WO2013167641A1 - Analysis and visualization of oct angiography data - Google Patents

Analysis and visualization of oct angiography data Download PDF

Info

Publication number
WO2013167641A1
WO2013167641A1 PCT/EP2013/059560 EP2013059560W WO2013167641A1 WO 2013167641 A1 WO2013167641 A1 WO 2013167641A1 EP 2013059560 W EP2013059560 W EP 2013059560W WO 2013167641 A1 WO2013167641 A1 WO 2013167641A1
Authority
WO
WIPO (PCT)
Prior art keywords
vessel
recited
oct
capillary
vasculature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/059560
Other languages
English (en)
French (fr)
Inventor
Mary Durbin
Utkarsh SHARMA
Siddharth SRIVASTAVA
Tilmann SCHMOLL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Carl Zeiss Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Meditec AG filed Critical Carl Zeiss Meditec AG
Priority to EP13724195.6A priority Critical patent/EP2852317B1/en
Priority to IN8852DEN2014 priority patent/IN2014DN08852A/en
Priority to JP2015510811A priority patent/JP6371762B2/ja
Priority to EP22185690.9A priority patent/EP4122377A1/en
Priority to CN201380023147.6A priority patent/CN104271031B/zh
Publication of WO2013167641A1 publication Critical patent/WO2013167641A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to medical imaging, and in particular to analysis and visualization methods for data acquired through optical coherence tomography.
  • Optical coherence tomography is a noninvasive, noncontact imaging modality that uses coherence gating to obtain high-resolution cross-sectional images of tissue microstructure.
  • FD-OCT Fourier domain OCT
  • the interferometric signal between light from a reference and the back-scattered light from a sample point is recorded in the frequency domain rather than the time domain.
  • a one-dimensional Fourier transform is taken to obtain an A-line spatial distribution of the object scattering potential.
  • the spectral information discrimination in FD-OCT can be accomplished by using a dispersive spectrometer in the detection arm in the case of spectral-domain OCT (SD-OCT) or rapidly tuning a swept laser source in the case of swept-source OCT (SS-OCT).
  • SD-OCT spectral-domain OCT
  • SS-OCT swept-source OCT
  • OCT Angiography to map the retinal vasculature or identify regions with flow in the tissue
  • OCT Angiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects
  • J. Biomed. Opt. 17, 116018 (2012) Zhao et al, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow”
  • Optics Letters 25, 1358-1360 (2000) Fingler et al.
  • Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography Optics Express. Vol. 15, No. 20.
  • OCT Angiography provides a non-invasive technique to visualize and indirectly quantify the integrity of retinal circulation pathways.
  • Anomalies in retinal circulation have a direct relation to ocular pathologies, especially within the macula, wherein compromised hemodynamics may not only be related to decreased visual acuity, but could also be a surrogate biomarker for ocular pathologies like retinal vein occlusion (RVO), diabetic retinopathy (DR), and intra retinal microvasculature abnormality (IRMA).
  • RVO retinal vein occlusion
  • DR diabetic retinopathy
  • IRMA intra retinal microvasculature abnormality
  • correlation between retinal vasculature and blood flow are attributes of interest in a number of ocular defects.
  • DR and RVO are pathologies that could lead to early changes to the vascular structure and function, and may, in turn, be etiologic to numerous complications like macular edema, retinal ischemia and optic neuropathy. For these cases, quantification and
  • ischemic regions in the retina can be mapped to evaluate the extent of damage and further management of the disease.
  • vascular rich retina there is a small area in the macula, at the fovea, which is devoid of any capillaries. This is called the Foveal Avascular zone (FAZ), and abnormal changes in the size of this region are also indicative of pathologies like ischemic maculopathy and DR.
  • FAZ Foveal Avascular zone
  • the quantification of the FAZ and measuring changes in its size over time can be a clinically significant numerical score for disease presence and progression, especially for DR.
  • Angiography No information of the depth structure of the vasculature is captured by this method.
  • vascular images generated by examining the OCT intensity or phase signal are non-invasive, and provide comparable fidelity in capturing the existing vascular network with blood flow contrast along with its depth encoding.
  • vascular and the typically avascular retina are important indicators of developing retinal pathologies.
  • visualization of the vascular structure helps in boosting the diagnostic efficacy of this imaging technique, it can be further leveraged by augmenting the visualization with some salient quantifications and metrics derived from the identified vascular and avascular sections of the retina.
  • the primary quantity of interest is the global or structure-specific retinal blood flow kinetics, which can be challenging to quantify because of low flow velocities relative to the temporal resolution of the technique, and the almost perpendicular orientation of the capillaries with respect to the probing beam.
  • derived quantifiers from the angiography data which serve to aid in differentiating capillary networks in healthy and diseased eyes are also desirable.
  • Avakian et al. demonstrated the use of fractal characterization of fluorescein angiography (FA) images of the human retina to distinguish between healthy and diseased retina (see for example Avakian, et al., "Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina,” Curr. Eye Res. 24, 274-280, 2002). Schmoll et al.
  • FA fluorescein angiography
  • OCT angiography data is often displayed as 2D projections with the color encoded depth information (see Kim et al. "In vivo volumetric imaging of human retinal circulation with phase variance OCT,” Biomedical Optics Express, 2(6), 1504-1513 (2011)).
  • 2D projections at least allow distinguishing capillary layers of different depths. They however lack the 3D impression and also don't provide easily accessible information of which larger retinal vessels feed and drain different capillary network regions.
  • Retinal vessel connectivity measures are also known for fundus photography, they however only focus on a few major retinal vessels in 2D fundus images, rather than visualizing the supply of dense, complex parafoveal capillary networks (see for example Al-Diri et al.
  • Ganesan et al. investigates the connectivity of vessels in mouse retinas from the largest vessels to the smallest capillaries in confocal microscopy images in order to develop a network model (see for example Ganesan et al. "Development of an Image-Based Network Model of Retinal Vasculature,” Annals of Biomedical Engineering 38(4) 1566-1585 (2010)). They however don't describe using this as a way to interactively visualize human angiography acquisitions.
  • the method described herein is a non-invasive, computational technique to generate images of retinal vasculature (or blood flow) that are then used to either extract various
  • the anatomical location of the vasculature is defined as locations where there is an appreciable motion contrast, which is typically due to flow of blood.
  • OCT based methods to detect motion contrast such as Doppler OCT, speckle or intensity variance, and phase-resolved methods.
  • the motion contrast is determined by obtaining at least two OCT measurements at approximately the same location, where the two measurements are separated in time by a pre-determined interval and by applying an algorithm to look at the changes in the complex OCT signal or its components such as intensity or phase.
  • the accuracy of these measurements can be improved by minimizing motion related errors including but not limited to removing signal due to bulk motion of the sample in the axial direction.
  • the vascular structure extracted is post- processed to remove outliers and smooth the vessel structure.
  • This derived structure is then depth coded and displayed over the rendered retinal anatomy (magnitude image).
  • the post-processed vascular structure within a specific depth range can be summed or integrated along the axial direction to generate a projection map that shows the vasculature as an en face view, devoid of any depth information.
  • the proposed invention deviates from the known prior art by detailing a completely automated (no manual intervention) method to accurately determine the capillary devoid regions of retina, by examination of the statistical properties of the intensity content of the retinal image which preferentially contrasts vascular regions.
  • avascular zone In addition to the avascular zone, other metrics, like the vasculature density, capillary density, vessel geometry, capillary diameter, inter-capillary distance, area bounded by capillary loops, etc. can be determined by standard mathematical models and tools. These metrics can be identified in the vicinity of the fovea, or in other areas of interest, such as the perifoveal or peripapillary regions, the papillomacular bundle, or within the optic nerve head. This technique could be further extended to automatically identify regions of retinal ischemia in pathologies such as branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO). Furthermore, these techniques could also assist in identifying intraretinal microvascular abnormalities (IRMA).
  • BRVO branch retinal vein occlusion
  • CRVO central retinal vein occlusion
  • IRMA intraretinal microvascular abnormalities
  • IRMA is typically a DR-related condition that results in areas of capillary dilatation and intraretinal formation of new capillary beds. Often the IRMA related new vessel formation occurs in retinal tissues to act as shunts through areas of nonperfusion. or ischemia. Change in the metrics defined above could be used as a criterion to monitor if there has been new growth of vasculature or change in the regions of nonperfusion or ischemia.
  • a novel method for effectively visualizing OCT angiography acquisitions in a meaningful way and quantitatively characterizing vasculature networks is presented.
  • the examiner could select a vessel within an OCT angiography acquisition and the program would show all connecting vessels down to the capillary network.
  • the information about the connectivity of different retinal vessels may also be used to quantitatively evaluate OCT angiography acquisitions and compare them to a normative database.
  • FIG. 1 shows a flow chart of various step involved with processing motion contrast OCT data according to the present invention.
  • FIG. 2 illustrates a generalized ophthalmic OCT imaging system that could be used for collection of motion contrast data.
  • FIG. 3 shows an en face vasculature image generated from OCT data using normalized vector difference variance.
  • FIG. 4 shows an OCT image of the retina illustrating three different plexus and the layers that they include.
  • FIG. 5a shows a 3D visualization of OCT angiography data
  • FIG. 5b shows a
  • FIG. 6 illustrates how a stereoscopic image pair could be generated from motion contrast data to enable a type of 3D visualization.
  • FIG. 7 shows an intensity histogram of an en face vasculature image that can be used to identify the foveal avascular zone (FAZ).
  • FAZ foveal avascular zone
  • FIG. 8 shows the results of an isophote delineation of an en face vasculature image according to one aspect of the present invention.
  • FIG. 9 illustrates how the FAZ can be isolated from the rest of the image data after the isophote delineation in FIG. 8.
  • FIG. 10 shows a map of the density of vessels in radially distributed sectors around the fovea. DETAILED DESCRIPTION
  • FIG. 1 Preferred and alternative embodiments for the processing of vasculature enhanced OCT data are illustrated in the schematic of FIG. 1.
  • This figure illustrates three possible ways to generate and use vasculature data from complex OCT data 102 acquired and reconstructed in an OCT system 101.
  • the text below refers to each possible combination as a "Process", A, B or C, depending on which process path has been taken to generate the input data for the embodiment under discussion.
  • different portions of the complex data intensity only, phase only, or both intensity and phase
  • undergo different processing steps layer segmentation, motion contrast, integration/summation for en face image generation
  • OCT data can be collected with any type of OCT system employing a variety of scan patterns, for example, a spectral domain OCT system, or a swept source OCT system, employing laser sources of different wavelength like 840 nm or 1060 nm.
  • a diagram of a generalized OCT system is shown in FIG. 2.
  • Light from source 201 is routed, typically by optical fiber 205, to illuminate the sample 210, a typical sample being tissues in the human eye.
  • the source 201 can be either a broadband light source with short temporal coherence length in the case of SD-OCT or a wavelength tunable laser source in the case of SS-OCT.
  • the light is scanned, typically with a scanner 207 between the output of the fiber and the sample, so that the beam of light (dashed line 208) is scanned laterally (in x and y) over the area or volume to be imaged.
  • Light scattered from the sample is collected, typically into the same fiber 205 used to route the light for sample illumination.
  • Reference light derived from the same source 201 travels a separate path, in this case involving fiber 203 and retro- reflector 204 with an adjustable optical delay.
  • a transmissive reference path can also be used and that the adjustable delay could be placed in the sample or reference arm of the interferometer.
  • Collected sample light is combined with reference light, typically in a fiber coupler 202, to form light interference in a detector 220.
  • the output from the detector is supplied to a processor 221.
  • the results can be stored in the processor 221 or displayed on display 222.
  • the processing and storing functions may be localized within the OCT instrument or functions may be performed on an external processing unit to which the collected data is transferred. This unit could be dedicated to data processing or perform other tasks which are quite general and not dedicated to the OCT device.
  • the sample and reference arms in the interferometer could consist of bulk-optics, fiber-optics or hybrid bulk-optic systems and could have different architectures such as Michelson, Mach- Zehnder or common-path based designs as would be known by those skilled in the art.
  • Light beam as used herein should be interpreted as any carefully directed light path.
  • the reference arm needs to have a tunable optical delay to generate interference.
  • Balanced detection systems are typically used in TD-OCT and SS-OCT systems, while spectrometers are used at the detection port for SD-OCT systems.
  • the invention described herein could be applied to any type of OCT system capable of generating data for functional analysis.
  • the interference causes the intensity of the interfered light to vary across the spectrum.
  • the Fourier transform of the interference light reveals the profile of scattering intensities at different path lengths, and therefore scattering as a function of depth (z-direction) in the sample (see for example Leitgeb et al. "Ultrahigh resolution Fourier domain optical coherence tomography,” Optics Express 12(10):2156 (2004)).
  • the Fourier transform results in complex data, and the absolute values of the complex data are tabulated to construct the intensity image.
  • the complex OCT signal also encodes information related to the phase shifts arising from local sample motion, and can be used to deduce quantities related to physical motion of dominant scatterers in the sample with high sensitivity.
  • A-scan The profile of scattering as a function of depth is called an axial scan (A-scan).
  • a set of A-scans measured at neighboring locations in the sample produces a cross-sectional image (tomogram or B-scan) of the sample.
  • B-scan cross-sectional image
  • a collection of B-scans collected at different transverse locations on the sample makes up a data volume or cube.
  • fast axis refers to the scan direction along a single B-scan whereas slow axis refers to the axis along which multiple B-scans are collected.
  • Intensity based local searches or global approaches can be used on the magnitude images to extract prominent layers which are then used as boundaries for the summation of intensities.
  • the boundaries extracted serve to include only that tissue extent in the summation which is known a-priori to have blood vessels.
  • the result of this summing procedure is a flat view (projection) of the volume looking along (and into) the imaging axis, and the features in this projection (en face vasculature image) capture the vascular distribution (Process A in FIG. 1). Since the summation integrates out the depth along the axial direction, this view only captures the omnibus morphology of the vasculature, and not position in the depth direction.
  • FIG. 3 shows the en face vasculature image generated by selective summation (FIG. 1, Process A) through the motion contrasted volume generated by performing normalized vector difference variance as described in US Patent Publication No. 2012/0277579, hereby incorporated by reference.
  • the bright vasculature indicated by the arrows 301 and 302 stands out against the dark background.
  • the absence of vessels in the central region indicates the foveal avascular zone (FAZ).
  • FAZ foveal avascular zone
  • FIG. 4 Anatomically the vasculature is distributed in the 3 major sections of the retina (FIG. 4): the superficial capillary plexus (SCP), intermediate capillary plexus (ICP) and the deep capillary plexus (DCP) (see for example Kim et al. "Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase- Variance Optical Coherence Tomography” Investigative Ophthalmology & Visual Science, 53 (1), 85 - 92 (2012) hereby incorporated by reference).
  • SCP superficial capillary plexus
  • ICP intermediate capillary plexus
  • DCP deep capillary plexus
  • Each of these plexus is made up of a finite number of retinal layers, which, in an alternate embodiment, can be used as bounding layers for selective summation to generate vasculature en face views showing the three specific types of vasculature networks.
  • Selective summation is not required to generate an en face image and other examples of selective summations or other ways to represent a plurality of intensity values as a single representative value (e.g. integration, summing, minimum, maximum, median value, etc.) can be envisioned by those skilled in the art (see for example US Patent No. 7,301,644, US Patent Publication No. 2011/0034803 and US Patent Publication No. 2008/0100612 hereby incorporated by reference).
  • the projection views are devoid of any depth information, because the hyperintense pixels, which signal the presence of vasculature are summed along the axial direction.
  • the retinal vasculature is distributed in the 3 -dimensional space of the retinal tissue, with the distribution and characteristics of the vasculature varying also within each specific plexus (FIG. 4).
  • the depth information in the view presented in FIG. 3 can be preserved by explicitly using the volumetric definition of the vasculature (after motion contrasting the phase data), and rendering the volume in three-dimensions (3D, process B in FIG. 1).
  • this process which extends process B, would entail preserving the high intensity locations in the acquired volume using a thresholding or selection criteria, and performing some post-processing to enforce the anatomical connectivity of the vasculature.
  • a schematic of the expected form of the 3D vasculature map is shown in FIG. 5a, where the black lines trace out the vessel path in 3D space.
