WO2013161831A1 - ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 - Google Patents

ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 Download PDF

Info

Publication number
WO2013161831A1
WO2013161831A1 PCT/JP2013/061951 JP2013061951W WO2013161831A1 WO 2013161831 A1 WO2013161831 A1 WO 2013161831A1 JP 2013061951 W JP2013061951 W JP 2013061951W WO 2013161831 A1 WO2013161831 A1 WO 2013161831A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
less
hot stamping
galvanized steel
Prior art date
Application number
PCT/JP2013/061951
Other languages
English (en)
French (fr)
Inventor
岳志 児嶋
広司 入江
剛 箕輪
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201380021066.2A priority Critical patent/CN104271789B/zh
Priority to KR1020167011389A priority patent/KR101716625B1/ko
Priority to MX2014012798A priority patent/MX2014012798A/es
Priority to EP13781200.4A priority patent/EP2843077B1/en
Priority to KR1020147029173A priority patent/KR101950546B1/ko
Priority to US14/395,173 priority patent/US20150125716A1/en
Publication of WO2013161831A1 publication Critical patent/WO2013161831A1/ja
Priority to US14/884,129 priority patent/US20160032439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a method for producing a hot-stamped galvanized steel sheet (GI or GA) suitably used in the field of thin steel sheet products mainly applied to automobile bodies, an alloyed hot-dip galvanized steel sheet for hot stamping, and its
  • the present invention relates to a manufacturing method and a hot stamp component. Specifically, even if it contains high Si of 0.7% or more, a method for producing a galvanized steel sheet for hot stamping capable of suppressing the occurrence of non-plating, an alloyed hot-dip galvanized steel sheet for hot stamping and a method for producing the same, And hot stamping parts.
  • the galvanized steel sheet for hot stamping of the present invention is preferably used for automotive parts such as automobile chassis, undercarriage parts, reinforcing parts and the like.
  • Automotive parts are generally manufactured by press forming steel plates.
  • a steel sheet that has been pickled after hot rolling hereinafter referred to as a hot-rolled pickled steel sheet
  • a cold-rolled steel sheet is used.
  • the plated steel sheet is mainly classified into a zinc-based plated steel sheet and an Al-based plated steel sheet, zinc-based plated steel sheets are widely used in consideration of corrosion resistance and the like.
  • Hot stamping technology has been proposed. Hot stamping is also called hot forming, hot pressing, and the like, and is a method in which the steel sheet is heated to a temperature higher than the temperature range (Ac 1 transformation point) of austenite + ferrite and pressed. According to the hot stamp method, a car part having a complicated shape can be obtained while having high strength.
  • Patent Document 1 as a steel plate used for hot stamping.
  • Patent Document 1 discloses that hot-rolled pickled steel sheets and cold-rolled steel sheets are targeted, and that the joint strength of spot welds is improved when the Si content of these steel sheets is increased to 0.7% or more. Furthermore, Patent Document 1 discloses that when the relationship between Ti and N is appropriately controlled and B is present in a solid solution state, deterioration of hot formability due to an increase in the amount of Si can be suppressed.
  • Patent Document 2 when hot stamped galvanized steel sheet with a small amount of Si is used as in Patent Document 2 and Patent Document 3, there is a great concern about a decrease in the weld strength of the spot welded portion (also referred to as the joint strength of the spot welded portion, hereinafter the same). Is done. Therefore, as described in Patent Document 1, the amount of Si is as high as 0.7% or more (thus, the weld strength of the spot welded portion is increased), and the problem of non-plating due to the large amount of Si addition does not occur. It is desired to provide a method for producing a stamped galvanized steel sheet.
  • LME grain boundary cracking
  • LME molten metal embrittlement
  • the present invention has been made in view of the above circumstances, and its purpose is to maintain high joint strength of spot welds when a galvanized steel sheet containing a high Si content of 0.7% or more is used for hot stamping.
  • An alloyed hot-dip galvanized steel sheet for hot stamping that can suppress LME cracks when it is used for hot stamping is provided. It is another object of the present invention to provide an alloyed hot-dip galvanized steel sheet for hot stamping that can suppress the LME crack without reducing press productivity, and a hot stamping part that suppresses the LME crack. .
  • the manufacturing method of the hot stamped galvanized steel sheet according to the present invention that can achieve the above object is as follows: C: 0.10 to 0.5% (meaning mass%, hereinafter the same), Si: 0.7 to 2 Hot-stamped or cold-rolled steel sheets containing 0.5%, Mn: 1.0 to 3%, Al: 0.01 to 0.5% are annealed in a reducing atmosphere and then plated and hot stamped.
  • the present invention is a method for producing a galvanized steel sheet for use in the present invention, wherein the annealing is performed at a temperature of 500 to 700 ° C. for 30 to 270 seconds.
  • the hot-rolled pickled steel plate or cold-rolled steel plate further contains 0.005% or less (excluding 0%) of B.
  • the hot-rolled pickled steel plate or cold-rolled steel plate further contains 0.10% or less (not including 0%) of Ti.
  • the hot-rolled pickled steel sheet or cold-rolled steel sheet further contains 1% or less (not including 0%) of Cr and Mo in total.
  • the hot-rolled pickled steel plate or cold-rolled steel plate further contains Nb, Zr and V in total of 0.1% or less (excluding 0%).
  • the hot-rolled pickled steel plate or cold-rolled steel plate further contains 1% or less (excluding 0%) of Cu and Ni in total.
  • the galvanized steel sheet is a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet.
  • the base steel plate contains C: 0.10 to 0.5%, Si: 0.7 to 2.5%, Mn: 1.0 to 3%, Al: 0.01 to 0.5%.
  • the Fe concentration in the plating layer is 16% or more.
  • the base steel plate further contains 0.005% or less (excluding 0%) of B.
  • the base steel sheet further contains 0.10% or less (not including 0%) of Ti.
  • the base steel plate further contains 1% or less (not including 0%) of Cr and Mo in total.
  • the base steel sheet further includes Nb, Zr and V in total of 0.1% or less (not including 0%).
  • the base steel sheet further contains 1% or less (not including 0%) of Cu and Ni in total.
  • the present invention also includes a method for producing the alloyed hot-dip galvanized steel sheet A for hot stamping (particularly, the alloyed hot-dip galvanized steel sheet having an oxygen concentration of 0.50% or less at the interface between the plating layer and the base steel sheet). It is.
  • the manufacturing method includes subjecting a hot-rolled pickled steel plate or cold-rolled steel plate satisfying the above-mentioned component composition (of the base steel plate) to annealing at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, followed by plating. Then, alloying is performed.
  • the alloyed hot-dip galvanized steel sheet B for hot stamping (particularly, the oxygen concentration at the interface between the plating layer and the base steel sheet is 0.50% or less and the Fe concentration in the plating layer is 16% or more).
  • the manufacturing method of the metallized hot-dip galvanized steel sheet is also included.
  • a hot rolled pickled steel plate or cold rolled steel plate satisfying the above component composition is annealed by holding at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, then plated, and then 560 to 750. It is characterized by the fact that it is alloyed at ° C.
  • the present invention also includes another method for producing the galvannealed steel sheet B for hot stamping.
  • the manufacturing method includes subjecting a hot-rolled pickled steel plate or cold-rolled steel plate satisfying the above-mentioned component composition (of the base steel plate) to annealing at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, followed by plating. Then, alloying is performed, and further, re-annealing at 400 to 750 ° C. is characteristic.
  • the present invention provides a hot stamping part in which a base steel sheet satisfies the above component composition and has an alloyed hot-dip galvanized layer, the LME crack depth is 10 ⁇ m or less, and the Fe concentration in the plated layer is 72. %, A hot stamping part obtained by using the alloyed hot-dip galvanized steel sheet for hot stamping, the depth of the LME crack being 10 ⁇ m or less, and plating Also included are hot stamping parts characterized by a Fe concentration in the layer of 72% or higher.
  • a steel sheet containing 0.7% or more of Si is subjected to reduction annealing appropriately controlled in temperature and time, and then galvanized. Therefore, it was possible to provide a galvanized steel sheet for hot stamping without occurrence of non-plating and having high joint strength at the spot welded portion.
  • the formation of an oxide at the interface between the plated layer of the galvannealed steel sheet and the base steel sheet is suppressed, and the galvannealed steel sheet for hot stamping that can suppress LME cracks when subjected to hot stamping, Furthermore, the Fe concentration in the plating layer of the alloyed hot-dip galvanized steel sheet is above a certain level, and when subjected to hot stamping, the blank heating process does not require a long time (ie, press productivity is reduced). In this way, an alloyed hot-dip galvanized steel sheet for hot stamping capable of suppressing LME cracks could be provided.
  • FIG. 1 is a schematic explanatory diagram showing a method of an LME experiment in the example.
  • FIG. 2 is a diagram illustrating sample collection positions in the example.
  • Patent Document 1 In view of the problem of non-plating due to the addition of a large amount of Si when applying to a galvanized steel sheet, studies have been made to solve the problem.
  • the reduction annealing conditions before plating heat treatment temperature and time in a reducing atmosphere
  • the above-mentioned merit improvement of joint strength of spot welds
  • the inventors have found that a hot stamped galvanized steel sheet that can avoid the problem of non-plating can be obtained, and have completed the present invention.
  • the reduction annealing conditions before plating will be described in detail later.
  • the present inventors have intensively studied to realize an alloyed hot-dip galvanized steel sheet in which the occurrence of the LME crack is suppressed when it is subjected to hot stamping. As a result, it has been found that the LME crack can be suppressed if substantially no oxide is present at the interface between the plated layer of the galvannealed steel sheet and the base steel sheet. Details are as follows.
  • the oxygen concentration at the interface between the alloyed hot-dip galvanized steel sheet (hereinafter sometimes referred to as “interface oxygen concentration”) was used as an evaluation index.
  • the upper limit of the said interface oxygen concentration for suppressing LME depth to 10 micrometers or less was examined, what is necessary is just to make this interface oxygen concentration 0.50 (mass)% or less. I found out.
  • the interface oxygen concentration is preferably 0.48% or less, more preferably 0.46% or less. From the viewpoint of productivity and the like, the lower limit value of the interfacial oxygen concentration is about 0.10%.
  • the interfacial oxygen concentration is determined by the method described in Examples described later.
  • the reason why the LME can be suppressed by suppressing the formation of the interface oxide has not been clearly clarified, it is considered as follows. That is, as the alloying of the plating layer proceeds, the melting point of the plating layer increases, so that the molten zinc is reduced and the generation of LME is suppressed. Alloying of the plating layer is caused by the diffusion of alloy components from the base steel plate to the plating layer, but an oxide (interface oxide) is present at the interface between the plating layer and the base steel plate as in the case of using the oxidation-reduction method.
  • the diffusion of the alloy component from the base steel plate to the plating layer that is, the progress of alloying is hindered, and the alloy is not sufficiently alloyed by heating for a short time.
  • the plated steel sheet has as little interfacial oxide as possible, the diffusion of the alloy components from the base steel sheet to the plating layer is not hindered, so that even when the heating time is short, the plating is performed to such an extent that LME does not occur. It is believed that the layers can be alloyed.
  • the above hot dip galvanizing melts zinc when heated.
  • the presence of this molten zinc causes LME cracks. Therefore, in order to suppress LME cracks that occur at the time of hot stamping, it is effective to make molten zinc as little as possible at the time of molding.
  • the heating before forming in the hot stamping process a long time, the zinc once melted becomes a solid phase due to the progress of alloying, and the molten zinc disappears.
  • press productivity decreases.
  • the Fe concentration in the plating layer is preferably 20% or more, more preferably 22% or more. From the viewpoint of suppressing powdering, the upper limit of the Fe concentration in the plating layer is about 80%. The Fe concentration is measured by the method described in Examples described later.
  • hot-rolled pickled steel sheet or cold-rolled steel sheet used in the method for producing the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet of the present invention the base material of the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained by the method
  • the component composition of the base steel plate of the hot stamping part obtained by using the steel plate and further the alloyed hot-dip galvanized steel plate will be described.
  • the chemical composition of the steel sheet used in the present invention is characterized in that Si is increased to 0.7% or more to increase the joint strength of the spot weld.
  • C is an element that contributes to increasing the strength of a hot stamped steel sheet (parts, hereinafter sometimes referred to as a hot stamped product) as a solid solution strengthening element.
  • the lower limit of the C amount is 0.10% or more.
  • the lower limit of the C amount is preferably 0.13% or more, more preferably 0.15% or more, and further preferably 0.17% or more.
  • the upper limit of the C amount is preferably 0.40% or less, more preferably 0.35% or less, and still more preferably 0.30% or less.
  • Si is an element that contributes to improving the joint strength of the spot welded portion of the hot stamped product. Further, Si has an effect of preventing the tempering in the slow cooling process of the hot stamp and maintaining the strength of the component. Further, Si is an element that generates retained austenite and contributes to improvement of the ductility of the part. In order to effectively exhibit these effects, the lower limit of the Si amount is set to 0.7% or more. The lower limit of the Si amount is preferably 0.75% or more, more preferably 0.80% or more, still more preferably 0.90% or more, and still more preferably 1.0% or more.
  • the upper limit of the Si amount is preferably 2.3% or less, and more preferably 2.1% or less.
  • Mn is an element useful for improving hardenability and suppressing high-strength variation of hot stamped molded products. Mn is also an element that promotes alloying in the alloying treatment of plating described later and contributes to securing the Fe concentration in the plating layer. In order to effectively exhibit such an action, the lower limit of the amount of Mn is set to 1.0% or more. However, if the amount of Mn becomes excessive, the strength becomes too high and the rolling load during the production of the base steel sheet increases, so the upper limit is made 3% or less.
  • the preferable lower limit of the amount of Mn is 1.2% or more, the more preferable lower limit is 1.5% or more, more preferably 1.7% or more, the preferable upper limit is 2.8% or less, and the more preferable upper limit is 2.5%. It is as follows.
  • Al 0.01 to 0.5%
  • Al is an element necessary for deoxidation. Therefore, the lower limit of the Al amount is set to 0.01% or more. Preferably it is 0.03% or more. However, if the Al amount is excessive, not only the above effect is saturated, but also inclusions such as alumina increase and the workability deteriorates, so the upper limit of the Al amount is set to 0.5%. Preferably it is 0.3% or less.
  • Hot-rolled pickled steel sheet or cold-rolled steel sheet used in the method for producing a hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet of the present invention a base steel sheet of hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained by the method,
  • the base steel sheet for hot stamping parts obtained by using the alloyed hot-dip galvanized steel sheet basically contains the above components, and the balance is iron and inevitable impurities. Examples of unavoidable impurities include P, S, and N.
  • the P is an element that adversely affects the joint strength of the spot weld. If the amount is excessive, the nugget becomes segregated on the final solidified surface of the nugget formed by spot welding and the nugget becomes brittle, resulting in a decrease in joint strength. . Therefore, the P content is preferably 0.02% or less. More preferably, it is 0.015% or less.
  • S is an element that adversely affects the joint strength of spot welds. If the amount is excessive, intergranular fracture due to grain boundary segregation in the nugget is promoted and joint strength is reduced. Therefore, the S amount is preferably 0.01% or less. More preferably, it is 0.008% or less.
  • the upper limit of N content is preferably 0.01% or less. More preferably, it is 0.008% or less. Note that the N amount is usually 0.001% or more in consideration of the cost in steelmaking.
  • B is an element that improves the hardenability of the steel material. In order to exhibit this effect, it is preferable to contain B 0.0003% or more. More preferably, it is 0.0005% or more (more preferably 0.0010% or more). On the other hand, if B exceeds 0.005%, coarse boride precipitates in the hot stamped molded article and the toughness of the molded article deteriorates, and therefore preferably 0.005% or less (more preferably 0.004% The following.
  • Ti 0.10% or less (excluding 0%)
  • Ti is an element that has the role of fixing N and ensuring the quenching effect of B. Ti also has the effect of refining the structure. Part ductility is improved by making the structure finer. In order to sufficiently exhibit such effects, the Ti content is preferably set to 0.01% or more. More preferably, it is 0.02% or more. However, if the Ti amount is excessive, the ductility of the steel sheet deteriorates, so the Ti amount is preferably 0.10% or less. More preferably, it is 0.07% or less.
  • Cr and Mo are effective elements for improving the hardenability of the base steel sheet, and by containing these elements, reduction in hardness variation in a hot stamped product can be expected. These elements may be added alone or in combination of two kinds. In order to effectively exhibit such an action, the total amount of these elements (a single amount when included alone and a total amount when used in combination of two types) is 0.01% or more. It is preferable to do. More preferably, it is 0.05% or more, More preferably, it is 0.1% or more. However, if these total amounts are excessive, the above effect is saturated and the cost is increased, so the upper limit is preferably made 1% or less. More preferably, it is 0.5% or less, More preferably, it is 0.3% or less.
  • Nb, Zr and V 0.1% or less in total (excluding 0%)
  • Nb, Zr, and V have the effect of refining the structure, and have the effect of improving the ductility of the component by refining the structure.
  • the lower limit of the total amount of these elements is 0.01%. It is preferable to set it as the above, More preferably, it is 0.02% or more. However, if the total amount of these elements is excessive, the effect is saturated and the cost is increased, so the upper limit is preferably 0.1% or less. More preferably, it is 0.05% or less.
  • Cu and Ni are elements added as necessary when it is desired to impart delayed fracture resistance to a hot stamped molded product. These elements may be added alone or in combination of two kinds. In order to effectively exhibit such an action, the total amount of these elements (a single amount when included alone and a total amount when used in combination of two types) is 0.01% or more. It is preferable to do. More preferably, it is 0.05% or more. However, if these amounts are excessive, it will cause surface flaws during the production of the steel sheet, so the upper limit is preferably made 1% or less. More preferably, it is 0.5% or less.
  • the outline of the production method according to the present invention is as follows. Casting steel of specified components ⁇ Heating ⁇ Hot rolling ⁇ Pickling ( ⁇ Cold rolling if necessary) ⁇ Hot dip galvanizing process ( ⁇ Further alloying process if necessary)
  • the annealing conditions temperature and time
  • the annealing process heat treatment in a reducing atmosphere
  • a reduction furnace in the annealing process of the hot dip galvanizing process
  • the heating conditions are not particularly limited, and commonly used conditions can be adopted as appropriate. However, it is preferable to perform the heating at a temperature of about 1100 to 1300 ° C.
  • Hot rolling conditions are not particularly limited, and commonly used conditions can be appropriately employed. Preferred conditions are generally as follows. Finishing rolling temperature (FDT): 800-950 ° C Winding temperature (CT): 500-700 ° C
  • the upper limit of the preferred thickness of the hot-rolled steel sheet is 3.5 mm or less. Preferably it is 3.0 mm or less, More preferably, it is 2.5 mm or less.
  • pickling is performed to produce a hot rolled pickled steel sheet.
  • the hot rolled scale can be removed by pickling.
  • a grain boundary oxidation layer formed of an oxide of Si or Mn may be formed near the interface between the hot rolling scale and the steel sheet. Therefore, it is not always necessary to remove the grain boundary oxidation in the acidic step.
  • a pickling method usually used for removing the grain boundary oxide layer is appropriately adopted. Can do.
  • pickling is preferably performed for 20 to 300 seconds using hydrochloric acid or the like heated to 80 to 90 ° C.
  • a pickling accelerator for example, a compound having a mercapto group
