステアリングダンパ制御装置。
  9.  請求項3から7のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重制御情報の少なくともいずれかは、前記荷重の変化率または前記変化率に相当する値が正である範囲の少なくとも一部の領域であって、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、減衰力指令値が大きくなる領域を含むステアリングダンパ制御装置。
  10.  請求項3から6、及び、8のいずれかに記載のステアリングダンパ制御装置において、
     前記舵角制御情報の少なくともいずれかは、前記舵角速度の絶対値が大きくなるにしたがって、減衰力指令値が大きくなる領域を含むステアリングダンパ制御装置。
  11.  請求項1から10のいずれかに記載のステアリングダンパ制御装置において、
     前記第1指令値を指定するための命令及び前記第2指令値を指定するための命令の少なくともいずれかを受け付ける指令値指定部を備え、
     前記減衰力調整部は、前記指令値指定部に命令が入力されたときは、前記第1指令値および前記第2指令値の大小関係に関わらず、前記第1指令値および前記第2指令値のうち、前記指令値指定部によって指定された方を選択するステアリングダンパ制御装置。
  12.  請求項1から11のいずれかに記載のステアリングダンパ制御装置において、
     前記ダンパは、
      磁性流体と、
      前記減衰力調整部によって選択された前記第1指令値、及び、前記第2指令値のいずれかに応じた電流が流れ、前記磁性流体に対して磁場を与える電磁石と、
     を備えているステアリングダンパ制御装置。
  13.  請求項12に記載のステアリングダンパ制御装置において、
     前記ダンパは、磁性流体のせん断力によって減衰力を発生し、
     前記電磁石は、前記磁性流体のせん断力を変化させるステアリングダンパ制御装置。
  14.  請求項1から13のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重情報検出部は、前輪のサスペンションの圧力を検出する圧力検出部であり、
     前記減衰力調整部は、サスペンションの圧力の変化率に応じて前記第1指令値を決定するステアリングダンパ制御装置。
  15.  ステアリングダンパ制御装置を備え、
     前記ステアリングダンパ制御装置は、
      ステアリングに作用する減衰力を発生するダンパと、
      前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、
      ステアリングの舵角を検出する舵角検出部と、
      前記荷重情報検出部および前記舵角検出部の検出結果に基づいて、前記荷重の変化率または前記変化率に相当する値に応じた減衰力指令値である第1指令値、及び、舵角速度に応じた減衰力指令値である第2指令値のいずれかによって前記ダンパを制御する減衰力調整部と、
     を備えている鞍乗型車両。
PCT/JP2013/002961 2012-05-09 2013-05-08 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 WO2013168422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014514385A JP5922230B2 (ja) 2012-05-09 2013-05-08 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
EP13787871.6A EP2848510B1 (en) 2012-05-09 2013-05-08 Steering damper control apparatus, and saddle-ride type vehicle having same
US14/399,032 US9126652B2 (en) 2012-05-09 2013-05-08 Steering damper control apparatus, and a saddle riding type vehicle having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-107636 2012-05-09
JP2012107636 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168422A1 true WO2013168422A1 (ja) 2013-11-14

Family

ID=49550485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002961 WO2013168422A1 (ja) 2012-05-09 2013-05-08 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両

Country Status (4)

Country Link
US (1) US9126652B2 (ja)
EP (1) EP2848510B1 (ja)
JP (1) JP5922230B2 (ja)
WO (1) WO2013168422A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177823A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 鞍乗型車両
JPWO2021060039A1 (ja) * 2019-09-27 2021-04-01
JP2023048501A (ja) * 2021-09-28 2023-04-07 本田技研工業株式会社 鞍乗り型車両
US11939025B2 (en) 2019-09-27 2024-03-26 Honda Motor Co., Ltd. Straddle type vehicle and control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158985A1 (ja) * 2015-03-30 2016-10-06 本田技研工業株式会社 車両の駆動力制御装置
WO2018047136A1 (en) 2016-09-12 2018-03-15 Tvs Motor Company Limited Mounting of sensing element for a two-wheeled vehicle
WO2021149146A1 (ja) * 2020-01-21 2021-07-29 ヤマハ発動機株式会社 Mt型ストラドルドビークル
CN112896401B (zh) * 2021-03-17 2022-07-26 浙江春风动力股份有限公司 一种摩托车转向系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311492A (ja) * 1986-07-01 1988-01-18 カヤバ工業株式会社 二輪車のステアリングダンパの減衰力制御装置
JP2009083578A (ja) * 2007-09-28 2009-04-23 Honda Motor Co Ltd ステアリング補助システム及びステアリング補助方法
JP2009292377A (ja) * 2008-06-06 2009-12-17 Yamaha Motor Co Ltd ステアリングダンパシステム及びそれを備えた鞍乗り型車両
JP2012025181A (ja) 2010-07-20 2012-02-09 Yamaha Motor Co Ltd 鞍乗り型車両及び鞍乗り型車両に利用されるステアリングダンパ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201378A (ja) * 1992-01-27 1993-08-10 Honda Motor Co Ltd ステアリングダンパ
JP5078076B2 (ja) * 2007-07-02 2012-11-21 ヤマハモーターハイドロリックシステム株式会社 車両のステアリング緩衝方法
JP5255329B2 (ja) * 2008-06-04 2013-08-07 ヤマハ発動機株式会社 ステアリングダンパシステム及びそれを備えた鞍乗り型車両
JP2010254117A (ja) * 2009-04-24 2010-11-11 Yamaha Motor Co Ltd 鞍乗型車両
JP5396292B2 (ja) * 2010-01-21 2014-01-22 本田技研工業株式会社 鞍乗り型車両のステアリングダンパ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311492A (ja) * 1986-07-01 1988-01-18 カヤバ工業株式会社 二輪車のステアリングダンパの減衰力制御装置
JP2009083578A (ja) * 2007-09-28 2009-04-23 Honda Motor Co Ltd ステアリング補助システム及びステアリング補助方法
JP2009292377A (ja) * 2008-06-06 2009-12-17 Yamaha Motor Co Ltd ステアリングダンパシステム及びそれを備えた鞍乗り型車両
JP2012025181A (ja) 2010-07-20 2012-02-09 Yamaha Motor Co Ltd 鞍乗り型車両及び鞍乗り型車両に利用されるステアリングダンパ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848510A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177823A (ja) * 2018-03-30 2019-10-17 本田技研工業株式会社 鞍乗型車両
JPWO2021060039A1 (ja) * 2019-09-27 2021-04-01
WO2021060039A1 (ja) * 2019-09-27 2021-04-01 本田技研工業株式会社 鞍乗型車両及び制御装置
JP7261895B2 (ja) 2019-09-27 2023-04-20 本田技研工業株式会社 鞍乗型車両及び制御装置
US11939025B2 (en) 2019-09-27 2024-03-26 Honda Motor Co., Ltd. Straddle type vehicle and control device
JP2023048501A (ja) * 2021-09-28 2023-04-07 本田技研工業株式会社 鞍乗り型車両
JP7373532B2 (ja) 2021-09-28 2023-11-02 本田技研工業株式会社 鞍乗り型車両

Also Published As

Publication number Publication date
EP2848510A1 (en) 2015-03-18
JPWO2013168422A1 (ja) 2016-01-07
JP5922230B2 (ja) 2016-05-24
US9126652B2 (en) 2015-09-08
EP2848510A4 (en) 2015-05-06
EP2848510B1 (en) 2016-01-06
US20150081172A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5922230B2 (ja) ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
JP6469060B2 (ja) 前二輪揺動車両の揺動制御装置
JP6393932B2 (ja) 前二輪揺動車両の揺動制御装置
JP5255329B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
EP2923937B1 (en) Vehicle height adjusting device, control device for vehicle height adjusting device, and program
US4588198A (en) Steering system having controllable damper
JP5619995B2 (ja) ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
US20170106935A1 (en) Saddle riding type vehicle
JP2018024411A (ja) 自転車用制御装置、および、これを備える自転車用電動補助ユニット
JP2007125917A (ja) 制御システムおよびそれを備えた自動二輪車
WO2017200095A1 (ja) バーハンドルを有する鞍乗型車両
JP2009012530A (ja) 車両のステアリング緩衝方法、並びに車両のステアリング緩衝装置
JP5798682B2 (ja) ステアリングダンパおよびそれを備えた鞍乗型車両
JP2013112238A (ja) 車両
JP2012025181A (ja) 鞍乗り型車両及び鞍乗り型車両に利用されるステアリングダンパ装置
JP5255331B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
JP5633427B2 (ja) 自動二輪車用ステアリング緩衝装置
JP2013112234A (ja) 車両
JP2013071713A (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514385

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14399032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013787871

Country of ref document: EP