  • the corresponding 2D projection view is illustrated in FIG. 5b.
  • visualization mode will provide a visual representation of the vascular architecture / distribution in the space of the imaged retina.
  • the data included in the 3D representation could be limited to a particular plexus, using methods described above, to limit the data displayed to a particular location in the retina.
  • the location in the retina can be defined by adjacency to a particular location, such as the centroid or a boundary identified by segmentation, or the location may be limited to be between two such boundaries. In this way the 3D vessel model of each plexus could be independently reviewed.
  • the examiner could select a vessel within a volume using a data input device such as a mouse or touch screen interface and the program would then highlight the connecting vessels down to the capillary level.
  • a data input device such as a mouse or touch screen interface
  • Such visualization may improve the identification of blockages or leakages.
  • Visualizing connected vasculature could be done, e.g. by only displaying the specific connected vasculature or by only highlighting it within the volume in order to contrast it from the other vasculature.
  • Visualization of connected vasculature could also involve an image series or a movie, where the movie starts with only the initially selected vessel, which then grows until all the connected vessels are shown.
  • the speed at which connecting vessels are added could be normalized by their vessel diameter in order to mimic the propagation speed of the blood within the network.
  • the information created by the vessel segmentation algorithms may serve as additional quantitative parameters, which could be used for comparing data sets with a normative data base or for tracking changes in a particular patient over time.
  • Such parameters may be total vessel length, number of bifurcations, capillary density of arteriole vs. venous capillaries, vessel diameter parent / daughter vessels, bifurcation angles, vascular tortuosity, capillary network volume vs. static tissue volume.
  • the actual depths of the vascular locations in the retina can be used as disparity maps to generate a stereoscopic image pair of the vascular network that can be viewed by the clinician to get a better idea of the vascular distribution in space.
  • a preferred scale is selected to map the range of possible distances (for example, from 0 to 2 mm), after which a left and right volume pair can be generated and fused into a stereoscopic pair as illustrated in FIG. 6. This can be rendered either through a special pair of 3D glasses, or via a 3D display technology.
  • Extensions to this alternative embodiment also allows for augmenting this stereoscopic view by the retinal anatomy, depth encoded in the magnitude image to generate vascular maps in relation to the various layers of the retina.
  • the vessels derived from the three plexus can be color coded preferentially to generate a more informative image fusion approach to visualization.
  • the preferred embodiment employs the use of vasculature en face image to derive clinically significant information, the most important of which is the automated detection of the foveal avascular zone, or FAZ.
  • the detection of the FAZ used the output of process A (FIG. 1), and can be accomplished by creating an intensity histogram of the vasculature en face image.
  • the intensity histogram (FIG. 7) is a very popular graphing technique in image processing to generate a frequency distribution (represented along the ordinate of the graph) of the intensity values in the image which are represented along the abscissa.
  • Many software systems contain standard and optimized libraries for the generation of the image histogram.
  • the preferred embodiment starts the detection process by detecting the peaks of the histogram. As illustrated in FIG.
  • histogram of the vascular en face image shows a characteristic bi-modal distribution, and, the transition between the FAZ and the rest of the map is located between these peaks A and B.
  • the en- face image is interrogated for pixels which have this specific intensity value. Lines of similar intensity are called isophotes, and the trace of the isophote at intensity level i provides the preferred embodiment with a discriminating contour which maximally contains the FAZ on the inside, and the vascular retina on the outside (FIG. 8).
  • the isophotes are generally delineated by a contour operation which entails thresholding the intensity levels on the image with a small neighborhood of the required isophote at level I as indicated by the arrow in FIG. 8.
  • the results of the isophote delineation are shown in FIG. 8. Because of the noisy nature of the signal, some small isolated contours can also be seen, but the algorithm employed in the preferred embodiment ensures that the isophote that is convex and has the largest perimeter will always enclose the FAZ.
  • the preferred embodiment reports multiple matches (small isolated contours in FIG. 8) as a list of a list of x- and y- coordinates of each contour. These coordinates can be used in a straightforward way to calculate the perimeter of each contour.
  • the contour that best delineates the FAZ is the one with the highest perimeter.
  • the region inside the FAZ contour can be isolated from the rest of the contours as illustrated in FIG. 9.
  • morphological parameters of the resulting FAZ region can be calculated to quantify the FAZ on a case by case basis.
  • the area is calculated as counting the number of "on" pixels, scaled by the area of each pixel, and is 5675 pixel units.
  • the delineated FAZ has an eccentricity of 0.71 with a major axis of 104.7 pixel units (523.5 microns) and a minor axis of 73.1 pixel units (548.5 microns).
  • the remainder of the vascular map (exterior to the delineated FAZ) can be used to calculate capillary density, especially as a function of distance from the center of the fovea, and generate a map of the density in radially distributed sectors around the fovea as illustrated in FIG. 10.
  • radial sectors can be analyzed and the ratio of "on” to "off pixels can be used to generate a coarse sectorial vessel density map.
  • the definition of the "on” and "off pixels can be established by a judicious threshold selection.
  • an alternative embodiment (process C, FIG. 1) allows the use of prior knowledge of the fovea from the magnitude image using a fovea detection algorithm (see for example US Patent No. 8,079,711 hereby incorporated by reference) to create a localized histogram and hence confine the search for the vascular-avascular transition zone to a smaller area.
  • a fovea detection algorithm see for example US Patent No. 8,079,711 hereby incorporated by reference
  • the FAZ detection by the preferred embodiment on images generated by process A will most likely fail to qualify the maximum perimeter criteria.
  • Such a case will be flagged by a null (zero) FAZ detection (i.e., a blank image in FIG. 9) after morphological cleaning steps.
  • Other clinically significant quantifiable characteristics or metrics that can be derived from the en face vasculature image (from one or more plexus) or from a 3D OCT angiography data volume include total capillary volume (sum of all pixels above a given threshold intensity), as well as metrics that could be derived from the blood vessel patterns, such as tortuosity, regularity, segment length, total crossings, the number of bifurcations, vessel width parameters, ratio of small to large vessels, capillary density, capillary density ratio between arteriole and venous capillaries, capillary diameter, inter-capillary distance, area bounded by capillary loops, etc.
  • a metric can be compared to a database of normal eyes or eyes with a known pathology to diagnose or to track progression of a particular disease or condition.
  • Another way to use this information is to use the foveal avascular zone as a region over which to evaluate other features such as layer thickness or other parameters derived from the OCT image, or other registered images.
  • the thickness of the photoreceptor layer within the FAZ should be specifically related to cones rather than rods.
  • Registration to images that contain other information about the photoreceptors, such as adaptive optics images, might allow quantification of multiple metrics that affect the foveal region.
  • the preferred embodiment described above refers to visualization of retinal capillary vessels and metrics associated with these. Similar methods could be applied to the choroidal vasculature, including the choriocapillaris, Sattler's layer and Haller's layer. Although various applications and embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise other varied embodiments that still incorporate these teachings. Although the description of the present invention is discussed herein with respect to the sample being a human eye, the applications of this invention are not limited to eye and can be applied to any application using OCT.
  • Leitgeb "Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express 2, 1159-1168 (2011).
  • Leitgeb et al. "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler FDOCT,” Optics Express, 11, 3116-3121 (2003).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Eye Examination Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
PCT/EP2013/059560 2012-05-10 2013-05-08 Analysis and visualization of oct angiography data Ceased WO2013167641A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13724195.6A EP2852317B1 (en) 2012-05-10 2013-05-08 Analysis and visualization of oct angiography data
IN8852DEN2014 IN2014DN08852A (enExample) 2012-05-10 2013-05-08
JP2015510811A JP6371762B2 (ja) 2012-05-10 2013-05-08 Oct血管造影データの解析および可視化
EP22185690.9A EP4122377A1 (en) 2012-05-10 2013-05-08 Analysis and visualization of oct angiography data/analyse und visualisierung von oct-angiografie-daten
CN201380023147.6A CN104271031B (zh) 2012-05-10 2013-05-08 Oct血管造影数据的分析和可视化

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261645513P 2012-05-10 2012-05-10
US61/645,513 2012-05-10
US201261691219P 2012-08-20 2012-08-20
US61/691,219 2012-08-20
US13/781,375 US9357916B2 (en) 2012-05-10 2013-02-28 Analysis and visualization of OCT angiography data
US13/781,375 2013-02-28

Publications (1)

Publication Number Publication Date
WO2013167641A1 true WO2013167641A1 (en) 2013-11-14

Family

ID=48470922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/059560 Ceased WO2013167641A1 (en) 2012-05-10 2013-05-08 Analysis and visualization of oct angiography data

Country Status (6)

Country Link
US (2) US9357916B2 (enExample)
EP (2) EP2852317B1 (enExample)
JP (2) JP6371762B2 (enExample)
CN (1) CN104271031B (enExample)
IN (1) IN2014DN08852A (enExample)
WO (1) WO2013167641A1 (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010658A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP2016010657A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP2016010656A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP2016026521A (ja) * 2014-06-30 2016-02-18 株式会社ニデック 光コヒーレンストモグラフィ装置、及びデータ処理プログラム
JP2016209200A (ja) * 2015-05-01 2016-12-15 キヤノン株式会社 画像生成装置、画像生成方法及びプログラム
JP2016209198A (ja) * 2015-05-01 2016-12-15 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
JP2019217389A (ja) * 2019-10-02 2019-12-26 キヤノン株式会社 画像生成装置、画像生成方法及びプログラム
JP2019217388A (ja) * 2019-10-02 2019-12-26 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
EP3696721A2 (en) 2019-01-24 2020-08-19 Topcon Corporation Ophthalmologic apparatus, method of controlling the same, and recording medium
US11071452B2 (en) 2014-06-30 2021-07-27 Nidek Co., Ltd. Optical coherence tomography device, optical coherence tomography calculation method, and optical coherence tomography calculation program
JP7249102B2 (ja) 2015-03-23 2023-03-30 アルコン インコーポレイティド レーザ光凝固の最適化のためのシステム、装置、および方法
US11963750B2 (en) 2017-10-16 2024-04-23 Massachusetts Institute Of Technology Systems, devices and methods for non-invasive hematological measurements
US12402831B2 (en) 2019-07-24 2025-09-02 Massachusetts Institute Of Technology Finger inserts for a nailfold imaging device

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033510B2 (en) 2011-03-30 2015-05-19 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
WO2014168930A1 (en) * 2013-04-09 2014-10-16 University Of Washington Through Its Center For Commercialization Methods and systems for determining hemodynamic properties of a tissue
US9778021B2 (en) 2013-08-29 2017-10-03 Carl Zeiss Meditec, Inc. Evaluation of optical coherence tomographic data prior to segmentation
WO2015044366A1 (en) * 2013-09-30 2015-04-02 Carl Zeiss Meditec Ag High temporal resolution doppler oct imaging of retinal blood flow
US9471975B2 (en) * 2013-10-22 2016-10-18 Bioptigen, Inc. Methods, systems and computer program products for dynamic optical histology using optical coherence tomography
EP2865323B1 (en) * 2013-10-23 2022-02-16 Canon Kabushiki Kaisha Retinal movement tracking in optical coherence tomography
US9933246B2 (en) 2013-12-13 2018-04-03 Nidek Co., Ltd. Optical coherence tomography device
US9782175B2 (en) * 2014-04-24 2017-10-10 The Johns Hopkins University Systems, methods and apparatuses for real-time anastomosis guidance and surgical evaluation using optical coherence tomography
WO2015165989A2 (en) * 2014-05-02 2015-11-05 Carl Zeiss Meditec, Inc. Enhanced vessel characterization in optical coherence tomograogphy angiography
JP6375760B2 (ja) * 2014-07-31 2018-08-22 株式会社ニデック 光コヒーレンストモグラフィー装置、および眼底画像処理プログラム
US10258231B2 (en) * 2014-12-30 2019-04-16 Optovue, Inc. Methods and apparatus for retina blood vessel assessment with OCT angiography
US10070796B2 (en) * 2015-02-04 2018-09-11 General Electric Company Systems and methods for quantitative microcirculation state monitoring
US9700206B2 (en) 2015-02-05 2017-07-11 Carl Zeiss Meditec, Inc. Acquistion and analysis techniques for improved outcomes in optical coherence tomography angiography
US9713424B2 (en) * 2015-02-06 2017-07-25 Richard F. Spaide Volume analysis and display of information in optical coherence tomography angiography
US10758122B2 (en) * 2015-02-06 2020-09-01 Richard F. Spaide Volume analysis and display of information in optical coherence tomography angiography
CN105796053B (zh) * 2015-02-15 2018-11-20 执鼎医疗科技(杭州)有限公司 利用oct测量动态对比度和估计横向流量的方法
US10368734B2 (en) 2015-02-19 2019-08-06 Carl Zeiss Meditec, Inc. Methods and systems for combined morphological and angiographic analyses of retinal features
US20160278627A1 (en) * 2015-03-25 2016-09-29 Oregon Health & Science University Optical coherence tomography angiography methods
US9984459B2 (en) 2015-04-15 2018-05-29 Kabushiki Kaisha Topcon OCT angiography calculation with optimized signal processing
CN104881872B (zh) * 2015-05-27 2018-06-26 浙江大学 一种光学微血管造影图像分割及评价方法
US10123761B2 (en) 2015-07-01 2018-11-13 William E. Butler Device and method for spatiotemporal reconstruction of a moving vascular pulse wave in the brain and other organs
JP6602108B2 (ja) * 2015-08-27 2019-11-06 キヤノン株式会社 眼科装置、情報処理方法及びプログラム
JP6627342B2 (ja) * 2015-09-04 2020-01-08 株式会社ニデック Octモーションコントラストデータ解析装置、octモーションコントラストデータ解析プログラム。
WO2017050863A1 (en) * 2015-09-24 2017-03-30 Carl Zeiss Meditec, Inc. Methods for high sensitivity flow visualization
JP6922151B2 (ja) * 2015-10-21 2021-08-18 株式会社ニデック 眼科解析装置、眼科解析プログラム
JP6922152B2 (ja) * 2015-10-21 2021-08-18 株式会社ニデック 眼科解析装置、眼科解析プログラム
US10492682B2 (en) * 2015-10-21 2019-12-03 Nidek Co., Ltd. Ophthalmic analysis device and ophthalmic analysis program
JP2017104309A (ja) 2015-12-10 2017-06-15 株式会社トプコン 眼科画像表示装置及び眼科撮影装置
CN105686795B (zh) * 2016-01-13 2018-05-29 深圳市斯尔顿科技有限公司 一种en face OCT图像的动态显示方法
JP6624945B2 (ja) 2016-01-21 2019-12-25 キヤノン株式会社 画像形成方法及び装置
CN114562937B (zh) 2016-02-12 2025-01-21 通用医疗公司 用于使用光学相干断层成像进行高速和长深度范围成像的装置和方法
JP2017153543A (ja) 2016-02-29 2017-09-07 株式会社トプコン 眼科撮影装置
JP6702764B2 (ja) * 2016-03-08 2020-06-03 キヤノン株式会社 光干渉断層データの処理方法、該方法を実行するためのプログラム、及び処理装置
US9978140B2 (en) * 2016-04-26 2018-05-22 Optos Plc Retinal image processing
JP6843521B2 (ja) * 2016-04-28 2021-03-17 キヤノン株式会社 画像処理装置及び画像処理方法
CN105942972B (zh) * 2016-05-24 2017-07-14 中国科学院长春光学精密机械与物理研究所 一种对视网膜内核层微细血管自适应光学成像的系统
US20180012359A1 (en) * 2016-07-06 2018-01-11 Marinko Venci Sarunic Systems and Methods for Automated Image Classification and Segmentation
US10426331B2 (en) * 2016-07-20 2019-10-01 Oregon Health & Science University Automated quantification of nonperfusion in the retina using optical coherence tomography angiography
JP6779690B2 (ja) 2016-07-27 2020-11-04 株式会社トプコン 眼科画像処理装置及び眼科撮影装置
JP7182350B2 (ja) * 2016-09-07 2022-12-02 株式会社ニデック 眼科解析装置、眼科解析プログラム
JP6815798B2 (ja) 2016-09-09 2021-01-20 株式会社トプコン 眼科撮影装置及び眼科画像処理装置
JP7308144B2 (ja) * 2016-10-13 2023-07-13 トランスレイタム メディカス インコーポレイテッド 眼疾患の検出のためのシステム及び方法
JP6987495B2 (ja) * 2016-11-18 2022-01-05 キヤノン株式会社 画像処理装置及びその作動方法、並びに、プログラム
US10896490B2 (en) * 2016-12-23 2021-01-19 Oregon Health & Science University Systems and methods for reflectance-based projection-resolved optical coherence tomography angiography
KR101855012B1 (ko) 2016-12-28 2018-05-08 부산대학교 산학협력단 Oct 촬영 결과 학습을 통한 시력, 시야 예측 장치
CN106778036B (zh) * 2017-01-10 2017-12-29 首都医科大学附属北京友谊医院 一种数据处理的方法及装置
JP7013134B2 (ja) * 2017-03-09 2022-01-31 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
US12016628B2 (en) 2017-03-27 2024-06-25 The Board Of Trustees Of The University Of Illinois Optical coherence tomography (OCT) system and method that measure stimulus-evoked neural activity and hemodynamic responses
WO2018201253A1 (en) * 2017-05-03 2018-11-08 Uti Limited Partnership System and method for measuring cardiorespiratory response
US10896507B2 (en) * 2017-09-21 2021-01-19 The Regents Of The University Of Michigan Techniques of deformation analysis for quantification of vascular enlargement
JP7220509B2 (ja) * 2017-09-27 2023-02-10 株式会社トプコン 眼科装置及び眼科画像処理方法
JP7417524B2 (ja) * 2017-11-30 2024-01-18 アルコン インコーポレイティド 光コヒーレンストモグラフィ撮像におけるセグメント化の改善
KR102045883B1 (ko) * 2017-12-06 2019-12-04 한국광기술원 광단층영상 시스템을 이용한 혈관 이미징 장치 및 방법
CN116807381A (zh) * 2017-12-28 2023-09-29 株式会社尼康 图像处理方法、图像处理程序、图像处理装置、图像显示装置、以及图像显示方法
DE102018107621A1 (de) * 2018-03-29 2019-10-02 Imedos Systems GmbH Vorrichtung und Verfahren zur Untersuchung der metabolischen Autoregulation
JP7086683B2 (ja) * 2018-04-06 2022-06-20 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2020039667A (ja) 2018-09-12 2020-03-19 株式会社トプコン 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP7215862B2 (ja) 2018-09-26 2023-01-31 株式会社トプコン 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP2020049147A (ja) 2018-09-28 2020-04-02 株式会社トプコン 眼科撮影装置、その制御方法、プログラム、及び記録媒体
CN109741335B (zh) * 2018-11-28 2021-05-14 北京理工大学 血管oct图像中血管壁及血流区域的分割方法与装置
US11751762B2 (en) 2018-12-19 2023-09-12 Topcon Corporation Method and apparatus for low coherence interferometry
GB2598463B (en) 2019-02-06 2023-08-23 E Butler William Improved methods for angiography
CN113395935B (zh) 2019-02-06 2023-11-24 威廉·E·巴特勒 重建心搏频率血管造影现象的表示的方法和计算机系统
GB2596015B (en) 2019-03-27 2022-10-12 E Butler William Reconstructing cardiac frequency phenomena in angiographic data
CA3132140C (en) 2019-04-04 2024-03-05 William E. Butler Intrinsic contrast optical cross-correlated wavelet angiography
JP7341422B2 (ja) 2019-09-10 2023-09-11 国立大学法人 筑波大学 走査型イメージング装置、その制御方法、走査型イメージング方法、プログラム、及び記録媒体
JP6849776B2 (ja) * 2019-11-27 2021-03-31 キヤノン株式会社 情報処理装置及び情報処理方法
JP6870723B2 (ja) * 2019-12-04 2021-05-12 株式会社ニデック Octモーションコントラストデータ解析装置、octモーションコントラストデータ解析プログラム。
JP2021118769A (ja) 2020-01-30 2021-08-12 株式会社トプコン 眼科装置、その制御方法、プログラム、及び記録媒体
DE102020102681B3 (de) * 2020-02-03 2021-08-05 Carl Zeiss Meditec Ag Computerimplementiertes Verfahren, Computerprogramm und Operationssystem zur Bestimmung des Blutvolumenflusses durch einen Abschnitt eines Blutgefäßes in einem Operationsbereich
JP7546366B2 (ja) 2020-03-05 2024-09-06 株式会社トプコン 眼科装置、その制御方法、プログラム、及び記録媒体
CN115697181A (zh) 2020-05-29 2023-02-03 国立大学法人筑波大学 图像生成装置、程序和图像生成方法
CN112493982A (zh) * 2020-11-24 2021-03-16 浙江大学 一种术中oct结构与血流成像的装置
CN112529906B (zh) * 2021-02-07 2021-05-14 南京景三医疗科技有限公司 一种软件层面的血管内oct三维图像管腔分割方法和装置
JP7606699B2 (ja) 2021-03-01 2024-12-26 国立大学法人 筑波大学 眼科データ処理方法、眼科データ処理装置、その制御方法、眼科検査装置、その制御方法、プログラム、及び記録媒体
US12220272B2 (en) 2021-05-12 2025-02-11 Angiowave Imaging, Inc. Motion-compensated wavelet angiography
KR102566442B1 (ko) * 2021-06-04 2023-08-14 고려대학교 산학협력단 광간섭단층촬영을 이용하여 맥락막 기질의 특성을 분석하는 장치 및 방법
CN114842306A (zh) * 2022-07-01 2022-08-02 深圳市海清视讯科技有限公司 应用于视网膜病灶图像类型识别的模型训练方法、设备
CN119091239B (zh) * 2024-11-11 2025-01-24 达州市中心医院(达州市人民医院) 甲襞微循环成像控制及图像识别分析方法和系统
CN119889716B (zh) * 2024-12-27 2025-08-05 中国航天科工集团七三一医院 一种糖尿病视网膜病变过程仿真的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US7301644B2 (en) 2004-12-02 2007-11-27 University Of Miami Enhanced optical coherence tomography for anatomical mapping
US20080025570A1 (en) 2006-06-26 2008-01-31 California Institute Of Technology Dynamic motion contrast and transverse flow estimation using optical coherence tomography
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US20080100612A1 (en) 2006-10-27 2008-05-01 Dastmalchi Shahram S User interface for efficiently displaying relevant oct imaging data
US20090268162A1 (en) * 2008-04-24 2009-10-29 Carl Zeiss Meditec, Inc. Method for finding the lateral position of the fovea in an sdoct image volume
US20100027857A1 (en) 2006-09-26 2010-02-04 Wang Ruikang K In vivo structural and flow imaging
WO2010129494A2 (en) 2009-05-04 2010-11-11 Oregon Health & Science University Method and apparatus for quantitative imaging of blood perfusion in living tissue
WO2010138645A2 (en) * 2009-05-29 2010-12-02 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Blood vessel segmentation with three-dimensional spectral domain optical coherence tomography
US20110034803A1 (en) 2009-08-04 2011-02-10 Carl Zeiss Meditec, Inc. Non-linear projections of 3-d medical imaging data
WO2011097631A2 (en) 2010-02-08 2011-08-11 Oregon Health & Science University Method and apparatus for ultrahigh sensitive optical microangiography
US20120249956A1 (en) 2011-03-30 2012-10-04 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
US20120277579A1 (en) 2011-07-07 2012-11-01 Carl Zeiss Meditec, Inc. Inter-frame complex oct data analysis techniques

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836670A (en) * 1987-08-19 1989-06-06 Center For Innovative Technology Eye movement detector
JP4027016B2 (ja) * 2000-07-12 2007-12-26 キヤノン株式会社 画像処理装置、画像処理方法及び記憶媒体
JP2002269539A (ja) * 2000-12-01 2002-09-20 Shigehiro Masui 画像処理装置、画像処理装置方法、及び画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体、並びにこれを用いた診断支援システム
JP2005508215A (ja) * 2001-08-30 2005-03-31 フィラデルフィア オフサルミック イメージング システムズ 糖尿病性網膜症の患者をスクリーニングするためのシステムおよび方法
US7020314B1 (en) * 2001-11-13 2006-03-28 Koninklijke Philips Electronics N.V. Black blood angiography method and apparatus
US7039452B2 (en) * 2002-12-19 2006-05-02 The University Of Utah Research Foundation Method and apparatus for Raman imaging of macular pigments
AU2003214146A1 (en) 2002-03-12 2003-09-29 The Regents Of The University Of California Imaging transverse flow velocity using spectral bandwidth of the doppler frequency shift in phase-resolved optical doppler tomography
US6928142B2 (en) * 2002-10-18 2005-08-09 Koninklijke Philips Electronics N.V. Non-invasive plaque detection using combined nuclear medicine and x-ray system
US8090164B2 (en) 2003-08-25 2012-01-03 The University Of North Carolina At Chapel Hill Systems, methods, and computer program products for analysis of vessel attributes for diagnosis, disease staging, and surgical planning
JP4505805B2 (ja) * 2004-08-02 2010-07-21 横河電機株式会社 領域抽出方法およびその装置
JP5324095B2 (ja) * 2004-08-24 2013-10-23 ザ ジェネラル ホスピタル コーポレイション 血管セグメントを画像化する方法および装置
CA2634466A1 (en) 2004-12-22 2006-06-29 Bio-Tree Systems, Inc. Medical imaging methods and apparatus for diagnosis and monitoring of diseases and uses therefor
US20080159604A1 (en) 2005-12-30 2008-07-03 Allan Wang Method and system for imaging to identify vascularization
US8125648B2 (en) 2006-06-05 2012-02-28 Board Of Regents, The University Of Texas System Polarization-sensitive spectral interferometry
JP4855150B2 (ja) * 2006-06-09 2012-01-18 株式会社トプコン 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
CA2692270A1 (en) 2006-06-28 2008-01-03 Bio-Tree Systems, Inc. Binned micro-vessel density methods and apparatus
US20080170205A1 (en) * 2007-01-11 2008-07-17 Munger Rejean J Method and apparatus for correlated ophthalmic measurements
US8244334B2 (en) * 2007-04-10 2012-08-14 University Of Southern California Methods and systems for blood flow measurement using doppler optical coherence tomography
JP4940069B2 (ja) * 2007-09-10 2012-05-30 国立大学法人 東京大学 眼底観察装置、眼底画像処理装置及びプログラム
JP4940070B2 (ja) * 2007-09-10 2012-05-30 国立大学法人 東京大学 眼底観察装置、眼科画像処理装置及びプログラム
US7798647B2 (en) * 2007-09-18 2010-09-21 Carl Zeiss Meditec, Inc. RNFL measurement analysis
CA2748854A1 (en) 2008-01-02 2009-07-16 Bio-Tree Systems, Inc. Methods of obtaining geometry from images
JP5166889B2 (ja) * 2008-01-17 2013-03-21 国立大学法人 筑波大学 眼底血流量の定量測定装置
JP5182689B2 (ja) * 2008-02-14 2013-04-17 日本電気株式会社 眼底画像解析方法およびその装置とプログラム
US8571617B2 (en) * 2008-03-04 2013-10-29 Glt Acquisition Corp. Flowometry in optical coherence tomography for analyte level estimation
WO2009128912A1 (en) * 2008-04-14 2009-10-22 Optovue, Inc. Method of eye registration for optical coherence tomography
US8718743B2 (en) * 2008-04-24 2014-05-06 Duke University Methods for single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified hilbert transform
WO2009148067A1 (ja) * 2008-06-04 2009-12-10 株式会社 網膜情報診断研究所 網膜情報診断システム
US9066686B2 (en) * 2008-07-10 2015-06-30 Novadaq Technologies Inc. Functional optical coherent imaging
EP2161564A1 (en) * 2008-09-05 2010-03-10 Optopol Technology S.A. Method and apparatus for imaging of semi-transparent matter
MY142859A (en) 2008-09-10 2011-01-14 Inst Of Technology Petronas Sdn Bhd A non-invasive method for analysing the retina for ocular manifested diseases
US8500279B2 (en) * 2008-11-06 2013-08-06 Carl Zeiss Meditec, Inc. Variable resolution optical coherence tomography scanner and method for using same
JP4850892B2 (ja) * 2008-12-19 2012-01-11 キヤノン株式会社 眼底画像表示装置及びその制御方法、コンピュータプログラム
US8025406B2 (en) * 2009-03-17 2011-09-27 The Uwm Research Foundation, Inc. Systems and methods for photoacoustic opthalmoscopy
US8335552B2 (en) * 2009-03-20 2012-12-18 Medtronic, Inc. Method and apparatus for instrument placement
JP5725697B2 (ja) * 2009-05-11 2015-05-27 キヤノン株式会社 情報処理装置および情報処理方法
MY147093A (en) 2009-05-13 2012-10-31 Inst Of Technology Petronas Sdn Bhd Apparatus for monitoring and grading diabetic retinopathy
US8303115B2 (en) * 2009-05-28 2012-11-06 Annidis Health Systems Corp. Method and system for retinal health management
JP4909377B2 (ja) * 2009-06-02 2012-04-04 キヤノン株式会社 画像処理装置及びその制御方法、コンピュータプログラム
WO2010143601A1 (ja) * 2009-06-11 2010-12-16 国立大学法人筑波大学 2ビーム型光コヒーレンストモグラフィー装置
JP2011087672A (ja) * 2009-10-21 2011-05-06 Topcon Corp 眼底画像処理装置及び眼底観察装置
WO2011063220A2 (en) * 2009-11-20 2011-05-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Formalization of retinal nerve fiber layer thickness measurements made by time domain-optical coherence tomography
JP5582772B2 (ja) * 2009-12-08 2014-09-03 キヤノン株式会社 画像処理装置及び画像処理方法
CA2787336A1 (en) * 2010-01-21 2011-07-28 Physical Sciences, Inc. Multi-functional adaptive optics retinal imaging
WO2011116347A1 (en) * 2010-03-19 2011-09-22 Quickvein, Inc. Apparatus and methods for imaging blood vessels
US8711364B2 (en) * 2010-05-13 2014-04-29 Oprobe, Llc Optical coherence tomography with multiple sample arms
US8750615B2 (en) * 2010-08-02 2014-06-10 Case Western Reserve University Segmentation and quantification for intravascular optical coherence tomography images
JP5588291B2 (ja) * 2010-09-29 2014-09-10 キヤノン株式会社 情報処理装置、情報処理方法、情報処理システム、及びプログラム
JP5721411B2 (ja) * 2010-12-02 2015-05-20 キヤノン株式会社 眼科装置、血流速算出方法およびプログラム
US9230045B2 (en) * 2011-02-15 2016-01-05 The Research Foundation For The State University Of New York Layer-by-layer quantification of the remodeling of the human fovea in neurodegenerative disease
JP5818458B2 (ja) 2011-02-25 2015-11-18 キヤノン株式会社 画像処理装置、撮影システム、画像処理方法及びプログラム
JP5792967B2 (ja) * 2011-02-25 2015-10-14 キヤノン株式会社 画像処理装置及び画像処理システム
EP2701605A4 (en) 2011-04-27 2014-10-01 Univ Virginia Commonwealth 3D TRACKING OF HDR SOURCE USING A FLAT IMAGE DETECTOR
US8760499B2 (en) * 2011-04-29 2014-06-24 Austin Russell Three-dimensional imager and projection device
US8570372B2 (en) * 2011-04-29 2013-10-29 Austin Russell Three-dimensional imager and projection device
WO2012170722A2 (en) * 2011-06-07 2012-12-13 California Institute Of Technology Enhanced optical angiography using intensity contrast and phase contrast imaging methods
US8781189B2 (en) * 2011-10-12 2014-07-15 Siemens Aktiengesellschaft Reproducible segmentation of elliptical boundaries in medical imaging
PL2809225T3 (pl) * 2012-02-03 2017-12-29 Oregon Health & Science University Optyczne obrazowanie przepływu in vivo
US9709791B2 (en) * 2012-08-15 2017-07-18 Lucid, Inc. Systems and methods for imaging tissue
US9420945B2 (en) * 2013-03-14 2016-08-23 Carl Zeiss Meditec, Inc. User interface for acquisition, display and analysis of ophthalmic diagnostic data

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US7301644B2 (en) 2004-12-02 2007-11-27 University Of Miami Enhanced optical coherence tomography for anatomical mapping
US20080025570A1 (en) 2006-06-26 2008-01-31 California Institute Of Technology Dynamic motion contrast and transverse flow estimation using optical coherence tomography
US20100027857A1 (en) 2006-09-26 2010-02-04 Wang Ruikang K In vivo structural and flow imaging
US20080100612A1 (en) 2006-10-27 2008-05-01 Dastmalchi Shahram S User interface for efficiently displaying relevant oct imaging data
US20090268162A1 (en) * 2008-04-24 2009-10-29 Carl Zeiss Meditec, Inc. Method for finding the lateral position of the fovea in an sdoct image volume
US8079711B2 (en) 2008-04-24 2011-12-20 Carl Zeiss Meditec, Inc. Method for finding the lateral position of the fovea in an SDOCT image volume
WO2010129494A2 (en) 2009-05-04 2010-11-11 Oregon Health & Science University Method and apparatus for quantitative imaging of blood perfusion in living tissue
WO2010138645A2 (en) * 2009-05-29 2010-12-02 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Blood vessel segmentation with three-dimensional spectral domain optical coherence tomography
US20110034803A1 (en) 2009-08-04 2011-02-10 Carl Zeiss Meditec, Inc. Non-linear projections of 3-d medical imaging data
WO2011097631A2 (en) 2010-02-08 2011-08-11 Oregon Health & Science University Method and apparatus for ultrahigh sensitive optical microangiography
US20120249956A1 (en) 2011-03-30 2012-10-04 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
US20120277579A1 (en) 2011-07-07 2012-11-01 Carl Zeiss Meditec, Inc. Inter-frame complex oct data analysis techniques

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
AL-DIRI ET AL.: "Automated analysis of retinal vascular network connectivity", COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, vol. 34, 2010, pages 462 - 470
AN ET AL.: "Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects", J. BIOMED. OPT., vol. 17, 2012, pages 116018
AVAKIAN ET AL.: "Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina", CURR. EYE RES., vol. 24, 2002, pages 274 - 280
FINGLER ET AL.: "Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography", OPTICS EXPRESS, vol. 15, no. 20, 2007, pages 12637 - 12653
FINGLER ET AL.: "Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography", OPTICS EXPRESS., vol. 15, no. 20, 2007, pages 12637 - 12653
FINGLER ET AL.: "Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique", OPTICS EXPRESS., vol. 17, no. 24, 2009, pages 22190 - 22200
GANESAN ET AL.: "Development of an Image-Based Network Model of Retinal Vasculature", ANNALS OF BIOMEDICAL ENGINEERING, vol. 38, no. 4, 2010, pages 1566 - 1585
JIA ET AL.: "Quantitative OCT angiography of optic nerve head blood flow", BIOMED. OPT. EXPRESS, vol. 3, 2012, pages 3127 - 3137
KIM ET AL.: "In vivo volumetric imaging of human retinal circulation with phase variance OCT", BIOMEDICAL OPTICS EXPRESS, vol. 2, no. 6, 2011, pages 1504 - 1513
KIM ET AL.: "Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 53, no. 1, 2012, pages 85 - 92
LEITGEB ET AL.: "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler FDOCT", OPTICS EXPRESS, vol. 11, 2003, pages 3116 - 3121
LEITGEB ET AL.: "Ultrahigh resolution Fourier domain optical coherence tomography", OPTICS EXPRESS, vol. 12, no. 10, 2004, pages 2156
LEITGEB: "Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension", BIOMED. OPT. EXPRESS, vol. 2, 2011, pages 1159 - 1168
LIU ET AL.: "Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems", OPTICS EXPRESS, vol. 19, no. 12, 2011, pages 11429 - 11440
MAKITA ET AL.: "Comprehensive in vivo micro-vascular imaging of the human eye by dual- beam-scan Doppler optical coherence angiography", OPTICS EXPRESS, vol. 19, no. 2, 2011, pages 1271 - 1283
MAKITA ET AL.: "Optical Coherence Angiography", OPTICS EXPRESS, vol. 14, no. 17, 2006, pages 7821 - 7840
MARIAMPILLAI ET AL.: "Optimized speckle variance OCT imaging of microvasculature", OPTICS LETTERS, vol. 35, 2010, pages 1257 - 1259
SCHMOLL ET AL.: "Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension", BIOMED. OPT. EXPRESS, vol. 2, 2011, pages 1159 - 1168
WANG ET AL.: "Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography", OPTICS LETTERS, vol. 35, no. 9, 2010, pages 1467 - 1469
WANG ET AL.: "Frequency domain phase-resolved optical Doppler and Doppler variance tomography", OPTICS COMMUNICATIONS, vol. 242, 2004, pages 345 - 350
WANG ET AL.: "Imaging Retinal Capillaries Using Ultrahigh-Resolution Optical Coherence Tomography and Adaptive Optics", INVEST. OPHTHALMOL. VIS. SCI., vol. 52, 2011, pages 6292 - 6299
WANG ET AL.: "Three dimensional optical angiography", OPTICS EXPRESS, vol. 15, 2007, pages 4083 - 4097
WHITE ET AL.: "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography", OPTICS EXPRESS, vol. 11, no. 25, 2003, pages 3490 - 3497
YAZDANFAR: "Imaging and velocimetry of the human retinal circulation with color Doppler OCT", OPTICS LETTERS, vol. 25, 2000, pages 1448 - 1450
YONG ET AL.: "Novel Noninvasive Detection of the Fovea Avascular Zone Using Confocal Red-Free Imaging in Diabetic Retinopathy and Retinal Vein Occlusion", RETINA, vol. 52, 2011, pages 2649 - 2655
ZHAO ET AL.: "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow", OPTICS LETTERS, vol. 25, 2000, pages 1358 - 1360
ZHENG ET AL.: "Automated segmentation of foveal avascular zone in fundus fluorescein angiography", RETINA, vol. 51, no. 7, 2010, pages 3653 - 3659

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071452B2 (en) 2014-06-30 2021-07-27 Nidek Co., Ltd. Optical coherence tomography device, optical coherence tomography calculation method, and optical coherence tomography calculation program
JP2016010657A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP2016010656A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP2016026521A (ja) * 2014-06-30 2016-02-18 株式会社ニデック 光コヒーレンストモグラフィ装置、及びデータ処理プログラム
JP2016010658A (ja) * 2014-06-30 2016-01-21 株式会社ニデック 光コヒーレンストモグラフィ装置、光コヒーレンストモグラフィ演算方法及び光コヒーレンストモグラフィ演算プログラム
JP7249102B2 (ja) 2015-03-23 2023-03-30 アルコン インコーポレイティド レーザ光凝固の最適化のためのシステム、装置、および方法
JP2016209200A (ja) * 2015-05-01 2016-12-15 キヤノン株式会社 画像生成装置、画像生成方法及びプログラム
US10420461B2 (en) 2015-05-01 2019-09-24 Canon Kabushiki Kaisha Image generating apparatus, image generating method, and storage medium
JP2016209198A (ja) * 2015-05-01 2016-12-15 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
US11963750B2 (en) 2017-10-16 2024-04-23 Massachusetts Institute Of Technology Systems, devices and methods for non-invasive hematological measurements
US12383155B2 (en) 2017-10-16 2025-08-12 Massachusetts Institute Of Technology Systems, devices and methods for non-invasive hematological measurements
EP3696721A2 (en) 2019-01-24 2020-08-19 Topcon Corporation Ophthalmologic apparatus, method of controlling the same, and recording medium
EP3789915A1 (en) 2019-01-24 2021-03-10 Topcon Corporation Ophthalmologic apparatus
EP3792824A1 (en) 2019-01-24 2021-03-17 Topcon Corporation Ophthalmologic apparatus
US12402831B2 (en) 2019-07-24 2025-09-02 Massachusetts Institute Of Technology Finger inserts for a nailfold imaging device
JP2019217389A (ja) * 2019-10-02 2019-12-26 キヤノン株式会社 画像生成装置、画像生成方法及びプログラム
JP2019217388A (ja) * 2019-10-02 2019-12-26 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
JP6992030B2 (ja) 2019-10-02 2022-01-13 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
JP6992031B2 (ja) 2019-10-02 2022-01-13 キヤノン株式会社 画像生成装置、画像生成方法及びプログラム

Also Published As

Publication number Publication date
CN104271031A (zh) 2015-01-07
EP2852317A1 (en) 2015-04-01
US20160317029A1 (en) 2016-11-03
JP2015515894A (ja) 2015-06-04
IN2014DN08852A (enExample) 2015-05-22
JP6371762B2 (ja) 2018-08-08
EP2852317B1 (en) 2022-07-27
US20130301008A1 (en) 2013-11-14
CN104271031B (zh) 2017-08-08
EP4122377A1 (en) 2023-01-25
US9357916B2 (en) 2016-06-07
JP2018175888A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
EP2852317B1 (en) Analysis and visualization of oct angiography data
US10398302B2 (en) Enhanced vessel characterization in optical coherence tomograogphy angiography
US10743763B2 (en) Acquisition and analysis techniques for improved outcomes in optical coherence tomography angiography
Eladawi et al. Classification of retinal diseases based on OCT images
US10299677B2 (en) Volume analysis and display of information in optical coherence tomography angiography
Jia et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration
DeBuc A review of algorithms for segmentation of retinal image data using optical coherence tomography
EP3102090B1 (en) Optical coherence tomography (oct) system with phase-sensitive b-scan registration
US10264963B2 (en) Methods for high sensitivity flow visualization
US20140276025A1 (en) Multimodal integration of ocular data acquisition and analysis
US20160317026A1 (en) Optical coherence tomography system for health characterization of an eye
EP3102091B1 (en) Optical coherence tomography (oct) system with improved motion contrast
CA2844433A1 (en) Motion correction and normalization of features in optical coherence tomography
EP2892414A1 (en) Quantification of local circulation with oct angiography
Huang et al. In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method
Ţălu et al. Use of OCT imaging in the diagnosis and monitoring of age related macular degeneration
Huang et al. In vivo microvascular network imaging of the human retina
Patel Automated Three-Dimensional Image Segmentation of Retinal OCT Images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13724195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE