WO2013168223A1 - 半導体パッケージ及びその製造方法 - Google Patents

半導体パッケージ及びその製造方法 Download PDF

Info

Publication number
WO2013168223A1
WO2013168223A1 PCT/JP2012/061720 JP2012061720W WO2013168223A1 WO 2013168223 A1 WO2013168223 A1 WO 2013168223A1 JP 2012061720 W JP2012061720 W JP 2012061720W WO 2013168223 A1 WO2013168223 A1 WO 2013168223A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
stress relaxation
relaxation film
semiconductor package
mounting member
Prior art date
Application number
PCT/JP2012/061720
Other languages
English (en)
French (fr)
Inventor
謙磁 塚田
政利 藤田
雅登 鈴木
明宏 川尻
和裕 杉山
良崇 橋本
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2012/061720 priority Critical patent/WO2013168223A1/ja
Priority to US14/399,710 priority patent/US20150207050A1/en
Priority to JP2014514273A priority patent/JP6122423B2/ja
Publication of WO2013168223A1 publication Critical patent/WO2013168223A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24101Connecting bonding areas at the same height
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • H01L2224/251Disposition
    • H01L2224/2512Layout
    • H01L2224/25175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7615Means for depositing
    • H01L2224/76151Means for direct writing
    • H01L2224/76155Jetting means, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • H01L2224/82102Forming a build-up interconnect by additive methods, e.g. direct writing using jetting, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82909Post-treatment of the connector or the bonding area
    • H01L2224/82951Forming additional members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15156Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body

Definitions

  • the present invention relates to a semiconductor package in which the reliability of the wiring connecting the electrode portion of the semiconductor element mounted on the mounting member and the electrode portion on the mounting member side is improved, and a method for manufacturing the same.
  • Patent Document 1 Japanese Patent No. 3992038
  • a fluid resin material is discharged around a semiconductor element mounted on the wiring board with a dispenser and cured, so that the upper surface of the semiconductor element and the surface of the wiring board are
  • conductive ink is applied by a droplet discharge method such as inkjet along the wiring path connecting the electrode portion on the upper surface of the semiconductor element and the electrode portion of the wiring board. It has been proposed to form wiring by discharging.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-50911
  • the electrode portion on the upper surface of the semiconductor element and the mounting has the same height, and an insulator is embedded in the gap (groove) between the inner peripheral side surface of the element mounting recess of the mounting member and the outer peripheral side surface of the semiconductor element.
  • the wiring path between the electrode part on the upper surface of the semiconductor element and the electrode part of the mounting member is flattened, and conductive ink is discharged along the wiring path by a droplet discharge method such as inkjet. It has been proposed to form.
  • the wiring connecting the electrode portion on the upper surface of the semiconductor element and the electrode portion of the mounting member has a plurality of materials (semiconductor chip electrode portion, semiconductor chip, (Slope resin / embedded resin, mounting member, electrode portion of mounting member, etc.).
  • the large step at the material boundary of the wiring path is filled with a resin slope or embedded resin.
  • the droplet discharge method and the printing method have the advantage that the wiring can be drawn even if there is a minute step in the wiring path, but the wiring is dried and fired at a predetermined firing temperature after the wiring is drawn. ⁇
  • the wiring expands and contracts due to heat dissipation, and the wiring expands and contracts due to the temperature cycle when energized after production. At this time, stress may be concentrated on the corner of the step portion of the wiring due to the expansion / contraction difference between the wiring and the base, and the wiring may be disconnected at the corner of the step.
  • the problem to be solved by the present invention is that the wiring connecting the electrode part of the semiconductor element and the electrode part on the mounting member side is disconnected as much as possible at the corner part of the step part by repeated expansion and contraction. It is an object of the present invention to provide a semiconductor package and a manufacturing method thereof that can be prevented.
  • the present invention provides a semiconductor package in which a semiconductor element is mounted on a mounting member, and wiring that connects between the electrode part on the semiconductor element side and the electrode part on the mounting member side is formed.
  • a stress relaxation film for relaxing stress applied to the wiring due to a difference in expansion / contraction between the stepped portion and the wiring is formed on at least the stepped portion of the portion forming the wiring,
  • the wiring is formed on the stress relaxation film by any one of a droplet discharge method, a printing method, plating, PVD, mounting of a conductive member, and the like.
  • the stress acting on the stepped portion of the wiring can be relieved by the stress relaxation film due to the difference in expansion / contraction between the stepped portion and the wiring, so that the wiring formed by the droplet discharge method or the printing method expands / shrinks.
  • the present invention forms a stress relaxation film for relaxing stress applied to the wiring due to a difference in expansion and contraction between the stepped portion and the wiring on at least an upper surface and / or a side surface of the stepped portion of the wiring. You may make it do. Even in this case, the stress acting on the stepped portion of the wiring due to the difference in expansion / contraction between the base and the wiring at the stepped portion can be relieved by the stress relaxation film formed on the upper surface and / or side surface thereof. It is possible to prevent the wiring formed by the discharge method or the printing method from being disconnected at the corners of the stepped portions due to repeated expansion and contraction.
  • the stress relaxation film may be formed of a material whose difference in linear expansion coefficient from the wiring is a predetermined value or less (for example, 40 ppm / ° C. or less).
  • the stress relaxation film may be formed of a material that has as little difference in linear expansion coefficient as the wiring. This is because the stress relaxation effect of the stress relaxation film increases as the difference in linear expansion coefficient between the stress relaxation film and the wiring decreases.
  • the stress relaxation film is formed by a droplet discharge method or a printing method, the stress relaxation film can be efficiently formed with the same positional accuracy as the wiring.
  • an insulating film used as a stress relaxation film or a solid insulator may be bonded to the base or wiring.
  • FIG. 1 is a sectional view showing the structure of an LED package of Example 1 of the present invention.
  • FIG. 2 is a plan view of the LED package of Example 1.
  • FIG. 3 is a cross-sectional view showing the structure of the LED package of Example 2.
  • FIG. 4 is a cross-sectional view showing the structure of the LED package of Example 3.
  • FIG. 5 is a cross-sectional view showing the structure of the LED package of Example 4.
  • 6 is a plan view of the LED package of Example 5.
  • FIG. 1 is a sectional view showing the structure of an LED package of Example 1 of the present invention.
  • FIG. 2 is a plan view of the LED package of Example 1.
  • FIG. 3 is a cross-sectional view showing the structure of the LED package of Example 2.
  • FIG. 4 is a cross-sectional view showing the structure of the LED package of Example 3.
  • FIG. 5 is a cross-sectional view showing the structure of the LED package of Example 4.
  • 6 is a plan view of the LED package of Example 5.
  • the mounting member 10 is configured by molding a package body 13 having an element mounting recess 12 in a lead frame 11 with an insulating resin.
  • An LED element 14 (light emitting element), which is a semiconductor element, is die-bonded (bonded) to the center of the bottom surface of the element mounting recess 12 of the package body 13.
  • the depth dimension (height dimension) of the element mounting recess 12 is set to be approximately the same as the height dimension of the LED element 14, and the electrode portion 15 on the upper surface of the LED element 14 mounted in the element mounting recess 12 is the upper surface of the package body 13.
  • the lead frame 11 has almost the same height as the electrode portion 11a.
  • a transparent embedded resin layer 16 is formed by filling a transparent insulating resin around the LED element 14 in the element mounting recess 12 of the package body 13 by a droplet discharge method such as an inkjet or a dispenser.
  • a droplet discharge method such as an inkjet or a dispenser.
  • the wiring path connecting the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11a on the upper surface of the package body 13 has a small step (unevenness) due to the embedded resin layer 16 filled around the LED element 14.
  • an insulating stress relaxation film 18 serving as a base of the wiring 17 described later straddles the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11 a on the upper surface of the package body 13. It is formed in a linear or strip shape.
  • the stress relaxation film 18 is an insulating material having a difference in linear expansion coefficient from the wiring 17 of a predetermined value A or less (for example, 40 ppm / ° C. or less) and a Young's modulus of a predetermined value B or more (for example, 2.8 GPa or more). Preferably, it is formed of an insulating material having a difference in linear expansion coefficient with the wiring 17 as small as possible and a Young's modulus as large as possible.
  • the stress relaxation film 18 is formed by ejecting or printing the ink of the insulating material on the wiring path by a droplet discharge method such as ink jet or dispenser or a printing method, thereby forming a pattern of the stress relaxation film 18 on the wiring path.
  • the stress relieving film 18 is formed by drawing in a line shape or a belt shape on the top and drying and curing.
  • examples of the material of the stress relaxation film 18 include an insulating material such as an epoxy resin type, a polyimide resin type, and a glass (SiO 2 ) type.
  • insulating materials such as an epoxy resin type, a polyimide resin type, and a glass (SiO 2 ) type.
  • a linear expansion coefficient and a Young The ratio and other characteristics may be selected.
  • a conductive ink (ink containing conductive particles such as Ag) is discharged or printed on the stress relaxation film 18 by a droplet discharge method such as an ink jet or a dispenser or a printing method.
  • the pattern of the wiring 17 is drawn on the stress relaxation film 18 across the electrode part 15 on the upper surface of the LED element 14 and the electrode part 11a on the upper surface of the package body 13, and this is dried and fired to obtain the LED element.
  • a wiring 17 connects the electrode portion 15 on the upper surface 14 and the electrode portion 11 a on the upper surface of the package body 13.
  • the firing temperature of the wiring 17 is about 200 ° C. (for example, 180 ° C. or more), and the firing time is about 30 to 60 minutes.
  • the stress relaxation film 18 is formed to have a line width that is larger than the line width of the wiring 17 by a value corresponding to a manufacturing variation or larger so that the wiring 17 does not protrude from the stress relaxation film 18.
  • the line width of the stress relaxation film 18 may be set in a range of, for example, 1.2 to 2.5 times, more preferably 1.5 to 2.0 times the line width of the wiring 17.
  • the wiring 17 that connects between the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11a on the upper surface of the package body 13 includes a plurality of materials (the electrode portion 15 on the upper surface of the LED element 14, the LED element 14). , The embedded resin layer 16, the package body 13, the electrode portion 11a of the lead frame 11, etc.).
  • the large step (concave portion) formed in the material boundary portion of the wiring path is filled with the embedded resin layer 16, but in practice, it is difficult to completely reduce the step in the material boundary portion to zero. There is a minute step left. Further, there is a minute step between the upper surface of the LED element 14 and the electrode portion 15 and between the upper surface of the package body 13 and the electrode portion 11a.
  • the droplet discharge method or the printing method has an advantage that the wiring 17 can be drawn even if there is a minute step in the wiring path.
  • the wiring 17 is dried and fired at a predetermined firing temperature after drawing, The wiring 17 expands and contracts due to heating and heat dissipation, and the wiring 17 expands and contracts due to a temperature cycle during energization use after manufacture. For this reason, in the conventional structure described above, stress is concentrated on the corner of the step portion of the wiring due to the expansion / contraction difference between the wiring and the base, and the wiring is formed at the corner of the step portion. There was a break.
  • the stress relaxation film for relaxing the stress applied to the wiring 17 due to the expansion / contraction difference between the ground and the wiring 17 on the ground (wiring path) on which the wiring 17 is formed. 18 is formed, and the wiring 17 is formed on the stress relaxation film 18 by a droplet discharge method or a printing method.
  • the stress acting on the stepped portion can be relaxed by the stress relaxation film 18, and the wiring 17 formed by the droplet discharge method or the printing method is prevented from breaking at the corner portion of the stepped portion due to repeated expansion and contraction. And the reliability of the wiring 17 can be improved.
  • the LED element 14 is die-bonded on the wiring substrate 21 that is a mounting member.
  • a fluid resin material is discharged by a dispenser to form an insulating resin slope 22 that connects the upper surface of the LED element 14 and the upper surface of the wiring board 21 with an inclined surface,
  • a stress relaxation film 18 similar to that of the first embodiment extends over the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 23 on the upper surface of the wiring substrate 21 by a droplet discharge method or a printing method. Drawn in a line or strip.
  • conductive ink (ink containing conductive particles such as Ag) is ejected onto the stress relaxation film 18 by a droplet ejection method, and the pattern of the wiring 17 is changed to the LED element 14.
  • the wiring 17 is connected to the electrode part 23 on the upper surface.
  • a stress relaxation film 25 similar to the stress relaxation film 18 on the lower surface side of the wiring 17 is formed on the upper surface of the wiring 17 by a droplet discharge method or a printing method. And the upper and lower surfaces of the wiring 17 are sandwiched between the stress relaxation films 25 and 18.
  • Other configurations are the same as those of the first embodiment.
  • the stress relaxation effect of the wiring 17 by the stress relaxation films 18 and 25 is increased, and a droplet discharge method or printing is performed. It is possible to more reliably prevent the wiring 17 formed by the method from being disconnected at the corner of the stepped portion due to repeated expansion and contraction.
  • the LED package having the structure of the second embodiment also has the same stress relaxation film as the stress relaxation film 18 on the lower surface side of the wiring 17 on the upper surface of the wiring 17 as in the third embodiment. May be formed by a droplet discharge method or a printing method.
  • the stress relaxation film 18 is formed in the wiring path connecting the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11a on the upper surface of the package body 13.
  • the pattern of the wiring 17 is drawn by the droplet discharge method or the printing method, and this is dried and baked to wire between the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11a on the upper surface of the package body 13.
  • a stress relaxation film 25 similar to that of the third embodiment is formed on the upper surface of the wiring 17 by a droplet discharge method or a printing method.
  • the stress acting on the stepped portion of the wiring 17 due to the difference in expansion / contraction between the base at the stepped portion and the wiring 17 can be relaxed by the stress relaxation film 25 formed on the upper surface thereof. Therefore, it is possible to prevent the wiring 17 formed by the droplet discharge method or the printing method from being disconnected at the corner portion of the step portion due to repeated expansion and contraction.
  • the wiring connecting between the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 23 on the upper surface of the wiring substrate 21 as in the fourth embodiment is formed by the droplet discharge method or the printing method without forming the stress relaxation film 18 in the path, and the stress relaxation film similar to that of the third embodiment is formed on the upper surface of the wiring 17 by the droplet discharge method or It may be formed by a printing method.
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • a wiring path connecting the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 11a on the upper surface of the package body 13 is used.
  • the wiring 17 is formed by the droplet discharge method or the printing method without forming the stress relaxation film 18.
  • stress relaxation films 27 similar to those of the third embodiment are formed along both side surfaces (or one side surface) of the wiring 17 by a droplet discharge method or a printing method.
  • the stress acting on the step portion of the wiring 17 is formed along both side surfaces (or one side surface) due to the difference in expansion / contraction between the ground at the step portion and the wiring 17. It is possible to relax by the stress relaxation film 27, and it is possible to prevent the wiring 17 formed by the droplet discharge method or the printing method from breaking at the corner of the step portion due to repeated expansion and contraction.
  • the wiring connecting between the electrode portion 15 on the upper surface of the LED element 14 and the electrode portion 23 on the upper surface of the wiring substrate 21 is the same as in the fifth embodiment.
  • the wiring 17 is formed by a droplet discharge method or a printing method, and the stress relaxation film is dropped along the both side surfaces (or one side surface) of the wiring 17 by the droplet discharge method. Alternatively, it may be formed by a printing method.
  • the stress relaxation film when the stress relaxation film is formed on the upper surface of the wiring 17, the stress relaxation film is formed wide so that the stress relaxation film protrudes from the width of the wiring 17. A stress relaxation film may be formed across the side surface. Similarly, when the stress relaxation film is formed on the lower surface side of the wiring 17, the stress relaxation film is formed wide so that the stress relaxation film protrudes from the both sides (or one side) of the wiring 17. A stress relaxation film may be formed across the lower surface and both side surfaces (or one side surface). When a stress relaxation film is formed on the lower surface side of the wiring 17, the stress relaxation film may be formed on almost the entire upper surface of the embedded resin layer 16 or the resin slope 22. In the LED package, when the stress relaxation film is formed over a wide range, it is desirable to form the stress relaxation film with a transparent material so that the stress relaxation film does not block the light emission of the LED element 14.
  • the stress relaxation films 18, 25, 27 are formed over almost the entire length of the wiring 17.
  • a stress relaxation film may be formed only on the stepped portion, or The stress relaxation film may be formed only on the stepped portion and its peripheral portion.
  • the method of forming the wiring 17 is not limited to the droplet discharge method or the printing method, and may be formed by any one of plating, PVD, mounting of a conductive member, and the like.
  • the method of forming the stress relaxation film is not limited to the droplet discharge method or the printing method, and an insulating film or a solid insulator used as the stress relaxation film may be bonded to the base or the wiring.
  • the present invention is not limited to an LED package, and can be implemented with various modifications within a range not departing from the gist, such as being applicable to various semiconductor packages in which semiconductor elements other than LED elements are mounted on a mounting member. Needless to say.
  • SYMBOLS 10 Mounting member, 11 ... Lead frame, 11a ... Electrode part, 12 ... Element mounting recessed part, 13 ... Package main body, 14 ... LED element (semiconductor element), 15 ... Electrode part, 16 ... Embedded resin layer, 17 ... Wiring, DESCRIPTION OF SYMBOLS 18 ... Stress relaxation film, 21 ... Wiring board (mounting member), 22 ... Resin slope, 23 ... Electrode part, 25, 27 ... Stress relaxation film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

 搭載部材10上に搭載したLED素子14(半導体素子)上面の電極部15と該搭載部材10側の電極部11aとの間を接続する配線17を液滴吐出法又は印刷法で形成した半導体パッケージにおいて、配線17を形成する下地のうちの少なくとも段差部に、該段差部での下地と該配線17との膨張・収縮の差によって該配線17に加わる応力を緩和するための応力緩和膜18を形成し、該応力緩和膜18上に該配線17を液滴吐出法又は印刷法で形成する。応力緩和膜18は、配線17との線膨張率の差ができるだけ小さく、且つヤング率ができるだけ大きい絶縁性材料で形成することが好ましい。

Description

半導体パッケージ及びその製造方法
 本発明は、搭載部材上に搭載した半導体素子の電極部と該搭載部材側の電極部との間を接続する配線の信頼性を向上させた半導体パッケージ及びその製造方法に関する発明である。
 従来より、半導体素子の実装工程では、半導体素子を搭載部材(回路基板、リードフレーム等)にダイボンドした後に、該半導体素子側の電極部と搭載部材側の電極部との間をワイヤボンディングで配線するのが一般的である。
 しかし、特許文献1(特許第3992038号公報)に記載されているように、ワイヤボンディングを行うときの機械的なストレスによって不良が発生する可能性があるため、ワイヤボンディングに代わる接続信頼性の高い実装構造を低コストで実現することを目的として、配線基板上に搭載した半導体素子の周囲に流動性の樹脂材料をディスペンサで吐出して硬化させて、半導体素子の上面と配線基板の表面との間を傾斜面でつなぐ樹脂スロープを形成した後、半導体素子上面の電極部と配線基板の電極部との間を接続する配線の経路に沿ってインクジェット等の液滴吐出法で導電性のインクを吐出して配線を形成することが提案されている。
 或は、特許文献2(特開2005-50911号公報)に記載されているように、搭載部材に形成した素子搭載凹部内に半導体素子を搭載することで、半導体素子上面の電極部と該搭載部材の素子搭載凹部の外側に設けた電極部とを同一高さとすると共に、該搭載部材の素子搭載凹部の内周側面と半導体素子の外周側面との間の隙間(溝)に絶縁体を埋め込むことで、半導体素子上面の電極部と搭載部材の電極部との間の配線経路を平坦化して、該配線経路に沿ってインクジェット等の液滴吐出法で導電性のインクを吐出して配線を形成することが提案されている。
特許第3992038号公報 特開2005-50911号公報
 上記特許文献1,2の配線構造では、半導体素子上面の電極部と搭載部材の電極部との間を接続する配線は、配線経路に位置する複数の材料(半導体チップの電極部、半導体チップ、スロープ樹脂・埋込み樹脂、搭載部材、搭載部材の電極部等)に跨がって形成する必要がある。配線経路の材料境界部に出来る大きな段差は、樹脂スロープや埋込み樹脂によって埋めるようにしているが、実際には材料境界部の段差を完全に0にすることは困難であり、微小な段差が残ってしまう。また、半導体チップ上面と電極部との間や、搭載部材上面と電極部との間にも、微小な段差が存在する。液滴吐出法や印刷法では、配線経路に微小な段差があっても配線を描画できる利点があるが、配線描画後に配線を所定の焼成温度で乾燥・焼成するため、乾燥・焼成時の加熱・放熱により配線が膨張・収縮したり、製造後の通電使用時の温度サイクルによって配線が膨張・収縮する。この際、配線と下地との膨張・収縮の差によって該配線の段差部の角部に応力が集中的に作用して、該段差部の角部で該配線が断線することがあった。
 そこで、本発明が解決しようとする課題は、半導体素子の電極部と該搭載部材側の電極部との間を接続する配線が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止できる半導体パッケージ及びその製造方法を提供することである。
 上記課題を解決するために、本発明は、搭載部材上に半導体素子を搭載し、該半導体素子側の電極部と該搭載部材側の電極部との間を接続する配線を形成した半導体パッケージ及びその製造方法において、前記配線を形成する部分のうちの少なくとも段差部に、該段差部と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成し、該応力緩和膜上に該配線を液滴吐出法、印刷法、めっき、PVD、導電部材の実装等のいずれかで形成するようにしたものである。このようにすれば、段差部と配線との膨張・収縮の差によって配線の段差部に作用する応力を応力緩和膜によって緩和できるため、液滴吐出法や印刷法で形成した配線が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止できる。
 また、本発明は、配線のうちの少なくとも段差部の上面及び/又は側面に、該段差部と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成するようにしても良い。このようにしても、段差部での下地と配線との膨張・収縮の差によって配線の段差部に作用する応力を、その上面及び/又は側面に形成した応力緩和膜によって緩和できるため、液滴吐出法や印刷法で形成した配線が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止できる。
 この場合、応力緩和膜は、配線との線膨張率の差が所定値以下(例えば40ppm/℃以下)となる材料で形成すれば良い。要するに、応力緩和膜は、配線との線膨張率の差ができるだけ小さい材料で形成すれば良い。応力緩和膜と配線との線膨張率の差が小さくなるほど、応力緩和膜による応力緩和効果が大きくなるためである。
 また、応力緩和膜を液滴吐出法又は印刷法で形成すれば、配線と同程度の位置精度で応力緩和膜を能率良く形成できる。その他、応力緩和膜として用いる絶縁フィルム又は固体状の絶縁物を下地や配線に接合するようにしても良い。
図1は本発明の実施例1のLEDパッケージの構造を示す断面図である。 図2は実施例1のLEDパッケージの平面図である。 図3は実施例2のLEDパッケージの構造を示す断面図である。 図4は実施例3のLEDパッケージの構造を示す断面図である。 図5は実施例4のLEDパッケージの構造を示す断面図である。 図6は実施例5のLEDパッケージの平面図である。
 以下、本発明を実施するための形態をLEDパッケージに適用して具体化した幾つかの実施例を説明する。
 本発明の実施例1を図1及び図2に基づいて説明する。
 搭載部材10は、リードフレーム11に素子搭載凹部12を有するパッケージ本体13を絶縁性樹脂で成形して構成されている。このパッケージ本体13の素子搭載凹部12の底面中央部には、半導体素子であるLED素子14(発光素子)がダイボンディング(接合)されている。素子搭載凹部12の深さ寸法(高さ寸法)は、LED素子14の高さ寸法とほぼ同一に設定され、素子搭載凹部12内に搭載したLED素子14上面の電極部15がパッケージ本体13上面のリードフレーム11の電極部11aとほぼ同じ高さとなっている。
 パッケージ本体13の素子搭載凹部12内のうちのLED素子14の周囲に、透明な絶縁性樹脂をインクジェット、ディスペンサ等の液滴吐出法により充填して透明な埋込み樹脂層16が形成されている。これにより、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間をつなぐ配線経路は、LED素子14の周囲に充填された埋込み樹脂層16により段差(凹凸)が小さくなっており、該埋込み樹脂層16の上面に、後述する配線17の下地となる絶縁性の応力緩和膜18がLED素子14上面の電極部15とパッケージ本体13上面の電極部11aとに跨がって線状又は帯状に形成されている。
 この応力緩和膜18は、配線17との線膨張率の差が所定値A以下(例えば40ppm/℃以下)で且つヤング率が所定値B以上(例えば2.8GPa以上)の絶縁性材料、より好ましくは、配線17との線膨張率の差ができるだけ小さく、且つヤング率ができるだけ大きい絶縁性材料で形成されている。この応力緩和膜18の形成方法は、インクジェット、ディスペンサ等の液滴吐出法又は印刷法により、上記絶縁性材料のインクを配線経路上に吐出又は印刷して、応力緩和膜18のパターンを配線経路上に線状又は帯状に描画して乾燥・硬化させて応力緩和膜18を形成する。
 ここで、応力緩和膜18の材料としては、例えば、エポキシ樹脂系、ポリイミド樹脂系、ガラス(SiO)系等の絶縁性材料があり、これらの絶縁性材料の中から、線膨張率とヤング率とその他の特性(例えば光透過性、耐湿性、埋込み樹脂層16及び配線17に対する密着性等)を考慮して選択すれば良い。
 そして、応力緩和膜18の乾燥・硬化後に、インクジェット、ディスペンサ等の液滴吐出法又は印刷法により導電性のインク(Ag等の導体粒子を含むインク)を応力緩和膜18上に吐出又は印刷して、配線17のパターンをLED素子14上面の電極部15とパッケージ本体13上面の電極部11aとに跨がって応力緩和膜18上に描画し、これを乾燥して焼成して、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間を配線17で接続する。この際、配線17の焼成温度は、200℃程度(例えば180℃以上)で、焼成時間は30分~60分程度である。
 この場合、応力緩和膜18は、配線17が該応力緩和膜18からはみ出さないように該配線17の線幅よりも製造ばらつき相当値以上太い線幅に形成されている。具体的には、応力緩和膜18の線幅は、例えば、配線17の線幅の1.2~2.5倍、より好ましくは、1.5~2.0倍の範囲で設定すると良い。
 ところで、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間を接続する配線17は、配線経路に位置する複数の材料(LED素子14上面の電極部15、LED素子14の上面、埋込み樹脂層16、パッケージ本体13、リードフレーム11の電極部11a等)に跨がって形成する必要がある。前述したように、配線経路の材料境界部に出来る大きな段差(凹部)は、埋込み樹脂層16によって埋めるようにしているが、実際には材料境界部の段差を完全に0にすることは困難であり、微小な段差が
残ってしまう。また、LED素子14上面と電極部15との間や、パッケージ本体13上面と電極部11aとの間にも、微小な段差が存在し、更には、LED素子14の上面にも、微小な段差が存在する。液滴吐出法や印刷法では、配線経路に微小な段差があっても配線17を描画できる利点があるが、描画後に配線17を所定の焼成温度で乾燥・焼成するため、乾燥・焼成時の加熱・放熱により配線17が膨張・収縮したり、製造後の通電使用時の温度サイクルによって配線17が膨張・収縮する。このため、前述した従来構造のものでは、配線と下地との膨張・収縮の差によって該配線の段差部の角部に応力が集中的に作用して、該段差部の角部で該配線が断線することがあった。
 これに対し、本実施例1では、配線17を形成する下地(配線経路)に、該下地と該配線17との膨張・収縮の差によって該配線17に加わる応力を緩和するための応力緩和膜18を形成し、該応力緩和膜18上に該配線17を液滴吐出法又は印刷法で形成するようにしたので、段差部での下地と配線17との膨張・収縮の差によって配線17の段差部に作用する応力を応力緩和膜18によって緩和することが可能となり、液滴吐出法や印刷法で形成した配線17が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止でき、配線17の信頼性を向上できる。
 次に、図3を用いて本発明の実施例2を説明する。
 本実施例2では、搭載部材である配線基板21上にLED素子14がダイボンディングされている。このLED素子14の周囲には、流動性の樹脂材料をディスペンサで吐出して、LED素子14の上面と配線基板21の上面との間を傾斜面でつなぐ絶縁性の樹脂スロープ22を形成し、該樹脂スロープ22の表面に、前記実施例1と同様の応力緩和膜18が液滴吐出法又は印刷法によりLED素子14上面の電極部15と配線基板21上面の電極部23とに跨がって線状又は帯状に描画している。
 そして、応力緩和膜18の乾燥・硬化後に、液滴吐出法により導電性のインク(Ag等の導体粒子を含むインク)を応力緩和膜18上に吐出して、配線17のパターンをLED素子14上面の電極部15と配線基板21上面の電極部23とに跨がって応力緩和膜18上に描画し、これを乾燥して焼成して、LED素子14上面の電極部15と配線基板21上面の電極部23との間を配線17で接続する。
 以上説明した本実施例2でも、前記実施例1と同様の効果を得ることができる。
 次に、図4を用いて本発明の実施例3を説明する。
 本実施例3では、前記実施例1の構造のLEDパッケージにおいて、配線17の上面にも、該配線17の下面側の応力緩和膜18と同様の応力緩和膜25を液滴吐出法又は印刷法により形成し、該配線17の上下両面を応力緩和膜25,18でサンドイッチ状に挟み込んだ構成としている。その他の構成は、前記実施例1と同じである。
 本実施例3では、配線17の上下両面を応力緩和膜18,25でサンドイッチ状に挟み込んでいるため、応力緩和膜18,25による配線17の応力緩和効果が大きくなり、液滴吐出法や印刷法で形成した配線17が膨張・収縮の繰り返しにより段差部の角部で断線することをより確実に防止できる。
 尚、前記実施例2(図3参照)の構造のLEDパッケージについても、本実施例3と同様に、配線17の上面に、該配線17の下面側の応力緩和膜18と同様の応力緩和膜を液滴吐出法又は印刷法により形成するようにしても良い。
 次に、図5を用いて本発明の実施例4を説明する。
 本実施例4では、前記実施例1の構造のLEDパッケージにおいて、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間をつなぐ配線経路に、応力緩和膜18を形成することなく、液滴吐出法又は印刷法により配線17のパターンを描画し、これを乾燥して焼成して、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間を配線17で接続する。この後、配線17の上面に、前記実施例3と同様の応力緩和膜25を液滴吐出法又は印刷法により形成する。
 以上説明した本実施例4においても、段差部での下地と配線17との膨張・収縮の差によって配線17の段差部に作用する応力をその上面に形成した応力緩和膜25によって緩和することが可能となり、液滴吐出法や印刷法で形成した配線17が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止できる。
 尚、前記実施例2(図3参照)の構造のLEDパッケージについても、本実施例4と同様に、LED素子14上面の電極部15と配線基板21上面の電極部23との間をつなぐ配線経路に、応力緩和膜18を形成することなく、液滴吐出法又は印刷法により配線17を形成し、該配線17の上面に、前記実施例3と同様の応力緩和膜を液滴吐出法又は印刷法により形成するようにしても良い。
 次に、図6を用いて本発明の実施例5を説明する。
 本実施例5では、前記実施例1の構造のLEDパッケージにおいて、前記実施例4と同様に、LED素子14上面の電極部15とパッケージ本体13上面の電極部11aとの間をつなぐ配線経路に、応力緩和膜18を形成することなく、液滴吐出法又は印刷法により配線17を形成する。この後、配線17の両側面(又は片方の側面)に沿って前記実施例3と同様の応力緩和膜27を液滴吐出法又は印刷法により形成する。
 以上説明した本実施例5においても、段差部での下地と配線17との膨張・収縮の差によって配線17の段差部に作用する応力をその両側面(又は片方の側面)に沿って形成した応力緩和膜27により緩和することが可能となり、液滴吐出法や印刷法で形成した配線17が膨張・収縮の繰り返しにより段差部の角部で断線することを極力防止できる。
 尚、前記実施例2(図3参照)の構造のLEDパッケージについても、本実施例5と同様に、LED素子14上面の電極部15と配線基板21上面の電極部23との間をつなぐ配線経路に、応力緩和膜18を形成することなく、液滴吐出法又は印刷法により配線17を形成し、該配線17の両側面(又は片方の側面)に沿って応力緩和膜を液滴吐出法又は印刷法により形成するようにしても良い。
 また、配線17の上面に応力緩和膜を形成する場合に、応力緩和膜が配線17の幅をはみ出すように応力緩和膜を幅広に形成することで、配線17の上面及び両側面(又は片方の側面)に跨がって応力緩和膜を形成するようにしても良い。同様に、配線17の下面側に応力緩和膜を形成する場合に、応力緩和膜が配線17の幅を両側(又は片側)にはみ出すように応力緩和膜を幅広に形成することで、配線17の下面及び両側面(又は片方の側面)に跨がって応力緩和膜を形成するようにしても良い。また、配線17の下面側に応力緩和膜を形成する場合は、埋込み樹脂層16や樹脂スロープ22の上面のほぼ全体に応力緩和膜を形成するようにしても良い。また、LEDパッケージにおいて、応力緩和膜を広範囲に形成する場合は、応力緩和膜がLED素子14の光の放射を遮らないように、透明な材料で応力緩和膜を形成することが望ましい。
 上記各実施例1~5では、配線17のほぼ全長にわたって応力緩和膜18,25,27
を形成するようにしたが、下地と配線17との膨張・収縮の差によって配線17の段差部に応力が集中することを考慮して、段差部のみに応力緩和膜を形成したり、或は、段差部及びその周辺部のみに応力緩和膜を形成するようにしても良い。
 また、配線17を形成する方法は、液滴吐出法又は印刷法に限定されず、めっき、PVD、導電部材の実装等のいずれかで形成するようにしても良い。
 また、応力緩和膜を形成する方法も、液滴吐出法又は印刷法に限定されず、応力緩和膜として用いる絶縁フィルム又は固体状の絶縁物を下地や配線に接合するようにしても良い。
 その他、本発明は、LEDパッケージに限定されず、LED素子以外の半導体素子を搭載部材に搭載した様々な半導体パッケージに適用して実施できる等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
 10…搭載部材、11…リードフレーム、11a…電極部、12…素子搭載凹部、13…パッケージ本体、14…LED素子(半導体素子)、15…電極部、16…埋込み樹脂層、17…配線、18…応力緩和膜、21…配線基板(搭載部材)、22…樹脂スロープ、23…電極部、25,27…応力緩和膜

Claims (8)

  1.  搭載部材上に半導体素子を搭載し、該半導体素子側の電極部と該搭載部材側の電極部と
    の間を接続する配線を形成した半導体パッケージにおいて、
     前記配線を形成する部分のうちの少なくとも段差部に、該段差部と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成し、該応力緩和層上に該配線を形成したことを特徴とする半導体パッケージ。
  2.  前記配線のうちの少なくとも段差部の上面及び/又は側面にも、該段差部での下地と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成したことを特徴とする請求項1に記載の半導体パッケージ。
  3.  搭載部材上に半導体素子を搭載し、該半導体素子側の電極部と該搭載部材側の電極部との間を接続する配線を形成した半導体パッケージにおいて、
     前記配線のうちの少なくとも段差部の上面及び/又は側面に、該段差部での下地と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成したことを特徴とする半導体パッケージ。
  4.  前記配線は、液滴吐出法、印刷法、めっき、PVD、導電部材の実装のいずれかで形成されている特徴とする請求項1乃至3のいずれかに記載の半導体パッケージ。
  5.  前記応力緩和膜は、前記配線との線膨張率の差が所定値以下となる材料で形成されていることを特徴とする請求項1乃至4のいずれかに記載の半導体パッケージ。
  6.  前記応力緩和膜は、液滴吐出法又は印刷法で形成されていることを特徴とする請求項1乃至5のいずれかに記載の半導体パッケージ。
  7.  搭載部材上に半導体素子を搭載し、該半導体素子側の電極部と該搭載部材側の電極部との間を接続する配線を形成する半導体パッケージの製造方法において、
     前記配線を形成する部分のうちの少なくとも段差部に、該段差部と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成する工程と、
     前記応力緩和層上に前記配線を液滴吐出法、印刷法、めっき、PVD、導電部材の実装のいずれかで形成する工程と
     を含むことを特徴とする半導体パッケージの製造方法。
  8.  搭載部材上に半導体素子を搭載し、該半導体素子側の電極部と該搭載部材側の電極部との間を接続する配線を形成する半導体パッケージの製造方法において、
     前記配線を液滴吐出法、印刷法、めっき、PVD、導電部材の実装のいずれかで形成する工程と、
     前記配線のうちの少なくとも段差部の上面及び/又は側面に、該段差部と該配線との膨張・収縮の差によって該配線に加わる応力を緩和するための応力緩和膜を形成する工程と
     を含むことを特徴とする半導体パッケージの製造方法。
PCT/JP2012/061720 2012-05-08 2012-05-08 半導体パッケージ及びその製造方法 WO2013168223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/061720 WO2013168223A1 (ja) 2012-05-08 2012-05-08 半導体パッケージ及びその製造方法
US14/399,710 US20150207050A1 (en) 2012-05-08 2012-05-08 Semiconductor package and manufacturing method thereof
JP2014514273A JP6122423B2 (ja) 2012-05-08 2012-05-08 Ledパッケージ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061720 WO2013168223A1 (ja) 2012-05-08 2012-05-08 半導体パッケージ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013168223A1 true WO2013168223A1 (ja) 2013-11-14

Family

ID=49550308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061720 WO2013168223A1 (ja) 2012-05-08 2012-05-08 半導体パッケージ及びその製造方法

Country Status (3)

Country Link
US (1) US20150207050A1 (ja)
JP (1) JP6122423B2 (ja)
WO (1) WO2013168223A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061436A1 (ja) * 2016-09-27 2018-04-05 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2018079046A1 (ja) * 2016-10-28 2018-05-03 株式会社村田製作所 電子部品装置
WO2020066490A1 (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 積層体および積層体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201901887A (zh) * 2017-05-24 2019-01-01 以色列商奧寶科技股份有限公司 於未事先圖樣化基板上電器互連電路元件
US10910325B2 (en) * 2017-05-29 2021-02-02 Intel Corporation Integrated circuit packages with conductive element having cavities housing electrically connected embedded components
DE102018101813A1 (de) * 2018-01-26 2019-08-01 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil und verfahren zur herstellung von optoelektronischen halbleiterbauteilen
DE102018111175A1 (de) * 2018-05-09 2019-11-14 Osram Opto Semiconductors Gmbh Pixel, Multipixel-LED-Modul und Herstellungsverfahren
WO2020022808A1 (ko) * 2018-07-25 2020-01-30 주식회사 제이마이크로 투명 발광 디스플레이 필름, 이의 제조 방법, 및 이를 사용한 투명 발광 사이니지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214444A (ja) * 1985-03-18 1986-09-24 Fujitsu Ltd 半導体装置
JP2009016711A (ja) * 2007-07-09 2009-01-22 Seiko Instruments Inc 樹脂封止型半導体装置
JP2010114221A (ja) * 2008-11-05 2010-05-20 Seiko Epson Corp 電子装置、及び電子装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926262U (ja) * 1983-03-01 1984-02-18 セイコーエプソン株式会社 電子装置
JPH0536752A (ja) * 1990-12-25 1993-02-12 Hitachi Ltd 半導体装置
JP3210740B2 (ja) * 1992-08-28 2001-09-17 株式会社日立製作所 多層回路基板および電子モジュ−ルならびに電子装置
EP1091399A4 (en) * 1998-06-12 2002-01-16 Hitachi Ltd SEMICONDUCTOR DEVICE AND METHOD FOR THE PRODUCTION
JP2005050870A (ja) * 2003-07-29 2005-02-24 Kyocera Corp 光プリンタヘッド
JP2005079303A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp 半導体パッケージ、電子機器および半導体パッケージの製造方法
JP2005223067A (ja) * 2004-02-04 2005-08-18 Seiko Epson Corp 電子デバイス及びその製造方法
JP5018024B2 (ja) * 2006-11-08 2012-09-05 セイコーエプソン株式会社 電子部品の実装方法、電子基板、及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214444A (ja) * 1985-03-18 1986-09-24 Fujitsu Ltd 半導体装置
JP2009016711A (ja) * 2007-07-09 2009-01-22 Seiko Instruments Inc 樹脂封止型半導体装置
JP2010114221A (ja) * 2008-11-05 2010-05-20 Seiko Epson Corp 電子装置、及び電子装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061436A1 (ja) * 2016-09-27 2018-04-05 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US11387807B2 (en) 2016-09-27 2022-07-12 Murata Manufacturing Co., Ltd. Elastic wave device, high-frequency front end circuit, and communication device
WO2018079046A1 (ja) * 2016-10-28 2018-05-03 株式会社村田製作所 電子部品装置
CN109844935A (zh) * 2016-10-28 2019-06-04 株式会社村田制作所 电子部件装置
US10804196B2 (en) 2016-10-28 2020-10-13 Murata Manufacturing Co., Ltd. Electronic component device
CN109844935B (zh) * 2016-10-28 2023-01-06 株式会社村田制作所 电子部件装置
WO2020066490A1 (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 積層体および積層体の製造方法
CN112740382A (zh) * 2018-09-28 2021-04-30 株式会社村田制作所 层叠体及层叠体的制造方法
US12002779B2 (en) 2018-09-28 2024-06-04 Murata Manufacturing Co., Ltd. Multilayer body and method of manufacturing the same

Also Published As

Publication number Publication date
US20150207050A1 (en) 2015-07-23
JP6122423B2 (ja) 2017-04-26
JPWO2013168223A1 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2013168223A1 (ja) 半導体パッケージ及びその製造方法
US9087924B2 (en) Semiconductor device with resin mold
US8247900B2 (en) Flip chip package having enhanced thermal and mechanical performance
JP6029821B2 (ja) 発光素子パッケージ及びその製造方法
JPH08330509A (ja) 電子回路装置およびその製造方法
JP5497469B2 (ja) 発光装置およびその製造方法
WO2013077144A1 (ja) 半導体パッケージ及びその製造方法
US9627329B1 (en) Interposer with edge reinforcement and method for manufacturing same
US10490705B2 (en) Package and light emitting device
TWI555227B (zh) 側向發光二極體及其封裝方法
JP6037544B2 (ja) Ledパッケージ及びその製造方法
JP5905267B2 (ja) 発光素子パッケージ及びその製造方法
JP6081087B2 (ja) 発光素子パッケージ及びその製造方法
JP5702481B2 (ja) 発光装置およびその製造方法
KR102117469B1 (ko) 전자 소자 모듈 및 그 제조 방법
JP5871254B2 (ja) 半導体装置及びその製造方法
US20100148377A1 (en) Intermediate structure of semiconductor device and method of manufacturing the same
JP6037545B2 (ja) Ledパッケージ及びその製造方法
JP2012248694A (ja) 半導体装置及びその製造方法
JP2009147030A (ja) 半導体装置
JP6012531B2 (ja) 半導体装置
US10847700B2 (en) Package, light emitting device, method of manufacturing package, and method of manufacturing light emitting device
KR101364020B1 (ko) 반도체 패키지 및 그 제조 방법
JP6053053B2 (ja) 半導体パッケージ及びその製造方法
JP2009224349A (ja) 電子素子収納用パッケージおよび電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14399710

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12876202

Country of ref document: EP

Kind code of ref document: A1