  • an inhibitor for example, an amine organic compound
  • the preferred thickness of the hot-rolled pickled steel sheet obtained in this way is generally the same as that of the hot-rolled steel sheet.
  • cold rolling may be further performed to produce a cold rolled steel sheet.
  • the galvanized steel sheet obtained by the method of the present invention is suitably used for automobile members particularly for the purpose of reducing the weight of automobiles
  • the base steel sheet constituting the galvanized steel sheet is from the viewpoint of dimensional accuracy and flatness.
  • a cold-rolled steel sheet is preferred.
  • the cold rolling rate is preferably controlled within a range of about 20 to 70% considering the productivity in the factory.
  • the upper limit of the preferable thickness of the cold-rolled steel sheet thus obtained is 2.5 mm or less. More preferably, it is 2.0 mm or less, More preferably, it is 1.8 mm or less.
  • the hot-rolled pickled steel plate or cold-rolled steel plate (hereinafter sometimes represented by a base steel plate) obtained as described above is subjected to a reduction furnace type continuous plating step.
  • the processes performed in a reduction furnace type hot dip galvanizing line are divided into a pretreatment process, an annealing process, and a plating process (alloying is also performed if necessary).
  • the annealing process of the hot dip galvanizing line is usually composed of a reduction furnace and a cooling zone.
  • the annealing conditions heat treatment temperature and time in a reducing atmosphere
  • the method of the present invention is not limited to the above-described embodiment, and for example, the hot dip galvanizing line can be performed by a non-oxidizing furnace type continuous annealing line. Below, it demonstrates based on the said aspect.
  • the base steel sheet is pretreated.
  • the pretreatment is usually performed in order to remove oil (oil and fat) and dirt on the steel sheet surface, and is typically performed by alkali degreasing.
  • the alkali used for alkali degreasing is not particularly limited as long as it can remove oils and fats as water-soluble soaps, but for example, caustic soda and silicate are preferably used.
  • electrolytic cleaning, scrubber treatment, and addition of a surfactant / chelating agent into the degreasing liquid can be performed.
  • the pretreatment method is not limited as long as the steel sheet surface is appropriately degreased, and the above-described treatments may be combined in any manner.
  • alkaline degreasing is performed as a pretreatment, in order to remove the degreasing liquid adhering to the steel sheet, it is hot rinsed (washed with water) and dried with a dryer or the like.
  • the pretreated base steel sheet is put into a reduction furnace and annealed (heat treatment in a reducing atmosphere) in the reduction furnace.
  • the annealing conditions at this time are such that the residence time (annealing time, soaking time) in the range of 500 to 700 ° C. (annealing temperature, soaking temperature) is 30 to 270 seconds.
  • the annealing treatment in the above temperature range is also called soaking.
  • the lower limit of the annealing temperature is preferably 530 ° C, more preferably 560 ° C, and still more preferably 600 ° C.
  • the upper limit of the annealing temperature is preferably 680 ° C, more preferably 660 ° C.
  • the lower limit of the annealing time is preferably 60 seconds, more preferably 90 seconds.
  • the upper limit of the annealing time is preferably 240 seconds, and more preferably 210 seconds.
  • the pretreated steel sheet may be preheated in a reducing atmosphere preheating furnace using exhaust gas before entering the reduction furnace.
  • the preheating condition at this time is not particularly limited as long as it is a reducing atmosphere.
  • the annealing conditions it is preferable to appropriately control the annealing conditions according to the balance between temperature and time during annealing so that non-plating does not occur. For example, when the annealing temperature is high, the annealing time can be shortened. On the other hand, when the annealing temperature is low, the annealing time can be lengthened.
  • the presence or absence of non-plating is observed at the stage of the hot-dip galvanized steel sheet or galvannealed steel sheet (before hot stamping). If suppressed, the non-plating disappears when the hot stamp is soaked, and it has been confirmed that no non-plating is observed in the product after hot stamping.
  • the interface oxygen concentration is 0.50% or less by an experiment in which reduction annealing is performed within the above annealing temperature range.
  • the annealing temperature is preferably 500 to 650 ° C., more preferably 500 to 600 ° C.
  • the annealing time is long, for example, the annealing time is preferably 45 seconds or more, and more preferably 60 seconds or more.
  • the oxide layer formed at the interface between the plating layer and the base steel sheet inhibits the diffusion of Fe to the plating layer during hot stamping and is necessary for preventing LME.
  • the heating time becomes longer and the press productivity decreases.
  • the atmosphere and dew point at the time of reduction are not particularly limited as long as non-plating does not occur.
  • the base steel plate exiting the reduction furnace is cooled in a cooling zone.
  • the cooling zone is composed of a slow cooling zone, a rapid cooling zone, and an adjustment zone (also referred to as a holding zone), but the cooling method may be performed under the conditions normally used so as not to cause non-plating. For example, a method of cooling the steel sheet by blowing a gas from the atmosphere.
  • a hot dip galvanized steel sheet is produced by a hot dip galvanizing process.
  • the GI may be alloyed to produce an alloyed hot-dip galvanized steel sheet (GA).
  • the hot dip galvanizing step is not particularly limited, and a generally used method can be adopted.
  • the temperature of the hot dip galvanizing bath may be controlled to about 430 to 500 ° C.
  • the adhesion amount of the hot dip galvanized layer (same as the adhesion amount of the following alloyed hot dip galvanized layer) is preferably 30 g / m 2 or more, more preferably 40 g / m 2 or more from the viewpoint of ensuring corrosion resistance. Yes, more preferably more than 75 g / m 2 .
  • the amount of adhesion of the hot dip galvanized layer is small. Therefore, the adhesion amount of the hot dip galvanized layer is preferably 120 g / m 2 or less, more preferably 100 g / m 2 or less.
  • the alloying hot-dip galvanizing process is not particularly limited, and a generally used method can be adopted.
  • the alloying temperature may be controlled to about 500 to 700 ° C.
  • the alloying temperature is preferably set to 560 ° C. or higher. More preferably, it is 600 degreeC or more, More preferably, it is 650 degreeC or more.
  • the process after the plating process is not particularly limited, and a generally used method can be adopted. Usually, skin pass treatment, tension leveler treatment, oil coating, and the like are performed, but these may be performed under conditions that are normally used as necessary, and may be omitted if unnecessary.
  • the temperature during the alloying treatment is not particularly limited.
  • 500 to 700 Re-annealing may be performed after the alloying treatment (or after the above-described plating step).
  • the alloying temperature may be controlled to 560 ° C. or higher, and re-annealing may be performed after the alloying treatment.
  • the heating temperature (re-annealing temperature) during re-annealing is preferably 400 ° C. or higher. Preferably it is 450 degreeC or more.
  • the re-annealing temperature is set to 750 ° C. or lower. Preferably it is 700 degrees C or less.
  • the time (re-annealing time) held at the re-annealing temperature can be appropriately set depending on the heating method or the like.
  • the re-annealing time is preferably 1 hour or longer (more preferably 2 hours or longer), and in the case of induction heating, the re-annealing time is preferably 10 seconds or longer.
  • the re-annealing time is preferably 15 hours or less, more preferably 10 hours or less in the case of the furnace heating.
  • the said reannealing time is 3 minutes or less, More preferably, it is 1 minute or less.
  • the galvanized steel sheet (GI or GA) thus obtained is suitably used as a hot stamping steel sheet.
  • the hot stamping process is not particularly limited, and a generally used method can be adopted.
  • the steel sheet is heated to a temperature equal to or higher than the Ac 3 transformation point to austenite, and then, for example, forming is completed at a temperature of about 550 ° C. or higher (when the mold reaches the bottom dead center position).
  • the heating method furnace heating, energization heating, induction heating, or the like can be employed.
  • the heating condition is the holding time in the furnace maintained at a temperature equal to or higher than the Ac 3 transformation point (also referred to as the in-furnace time. In the case of current heating and induction heating, the time from the start to the end of heating). By controlling to preferably 30 minutes or less, more preferably 15 minutes or less (more preferably 7 minutes or less), grain growth of austenite is suppressed, and properties such as hot drawability and toughness of hot stamped products are obtained. To improve. In the present invention, as described above, by setting the Fe concentration in the plated layer of the alloyed hot-dip galvanized steel sheet to 16% or more, the heating holding time is less than 9 minutes (further less than 7 minutes, even more 6 minutes). The press productivity can be further increased. Even when the Fe concentration in the plating layer is low, LME can be suppressed by increasing the heating holding time.
  • the lower limit of the heating holding time is not particularly defined, and it may be reached at or above the Ac 3 transformation point during heating. However, from the viewpoint of reliably suppressing LME, it is preferably more than 5.5 minutes.
  • the hot stamp component (molded product) of the present invention obtained by performing hot stamping (preferably hot stamping performed under the above-described conditions) using an alloyed hot-dip galvanized steel sheet with suppressed interfacial oxide is a plating layer.
  • Fe concentration is 72% or more (preferably 74% or more, more preferably 76% or more, and the upper limit is about 85%), and the depth of LME crack (determined by the method described in the examples described later).
  • the hot stamp parts include automobile chassis, underbody parts, and reinforcing parts.
  • Example 1 After heating a slab of steel having the chemical composition shown in Table 1 (unit: mass%) to 1200 ° C., hot rolling [FDT (finish rolling) ⁇ CT (winding)] by the method shown in Table 1 ⁇ Descaling treatment by pickling process ⁇ Cold rolling was performed to obtain a cold-rolled steel plate (corresponding to the base steel plate in the original plate and the plated steel plate).
  • the blank was annealed at 600 ° C. for 90 seconds under a reducing atmosphere of 5% H 2 —N 2 and dew point of ⁇ 45 ° C. simulating annealing before plating, and then cooled to room temperature. Thereafter, the blank is again put in a heating furnace maintained at 930 ° C. in the atmosphere and stayed for 4 minutes, and heated so that the central surface portion of the blank becomes 930 ° C. (the central surface portion of the plate). did. Next, the blank was taken out from the heating furnace and immediately cooled with water.
  • JIS No. 5 test piece was cut out from the blank after the hot stamp simulation experiment described above, and a tensile test was performed by the method described in JISZ2201 (tensile speed was 10 mm / min) to measure the tensile strength of the steel sheet after hot stamping.
  • the tensile strength of the steel sheet after hot stamping was evaluated as ⁇ (pass) for 980 MPa or more and x (fail) for less than 980 MPa.
  • the welding strength was evaluated as ⁇ (pass) for 3.0 kN or more and x (fail) for less than 3.0 kN.
  • the cold-rolled steel sheet was cut to obtain a 100 mm ⁇ 150 mm test piece.
  • the test piece was electrolytically degreased for 20 seconds in 3% sodium orthosilicate at 60 ° C. for 20 seconds, and then washed with running water for 5 seconds in tap water.
  • annealing described in Table 2 was performed in a reducing atmosphere of 5% H 2 —N 2 , dew point of ⁇ 45 ° C. or ⁇ 15 ° C. using a plating simulator.
  • the steel plate surface in the range (about 100 mm ⁇ 120 mm) immersed in the zinc plating bath was visually observed for each of the GI and GA, and the area ratio of non-plating was obtained.
  • the area ratio of non-plating was 5% or less, it was evaluated as ⁇ (pass), and over 5% was evaluated as x (fail).
  • the original plate No. having a small amount of C, Si and Mn. D decreased in both strength after hot stamping and weld strength.
  • No. Nos. 1 to 41 are the above Nos.
  • No. Nos. 42 to 47 are the above-mentioned No.s. Although A and M were used, since the annealing conditions of the present invention were not satisfied, unplating occurred in both cases. Specifically, no. Nos. 42 and 46 are examples where the annealing temperature (soaking temperature) before plating is low, and the Fe-based scale of the thin film existing on the surface of the original plate remains and is not cleaned, and thus plating is not applied. No. Nos. 43 and 47 are examples having a high annealing temperature. Si oxide was concentrated on the surface, and no plating was applied. No. No.
  • Example 2 No. in Table 1 above. Using cold-rolled steel sheets (base steel sheets) B, C, and G to M, annealing, galvanizing, and alloying treatment were performed under the conditions shown in Table 4 to obtain alloyed hot-dip galvanized steel sheets.
  • the component composition (particularly Fe concentration) of the plated layer of the obtained galvannealed steel sheet was analyzed as follows. That is, the plated steel sheet is immersed in a solution obtained by adding hexamethylenetetramine to 18% hydrochloric acid to dissolve only the plating layer, and the amount of plating adhesion is obtained from the mass change before and after dissolution, and the solution is subjected to ICP emission spectroscopy. Analysis was performed by an analysis method (use apparatus: ICPS-7510, manufactured by Shimadzu Corporation), and the Fe concentration in the plating layer was determined.
  • the oxygen concentration at the interface between the plated layer of the obtained galvanized steel sheet and the base steel sheet was measured using GDOES (Glow Discharge Optical Spectroscopy) (SPECTRUMA ANALYTIK GmbH, GDA750). Specifically, by the above analysis method, the Zn, Fe, O concentration profile in the depth direction of the plating layer of the sample is obtained, and within this concentration profile, within a range of 3 ⁇ m above and below the position (depth) where Zn and Fe intersect ( The highest O concentration in the measurement range) was determined as the oxygen concentration (interface oxygen concentration) at the interface between the plating layer and the base steel sheet.
  • GDOES Gas Discharge Optical Spectroscopy
  • FIG. 4 An example is shown in FIG. In FIG. 4, “Zn ⁇ 1”, “Fe ⁇ 1”, and “O ⁇ 20” are the concentration profile data shown in FIG. 4, respectively, Zn is 1 time of the measured value, Fe is 1 time of the measured value, O indicates that it is 20 times the measured value.
  • 4 (a) shows the experiment No. 3 is a measurement result of the plated steel sheet before the hot stamping experiment of No. 3; A conspicuous peak of O concentration is not confirmed from this measurement result. That is, Experiment No. 3 shows that oxide is not substantially present at the interface between the coating layer of the galvannealed steel sheet and the base steel sheet.
  • FIG. 3 shows that oxide is not substantially present at the interface between the coating layer of the galvannealed steel sheet and the base steel sheet.
  • the element concentration (particularly, the Fe concentration in the plating layer) of the plating layer of the component was obtained by EDX plane analysis of the cross section of the plating layer.
  • the apparatus is the same as the FE-SEM used for observation of LME cracks (SUPRA35, manufactured by ZEISS).
  • the analysis of the element concentration is performed in the state of no etching without performing the above-mentioned nital etching on the cross section of the plating portion of the non-bent portion of the test piece, and the average value of the values of 10 visual fields (Fe concentration) is calculated. Calculated.
  • the LME crack does not necessarily have the deepest apex of the bent portion, and it is often deeper slightly closer to the plane portion than the apex. Therefore, it is necessary to observe the entire bent portion in the cross section.
  • LME depth the depth of the deepest LME crack (denoted as “LME depth” in Table 4) was measured. The observation of the 10 fields of view was repolished every time 1 field of view was observed and dug down several mm, and the same observations as described above were repeated. And when the said LME depth was 10 micrometers or less, it evaluated that LME was suppressed.
  • experiment no. 3 and 6 are examples in which the conditions are the same except for the in-furnace time. Comparing these, it can be seen that the longer the in-furnace time, the higher the Fe concentration in the plated layer after hot stamping heating (ie, the part), resulting in shallower LME cracks.
  • Experiment No. 2 and 6 Experiment No. 8 and 10, experiment no. 11 and 12, experiment no. 13 and 14, experiment no. 15 and 16, experiment no. 17 and 18, experiment no. 19 and 20, experiment no. 21 and 22, and experiment no. 23 and 24 are examples in which the conditions are the same except for the Fe concentration in the plating layer.
  • the higher the Fe concentration in the plating layer of the plated steel sheet used for hot stamping the higher the Fe concentration in the plating layer after heating (parts) even under the same heating conditions, and LME is suppressed. I understand.
  • Example 3 In Example 3, in particular, the influence of the Fe concentration in the plating layer of the plated steel sheet on the press productivity (heating time during hot stamping) was confirmed.
  • Example 2 The original plate No. in Table 1 above.
  • B, C, and G to M cold rolled steel sheets (base steel sheets) were used in the same manner as in Example 2 (that is, annealing, galvanizing, alloying treatment, and some examples under the conditions shown in Table 5). Were further annealed) to obtain an alloyed hot-dip galvanized steel sheet.
  • Table 5 re-annealing was performed. In this re-annealing, the galvannealed steel sheet was cut to 70 mm ⁇ 150 mm and held at 450 ° C. or 550 ° C. for 7 hours in an electric furnace.
  • No. 5 in Table 5 was used. Nos.
  • 79 to 81 were prepared using the oxidation-reduction method as follows.
  • the production conditions were such that the air-fuel ratio was 0.9 to 1.4 in the oxidation zone, and the dew point containing hydrogen and nitrogen in the reduction zone was -30 to -60 ° C and reduced and soaked at 800 to 900 ° C.
  • plating with a zinc plating bath (Al concentration: 0.05 to 0.2%, bath temperature: 450 to 470 ° C), and after wiping, alloy at 460 to 550 ° C The treatment was performed.
  • Example 2 using the obtained galvannealed steel sheet, in the same manner as in Example 2, measurement of the amount of plating adhesion, measurement of the Fe concentration in the plating layer of the plated steel sheet, and the plating layer and the base steel sheet of the plated steel sheet The oxygen concentration at the interface was measured. Furthermore, a hot stamp simulation experiment (LME experiment) was performed as follows to evaluate LME cracks (evaluation of press productivity). Details are as follows.
  • LME crack depth (LME depth) was determined in the same manner as in Example 2 using the processed L-bending material.
  • Example 3 each No. in Table 5 was used.
  • the shortest heating time maximum depth of LME crack: heating time necessary to achieve 10 ⁇ m or less
  • “depth of LME crack deepest in all visual fields: 10 ⁇ m or less” was obtained.
  • LME cracks were evaluated (evaluation of press productivity) based on the following criteria. In this example, the case where the heating time was less than 9 minutes and the maximum depth of the LME crack: 10 ⁇ m or less could be achieved (that is, the following ⁇ , ⁇ and ⁇ ) was regarded as acceptable. The results are also shown in Table 5. (Evaluation criteria) ⁇ : Less than 6 minutes ⁇ : 6 minutes or more and less than 7 minutes ⁇ : 7 minutes or more and less than 9 minutes ⁇ : 9 minutes or more
  • No. 79 to 81 are manufactured using an oxidation-reduction method, so that the oxygen concentration (interfacial oxygen concentration) at the interface between the plated layer of the plated steel sheet and the base steel sheet is high, and the diffusion of Fe during heating is suppressed. It took a long time to heat before pressing to suppress it.
  • No. 48 and no. No. 56 has an annealing temperature (soaking temperature) of No. 56. 48, 500 ° C., No. 48 56 is different in that it is 700 ° C., and other conditions including the temperature during alloying (650 ° C.) are the same example. From these contrasts, it can be seen that the lower the annealing temperature (soaking temperature), the higher the Fe concentration in the plating layer.
  • No. 48 and no. No. 58 is the same as the manufacturing conditions except that the original plate is different. From these contrasts, No. No. 58 no. 48 has a slightly higher Fe concentration in the plating layer. This is no. No. 48 is considered to be because the amount of Mn in the original plate (base steel plate) is large, and alloying is promoted during the alloying treatment, so that the Fe concentration is increased.
  • Nos. 1 to 24 and Table 5 use an original sheet (cold rolled steel sheet) satisfying a predetermined component composition, and appropriately control the reduction annealing conditions (heat treatment temperature and time in a reducing atmosphere) before plating in the production process. Therefore, the tensile strength of the steel sheet after hot stamping evaluated in the same manner as in Example 1 is 980 MPa or more, the weld strength of the spot weld is 3.0 kN or more, and the area ratio of non-plating is 5% or less. I have confirmed that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 0.7%以上の高Si量を含む亜鉛めっき鋼板をホットスタンプ用途に用いた場合に、溶接部の高い接合強度を維持したまま、不めっきの発生も抑制できるホットスタンプ用高Si含有めっき鋼板の製造方法を提供する。該製造方法は、C:0.10~0.5%(質量%の意味、以下、同じ)、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する熱延酸洗鋼板または冷延鋼板を、還元性雰囲気で焼鈍した後、めっきしてホットスタンプ用亜鉛めっき鋼板を製造する方法であって、前記焼鈍を、500~700℃の範囲で30~270秒行なう点に特徴を有する。

Description

ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品
 本発明は、主に自動車車体に適用される薄鋼板成形品の分野で好適に用いられるホットスタンプ用亜鉛めっき鋼板(GIまたはGA)を製造する方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品に関する。詳細には、0.7%以上の高いSiを含有していても、不めっきの発生が抑えられるホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品に関するものである。本発明のホットスタンプ用亜鉛めっき鋼板は、例えば、自動車シャーシ、足回り部品、補強部品等の自動車用部品に好ましく用いられる。
 自動車用部品は、一般に鋼板をプレス成形して製造される。鋼板としては、熱延後、酸洗された鋼板(以下、熱延酸洗鋼板と呼ぶ。)や冷延鋼板が用いられるほか、耐食性向上の観点から、上記鋼板にめっきを施しためっき鋼板も使用される。めっき鋼板は、主に、亜鉛系めっき鋼板とAl系めっき鋼板に大別されるが、耐食性などを考慮し、亜鉛系めっき鋼板が汎用されている。
 また、近年では、高強度化と複雑な形状の両立が可能な技術として、鋼板(熱延酸洗鋼板、冷延鋼板、またはこれらを素地鋼板としためっき鋼板)を高温でプレスして製造するホットスタンプ技術が提案されている。ホットスタンプは、熱間成形、ホットプレスなどとも呼ばれており、上記鋼板を、オーステナイト+フェライトの温度域(Ac1変態点)以上の高温に加熱し、プレス加工する方法である。ホットスタンプ法によれば、高強度でありながら、複雑な形状の自動車用部品が得られる。
 ホットスタンプ用途に用いられる鋼板として、本出願人は、特許文献1を開示している。特許文献1では、熱延酸洗鋼板や冷延鋼板を対象とし、これらの鋼板のSi量を0.7%以上に高めると、スポット溶接部の接合強度が向上することを開示している。更に特許文献1では、TiとNとの関係を適切に制御し、Bを固溶した状態で存在させると、Si量の増加による熱間成形性の劣化が抑えられることを開示している。
 ところで、SiのようにFeより酸化し易い元素(易酸化性元素)を多く含む鋼板に溶融亜鉛めっきを施す場合、めっき前の還元焼鈍時(例えば、連続溶融亜鉛めっきラインの還元炉における熱処理時)に鋼板内部のSiが表面側に拡散、濃化し、鋼板の最表面にSiO2などの酸化皮膜が安定して形成されるという現象が起きる。この酸化皮膜は、溶融亜鉛めっき時の亜鉛との濡れ性(めっき濡れ性)を阻害するため、めっき層に多量の不めっき部分が発生してしまう。このような不めっきの問題は、ホットスタンプ後においても見られ、ホットスタンプ後の成形品の著しい品質低下を招く。
 そのため、ホットスタンプ用鋼板として、特許文献1のような熱延酸洗鋼板や冷延鋼板(めっき前の鋼板)でなく、亜鉛めっき鋼板を用いるときは、めっき濡れ性の低下を防止するため、Si量を0.5%以下に低減した亜鉛めっき鋼板を用いることが多かった(例えば特許文献2および特許文献3)。
特開2007-169679号公報 特開2007-56307号公報 国際公開第2010/069588号パンフレット
 しかしながら、特許文献2および特許文献3のようにSi量が少ないホットスタンプ用亜鉛めっき鋼板を用いると、スポット溶接部の溶接強度(スポット溶接部の接合強度ともいう。以下同じ)の低下が大いに懸念される。従って、特許文献1に記載のようにSi量が0.7%以上と高く(よって、スポット溶接部の溶接強度が高められ)、しかも、Siの多量添加による不めっきの問題も生じない、ホットスタンプ用亜鉛めっき鋼板の製造方法の提供が望まれている。
 また、上記亜鉛めっき鋼板を用いてホットスタンプを行ったときに、成形品に溶融金属脆化(Liquid Metal Embrittlement、以下、単に「LME」と記載する場合がある)による粒界割れ(以下、「LMEクラック」という場合がある)が発生する、といった問題がある。
 本発明は上記事情に鑑みてなされたものであり、その目的は、0.7%以上の高Si量を含む亜鉛めっき鋼板をホットスタンプに用いた場合に、スポット溶接部の高い接合強度を維持したまま、不めっきの発生も抑制できるホットスタンプ用高Si含有めっき鋼板の製造方法を提供すること、更に、ホットスタンプに供したときに、LMEクラックを抑制できるホットスタンプ用合金化溶融亜鉛めっき鋼板を提供すること、また更には、プレス生産性を低下させることなく、前記LMEクラックを抑制できるホットスタンプ用合金化溶融亜鉛めっき鋼板、およびLMEクラックの抑制されたホットスタンプ部品を提供することにある。
 上記目的を達成し得た本発明に係るホットスタンプ用亜鉛めっき鋼板の製造方法は、C:0.10~0.5%(質量%の意味、以下、同じ)、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する熱延酸洗鋼板または冷延鋼板を、還元性雰囲気で焼鈍した後、めっきしてホットスタンプ用亜鉛めっき鋼板を製造する方法であって、上記焼鈍を、500~700℃の範囲で30~270秒行なうところに要旨を有するものである。
 本発明の好ましい実施形態において、前記熱延酸洗鋼板または冷延鋼板は、更に、Bを0.005%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記熱延酸洗鋼板または冷延鋼板は、更に、Tiを0.10%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記熱延酸洗鋼板または冷延鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記熱延酸洗鋼板または冷延鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含むものである。
 また本発明の好ましい実施形態において、前記熱延酸洗鋼板または冷延鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、上記亜鉛めっき鋼板は、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板である。
 本発明には、素地鋼板がC:0.10~0.5%、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する合金化溶融亜鉛めっき鋼板であって、めっき層と素地鋼板の界面の酸素濃度が0.50%以下であるところに特徴を有するホットスタンプ用合金化溶融亜鉛めっき鋼板も含まれる。
 本発明の好ましい実施形態において、前記めっき層中のFe濃度は16%以上である。
 本発明の好ましい実施形態において、前記素地鋼板は、更に、Bを0.005%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記素地鋼板は、更に、Tiを0.10%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記素地鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含むものである。
 本発明の好ましい実施形態において、前記素地鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含むものである。
 また本発明の好ましい実施形態において、前記素地鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含むものである。
 本発明には、前記ホットスタンプ用合金化溶融亜鉛めっき鋼板A(特には、めっき層と素地鋼板の界面の酸素濃度が0.50%以下である合金化溶融亜鉛めっき鋼板)の製造方法も含まれる。該製造方法は、前記(素地鋼板の)成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行なうところに特徴を有する。
 本発明には、前記ホットスタンプ用合金化溶融亜鉛めっき鋼板B(特には、めっき層と素地鋼板の界面の酸素濃度が0.50%以下であると共に、めっき層中のFe濃度が16%以上である金化溶融亜鉛めっき鋼板)の製造方法も含まれる。該製造方法は、前記成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで560~750℃で合金化を行なうところに特徴を有する。
 本発明には、前記ホットスタンプ用合金化溶融亜鉛めっき鋼板Bの別の製造方法も含まれる。該製造方法は、前記(素地鋼板の)成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行ない、更に400~750℃で再焼鈍を行なうところに特徴を有する。
 本発明には、素地鋼板が前記成分組成を満たし、合金化溶融亜鉛めっき層を有するホットスタンプ部品であって、LMEクラックの深さが10μm以下であり、かつ前記めっき層中のFe濃度が72%以上であるところに特徴を有するホットスタンプ部品、および、前記ホットスタンプ用合金化溶融亜鉛めっき鋼板を用いて得られるホットスタンプ部品であって、LMEクラックの深さが10μm以下であり、かつめっき層中のFe濃度が72%以上であるところに特徴を有するホットスタンプ部品も含まれる。
 本発明では、0.7%以上のSiを含む鋼板(熱延酸洗鋼板または冷延鋼板)に対し、温度および時間が適切に制御された還元焼鈍を行なった後、亜鉛めっきを行なっているため、不めっきの発生もなく、且つ、スポット溶接部の接合強度が高いホットスタンプ用亜鉛めっき鋼板を提供することができた。更に、合金化溶融亜鉛めっき鋼板のめっき層と素地鋼板の界面の酸化物の形成が抑えられており、ホットスタンプに供したときにLMEクラックを抑制できるホットスタンプ用合金化溶融亜鉛めっき鋼板、また更には、合金化溶融亜鉛めっき鋼板のめっき層中のFe濃度が一定以上であり、ホットスタンプに供したときに、ブランクの加熱工程に長時間を要さずに(即ち、プレス生産性を低下させることなく)、LMEクラックを抑制できるホットスタンプ用合金化溶融亜鉛めっき鋼板を提供することができた。
図1は、実施例におけるLME実験の方法を示した概略説明図である。 図2は、実施例におけるサンプルの採取位置を示す図である。 図3は、実施例におけるFE-SEM観察写真である。 図4は、実施例におけるグロー放電発光分光分析結果を示す図であり、図4(a)は表4の実験No.3の分析結果、図4(b)は表5のNo.79の分析結果を示している。
 まず本発明者らは、特許文献1に記載のホットスタンプ用の熱延酸洗鋼板または冷延鋼板(Si量を0.7%以上に高めることによってスポット溶接部の接合強度向上を図ったもの)を、亜鉛めっき鋼板に適用しようとすると、Si多量添加による不めっきの問題が生じることに鑑み、当該問題を解決するため、検討を重ねてきた。その結果、めっき前の還元焼鈍条件(還元性雰囲気下での熱処理温度および時間)を適切に制御すれば、Siの多量添加による上記メリット(スポット溶接部の接合強度向上)は維持されたまま、不めっきの問題を回避できるホットスタンプ用亜鉛めっき鋼板が得られることを見出し、本発明を完成した。前記めっき前の還元焼鈍条件については後に詳述する。
 また本発明者らは、ホットスタンプに供したときに前記LMEクラックの発生が抑制された合金化溶融亜鉛めっき鋼板を実現すべく鋭意研究を重ねた。その結果、合金化溶融亜鉛めっき鋼板のめっき層と素地鋼板の界面に、実質的に酸化物が存在しないようにすれば、前記LMEクラックを抑制できることを見出した。詳細は次の通りである。
 まず本発明では、前記合金化溶融亜鉛めっき鋼板のめっき層と素地鋼板の界面の酸化物(以下「界面酸化物」ということがある)の量を定量的に把握すべく、後述する実施例で求める通り該めっき層と素地鋼板の界面の酸素濃度(以下「界面酸素濃度」ということがある)を評価指標に用いることとした。そして、後述する実施例に示す通り、LME深さを10μm以下に抑制するための前記界面酸素濃度の上限値について検討したところ、該界面酸素濃度を0.50(質量)%以下とすればよいことを見い出した。前記界面酸素濃度は、好ましくは0.48%以下、より好ましくは0.46%以下である。尚、生産性等の観点から、前記界面酸素濃度の下限値は、おおよそ0.10%程度となる。前記界面酸素濃度は、後述する実施例に記載の方法で求められる。
 前記界面酸化物の生成を抑えることによって、LMEを抑制できた理由について明確には判明できていないが、次の様に考えられる。即ち、めっき層は合金化が進むほど、めっき層の融点が高まるため、溶融亜鉛が減少してLMEの発生が抑制される。上記めっき層の合金化は、素地鋼板からめっき層への合金成分の拡散により生じるが、酸化還元法を用いた場合のように、めっき層と素地鋼板の界面に酸化物(界面酸化物)が形成されると、素地鋼板からめっき層への合金成分の拡散、即ち、合金化の進行が阻害され、短時間の加熱では十分に合金化されない。これに対し、界面酸化物の極力存在しないめっき鋼板とすれば、素地鋼板からめっき層への合金成分の拡散が阻害されないため、加熱時間が短時間であってもLMEが発生しない程度にまでめっき層を合金化することができると考えられる。
 更には、プレス生産性を低下させることなく前記LMEクラックを抑制するための手段についても検討を重ねた。特に、ホットスタンプに供する亜鉛めっき鋼板のめっき層中のFe濃度に着目し、このFe濃度とLMEクラックの関係について精査した。その結果、下記に詳述する通り、めっき層中のFe濃度を一定以上にすれば、プレス生産性を低下させることなくLMEクラックを抑制できることを見い出した。
 上記溶融亜鉛めっきは、加熱すると亜鉛が溶融する。この溶融した亜鉛の存在がLMEクラックの原因となる。よって、ホットスタンプ時に生じるLMEクラックを抑制するには、溶融した亜鉛が、成形時に極力存在しない状態とすることが有効である。ホットスタンプ工程における成形前の加熱を長時間とすることで、一旦溶融した亜鉛が合金化の進展により固相状態となり、溶融亜鉛は消失する。しかし上記加熱時間が長時間であると、プレス生産性が低下する。本発明では、前記めっき層中のFe濃度を16%以上とすることによって、前記亜鉛が加熱時に固相状態に変化しやすくなり、溶融亜鉛の消失に要する加熱時間の短縮化、すなわちプレス生産性の向上が可能となる。前記めっき層中のFe濃度は、好ましくは20%以上、より好ましくは22%以上である。尚、パウダリングを抑制する観点から、前記めっき層中のFe濃度の上限は80%程度である。前記Fe濃度は、後述する実施例に記載の方法で測定される。
 次に、本発明の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の製造方法に用いる熱延酸洗鋼板または冷延鋼板、該方法で得られる溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の素地鋼板、更には、前記合金化溶融亜鉛めっき鋼板を用いて得られるホットスタンプ部品の素地鋼板の成分組成について説明する。
 本発明に用いられる鋼板の化学成分は、上述したとおり、Siを0.7%以上に高めてスポット溶接部の接合強度を高めた点に特徴がある。
 [C:0.10~0.5%]
 Cは、固溶強化元素として、ホットスタンプ後の鋼板(部品、以下、ホットスタンプ成形品と呼ぶ場合がある。)の高強度化に寄与する元素である。ホットスタンプにより、所望とする980MPa以上の高強度を得るためには、C量の下限を0.10%以上とする。C量の下限は、好ましくは0.13%以上、より好ましくは0.15%以上、更に好ましくは0.17%以上である。しかしながら、C量が過剰になると、ホットスタンプ成形品の溶接性が低下するため、その上限を0.5%とする。C量の上限は、好ましくは0.40%以下、より好ましくは0.35%以下、更に好ましくは0.30%以下である。
 [Si:0.7~2.5%]
 Siは、ホットスタンプ成形品のスポット溶接部の接合強度向上に寄与する元素である。またSiは、ホットスタンプの徐冷工程における焼き戻しを防止して部品の強度を保つ効果を有している。更にSiは、残留オーステナイトを生成して部品の延性向上にも寄与する元素である。これらの効果を有効に発揮させるため、Si量の下限を0.7%以上とする。Si量の下限は、好ましくは0.75%以上であり、より好ましくは0.80%以上、更に好ましくは0.90%以上、より更に好ましくは1.0%以上である。しかしながら、Si量が過剰になると、強度が高くなり過ぎて素地鋼板(熱延酸洗鋼板または冷延鋼板)製造時の圧造負荷が増大するほか、熱間圧延の際に素地鋼板表面にSiO2を含むスケールが発生し、めっき後の鋼板の表面性状が悪化するため、その上限を2.5%とする。Si量の上限は、好ましくは2.3%以下であり、より好ましくは2.1%以下である。
 [Mn:1.0~3%]
 Mnは、焼入れ性を高め、ホットスタンプ成形品の高強度バラツキを抑えるために有用な元素である。またMnは、後述するめっきの合金化処理において合金化を促進させ、めっき層中のFe濃度確保に寄与する元素でもある。このような作用を有効に発揮させるため、Mn量の下限を、1.0%以上とする。しかし、Mn量が過剰になると、強度が高くなり過ぎて素地鋼板製造時の圧延負荷が増大するため、その上限を3%以下とする。Mn量の好ましい下限は1.2%以上、より好ましい下限は1.5%以上、さらに好ましくは1.7%以上であり、好ましい上限は2.8%以下、より好ましい上限は2.5%以下である。
 [Al:0.01~0.5%]
 Alは脱酸のために必要な元素であり、そのため、Al量の下限を0.01%以上とする。好ましくは0.03%以上である。しかしながら、Al量が過剰になると上記効果が飽和するだけでなく、アルミナ等の介在物が増加して加工性が劣化するため、Al量の上限を0.5%とする。好ましくは0.3%以下である。
 本発明の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の製造方法に用いる熱延酸洗鋼板または冷延鋼板、該方法で得られる溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の素地鋼板、更には、前記合金化溶融亜鉛めっき鋼板を用いて得られるホットスタンプ部品の素地鋼板は、上記成分を基本的に含み、残部:鉄および不可避的不純物である。不可避的不純物としては、例えばP、S、Nなどが挙げられる。
 Pは、スポット溶接部の接合強度に悪影響を及ぼす元素であり、その量が過剰であると、スポット溶接で形成されるナゲットの最終凝固面に偏析してナゲットが脆化し、接合強度が低下する。従ってP量は、0.02%以下とすることが好ましい。より好ましくは0.015%以下である。
 SもPと同様、スポット溶接部の接合強度に悪影響を及ぼす元素であり、その量が過剰であると、ナゲット内の粒界偏析による粒界破壊が助長され、接合強度が低下する。従ってS量は、0.01%以下とすることが好ましい。より好ましくは0.008%以下である。
 Nは、Bと結合して固溶B量を減少させ、焼入れ性に悪影響を与える。またN量が過剰であると、窒化物の析出量が増大し、靭性に悪影響を与える。そこでN量の上限は、0.01%以下とすることが好ましい。より好ましくは0.008%以下である。なお、製鋼上のコスト等を考慮すると、N量は、通常0.001%以上である。
 本発明では、上記成分のほか、更に下記の選択元素を必要に応じて添加することができる。
 [B:0.005%以下(0%を含まない)]
 Bは鋼材の焼入れ性を向上させる元素である。この効果を発揮させるには、Bを0.0003%以上含有させることが好ましい。より好ましくは0.0005%以上(更に好ましくは0.0010%以上)とするのがよい。一方、Bが0.005%を超えると、ホットスタンプ成形品中に粗大なホウ化物が析出して成形品の靭性が劣化するため、好ましくは0.005%以下(より好ましくは0.004%以下)とする。
 [Ti:0.10%以下(0%を含まない)]
 Tiは、Nを固定して、Bによる焼入れ効果を確保する役割を持つ元素である。またTiは、組織を微細化する効果も併せ持つ。組織が微細化することで部品延性が向上する。こうした作用を充分に発揮させるために、Ti量は、0.01%以上とすることが好ましい。より好ましくは0.02%以上である。しかし、Ti量が過剰であると、鋼板の延性が劣化するため、Ti量を0.10%以下とすることが好ましい。より好ましくは0.07%以下である。
 [CrおよびMo:合計で1%以下(0%を含まない)]
 CrおよびMoは、素地鋼板の焼入れ性を向上させるために有効な元素であり、これらの元素を含有させることによってホットスタンプ成形品における硬さばらつきの低減が期待できる。これらの元素は単独で添加しても良いし、2種類を併用しても良い。このような作用を有効に発揮させるためには、これら元素の合計量(単独で含むときは単独の量であり、2種類を併用するときは合計量である。)を0.01%以上とすることが好ましい。より好ましくは0.05%以上、更に好ましくは0.1%以上である。しかしながら、これらの合計量が過剰になると、上記効果が飽和すると共に、コストも上昇するため、その上限を1%以下とすることが好ましい。より好ましくは0.5%以下、更に好ましくは0.3%以下である。
 [Nb、ZrおよびV:合計で0.1%以下(0%を含まない)]
 Nb、Zr、Vは組織を微細化する効果を有しており、組織が微細化することで部品の延性を向上させる効果を有する。このような効果を有効に発揮させるには、これら元素の合計量(単独で含むときは単独の量であり、2種類以上を併用するときは合計量である。)の下限を0.01%以上とすることが好ましく、より好ましくは0.02%以上である。しかしながら、これらの元素の合計量が過剰になると、その効果が飽和してコストの上昇を招くため、その上限を0.1%以下とすることが好ましい。より好ましくは0.05%以下である。
 [CuおよびNi:合計で1%以下(0%を含まない)]
 CuおよびNiは、ホットスタンプ成形品に耐遅れ破壊性を付与したいときに、必要に応じて添加される元素である。これらの元素は、単独で添加しても良いし、2種類を併用しても良い。このような作用を有効に発揮させるためには、これら元素の合計量(単独で含むときは単独の量であり、2種類を併用するときは合計量である。)を0.01%以上とすることが好ましい。より好ましくは0.05%以上である。しかしながら、これらの量が過剰になると、鋼板製造時における表面疵の発生原因となるため、その上限を1%以下とすることが好ましい。より好ましくは0.5%以下である。
 以下、本発明の製造方法を、工程順に詳しく説明する。本発明に係る製造方法の概略は、以下のとおりである。
 所定成分の鋼を鋳造→加熱→熱間圧延→酸洗(→必要に応じて、冷間圧延)→溶融亜鉛めっき工程(→必要に応じて、更に合金化工程)
 そして本発明では、後に詳述する通り、溶融亜鉛めっき工程の焼鈍工程における、還元炉による焼鈍(還元性雰囲気下での熱処理)での焼鈍条件(温度および時間)を適切に制御したところに最大の特徴がある。
 まず、上記成分を満足する鋼を鋳造し、加熱する。加熱条件は特に限定されず、通常用いられる条件を適宜採用することができるが、おおむね、1100~1300℃の温度で行なうことが好ましい。
 次いで、熱間圧延する。熱間圧延条件は特に限定されず、通常用いられる条件を適宜採用することができる。好ましい条件は、おおむね、以下のとおりである。
  仕上げ圧延温度(FDT):800~950℃
  巻き取り温度(CT):500~700℃
 上記熱延鋼板の好ましい板厚の上限は3.5mm以下である。好ましくは3.0mm以下、より好ましくは2.5mm以下である。
 熱間圧延した後、酸洗し、熱延酸洗鋼板を作製する。この酸洗工程では、酸洗により、少なくとも熱延スケールが除去できれば良い。例えば熱延巻取り温度の高いコイルでは、熱延スケールと鋼板の界面近傍にSiやMnの酸化物による粒界酸化層が形成していることがあるが、粒界酸化の残存は、不めっきなどのめっき処理性に悪影響を及ぼさないため、当該酸性工程において、必ずしも上記粒界酸化まで除去する必要はない。但し、外観や粗さなどの表面性状安定化の観点からは、上記粒界酸化層を出来るだけ除去することが好ましく、粒界酸化層除去のために通常用いられる酸洗方法を適宜採用することができる。例えば、80~90℃に加熱した塩酸などを用い、20~300秒酸洗することが好ましい。このとき、塩酸中には適量の酸洗促進剤(例えばメルカプト基を有する化合物)やインヒビター(例えばアミン系有機化合物)を加えることが好ましい。
 このようにして得られた熱延酸洗鋼板の好ましい厚さも、上記熱延鋼板と、おおむね、同じである。
 上記酸洗の後、必要に応じて、更に冷間圧延し、冷延鋼板を作製しても良い。本発明の方法によって得られる亜鉛めっき鋼板は、特に、自動車の軽量化などを目的として自動車部材に好適に用いられるため、該亜鉛めっき鋼板を構成する素地鋼板は、寸法精度や平坦度の観点から、冷延鋼板であることが好ましい。
 冷延率は、工場での生産性などを考慮すると、おおむね、20~70%の範囲内に制御することが好ましい。このようして得られる冷延鋼板の好ましい板厚の上限は2.5mm以下である。より好ましくは2.0mm以下、更に好ましくは1.8mm以下である。
 次いで、上記のようにして得られた熱延酸洗鋼板または冷延鋼板(以下、素地鋼板で代表させる場合がある。)を還元炉方式の連続めっき工程に付す。一般に、還元炉方式の溶融亜鉛めっきラインで行なわれる工程は、前処理工程、焼鈍工程、めっき工程(必要に応じて、合金化処理も行われる)に分かれている。溶融亜鉛めっきラインの焼鈍工程は、通常、還元炉と、冷却帯とから構成されており、本発明では、還元炉における焼鈍条件(還元性雰囲気下での熱処理温度と時間)を適切に制御したところに最大の特徴がある。勿論、本発明の方法は、上記態様に限定する趣旨ではなく、例えば、上記溶融亜鉛めっきラインを、無酸化炉方式の連続焼鈍ラインにて行なうこともできる。以下では、上記態様に基づき、説明する。
 まず、上記素地鋼板に前処理を行う。前処理は、鋼板表面のオイル(油脂)や汚れを除去するために通常行なわれるものであり、代表的には、アルカリ脱脂によって行われる。アルカリ脱脂に用いられるアルカリは、油脂などを水溶性石鹸として除去できるものであれば特に限定されないが、例えば、苛性ソーダやケイ酸塩が好ましく用いられる。また、脱脂性を向上させるために、電解洗浄、スクラバー処理、脱脂液中への界面活性剤・キレート剤の添加処理を行なうこともできる。本発明では、鋼板表面が適切に脱脂されれば前処理の方法は限定されず、上述した処理をどのように組み合わせてもよい。前処理としてアルカリ脱脂を行なったときは、鋼板に付着した脱脂液を落とすため、ホットリンス(湯洗)され、ドライヤーなどで乾燥する。
 次に、前処理された上記素地鋼板を還元炉に投入し、還元炉で焼鈍(還元性雰囲気下での熱処理)する。このときの焼鈍条件は、500~700℃の範囲(焼鈍温度、均熱温度)での滞在時間(焼鈍時間、均熱時間)を30~270秒とする。上記温度域での焼鈍処理を均熱処理とも呼ぶ。焼鈍温度の下限値は、好ましくは530℃、より好ましくは560℃、更に好ましくは600℃である。焼鈍温度の上限値は、好ましくは680℃、より好ましくは660℃である。焼鈍時間の下限値は、好ましくは60秒、より好ましくは90秒である。焼鈍時間の上限値は、好ましくは240秒、より好ましくは210秒である。なお、省エネルギーの観点から、還元炉に入る前に、排ガスを用いた還元性雰囲気の予熱炉にて、前処理後の鋼板を予熱してもよい。このときの予熱条件は、還元性雰囲気であれば特に限定されない。
 上記の焼鈍条件は、Siの表面への濃化(Si系酸化物の生成)を抑制し、素地鋼板表面に形成される極薄いFe系酸化物を還元して不めっきをなくすとの観点から、多くの基礎実験によって決定されたものである。焼鈍温度の上限・下限、焼鈍時間の上限・下限のそれぞれが、上記範囲を外れる場合は、不めっきが発生する(後記する実施例を参照)。特に焼鈍温度が高過ぎたり、焼鈍時間が長過ぎると、Si系酸化物が表面に形成され易くなり、不めっきが発生し易くなる。一方、焼鈍温度が低過ぎたり、焼鈍時間が短過ぎると、Fe系酸化物が残存し易くなり、やはり、不めっきが発生し易くなる。
 具体的に上記焼鈍条件は、不めっきが発生しないように、焼鈍時の温度と時間とのバランスによって適切に制御することが好ましい。例えば、焼鈍温度が高い場合は焼鈍時間を短くすることができ、一方、焼鈍温度が低い場合は、焼鈍時間を長くすることも可能である。
 なお、後記する実施例では、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の段階(ホットスタンプの前)で、不めっきの有無を観察しているが、この段階で不めっきが5%以下に抑制されていれば、ホットスタンプの均熱時に当該不めっきは消失するため、ホットスタンプ後の製品においても不めっきは見られないことを確認している。
 また上記焼鈍温度の範囲で還元焼鈍を行う実験により、界面酸素濃度が0.50%以下になることを確認している。一方、Si添加鋼で一般的に行われている酸化還元法では、界面酸素濃度を0.50%以下にすることは困難である。
 更に、めっき層中のFe濃度を容易に高める観点からは、焼鈍温度を、前記範囲(500~700℃)の中でも低めとすることが好ましい。例えば、前記焼鈍温度を500~650℃とすることが好ましく、より好ましくは500~600℃である。また、この様に焼鈍温度を低めとする場合、焼鈍時間は長めとすることが好ましく、例えば焼鈍時間を45秒以上とすることが好ましく、より好ましくは60秒以上である。
 なお、ホットスタンプ用途とは離れて、一般に、本発明のように多量のSiを含む鋼を亜鉛めっきする場合、不めっきの発生を防止するため、例えば、焼鈍工程の前にプレめっきを行なう方法や、還元炉での還元焼鈍の前に酸化を行なう酸化還元法を行なう方法などが採用されている。しかし本発明では、以下に詳述するように適切な還元焼鈍を行った後にめっきを行なうため、これらの方法は不要である。プレめっきを行う方法は、特別な設備の導入がコストアップに繋がる。また、酸化還元法で製造した場合、めっき層と素地鋼板との界面に形成される酸化物層がホットスタンプ加熱時のめっき層へのFeの拡散を阻害し、LMEを防止するために必要な加熱時間が長くなりプレス生産性が低下する。
 還元時の雰囲気や露点は、不めっきが発生しない範囲であれば特に限定されないが、例えば、H2-N混合ガスでH濃度が1~30%、-10~-60℃の露点範囲とすることが好ましい。具体的には、前述した焼鈍時の温度や時間との関係で、焼鈍時間を適切に制御することが推奨される。
 次に、還元炉を出た素地鋼板は、冷却帯で冷却される。通常、冷却帯は徐冷帯、急冷帯、調整帯(保持帯とも呼ばれる)で構成されるが、冷却方法は、不めっきが発生しないよう、通常用いられる条件で行えば良く、例えば、還元性雰囲気の気体を鋼板に吹き付けて冷却するなどの方法が挙げられる。
 このようにして連続焼鈍工程を行なった後、亜鉛めっきを行なう。詳細には、溶融亜鉛めっき工程により溶融亜鉛めっき鋼板(GI)を作製する。或いは、上記GIを合金化し、合金化溶融亜鉛めっき鋼板(GA)を作製しても良い。
 上記溶融亜鉛めっき工程は特に限定されず、通常、用いられる方法を採用することができる。例えば、溶融亜鉛めっき浴の温度は、430~500℃程度に制御すればよい。溶融亜鉛めっき層の付着量(下記の合金化溶融亜鉛めっき層の付着量と同じ)は、耐食性確保の観点から、30g/m2以上とすることが好ましく、より好ましくは40g/m2以上であり、更に好ましくは75g/m2超である。一方、本発明で規定のめっき層中のFe濃度を容易に実現する観点からは、溶融亜鉛めっき層(特に合金化溶融亜鉛めっき層)の付着量は少ない方が好ましい。よって、溶融亜鉛めっき層の付着量は、120g/m2以下とすることが好ましく、より好ましくは100g/m2以下である。
 上記合金化溶融亜鉛めっき工程も特に限定されず、通常、用いられる方法を採用することができる。例えば、合金化温度は、500~700℃程度に制御すればよい。前記めっき層中のFe濃度を容易に高める観点からは、前記合金化温度を560℃以上とすることが好ましい。より好ましくは600℃以上、更に好ましくは650℃以上である。
 めっき工程後の工程も特に限定されず、通常、用いられる方法を採用することができる。通常、スキンパス処理、テンションレベラ処理、塗油等が行われるが、これらは必要に応じて通常用いられる条件で実施すればよく、不必要であれば実施しなくても良い。
 前記めっき層中のFe濃度を容易に高める手段として、前記合金化温度を560℃以上とする代わりに(この場合、合金化処理時の温度は特に限定されない。例えば、前述の通り、500~700℃程度とすることができる)、前記合金化処理後(または、前述しためっき工程後の工程の後)に再焼鈍を行なってもよい。また、前記合金化温度を560℃以上に制御すると共に、該合金化処理後に再焼鈍を行なってもよい。
 前記再焼鈍の推奨される条件は次の通りである。即ち、再焼鈍時の加熱温度(再焼鈍温度)は400℃以上とするのがよい。好ましくは450℃以上である。一方、亜鉛の蒸発を抑制する観点から、前記再焼鈍温度は750℃以下とする。好ましくは700℃以下である。また、上記再焼鈍温度で保持する時間(再焼鈍時間)は、加熱方法等によって適宜設定することができる。例えば炉加熱の場合、前記再焼鈍時間は1時間以上(より好ましくは2時間以上)であることが好ましく、誘導加熱の場合、前記再焼鈍時間は10秒以上であることが好ましい。一方、亜鉛の蒸発を抑制する観点から、前記再焼鈍時間は、前記炉加熱の場合、15時間以下であることが好ましく、より好ましくは10時間以下である。また前記誘導加熱の場合、前記再焼鈍時間は、3分以下であることが好ましく、より好ましくは1分以下である。
 このようにして得られた亜鉛めっき鋼板(GIまたはGA)は、ホットスタンプ用鋼板として好適に用いられる。
 本発明では、ホットスタンプ工程を特に限定するものではなく、通常、用いられる方法を採用することができる。例えば、通常の方法に従って、上記鋼板をAc3変態点以上の温度に加熱してオーステナイト化した後、例えば、約550℃以上の温度で成形を完了(金型が下死点位置に到達した時点)する方法が挙げられる。前記加熱の方法として、炉加熱、通電加熱、誘導加熱等を採用することができる。
 上記加熱の条件は、Ac3変態点以上の温度に保たれた炉での保持時間(在炉時間ともいう。通電加熱、誘導加熱の場合、加熱開始から終了までの時間をいう。)を、好ましくは30分以下、より好ましくは15分以下(更に好ましくは7分以下)に制御することにより、オーステナイトの粒成長が抑制され、熱間の絞り性やホットスタンプ成形品の靭性などの特性が向上するようになる。本発明では、前述の通り合金化溶融亜鉛めっき鋼板のめっき層中のFe濃度を16%以上とすることによって、前記加熱の保持時間を9分未満(更には7分未満、より更には6分未満)とすることができ、プレス生産性をより高めることができる。尚、前記めっき層中のFe濃度が低い場合であっても、前記加熱の保持時間を長くすることによって、LMEを抑制することができる。
 前記加熱の保持時間の下限は特に規定されず、加熱中にAc3変態点以上に到達すればよいが、LMEを確実に抑制する観点からは、5.5分超とすることが好ましい。
 前記製造方法によって得られる溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板を、上記ホットスタンプに供することによって、溶接部の高い接合強度を維持したまま、不めっきの発生が抑制されたホットスタンプ部品を得ることができる。特には、界面酸化物を抑制した合金化溶融亜鉛めっき鋼板を用い、ホットスタンプ(好ましくは前記条件で行うホットスタンプ)を行って得られる、本発明のホットスタンプ部品(成形品)は、めっき層中のFe濃度が72%以上(好ましくは74%以上、より好ましくは76%以上、上限は85%程度である)であり、かつLMEクラックの深さ(後述する実施例に記載の方法で求められる)が10μm以下(好ましくは5μm以下、より好ましくは1μm以下、最も好ましくは0μmである)を満たしている。なお、この鋼板を使うと合金化が促進されるので、残存した溶融亜鉛による亜鉛の金型への凝着が生じにくく、金型の手入れコスト低減も可能となる。
 本発明の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板を用いて、ホットスタンプ部品を製造する方法では、前記ホットスタンプ工程の他、部品の形状に応じて切削を行う等一般的に行われている工程(条件)を更に採用することができる。前記ホットスタンプ部品としては、例えば自動車シャーシ、足回り部品、補強部品等が挙げられる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本願は、2012年4月23日に出願された日本国特許出願第2012-098035号および2013年1月24日に出願された日本国特許出願第2013-011424号に基づく優先権の利益を主張するものである。2012年4月23日に出願された日本国特許出願第2012-098035号の明細書の全内容および2013年1月24日に出願された日本国特許出願第2013-011424号の明細書の全内容が、本願の参考のため援用される。
 [実施例1]
 表1に記載の化学組成を有する鋼(単位は質量%)のスラブを、1200℃に加熱した後、表1に記載の方法で熱間圧延[FDT(仕上げ圧延)→CT(巻取)]→酸洗工程によるデスケーリング処理→冷間圧延を行なって冷延鋼板(原板、めっき鋼板における素地鋼板に相当)を得た。
 このようにして得られた各冷延鋼板を用い、以下の各項目を測定した。
 (ホットスタンプ後の引張強度の測定)
 上記冷延鋼板を切断して得られた短冊状ブランク(長さ:30mm、幅:210mm)を用い、ホットスタンプを模擬したヒートパターンを以下のように施した。
 まず、上記ブランクを、めっき前の焼鈍を模擬して5%H2-N2、露点-45℃の還元性雰囲気下で600℃×90秒で焼鈍した後、室温まで冷却した。その後、上記ブランクを、大気中で930℃に保持した加熱炉内に再度投入して4分間滞在させ、上記ブランクの中心の表面部分が930℃(板の中心の表面部分)になるように加熱した。次いで、上記加熱炉から上記ブランクを取り出した後、直ちに水冷した。
 上述したホットスタンプ模擬実験後のブランクからJIS5号試験片を切り出して、JISZ2201に記載の方法で引張試験を行い(引張速度は10mm/min)、ホットスタンプ後の鋼板の引張強度を測定した。ホットスタンプ後の鋼板の引張強度は980MPa以上を○(合格)、980MPa未満を×(不合格)と評価した。
 (ホットスタンプ後の溶接強度の測定)
 上記ホットスタンプ模擬実験後のブランクを、以下のスポット溶接試験に供し、接合部の強度(十字継手破断荷重)を測定した。溶接電流は、ナゲット径が4×√t(t:板厚)となるように調節した。
  試験片条件:十字張力用試験片(JIS Z3137に準拠)
  溶接機:単相交流式スポット溶接機
  電極:先端径φ6mmのドームラジアスタイプ
  加圧力:4kN
  初期加圧時間:60サイクル
  通電時間:10サイクル(電源周波数60Hz)
 溶接強度は3.0kN以上を○(合格)、3.0kN未満を×(不合格)と評価した。
 (不めっきの面積率の測定)
 上記冷延鋼板を切断し、100mm×150mmの試験片を得た。この試験片を、60℃の3%オルソ珪酸ナトリウム中で20A、20秒間電解脱脂した後、水道水中で5秒間流水にて水洗した。このようにしてアルカリ脱脂した試験片を用いて、めっきシミュレータにて、5%H2-N2、露点-45℃または-15℃の還元性雰囲気下で表2に記載の焼鈍を行なった。
 具体的には、上記還元性雰囲気にて、室温から均熱温度までを表2の平均昇温速度で加熱し、均熱処理(表2に記載の温度および時間)した後、当該均熱温度から460℃までを、表2の平均冷却速度で冷却した。次いで、表2に記載の亜鉛めっき浴でめっきし、ワイピングを行って溶融亜鉛めっき鋼板(GI)を得た。一部の試料については、更に表2の合金化処理を行ない、合金化溶融亜鉛めっき鋼板(GA)を得た。
 不めっきの状態は、上記GIおよびGAのそれぞれについて、亜鉛めっき浴に浸漬した範囲(約100mm×120mm)の鋼板表面を目視で観察し、不めっきの面積率を求めた。不めっきの面積率が5%以下を○(合格)、5%超を×(不合格)と評価した。
 これらの結果を表1~3に示す。尚、表2と表3におけるいずれの例も、めっき付着量は75g/m2超120g/m2以下の範囲内であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3より、以下のように考察することができる。
 表1より、鋼中成分が適切に制御された表1のNo.A~CおよびG~Mは、ホットスタンプ後の強度が高く、溶接強度も良好であった。
 これに対し、C量、Si量、およびMn量が少ない原板No.Dは、ホットスタンプ後の強度、および溶接強度のいずれも低下した。
 また、C量およびMn量が少ない原板No.Eは、ホットスタンプ後の強度が低下した。
 また、Si量およびMn量が少ない原板No.Fは、溶接強度が低下した。
 表2および表3より、以下のように考察することができる(下記のNo.は表2および表3のめっき鋼板No.を示している)。
 No.1~41は、本発明の鋼中成分を満足する上記No.A~C、G~Mを用い、本発明の条件で製造しためっき鋼板(GIまたはGA)であり、いずれも、不めっきの発生が抑えられた。
 これに対し、No.42~47は、鋼中成分が適切に制御された上記No.AとMを用いているが、本発明の焼鈍条件を満足しないため、いずれも不めっきが発生した。詳細には、No.42および46はめっき前の焼鈍温度(均熱温度)が低い例であり、原板の表面に存在した薄膜のFe系スケールが残存して清浄化されず、そのため、めっきが付かなかった。No.43および47は焼鈍温度が高い例であり、表面にSi酸化物が濃化し、めっきが付かなかった。No.44は、焼鈍温度は適切であるが、めっき前の焼鈍時間(均熱時間)が短いため、表面が清浄化されず、めっきが付かなかった。No.45は、焼鈍温度は適切であるが、焼鈍時間が長いため、表面にSi酸化物が濃化し、めっきが付かなかった。
 [実施例2]
 前記表1のNo.B、C、およびG~Mの冷延鋼板(素地鋼板)を用い、表4に示す条件で、焼鈍、亜鉛めっき、合金化処理を行なって、合金化溶融亜鉛めっき鋼板を得た。
 具体的には、表4に示す雰囲気(還元性雰囲気)にて、室温から均熱温度までを表4の平均昇温速度で加熱し、均熱(表4に記載の温度および時間)した後、当該均熱温度から460℃までを、表4の平均冷却速度で冷却した。次いで、表4に記載のめっき浴(亜鉛めっき浴)でめっきし、ワイピングを行ない合金化処理を行なって、合金化溶融亜鉛めっき鋼板(GA)を得た。
 この様にして得られためっき鋼板を用いて、下記の評価を行った。
 (めっき鋼板のめっき付着量およびめっき層中のFe濃度の測定)
 得られた合金化溶融亜鉛めっき鋼板のめっき層の成分組成(特にFe濃度)は、次の様にして分析した。即ち、18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記めっき鋼板を浸漬してめっき層のみを溶解し、溶解前後の質量変化からめっき付着量を求めると共に、その溶解液をICP発光分光分析法(使用装置は、島津製作所製、ICPS-7510)で分析し、めっき層中のFe濃度を求めた。
 (めっき鋼板のめっき層と素地鋼板の界面の酸素濃度の測定)
 得られた合金化亜鉛めっき鋼板のめっき層と素地鋼板の界面の酸素濃度の測定は、GDOES(グロー放電発光分光分析)(SPECTRUMA ANALYTIK GmbH製、GDA750)を用いて行った。詳細には、上記分析方法で、サンプルのめっき層深さ方向のZn、Fe、O濃度プロファイルを求め、この濃度プロファイルにおいて、ZnとFeが交差する位置(深さ)の上下3μmの範囲内(測定範囲内)で最も高いO濃度を、前記めっき層と素地鋼板の界面の酸素濃度(界面酸素濃度)として求めた。
 その一例を図4に示す。尚、図4において「Zn×1」「Fe×1」「O×20」はそれぞれ、図4に示された濃度プロファイルデータが、Znは測定値の1倍、Feは測定値の1倍、Oは測定値の20倍であることを示している。図4(a)は、表4の実験No.3のホットスタンプ実験前のめっき鋼板の測定結果である。この測定結果から目立ったO濃度のピークは確認されない。即ち、実験No.3では、合金化亜鉛めっき鋼板のめっき層と素地鋼板の界面に酸化物が実質存在しないことがわかる。これに対し、図4(b)は、後述する表5のNo.79(界面酸素濃度が0.51%)のホットスタンプ実験前のめっき鋼板の測定結果であるが、この測定結果からO濃度のピークを確認することができる。即ち、表5のNo.79では、合金化亜鉛めっき鋼板のめっき層と素地鋼板の界面に酸化物が存在していることがわかる。表4のその他の例、更には後述する表5においても、界面酸素濃度は上記と同様にして測定した。
 (ホットスタンプ部品の評価)
 ホットスタンプ部品の製造を模擬して、次の通り曲げ加工を行った。即ち、前記合金化溶融亜鉛めっき鋼板を50mm×100mmに切断して得られたサンプルを、電気炉に投入して加熱した後(炉温(加熱温度)と在炉時間(加熱時間)は表4に示す通りである)、以下の条件で図1に示す通り曲げ加工を施し、部品を模擬した試験片(L曲げ材)を得た。尚、880℃の炉で加熱したNo.5の試験片は120秒でAc3変態点以上の温度となり、920℃の炉で加熱したその他の試験片は加熱開始から90秒±15秒でAc3変態点以上の温度となった。
  (加工条件)
  素材寸法:長さ100mm×奥行き50mm
  パッド圧:5トン
  クリアランス(パンチと曲げ刃との間の距離):1.4mm(板厚と同じ)
  曲げR(rp):2.5mm
  プレス開始温度:750℃
  下死点保持時間:10秒
 (ホットスタンプ部品のめっき層中のFe濃度の測定)
 部品のめっき層の元素濃度(特に、めっき層中のFe濃度)は、めっき層の断面をEDX面分析することで求めた。装置はLMEクラックの観察に用いたFE-SEMと同じ(SUPRA35、ZEISS製)である。この元素濃度の分析は、試験片の非曲げ部のめっき部分の断面を、前述のようなナイタールエッチングを施さずにノーエッチの状態で行い、合計10視野の値(Fe濃度)の平均値を算出した。
 (ホットスタンプ部品のLME深さの測定)
 前記加工後のL曲げ材から、図2に示すように曲げ部の断面を観察できるようにサンプルを切り出し、支持基材内に埋め込み、研磨後にナイタールで軽くエッチングした後、該断面における曲げ外側(曲げによる引張応力発生側)の表層近傍をFE-SEM(SUPRA35、ZEISS製)で観察した(倍率:500倍、視野サイズ:230μm×155μm、視野数:10)。そして、めっき合金層と鋼板との界面(図3中、破線で表示)からのクラック(LMEクラック)の深さを測定した。前記ナイタールエッチングにより、前記図3のように鋼板の組織とめっき合金層の組織を明確に区別することが可能となる。前記LMEクラックは、必ずしも曲げ部の頂点が最も深いわけではなく、該頂点から若干平面部寄りの方が深いことが多い。よって、前記断面における曲げ部の全域を観察する必要がある。LMEクラックが複数発生している場合、最も深いLMEクラックの深さ(表4では「LME深さ」と表記)を測定した。上記10視野の観察は、1視野観察する毎に再研磨して数mm掘り下げ、上記と同様の観察を繰り返した。そして、上記LME深さが10μm以下の場合を、LMEが抑制されていると評価した。
 これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より次の様に考察することができる。即ち、実験No.2、4~6、8および10~24は、試験片(部品)のFe濃度が規定を満たしており、かつLMEが抑制されている。これらの例は、めっき層中のFe濃度が高くホットスタンプ時に生じる液体亜鉛量が少ないため、LMEが抑制されている。
 これに対し、実験No.1、3、7および9は、試験片に深いLMEクラックが生じた。これらの例では、めっき合金層のFe濃度が低いため、ホットスタンプ時に液体亜鉛が多く残存して深いLMEクラックが発生した。
 詳細には、実験No.1と2、実験No.3と4と6、実験No.7と8、および実験No.9と10は、それぞれ在炉時間を除き条件が同一の例である。これらをそれぞれ対比すると、在炉時間が長いほどホットスタンプ加熱後(即ち、部品)のめっき層中のFe濃度が高くなり、その結果LMEクラックが浅くなることが分かる。
 また、実験No.2と6、実験No.8と10、実験No.11と12、実験No.13と14、実験No.15と16、実験No.17と18、実験No.19と20、実験No.21と22、および実験No.23と24は、それぞれめっき層中のFe濃度を除き条件が同一の例である。これらをそれぞれ対比すると、ホットスタンプに用いるめっき鋼板のめっき層中のFe濃度が高いほど、同じ加熱条件でも加熱後(部品)のめっき層中のFe濃度が高くなり、LMEが抑制されていることがわかる。
 また、実験No.5の結果から、炉温が880℃と比較的低くても加熱時間(在炉時間)を長くすれば、部品のめっき層中のFe濃度を高くすることができ、LMEを抑制できることがわかる。
 [実施例3]
 実施例3では特に、めっき鋼板のめっき層中のFe濃度がプレス生産性(ホットスタンプ時の加熱時間)に及ぼす影響を確認した。
 前記表1の原板No.B、C、およびG~Mの冷延鋼板(素地鋼板)を用い、実施例2と同様にして(即ち、表5に示す条件で、焼鈍、亜鉛めっき、合金化処理、一部の例については更に再焼鈍を行なって)合金化溶融亜鉛めっき鋼板を得た。尚、表5の一部の例については、再焼鈍を行った。この再焼鈍は、前記合金化溶融亜鉛めっき鋼板を70mm×150mmに切断し、電気炉にて450℃または550℃で7時間保持した。また比較例として、表5のNo.79~81では、次の通り酸化還元法を用いて作製した。製造の条件は、酸化帯で空燃比を0.9~1.4とし、還元帯で水素と窒素を含む露点:-30~-60℃の雰囲気かつ800℃~900℃で還元・均熱した後、5~10℃/秒で冷却し、亜鉛めっき浴(Al濃度:0.05~0.2%、浴温:450~470℃)でめっきし、ワイピング後、460℃~550℃で合金化処理を行った。
 また、得られた合金化溶融亜鉛めっき鋼板を用い、実施例2と同様にして、めっき付着量の測定、めっき鋼板のめっき層中のFe濃度の測定、および、めっき鋼板のめっき層と素地鋼板の界面の酸素濃度の測定を行った。更には、下記の通りホットスタンプ模擬実験(LME実験)を行ない、LMEクラックの評価(プレス生産性の評価)を行った。詳細は次の通りである。
 (ホットスタンプ模擬実験(LME実験))
 前記合金化溶融亜鉛めっき鋼板を50mm×100mmに切断して得られたサンプルを、920℃の電気炉に投入して加熱した後(加熱時間は種々の条件とした)、以下の条件で図1に示す通り曲げ加工を施した。試験片は加熱開始から90秒±15秒でAc3変態点以上の温度となった。
  (加工条件)
  素材寸法:長さ100mm×奥行き50mm
  パッド圧:5トン
  クリアランス(パンチと曲げ刃との間の距離):1.4mm(板厚と同じ)
  曲げR(rp):2.5mm
  プレス開始温度:750℃
  下死点保持時間:10秒
 次いで、前記加工後のL曲げ材を用いて、実施例2と同様にしてLMEクラックの深さ(LME深さ)を求めた。
 そして実施例3では、表5の各No.のサンプルにおいて、「全視野で最も深いLMEクラックの深さ:10μm以下」を達成できる最短の加熱時間(LMEクラックの最大深さ:10μm以下の達成に必要な加熱時間)を求めた。次いで、以下の基準に基づき、LMEクラックの評価(プレス生産性の評価)を行った。本実施例では、前記加熱時間が9分未満でLMEクラックの最大深さ:10μm以下を達成できる場合(即ち、下記◎、〇および△)を合格とした。その結果を表5に併記する。
  (評価基準)
  ◎:6分未満
  ○:6分以上7分未満
  △:7分以上9分未満
  ×:9分以上
Figure JPOXMLDOC01-appb-T000005
 表5より次の様に考察することができる(以下のNo.は、表5におけるめっき鋼板No.を示す)。No.79~81は、酸化還元法を用いて製造したため、めっき鋼板のめっき層と素地鋼板の界面の酸素濃度(界面酸素濃度)が高く、加熱時のFeの拡散が抑制されてしまうため、LMEクラック抑制のためにプレス前の加熱に長時間を要した。
 No.48~78のように界面酸素濃度が低い場合は、Feの拡散が抑制されないため、プレス前の加熱には、長時間が必要とはならない。すなわち、界面酸素濃度が0.50%以下のめっき鋼板はプレス生産性がよいことがいえる。この中でもNo.48、51~54、56、58、60~63、66、68、70、72、74、76および78は、めっき鋼板のめっき層中のFe濃度が好ましい範囲内にあるため、短時間の加熱でもLMEクラックを抑制することができた。
 前記No.48、54、56、58、63、66、68、70、72、74、76および78(いずれも合金化処理温度が560℃以上)と、前記No.49、50、55、57、59、65、67、69、71、73、75および77(いずれも合金化処理温度が560℃未満)とを対比すると、めっき鋼板のめっき層中のFe濃度を一定以上とするには、合金化処理時の温度を560℃以上とするのがよいことがわかる。
 また、No.50とNo.51~53の対比、およびNo.59とNo.60~62の対比から、合金化処理時の温度が低い場合であっても、合金化処理後に所定の条件で再焼鈍を行なうことにより、前記めっき層中のFe濃度を一定以上にでき、結果として、ホットスタンプ工程にて短時間の加熱でLMEクラックを抑制できることがわかる。
 No.48とNo.56は、焼鈍温度(均熱温度)がNo.48では500℃、No.56では700℃である点が異なるのみで、合金化処理時の温度(650℃)を含め、その他の条件は同一の例である。これらの対比から、焼鈍温度(均熱温度)が低い方が、めっき層中のFe濃度が高まりやすいことがわかる。
 No.48とNo.58は、原板が異なるのみで、製造条件は同一の例である。これらの対比から、No.58よりもNo.48の方がめっき層中のFe濃度はやや高い。これは、No.48の方が原板(素地鋼板)のMn量が多く、合金化処理時に合金化が促進されてFe濃度が高くなったためと考えられる。
 尚、表5におけるめっき鋼板No.48~78のいずれも、前記ホットスタンプを模擬した曲げ加工後(部品)のめっき層中のFe濃度は72%以上、かつLME深さは10μm以下であることを確認している。
 尚、表2および表3のめっき鋼板No.1~41、表4の実験No.1~24および表5のめっき鋼板No.48~78は、所定の成分組成を満たす原板(冷延鋼板)を用いており、かつ製造工程において、めっき前の還元焼鈍条件(還元性雰囲気下での熱処理温度および時間)を適切に制御しているため、実施例1と同様に評価した、ホットスタンプ後の鋼板の引張強度は980MPa以上、スポット溶接部の溶接強度は3.0kN以上、かつ、不めっきの面積率は5%以下であることを確認している。

Claims (19)

  1.  C:0.10~0.5%(質量%の意味、以下、同じ)、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する熱延酸洗鋼板または冷延鋼板を、還元性雰囲気で焼鈍した後、めっきしてホットスタンプ用亜鉛めっき鋼板を製造する方法であって、
     前記焼鈍を、500~700℃の範囲で30~270秒行なうことを特徴とするホットスタンプ用亜鉛めっき鋼板の製造方法。
  2.  前記熱延酸洗鋼板または冷延鋼板は、更に、Bを0.005%以下(0%を含まない)含むものである請求項1に記載の製造方法。
  3.  前記熱延酸洗鋼板または冷延鋼板は、更に、Tiを0.10%以下(0%を含まない)含むものである請求項1に記載の製造方法。
  4.  前記熱延酸洗鋼板または冷延鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
  5.  前記熱延酸洗鋼板または冷延鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
  6.  前記熱延酸洗鋼板または冷延鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
  7.  前記亜鉛めっき鋼板は、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板である請求項1~6のいずれかに記載の製造方法。
  8.  素地鋼板がC:0.10~0.5%、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する合金化溶融亜鉛めっき鋼板であって、めっき層と素地鋼板の界面の酸素濃度が0.50%以下であることを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板。
  9.  前記めっき層中のFe濃度が16%以上である請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  10.  前記素地鋼板は、更に、Bを0.005%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  11.  前記素地鋼板は、更に、Tiを0.10%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  12.  前記素地鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  13.  前記素地鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  14.  前記素地鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
  15.  請求項8~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
     請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。
  16.  請求項9~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
     請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで560~750℃で合金化を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。
  17.  請求項9~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
     請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行ない、更に400~750℃で再焼鈍を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。
  18.  素地鋼板が請求項8、10~14のいずれかに記載の成分組成を満たし、合金化溶融亜鉛めっき層を有するホットスタンプ部品であって、LMEクラックの深さが10μm以下であり、かつ前記めっき層中のFe濃度が72%以上であることを特徴とするホットスタンプ部品。
  19.  請求項8~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板を用いて得られるホットスタンプ部品であって、
     LMEクラックの深さが10μm以下であり、かつめっき層中のFe濃度が72%以上であることを特徴とするホットスタンプ部品。
PCT/JP2013/061951 2012-04-23 2013-04-23 ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 WO2013161831A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380021066.2A CN104271789B (zh) 2012-04-23 2013-04-23 热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件
KR1020167011389A KR101716625B1 (ko) 2012-04-23 2013-04-23 핫 스탬핑용 아연도금 강판의 제조 방법, 핫 스탬핑용 합금화 용융 아연도금 강판과 그의 제조 방법, 및 핫 스탬핑 부품
MX2014012798A MX2014012798A (es) 2012-04-23 2013-04-23 Metodo de fabricacion de hoja de acero galvanizado para estampacion en caliente, hoja de acero galvanizado y recocido por inmersion en caliente para estampacion en caliente y metodo de fabricacion de las mismas, y componente estampado en caliente.
EP13781200.4A EP2843077B1 (en) 2012-04-23 2013-04-23 Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and the use
KR1020147029173A KR101950546B1 (ko) 2012-04-23 2013-04-23 핫 스탬핑용 아연도금 강판의 제조 방법, 핫 스탬핑용 합금화 용융 아연도금 강판과 그의 제조 방법, 및 핫 스탬핑 부품
US14/395,173 US20150125716A1 (en) 2012-04-23 2013-04-23 Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component
US14/884,129 US20160032439A1 (en) 2012-04-23 2015-10-15 Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-098035 2012-04-23
JP2012098035 2012-04-23
JP2013011424 2013-01-24
JP2013-011424 2013-01-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/395,173 A-371-Of-International US20150125716A1 (en) 2012-04-23 2013-04-23 Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component
US14/884,129 Division US20160032439A1 (en) 2012-04-23 2015-10-15 Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component

Publications (1)

Publication Number Publication Date
WO2013161831A1 true WO2013161831A1 (ja) 2013-10-31

Family

ID=49483140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061951 WO2013161831A1 (ja) 2012-04-23 2013-04-23 ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品

Country Status (7)

Country Link
US (2) US20150125716A1 (ja)
EP (1) EP2843077B1 (ja)
JP (2) JP5973953B2 (ja)
KR (2) KR101950546B1 (ja)
CN (2) CN104271789B (ja)
MX (1) MX2014012798A (ja)
WO (1) WO2013161831A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574344A (zh) * 2014-08-29 2017-04-19 株式会社神户制钢所 热浸镀锌用或合金化热浸镀锌用原板及其制造方法以及热浸镀锌钢板或合金化热浸镀锌钢板
JPWO2016006232A1 (ja) * 2014-07-10 2017-04-27 Jfeスチール株式会社 熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板
US20180281348A1 (en) * 2015-10-02 2018-10-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Galvanized steel sheet for hot pressing and method for producing hot pressed molded article
WO2019188235A1 (ja) * 2018-03-28 2019-10-03 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
JP2019173157A (ja) * 2018-03-28 2019-10-10 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
US10837096B2 (en) 2015-09-08 2020-11-17 Nippon Steel Corporation Nitrided steel part and method of production of same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082451B2 (ja) * 2015-03-18 2017-02-15 株式会社神戸製鋼所 熱間プレス用鋼板およびその製造方法
CN104694838B (zh) * 2015-03-23 2016-08-17 苏州劲元油压机械有限公司 一种用于钢结构工程的高韧钢及其热处理工艺
CN104694837B (zh) * 2015-03-23 2016-07-06 苏州劲元油压机械有限公司 一种用于建筑幕墙工程的高强钢结构件及其热处理工艺
CN107427889B (zh) * 2015-03-31 2019-10-25 日本制铁株式会社 热冲压用钢板及其制造方法、以及热冲压成型体
JP6237937B2 (ja) * 2016-03-11 2017-11-29 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP6805044B2 (ja) * 2016-03-30 2020-12-23 株式会社神戸製鋼所 ホットスタンプ用合金化溶融亜鉛めっき鋼板
RU2718021C1 (ru) * 2017-02-20 2020-03-30 Ниппон Стил Корпорейшн Горячештампованное изделие
KR102021200B1 (ko) * 2017-06-27 2019-09-11 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
MA50447A (fr) * 2017-10-24 2020-09-02 Arcelormittal Procédé de fabrication d'une tôle d'acier revêtue, deux feuilles métalliques soudées par points et leur utilisation
CA3085282A1 (en) * 2017-12-15 2019-06-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet
KR101999005B1 (ko) * 2017-12-22 2019-07-10 주식회사 포스코 아연도금강판의 점용접 균열 방지방법
JP7006256B2 (ja) * 2017-12-27 2022-02-10 日本製鉄株式会社 ホットスタンプ用溶融亜鉛めっき鋼板及びホットスタンプ用溶融亜鉛めっき鋼板の製造方法
JP7006257B2 (ja) * 2017-12-27 2022-01-24 日本製鉄株式会社 ホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP6916129B2 (ja) * 2018-03-02 2021-08-11 株式会社神戸製鋼所 ホットスタンプ用亜鉛めっき鋼板およびその製造方法
JP7353768B2 (ja) * 2018-03-27 2023-10-02 株式会社神戸製鋼所 ホットスタンプ用鋼板
DE102018217835A1 (de) * 2018-10-18 2020-04-23 Sms Group Gmbh Verfahren zum Herstellen eines warmumformbaren Stahlflachprodukts
CN109365606A (zh) * 2018-11-30 2019-02-22 宝山钢铁股份有限公司 一种耐腐蚀性优良的锌系镀层钢板或钢带的成形方法
DE102019108457B4 (de) * 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
CN112877592B (zh) * 2019-11-29 2022-06-28 宝山钢铁股份有限公司 具有优异漆膜附着力的热成形部件及其制造方法
CN111041382A (zh) * 2019-12-03 2020-04-21 马鞍山钢铁股份有限公司 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法
CN111321341A (zh) * 2019-12-03 2020-06-23 马鞍山钢铁股份有限公司 一种具有低高温摩擦系数的1500MPa级无镀层热成形钢及其制备方法
JP7443635B2 (ja) * 2020-01-31 2024-03-06 株式会社神戸製鋼所 ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法
CN114101384B (zh) * 2020-08-31 2024-01-09 宝山钢铁股份有限公司 板带焊缝过平整机和张紧辊时的张紧力控制方法
CN114657613A (zh) * 2020-12-22 2022-06-24 苏州普热斯勒先进成型技术有限公司 冲压零件的制备方法
CN115261742B (zh) * 2021-04-30 2023-06-13 宝山钢铁股份有限公司 一种抗拉强度1000MPa热冲压部件及其制造方法
CN116121636A (zh) * 2021-11-12 2023-05-16 宝山钢铁股份有限公司 一种增强氧化层结合力的热冲压用钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126920A (ja) * 2001-10-23 2003-05-08 Sumitomo Metal Ind Ltd 熱間プレス加工方法
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
JP2006037130A (ja) * 2004-07-23 2006-02-09 Nippon Steel Corp ホットプレス用めっき鋼板の製造方法
JP2007056307A (ja) 2005-08-24 2007-03-08 Nippon Steel Corp 塗装後耐食性に優れた亜鉛系めっきが施された熱間プレス鋼材
JP2007169679A (ja) 2005-12-19 2007-07-05 Kobe Steel Ltd スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
WO2010069588A1 (en) 2008-12-19 2010-06-24 Corus Staal Bv Method for manufacturing a coated part using hot forming techniques
JP2012041597A (ja) * 2010-08-18 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法
JP2012098035A (ja) 2010-10-29 2012-05-24 Nippon Seiki Co Ltd 計器照明装置
JP2013011424A (ja) 2011-06-30 2013-01-17 Hitachi Appliances Inc 蒸気吸収式冷凍機

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055510C (zh) * 1993-06-25 2000-08-16 川崎制铁株式会社 高张力钢板的热浸镀锌方法
JPH07126747A (ja) * 1993-11-05 1995-05-16 Sumitomo Metal Ind Ltd 溶融亜鉛めっき性に優れたSi含有鋼板の製造方法
US6517955B1 (en) * 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
EP1342801B1 (en) * 2000-09-12 2011-02-02 JFE Steel Corporation High tensile strength hot dip plated steel sheet and method for production thereof
EP1365037B1 (en) * 2001-01-31 2008-04-02 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
JP3582511B2 (ja) * 2001-10-23 2004-10-27 住友金属工業株式会社 熱間プレス成形用表面処理鋼とその製造方法
KR100646619B1 (ko) * 2001-10-23 2006-11-23 수미도모 메탈 인더스트리즈, 리미티드 열간 프레스 방법, 이를 위한 도금 강철재 및 이의 제조방법
JP2003328099A (ja) * 2002-05-02 2003-11-19 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板の製造方法
CN100552076C (zh) * 2003-02-10 2009-10-21 杰富意钢铁株式会社 镀层附着性优良的合金化热镀锌钢板及其制造方法
EP1612288B9 (en) * 2003-04-10 2010-10-27 Nippon Steel Corporation A method for producing a hot-dip zinc coated steel sheet having high strength
JP3885763B2 (ja) * 2003-04-25 2007-02-28 住友金属工業株式会社 焼入用溶融亜鉛系めっき鋼板とその製造方法及び用途
JP4791482B2 (ja) * 2005-10-14 2011-10-12 新日本製鐵株式会社 Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
JP5200463B2 (ja) * 2007-09-11 2013-06-05 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법
JP2010235989A (ja) * 2009-03-30 2010-10-21 Nisshin Steel Co Ltd 耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板およびその製造方法
DE102009018577B3 (de) * 2009-04-23 2010-07-29 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines 2-35 Gew.-% Mn enthaltenden Stahlflachprodukts und Stahlflachprodukt
ATE554190T1 (de) * 2009-08-25 2012-05-15 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil
JP5499664B2 (ja) * 2009-11-30 2014-05-21 新日鐵住金株式会社 疲労耐久性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
KR101171450B1 (ko) * 2009-12-29 2012-08-06 주식회사 포스코 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품
JP5513216B2 (ja) * 2010-03-31 2014-06-04 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板の製造方法
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
CN103827335B (zh) * 2011-09-30 2015-10-21 新日铁住金株式会社 镀锌钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126920A (ja) * 2001-10-23 2003-05-08 Sumitomo Metal Ind Ltd 熱間プレス加工方法
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
JP2006037130A (ja) * 2004-07-23 2006-02-09 Nippon Steel Corp ホットプレス用めっき鋼板の製造方法
JP2007056307A (ja) 2005-08-24 2007-03-08 Nippon Steel Corp 塗装後耐食性に優れた亜鉛系めっきが施された熱間プレス鋼材
JP2007169679A (ja) 2005-12-19 2007-07-05 Kobe Steel Ltd スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
WO2010069588A1 (en) 2008-12-19 2010-06-24 Corus Staal Bv Method for manufacturing a coated part using hot forming techniques
JP2012041597A (ja) * 2010-08-18 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法
JP2012098035A (ja) 2010-10-29 2012-05-24 Nippon Seiki Co Ltd 計器照明装置
JP2013011424A (ja) 2011-06-30 2013-01-17 Hitachi Appliances Inc 蒸気吸収式冷凍機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006232A1 (ja) * 2014-07-10 2017-04-27 Jfeスチール株式会社 熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板
CN106574344A (zh) * 2014-08-29 2017-04-19 株式会社神户制钢所 热浸镀锌用或合金化热浸镀锌用原板及其制造方法以及热浸镀锌钢板或合金化热浸镀锌钢板
KR20170042667A (ko) * 2014-08-29 2017-04-19 가부시키가이샤 고베 세이코쇼 용융 아연도금용 또는 합금화 용융 아연도금용 원판 및 그의 제조 방법, 및 용융 아연도금 강판 또는 합금화 용융 아연도금 강판
KR101958580B1 (ko) 2014-08-29 2019-03-14 가부시키가이샤 고베 세이코쇼 용융 아연도금용 또는 합금화 용융 아연도금용 원판 및 그의 제조 방법, 및 용융 아연도금 강판 또는 합금화 용융 아연도금 강판
US10837096B2 (en) 2015-09-08 2020-11-17 Nippon Steel Corporation Nitrided steel part and method of production of same
US20180281348A1 (en) * 2015-10-02 2018-10-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Galvanized steel sheet for hot pressing and method for producing hot pressed molded article
WO2019188235A1 (ja) * 2018-03-28 2019-10-03 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
JP2019173157A (ja) * 2018-03-28 2019-10-10 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
JP7137492B2 (ja) 2018-03-28 2022-09-14 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
EP2843077B1 (en) 2020-01-08
KR20160054035A (ko) 2016-05-13
US20160032439A1 (en) 2016-02-04
CN104271789A (zh) 2015-01-07
JP5973953B2 (ja) 2016-08-23
CN104271789B (zh) 2017-06-06
KR20140136509A (ko) 2014-11-28
EP2843077A1 (en) 2015-03-04
JP2014159624A (ja) 2014-09-04
CN106756697A (zh) 2017-05-31
EP2843077A4 (en) 2016-04-13
JP2014185395A (ja) 2014-10-02
US20150125716A1 (en) 2015-05-07
CN106756697B (zh) 2020-03-13
MX2014012798A (es) 2015-04-14
KR101716625B1 (ko) 2017-03-14
JP5876895B2 (ja) 2016-03-02
KR101950546B1 (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
JP5973953B2 (ja) ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法
JP5852690B2 (ja) ホットスタンプ用合金化溶融亜鉛めっき鋼板
CN108138282B (zh) 热压用镀锌钢板和热压成形品的制造方法
KR102428588B1 (ko) 알루미늄계 도금 강판, 알루미늄계 도금 강판의 제조 방법 및 자동차용 부품의 제조 방법
KR101784119B1 (ko) 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재
JP2016089274A (ja) ホットスタンプ用めっき鋼板
JP6805044B2 (ja) ホットスタンプ用合金化溶融亜鉛めっき鋼板
JP6094649B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5741413B2 (ja) 合金化溶融亜鉛めっき鋼帯およびその製造方法
JP5741412B2 (ja) 合金化溶融亜鉛めっき鋼帯およびその製造方法
KR102398731B1 (ko) 핫 스탬핑용 아연도금 강판 및 그의 제조 방법
JP7160203B2 (ja) ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体
JP7160204B2 (ja) ホットスタンプ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013781200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147029173

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14395173

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/012798

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE