WO2013161831A1 - ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 - Google Patents
ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 Download PDFInfo
- Publication number
- WO2013161831A1 WO2013161831A1 PCT/JP2013/061951 JP2013061951W WO2013161831A1 WO 2013161831 A1 WO2013161831 A1 WO 2013161831A1 JP 2013061951 W JP2013061951 W JP 2013061951W WO 2013161831 A1 WO2013161831 A1 WO 2013161831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- less
- hot stamping
- galvanized steel
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 83
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 169
- 239000010959 steel Substances 0.000 claims abstract description 169
- 238000000137 annealing Methods 0.000 claims abstract description 79
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 39
- 238000007747 plating Methods 0.000 claims description 120
- 238000000034 method Methods 0.000 claims description 58
- 238000005275 alloying Methods 0.000 claims description 35
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 77
- 238000010438 heat treatment Methods 0.000 description 58
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 56
- 239000002585 base Substances 0.000 description 47
- 230000008569 process Effects 0.000 description 26
- 238000002474 experimental method Methods 0.000 description 25
- 239000011701 zinc Substances 0.000 description 25
- 229910052725 zinc Inorganic materials 0.000 description 23
- 230000009467 reduction Effects 0.000 description 22
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 21
- 238000011282 treatment Methods 0.000 description 19
- 238000005246 galvanizing Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 12
- 238000002791 soaking Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 238000005098 hot rolling Methods 0.000 description 9
- 238000005554 pickling Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- -1 amine organic compound Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
- C23C2/405—Plates of specific length
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a method for producing a hot-stamped galvanized steel sheet (GI or GA) suitably used in the field of thin steel sheet products mainly applied to automobile bodies, an alloyed hot-dip galvanized steel sheet for hot stamping, and its
- the present invention relates to a manufacturing method and a hot stamp component. Specifically, even if it contains high Si of 0.7% or more, a method for producing a galvanized steel sheet for hot stamping capable of suppressing the occurrence of non-plating, an alloyed hot-dip galvanized steel sheet for hot stamping and a method for producing the same, And hot stamping parts.
- the galvanized steel sheet for hot stamping of the present invention is preferably used for automotive parts such as automobile chassis, undercarriage parts, reinforcing parts and the like.
- Automotive parts are generally manufactured by press forming steel plates.
- a steel sheet that has been pickled after hot rolling hereinafter referred to as a hot-rolled pickled steel sheet
- a cold-rolled steel sheet is used.
- the plated steel sheet is mainly classified into a zinc-based plated steel sheet and an Al-based plated steel sheet, zinc-based plated steel sheets are widely used in consideration of corrosion resistance and the like.
- Hot stamping technology has been proposed. Hot stamping is also called hot forming, hot pressing, and the like, and is a method in which the steel sheet is heated to a temperature higher than the temperature range (Ac 1 transformation point) of austenite + ferrite and pressed. According to the hot stamp method, a car part having a complicated shape can be obtained while having high strength.
- Patent Document 1 as a steel plate used for hot stamping.
- Patent Document 1 discloses that hot-rolled pickled steel sheets and cold-rolled steel sheets are targeted, and that the joint strength of spot welds is improved when the Si content of these steel sheets is increased to 0.7% or more. Furthermore, Patent Document 1 discloses that when the relationship between Ti and N is appropriately controlled and B is present in a solid solution state, deterioration of hot formability due to an increase in the amount of Si can be suppressed.
- Patent Document 2 when hot stamped galvanized steel sheet with a small amount of Si is used as in Patent Document 2 and Patent Document 3, there is a great concern about a decrease in the weld strength of the spot welded portion (also referred to as the joint strength of the spot welded portion, hereinafter the same). Is done. Therefore, as described in Patent Document 1, the amount of Si is as high as 0.7% or more (thus, the weld strength of the spot welded portion is increased), and the problem of non-plating due to the large amount of Si addition does not occur. It is desired to provide a method for producing a stamped galvanized steel sheet.
- LME grain boundary cracking
- LME molten metal embrittlement
- the present invention has been made in view of the above circumstances, and its purpose is to maintain high joint strength of spot welds when a galvanized steel sheet containing a high Si content of 0.7% or more is used for hot stamping.
- An alloyed hot-dip galvanized steel sheet for hot stamping that can suppress LME cracks when it is used for hot stamping is provided. It is another object of the present invention to provide an alloyed hot-dip galvanized steel sheet for hot stamping that can suppress the LME crack without reducing press productivity, and a hot stamping part that suppresses the LME crack. .
- the manufacturing method of the hot stamped galvanized steel sheet according to the present invention that can achieve the above object is as follows: C: 0.10 to 0.5% (meaning mass%, hereinafter the same), Si: 0.7 to 2 Hot-stamped or cold-rolled steel sheets containing 0.5%, Mn: 1.0 to 3%, Al: 0.01 to 0.5% are annealed in a reducing atmosphere and then plated and hot stamped.
- the present invention is a method for producing a galvanized steel sheet for use in the present invention, wherein the annealing is performed at a temperature of 500 to 700 ° C. for 30 to 270 seconds.
- the hot-rolled pickled steel plate or cold-rolled steel plate further contains 0.005% or less (excluding 0%) of B.
- the hot-rolled pickled steel plate or cold-rolled steel plate further contains 0.10% or less (not including 0%) of Ti.
- the hot-rolled pickled steel sheet or cold-rolled steel sheet further contains 1% or less (not including 0%) of Cr and Mo in total.
- the hot-rolled pickled steel plate or cold-rolled steel plate further contains Nb, Zr and V in total of 0.1% or less (excluding 0%).
- the hot-rolled pickled steel plate or cold-rolled steel plate further contains 1% or less (excluding 0%) of Cu and Ni in total.
- the galvanized steel sheet is a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet.
- the base steel plate contains C: 0.10 to 0.5%, Si: 0.7 to 2.5%, Mn: 1.0 to 3%, Al: 0.01 to 0.5%.
- the Fe concentration in the plating layer is 16% or more.
- the base steel plate further contains 0.005% or less (excluding 0%) of B.
- the base steel sheet further contains 0.10% or less (not including 0%) of Ti.
- the base steel plate further contains 1% or less (not including 0%) of Cr and Mo in total.
- the base steel sheet further includes Nb, Zr and V in total of 0.1% or less (not including 0%).
- the base steel sheet further contains 1% or less (not including 0%) of Cu and Ni in total.
- the present invention also includes a method for producing the alloyed hot-dip galvanized steel sheet A for hot stamping (particularly, the alloyed hot-dip galvanized steel sheet having an oxygen concentration of 0.50% or less at the interface between the plating layer and the base steel sheet). It is.
- the manufacturing method includes subjecting a hot-rolled pickled steel plate or cold-rolled steel plate satisfying the above-mentioned component composition (of the base steel plate) to annealing at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, followed by plating. Then, alloying is performed.
- the alloyed hot-dip galvanized steel sheet B for hot stamping (particularly, the oxygen concentration at the interface between the plating layer and the base steel sheet is 0.50% or less and the Fe concentration in the plating layer is 16% or more).
- the manufacturing method of the metallized hot-dip galvanized steel sheet is also included.
- a hot rolled pickled steel plate or cold rolled steel plate satisfying the above component composition is annealed by holding at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, then plated, and then 560 to 750. It is characterized by the fact that it is alloyed at ° C.
- the present invention also includes another method for producing the galvannealed steel sheet B for hot stamping.
- the manufacturing method includes subjecting a hot-rolled pickled steel plate or cold-rolled steel plate satisfying the above-mentioned component composition (of the base steel plate) to annealing at 500 to 700 ° C. for 30 to 270 seconds in a reducing atmosphere, followed by plating. Then, alloying is performed, and further, re-annealing at 400 to 750 ° C. is characteristic.
- the present invention provides a hot stamping part in which a base steel sheet satisfies the above component composition and has an alloyed hot-dip galvanized layer, the LME crack depth is 10 ⁇ m or less, and the Fe concentration in the plated layer is 72. %, A hot stamping part obtained by using the alloyed hot-dip galvanized steel sheet for hot stamping, the depth of the LME crack being 10 ⁇ m or less, and plating Also included are hot stamping parts characterized by a Fe concentration in the layer of 72% or higher.
- a steel sheet containing 0.7% or more of Si is subjected to reduction annealing appropriately controlled in temperature and time, and then galvanized. Therefore, it was possible to provide a galvanized steel sheet for hot stamping without occurrence of non-plating and having high joint strength at the spot welded portion.
- the formation of an oxide at the interface between the plated layer of the galvannealed steel sheet and the base steel sheet is suppressed, and the galvannealed steel sheet for hot stamping that can suppress LME cracks when subjected to hot stamping, Furthermore, the Fe concentration in the plating layer of the alloyed hot-dip galvanized steel sheet is above a certain level, and when subjected to hot stamping, the blank heating process does not require a long time (ie, press productivity is reduced). In this way, an alloyed hot-dip galvanized steel sheet for hot stamping capable of suppressing LME cracks could be provided.
- FIG. 1 is a schematic explanatory diagram showing a method of an LME experiment in the example.
- FIG. 2 is a diagram illustrating sample collection positions in the example.
- Patent Document 1 In view of the problem of non-plating due to the addition of a large amount of Si when applying to a galvanized steel sheet, studies have been made to solve the problem.
- the reduction annealing conditions before plating heat treatment temperature and time in a reducing atmosphere
- the above-mentioned merit improvement of joint strength of spot welds
- the inventors have found that a hot stamped galvanized steel sheet that can avoid the problem of non-plating can be obtained, and have completed the present invention.
- the reduction annealing conditions before plating will be described in detail later.
- the present inventors have intensively studied to realize an alloyed hot-dip galvanized steel sheet in which the occurrence of the LME crack is suppressed when it is subjected to hot stamping. As a result, it has been found that the LME crack can be suppressed if substantially no oxide is present at the interface between the plated layer of the galvannealed steel sheet and the base steel sheet. Details are as follows.
- the oxygen concentration at the interface between the alloyed hot-dip galvanized steel sheet (hereinafter sometimes referred to as “interface oxygen concentration”) was used as an evaluation index.
- the upper limit of the said interface oxygen concentration for suppressing LME depth to 10 micrometers or less was examined, what is necessary is just to make this interface oxygen concentration 0.50 (mass)% or less. I found out.
- the interface oxygen concentration is preferably 0.48% or less, more preferably 0.46% or less. From the viewpoint of productivity and the like, the lower limit value of the interfacial oxygen concentration is about 0.10%.
- the interfacial oxygen concentration is determined by the method described in Examples described later.
- the reason why the LME can be suppressed by suppressing the formation of the interface oxide has not been clearly clarified, it is considered as follows. That is, as the alloying of the plating layer proceeds, the melting point of the plating layer increases, so that the molten zinc is reduced and the generation of LME is suppressed. Alloying of the plating layer is caused by the diffusion of alloy components from the base steel plate to the plating layer, but an oxide (interface oxide) is present at the interface between the plating layer and the base steel plate as in the case of using the oxidation-reduction method.
- the diffusion of the alloy component from the base steel plate to the plating layer that is, the progress of alloying is hindered, and the alloy is not sufficiently alloyed by heating for a short time.
- the plated steel sheet has as little interfacial oxide as possible, the diffusion of the alloy components from the base steel sheet to the plating layer is not hindered, so that even when the heating time is short, the plating is performed to such an extent that LME does not occur. It is believed that the layers can be alloyed.
- the above hot dip galvanizing melts zinc when heated.
- the presence of this molten zinc causes LME cracks. Therefore, in order to suppress LME cracks that occur at the time of hot stamping, it is effective to make molten zinc as little as possible at the time of molding.
- the heating before forming in the hot stamping process a long time, the zinc once melted becomes a solid phase due to the progress of alloying, and the molten zinc disappears.
- press productivity decreases.
- the Fe concentration in the plating layer is preferably 20% or more, more preferably 22% or more. From the viewpoint of suppressing powdering, the upper limit of the Fe concentration in the plating layer is about 80%. The Fe concentration is measured by the method described in Examples described later.
- hot-rolled pickled steel sheet or cold-rolled steel sheet used in the method for producing the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet of the present invention the base material of the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained by the method
- the component composition of the base steel plate of the hot stamping part obtained by using the steel plate and further the alloyed hot-dip galvanized steel plate will be described.
- the chemical composition of the steel sheet used in the present invention is characterized in that Si is increased to 0.7% or more to increase the joint strength of the spot weld.
- C is an element that contributes to increasing the strength of a hot stamped steel sheet (parts, hereinafter sometimes referred to as a hot stamped product) as a solid solution strengthening element.
- the lower limit of the C amount is 0.10% or more.
- the lower limit of the C amount is preferably 0.13% or more, more preferably 0.15% or more, and further preferably 0.17% or more.
- the upper limit of the C amount is preferably 0.40% or less, more preferably 0.35% or less, and still more preferably 0.30% or less.
- Si is an element that contributes to improving the joint strength of the spot welded portion of the hot stamped product. Further, Si has an effect of preventing the tempering in the slow cooling process of the hot stamp and maintaining the strength of the component. Further, Si is an element that generates retained austenite and contributes to improvement of the ductility of the part. In order to effectively exhibit these effects, the lower limit of the Si amount is set to 0.7% or more. The lower limit of the Si amount is preferably 0.75% or more, more preferably 0.80% or more, still more preferably 0.90% or more, and still more preferably 1.0% or more.
- the upper limit of the Si amount is preferably 2.3% or less, and more preferably 2.1% or less.
- Mn is an element useful for improving hardenability and suppressing high-strength variation of hot stamped molded products. Mn is also an element that promotes alloying in the alloying treatment of plating described later and contributes to securing the Fe concentration in the plating layer. In order to effectively exhibit such an action, the lower limit of the amount of Mn is set to 1.0% or more. However, if the amount of Mn becomes excessive, the strength becomes too high and the rolling load during the production of the base steel sheet increases, so the upper limit is made 3% or less.
- the preferable lower limit of the amount of Mn is 1.2% or more, the more preferable lower limit is 1.5% or more, more preferably 1.7% or more, the preferable upper limit is 2.8% or less, and the more preferable upper limit is 2.5%. It is as follows.
- Al 0.01 to 0.5%
- Al is an element necessary for deoxidation. Therefore, the lower limit of the Al amount is set to 0.01% or more. Preferably it is 0.03% or more. However, if the Al amount is excessive, not only the above effect is saturated, but also inclusions such as alumina increase and the workability deteriorates, so the upper limit of the Al amount is set to 0.5%. Preferably it is 0.3% or less.
- Hot-rolled pickled steel sheet or cold-rolled steel sheet used in the method for producing a hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet of the present invention a base steel sheet of hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained by the method,
- the base steel sheet for hot stamping parts obtained by using the alloyed hot-dip galvanized steel sheet basically contains the above components, and the balance is iron and inevitable impurities. Examples of unavoidable impurities include P, S, and N.
- the P is an element that adversely affects the joint strength of the spot weld. If the amount is excessive, the nugget becomes segregated on the final solidified surface of the nugget formed by spot welding and the nugget becomes brittle, resulting in a decrease in joint strength. . Therefore, the P content is preferably 0.02% or less. More preferably, it is 0.015% or less.
- S is an element that adversely affects the joint strength of spot welds. If the amount is excessive, intergranular fracture due to grain boundary segregation in the nugget is promoted and joint strength is reduced. Therefore, the S amount is preferably 0.01% or less. More preferably, it is 0.008% or less.
- the upper limit of N content is preferably 0.01% or less. More preferably, it is 0.008% or less. Note that the N amount is usually 0.001% or more in consideration of the cost in steelmaking.
- B is an element that improves the hardenability of the steel material. In order to exhibit this effect, it is preferable to contain B 0.0003% or more. More preferably, it is 0.0005% or more (more preferably 0.0010% or more). On the other hand, if B exceeds 0.005%, coarse boride precipitates in the hot stamped molded article and the toughness of the molded article deteriorates, and therefore preferably 0.005% or less (more preferably 0.004% The following.
- Ti 0.10% or less (excluding 0%)
- Ti is an element that has the role of fixing N and ensuring the quenching effect of B. Ti also has the effect of refining the structure. Part ductility is improved by making the structure finer. In order to sufficiently exhibit such effects, the Ti content is preferably set to 0.01% or more. More preferably, it is 0.02% or more. However, if the Ti amount is excessive, the ductility of the steel sheet deteriorates, so the Ti amount is preferably 0.10% or less. More preferably, it is 0.07% or less.
- Cr and Mo are effective elements for improving the hardenability of the base steel sheet, and by containing these elements, reduction in hardness variation in a hot stamped product can be expected. These elements may be added alone or in combination of two kinds. In order to effectively exhibit such an action, the total amount of these elements (a single amount when included alone and a total amount when used in combination of two types) is 0.01% or more. It is preferable to do. More preferably, it is 0.05% or more, More preferably, it is 0.1% or more. However, if these total amounts are excessive, the above effect is saturated and the cost is increased, so the upper limit is preferably made 1% or less. More preferably, it is 0.5% or less, More preferably, it is 0.3% or less.
- Nb, Zr and V 0.1% or less in total (excluding 0%)
- Nb, Zr, and V have the effect of refining the structure, and have the effect of improving the ductility of the component by refining the structure.
- the lower limit of the total amount of these elements is 0.01%. It is preferable to set it as the above, More preferably, it is 0.02% or more. However, if the total amount of these elements is excessive, the effect is saturated and the cost is increased, so the upper limit is preferably 0.1% or less. More preferably, it is 0.05% or less.
- Cu and Ni are elements added as necessary when it is desired to impart delayed fracture resistance to a hot stamped molded product. These elements may be added alone or in combination of two kinds. In order to effectively exhibit such an action, the total amount of these elements (a single amount when included alone and a total amount when used in combination of two types) is 0.01% or more. It is preferable to do. More preferably, it is 0.05% or more. However, if these amounts are excessive, it will cause surface flaws during the production of the steel sheet, so the upper limit is preferably made 1% or less. More preferably, it is 0.5% or less.
- the outline of the production method according to the present invention is as follows. Casting steel of specified components ⁇ Heating ⁇ Hot rolling ⁇ Pickling ( ⁇ Cold rolling if necessary) ⁇ Hot dip galvanizing process ( ⁇ Further alloying process if necessary)
- the annealing conditions temperature and time
- the annealing process heat treatment in a reducing atmosphere
- a reduction furnace in the annealing process of the hot dip galvanizing process
- the heating conditions are not particularly limited, and commonly used conditions can be adopted as appropriate. However, it is preferable to perform the heating at a temperature of about 1100 to 1300 ° C.
- Hot rolling conditions are not particularly limited, and commonly used conditions can be appropriately employed. Preferred conditions are generally as follows. Finishing rolling temperature (FDT): 800-950 ° C Winding temperature (CT): 500-700 ° C
- the upper limit of the preferred thickness of the hot-rolled steel sheet is 3.5 mm or less. Preferably it is 3.0 mm or less, More preferably, it is 2.5 mm or less.
- pickling is performed to produce a hot rolled pickled steel sheet.
- the hot rolled scale can be removed by pickling.
- a grain boundary oxidation layer formed of an oxide of Si or Mn may be formed near the interface between the hot rolling scale and the steel sheet. Therefore, it is not always necessary to remove the grain boundary oxidation in the acidic step.
- a pickling method usually used for removing the grain boundary oxide layer is appropriately adopted. Can do.
- pickling is preferably performed for 20 to 300 seconds using hydrochloric acid or the like heated to 80 to 90 ° C.
- a pickling accelerator for example, a compound having a mercapto group
- an inhibitor for example, an amine organic compound
- the preferred thickness of the hot-rolled pickled steel sheet obtained in this way is generally the same as that of the hot-rolled steel sheet.
- cold rolling may be further performed to produce a cold rolled steel sheet.
- the galvanized steel sheet obtained by the method of the present invention is suitably used for automobile members particularly for the purpose of reducing the weight of automobiles
- the base steel sheet constituting the galvanized steel sheet is from the viewpoint of dimensional accuracy and flatness.
- a cold-rolled steel sheet is preferred.
- the cold rolling rate is preferably controlled within a range of about 20 to 70% considering the productivity in the factory.
- the upper limit of the preferable thickness of the cold-rolled steel sheet thus obtained is 2.5 mm or less. More preferably, it is 2.0 mm or less, More preferably, it is 1.8 mm or less.
- the hot-rolled pickled steel plate or cold-rolled steel plate (hereinafter sometimes represented by a base steel plate) obtained as described above is subjected to a reduction furnace type continuous plating step.
- the processes performed in a reduction furnace type hot dip galvanizing line are divided into a pretreatment process, an annealing process, and a plating process (alloying is also performed if necessary).
- the annealing process of the hot dip galvanizing line is usually composed of a reduction furnace and a cooling zone.
- the annealing conditions heat treatment temperature and time in a reducing atmosphere
- the method of the present invention is not limited to the above-described embodiment, and for example, the hot dip galvanizing line can be performed by a non-oxidizing furnace type continuous annealing line. Below, it demonstrates based on the said aspect.
- the base steel sheet is pretreated.
- the pretreatment is usually performed in order to remove oil (oil and fat) and dirt on the steel sheet surface, and is typically performed by alkali degreasing.
- the alkali used for alkali degreasing is not particularly limited as long as it can remove oils and fats as water-soluble soaps, but for example, caustic soda and silicate are preferably used.
- electrolytic cleaning, scrubber treatment, and addition of a surfactant / chelating agent into the degreasing liquid can be performed.
- the pretreatment method is not limited as long as the steel sheet surface is appropriately degreased, and the above-described treatments may be combined in any manner.
- alkaline degreasing is performed as a pretreatment, in order to remove the degreasing liquid adhering to the steel sheet, it is hot rinsed (washed with water) and dried with a dryer or the like.
- the pretreated base steel sheet is put into a reduction furnace and annealed (heat treatment in a reducing atmosphere) in the reduction furnace.
- the annealing conditions at this time are such that the residence time (annealing time, soaking time) in the range of 500 to 700 ° C. (annealing temperature, soaking temperature) is 30 to 270 seconds.
- the annealing treatment in the above temperature range is also called soaking.
- the lower limit of the annealing temperature is preferably 530 ° C, more preferably 560 ° C, and still more preferably 600 ° C.
- the upper limit of the annealing temperature is preferably 680 ° C, more preferably 660 ° C.
- the lower limit of the annealing time is preferably 60 seconds, more preferably 90 seconds.
- the upper limit of the annealing time is preferably 240 seconds, and more preferably 210 seconds.
- the pretreated steel sheet may be preheated in a reducing atmosphere preheating furnace using exhaust gas before entering the reduction furnace.
- the preheating condition at this time is not particularly limited as long as it is a reducing atmosphere.
- the annealing conditions it is preferable to appropriately control the annealing conditions according to the balance between temperature and time during annealing so that non-plating does not occur. For example, when the annealing temperature is high, the annealing time can be shortened. On the other hand, when the annealing temperature is low, the annealing time can be lengthened.
- the presence or absence of non-plating is observed at the stage of the hot-dip galvanized steel sheet or galvannealed steel sheet (before hot stamping). If suppressed, the non-plating disappears when the hot stamp is soaked, and it has been confirmed that no non-plating is observed in the product after hot stamping.
- the interface oxygen concentration is 0.50% or less by an experiment in which reduction annealing is performed within the above annealing temperature range.
- the annealing temperature is preferably 500 to 650 ° C., more preferably 500 to 600 ° C.
- the annealing time is long, for example, the annealing time is preferably 45 seconds or more, and more preferably 60 seconds or more.
- the oxide layer formed at the interface between the plating layer and the base steel sheet inhibits the diffusion of Fe to the plating layer during hot stamping and is necessary for preventing LME.
- the heating time becomes longer and the press productivity decreases.
- the atmosphere and dew point at the time of reduction are not particularly limited as long as non-plating does not occur.
- the base steel plate exiting the reduction furnace is cooled in a cooling zone.
- the cooling zone is composed of a slow cooling zone, a rapid cooling zone, and an adjustment zone (also referred to as a holding zone), but the cooling method may be performed under the conditions normally used so as not to cause non-plating. For example, a method of cooling the steel sheet by blowing a gas from the atmosphere.
- a hot dip galvanized steel sheet is produced by a hot dip galvanizing process.
- the GI may be alloyed to produce an alloyed hot-dip galvanized steel sheet (GA).
- the hot dip galvanizing step is not particularly limited, and a generally used method can be adopted.
- the temperature of the hot dip galvanizing bath may be controlled to about 430 to 500 ° C.
- the adhesion amount of the hot dip galvanized layer (same as the adhesion amount of the following alloyed hot dip galvanized layer) is preferably 30 g / m 2 or more, more preferably 40 g / m 2 or more from the viewpoint of ensuring corrosion resistance. Yes, more preferably more than 75 g / m 2 .
- the amount of adhesion of the hot dip galvanized layer is small. Therefore, the adhesion amount of the hot dip galvanized layer is preferably 120 g / m 2 or less, more preferably 100 g / m 2 or less.
- the alloying hot-dip galvanizing process is not particularly limited, and a generally used method can be adopted.
- the alloying temperature may be controlled to about 500 to 700 ° C.
- the alloying temperature is preferably set to 560 ° C. or higher. More preferably, it is 600 degreeC or more, More preferably, it is 650 degreeC or more.
- the process after the plating process is not particularly limited, and a generally used method can be adopted. Usually, skin pass treatment, tension leveler treatment, oil coating, and the like are performed, but these may be performed under conditions that are normally used as necessary, and may be omitted if unnecessary.
- the temperature during the alloying treatment is not particularly limited.
- 500 to 700 Re-annealing may be performed after the alloying treatment (or after the above-described plating step).
- the alloying temperature may be controlled to 560 ° C. or higher, and re-annealing may be performed after the alloying treatment.
- the heating temperature (re-annealing temperature) during re-annealing is preferably 400 ° C. or higher. Preferably it is 450 degreeC or more.
- the re-annealing temperature is set to 750 ° C. or lower. Preferably it is 700 degrees C or less.
- the time (re-annealing time) held at the re-annealing temperature can be appropriately set depending on the heating method or the like.
- the re-annealing time is preferably 1 hour or longer (more preferably 2 hours or longer), and in the case of induction heating, the re-annealing time is preferably 10 seconds or longer.
- the re-annealing time is preferably 15 hours or less, more preferably 10 hours or less in the case of the furnace heating.
- the said reannealing time is 3 minutes or less, More preferably, it is 1 minute or less.
- the galvanized steel sheet (GI or GA) thus obtained is suitably used as a hot stamping steel sheet.
- the hot stamping process is not particularly limited, and a generally used method can be adopted.
- the steel sheet is heated to a temperature equal to or higher than the Ac 3 transformation point to austenite, and then, for example, forming is completed at a temperature of about 550 ° C. or higher (when the mold reaches the bottom dead center position).
- the heating method furnace heating, energization heating, induction heating, or the like can be employed.
- the heating condition is the holding time in the furnace maintained at a temperature equal to or higher than the Ac 3 transformation point (also referred to as the in-furnace time. In the case of current heating and induction heating, the time from the start to the end of heating). By controlling to preferably 30 minutes or less, more preferably 15 minutes or less (more preferably 7 minutes or less), grain growth of austenite is suppressed, and properties such as hot drawability and toughness of hot stamped products are obtained. To improve. In the present invention, as described above, by setting the Fe concentration in the plated layer of the alloyed hot-dip galvanized steel sheet to 16% or more, the heating holding time is less than 9 minutes (further less than 7 minutes, even more 6 minutes). The press productivity can be further increased. Even when the Fe concentration in the plating layer is low, LME can be suppressed by increasing the heating holding time.
- the lower limit of the heating holding time is not particularly defined, and it may be reached at or above the Ac 3 transformation point during heating. However, from the viewpoint of reliably suppressing LME, it is preferably more than 5.5 minutes.
- the hot stamp component (molded product) of the present invention obtained by performing hot stamping (preferably hot stamping performed under the above-described conditions) using an alloyed hot-dip galvanized steel sheet with suppressed interfacial oxide is a plating layer.
- Fe concentration is 72% or more (preferably 74% or more, more preferably 76% or more, and the upper limit is about 85%), and the depth of LME crack (determined by the method described in the examples described later).
- the hot stamp parts include automobile chassis, underbody parts, and reinforcing parts.
- Example 1 After heating a slab of steel having the chemical composition shown in Table 1 (unit: mass%) to 1200 ° C., hot rolling [FDT (finish rolling) ⁇ CT (winding)] by the method shown in Table 1 ⁇ Descaling treatment by pickling process ⁇ Cold rolling was performed to obtain a cold-rolled steel plate (corresponding to the base steel plate in the original plate and the plated steel plate).
- the blank was annealed at 600 ° C. for 90 seconds under a reducing atmosphere of 5% H 2 —N 2 and dew point of ⁇ 45 ° C. simulating annealing before plating, and then cooled to room temperature. Thereafter, the blank is again put in a heating furnace maintained at 930 ° C. in the atmosphere and stayed for 4 minutes, and heated so that the central surface portion of the blank becomes 930 ° C. (the central surface portion of the plate). did. Next, the blank was taken out from the heating furnace and immediately cooled with water.
- JIS No. 5 test piece was cut out from the blank after the hot stamp simulation experiment described above, and a tensile test was performed by the method described in JISZ2201 (tensile speed was 10 mm / min) to measure the tensile strength of the steel sheet after hot stamping.
- the tensile strength of the steel sheet after hot stamping was evaluated as ⁇ (pass) for 980 MPa or more and x (fail) for less than 980 MPa.
- the welding strength was evaluated as ⁇ (pass) for 3.0 kN or more and x (fail) for less than 3.0 kN.
- the cold-rolled steel sheet was cut to obtain a 100 mm ⁇ 150 mm test piece.
- the test piece was electrolytically degreased for 20 seconds in 3% sodium orthosilicate at 60 ° C. for 20 seconds, and then washed with running water for 5 seconds in tap water.
- annealing described in Table 2 was performed in a reducing atmosphere of 5% H 2 —N 2 , dew point of ⁇ 45 ° C. or ⁇ 15 ° C. using a plating simulator.
- the steel plate surface in the range (about 100 mm ⁇ 120 mm) immersed in the zinc plating bath was visually observed for each of the GI and GA, and the area ratio of non-plating was obtained.
- the area ratio of non-plating was 5% or less, it was evaluated as ⁇ (pass), and over 5% was evaluated as x (fail).
- the original plate No. having a small amount of C, Si and Mn. D decreased in both strength after hot stamping and weld strength.
- No. Nos. 1 to 41 are the above Nos.
- No. Nos. 42 to 47 are the above-mentioned No.s. Although A and M were used, since the annealing conditions of the present invention were not satisfied, unplating occurred in both cases. Specifically, no. Nos. 42 and 46 are examples where the annealing temperature (soaking temperature) before plating is low, and the Fe-based scale of the thin film existing on the surface of the original plate remains and is not cleaned, and thus plating is not applied. No. Nos. 43 and 47 are examples having a high annealing temperature. Si oxide was concentrated on the surface, and no plating was applied. No. No.
- Example 2 No. in Table 1 above. Using cold-rolled steel sheets (base steel sheets) B, C, and G to M, annealing, galvanizing, and alloying treatment were performed under the conditions shown in Table 4 to obtain alloyed hot-dip galvanized steel sheets.
- the component composition (particularly Fe concentration) of the plated layer of the obtained galvannealed steel sheet was analyzed as follows. That is, the plated steel sheet is immersed in a solution obtained by adding hexamethylenetetramine to 18% hydrochloric acid to dissolve only the plating layer, and the amount of plating adhesion is obtained from the mass change before and after dissolution, and the solution is subjected to ICP emission spectroscopy. Analysis was performed by an analysis method (use apparatus: ICPS-7510, manufactured by Shimadzu Corporation), and the Fe concentration in the plating layer was determined.
- the oxygen concentration at the interface between the plated layer of the obtained galvanized steel sheet and the base steel sheet was measured using GDOES (Glow Discharge Optical Spectroscopy) (SPECTRUMA ANALYTIK GmbH, GDA750). Specifically, by the above analysis method, the Zn, Fe, O concentration profile in the depth direction of the plating layer of the sample is obtained, and within this concentration profile, within a range of 3 ⁇ m above and below the position (depth) where Zn and Fe intersect ( The highest O concentration in the measurement range) was determined as the oxygen concentration (interface oxygen concentration) at the interface between the plating layer and the base steel sheet.
- GDOES Gas Discharge Optical Spectroscopy
- FIG. 4 An example is shown in FIG. In FIG. 4, “Zn ⁇ 1”, “Fe ⁇ 1”, and “O ⁇ 20” are the concentration profile data shown in FIG. 4, respectively, Zn is 1 time of the measured value, Fe is 1 time of the measured value, O indicates that it is 20 times the measured value.
- 4 (a) shows the experiment No. 3 is a measurement result of the plated steel sheet before the hot stamping experiment of No. 3; A conspicuous peak of O concentration is not confirmed from this measurement result. That is, Experiment No. 3 shows that oxide is not substantially present at the interface between the coating layer of the galvannealed steel sheet and the base steel sheet.
- FIG. 3 shows that oxide is not substantially present at the interface between the coating layer of the galvannealed steel sheet and the base steel sheet.
- the element concentration (particularly, the Fe concentration in the plating layer) of the plating layer of the component was obtained by EDX plane analysis of the cross section of the plating layer.
- the apparatus is the same as the FE-SEM used for observation of LME cracks (SUPRA35, manufactured by ZEISS).
- the analysis of the element concentration is performed in the state of no etching without performing the above-mentioned nital etching on the cross section of the plating portion of the non-bent portion of the test piece, and the average value of the values of 10 visual fields (Fe concentration) is calculated. Calculated.
- the LME crack does not necessarily have the deepest apex of the bent portion, and it is often deeper slightly closer to the plane portion than the apex. Therefore, it is necessary to observe the entire bent portion in the cross section.
- LME depth the depth of the deepest LME crack (denoted as “LME depth” in Table 4) was measured. The observation of the 10 fields of view was repolished every time 1 field of view was observed and dug down several mm, and the same observations as described above were repeated. And when the said LME depth was 10 micrometers or less, it evaluated that LME was suppressed.
- experiment no. 3 and 6 are examples in which the conditions are the same except for the in-furnace time. Comparing these, it can be seen that the longer the in-furnace time, the higher the Fe concentration in the plated layer after hot stamping heating (ie, the part), resulting in shallower LME cracks.
- Experiment No. 2 and 6 Experiment No. 8 and 10, experiment no. 11 and 12, experiment no. 13 and 14, experiment no. 15 and 16, experiment no. 17 and 18, experiment no. 19 and 20, experiment no. 21 and 22, and experiment no. 23 and 24 are examples in which the conditions are the same except for the Fe concentration in the plating layer.
- the higher the Fe concentration in the plating layer of the plated steel sheet used for hot stamping the higher the Fe concentration in the plating layer after heating (parts) even under the same heating conditions, and LME is suppressed. I understand.
- Example 3 In Example 3, in particular, the influence of the Fe concentration in the plating layer of the plated steel sheet on the press productivity (heating time during hot stamping) was confirmed.
- Example 2 The original plate No. in Table 1 above.
- B, C, and G to M cold rolled steel sheets (base steel sheets) were used in the same manner as in Example 2 (that is, annealing, galvanizing, alloying treatment, and some examples under the conditions shown in Table 5). Were further annealed) to obtain an alloyed hot-dip galvanized steel sheet.
- Table 5 re-annealing was performed. In this re-annealing, the galvannealed steel sheet was cut to 70 mm ⁇ 150 mm and held at 450 ° C. or 550 ° C. for 7 hours in an electric furnace.
- No. 5 in Table 5 was used. Nos.
- 79 to 81 were prepared using the oxidation-reduction method as follows.
- the production conditions were such that the air-fuel ratio was 0.9 to 1.4 in the oxidation zone, and the dew point containing hydrogen and nitrogen in the reduction zone was -30 to -60 ° C and reduced and soaked at 800 to 900 ° C.
- plating with a zinc plating bath (Al concentration: 0.05 to 0.2%, bath temperature: 450 to 470 ° C), and after wiping, alloy at 460 to 550 ° C The treatment was performed.
- Example 2 using the obtained galvannealed steel sheet, in the same manner as in Example 2, measurement of the amount of plating adhesion, measurement of the Fe concentration in the plating layer of the plated steel sheet, and the plating layer and the base steel sheet of the plated steel sheet The oxygen concentration at the interface was measured. Furthermore, a hot stamp simulation experiment (LME experiment) was performed as follows to evaluate LME cracks (evaluation of press productivity). Details are as follows.
- LME crack depth (LME depth) was determined in the same manner as in Example 2 using the processed L-bending material.
- Example 3 each No. in Table 5 was used.
- the shortest heating time maximum depth of LME crack: heating time necessary to achieve 10 ⁇ m or less
- “depth of LME crack deepest in all visual fields: 10 ⁇ m or less” was obtained.
- LME cracks were evaluated (evaluation of press productivity) based on the following criteria. In this example, the case where the heating time was less than 9 minutes and the maximum depth of the LME crack: 10 ⁇ m or less could be achieved (that is, the following ⁇ , ⁇ and ⁇ ) was regarded as acceptable. The results are also shown in Table 5. (Evaluation criteria) ⁇ : Less than 6 minutes ⁇ : 6 minutes or more and less than 7 minutes ⁇ : 7 minutes or more and less than 9 minutes ⁇ : 9 minutes or more
- No. 79 to 81 are manufactured using an oxidation-reduction method, so that the oxygen concentration (interfacial oxygen concentration) at the interface between the plated layer of the plated steel sheet and the base steel sheet is high, and the diffusion of Fe during heating is suppressed. It took a long time to heat before pressing to suppress it.
- No. 48 and no. No. 56 has an annealing temperature (soaking temperature) of No. 56. 48, 500 ° C., No. 48 56 is different in that it is 700 ° C., and other conditions including the temperature during alloying (650 ° C.) are the same example. From these contrasts, it can be seen that the lower the annealing temperature (soaking temperature), the higher the Fe concentration in the plating layer.
- No. 48 and no. No. 58 is the same as the manufacturing conditions except that the original plate is different. From these contrasts, No. No. 58 no. 48 has a slightly higher Fe concentration in the plating layer. This is no. No. 48 is considered to be because the amount of Mn in the original plate (base steel plate) is large, and alloying is promoted during the alloying treatment, so that the Fe concentration is increased.
- Nos. 1 to 24 and Table 5 use an original sheet (cold rolled steel sheet) satisfying a predetermined component composition, and appropriately control the reduction annealing conditions (heat treatment temperature and time in a reducing atmosphere) before plating in the production process. Therefore, the tensile strength of the steel sheet after hot stamping evaluated in the same manner as in Example 1 is 980 MPa or more, the weld strength of the spot weld is 3.0 kN or more, and the area ratio of non-plating is 5% or less. I have confirmed that.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
Cは、固溶強化元素として、ホットスタンプ後の鋼板(部品、以下、ホットスタンプ成形品と呼ぶ場合がある。)の高強度化に寄与する元素である。ホットスタンプにより、所望とする980MPa以上の高強度を得るためには、C量の下限を0.10%以上とする。C量の下限は、好ましくは0.13%以上、より好ましくは0.15%以上、更に好ましくは0.17%以上である。しかしながら、C量が過剰になると、ホットスタンプ成形品の溶接性が低下するため、その上限を0.5%とする。C量の上限は、好ましくは0.40%以下、より好ましくは0.35%以下、更に好ましくは0.30%以下である。
Siは、ホットスタンプ成形品のスポット溶接部の接合強度向上に寄与する元素である。またSiは、ホットスタンプの徐冷工程における焼き戻しを防止して部品の強度を保つ効果を有している。更にSiは、残留オーステナイトを生成して部品の延性向上にも寄与する元素である。これらの効果を有効に発揮させるため、Si量の下限を0.7%以上とする。Si量の下限は、好ましくは0.75%以上であり、より好ましくは0.80%以上、更に好ましくは0.90%以上、より更に好ましくは1.0%以上である。しかしながら、Si量が過剰になると、強度が高くなり過ぎて素地鋼板(熱延酸洗鋼板または冷延鋼板)製造時の圧造負荷が増大するほか、熱間圧延の際に素地鋼板表面にSiO2を含むスケールが発生し、めっき後の鋼板の表面性状が悪化するため、その上限を2.5%とする。Si量の上限は、好ましくは2.3%以下であり、より好ましくは2.1%以下である。
Mnは、焼入れ性を高め、ホットスタンプ成形品の高強度バラツキを抑えるために有用な元素である。またMnは、後述するめっきの合金化処理において合金化を促進させ、めっき層中のFe濃度確保に寄与する元素でもある。このような作用を有効に発揮させるため、Mn量の下限を、1.0%以上とする。しかし、Mn量が過剰になると、強度が高くなり過ぎて素地鋼板製造時の圧延負荷が増大するため、その上限を3%以下とする。Mn量の好ましい下限は1.2%以上、より好ましい下限は1.5%以上、さらに好ましくは1.7%以上であり、好ましい上限は2.8%以下、より好ましい上限は2.5%以下である。
Alは脱酸のために必要な元素であり、そのため、Al量の下限を0.01%以上とする。好ましくは0.03%以上である。しかしながら、Al量が過剰になると上記効果が飽和するだけでなく、アルミナ等の介在物が増加して加工性が劣化するため、Al量の上限を0.5%とする。好ましくは0.3%以下である。
Bは鋼材の焼入れ性を向上させる元素である。この効果を発揮させるには、Bを0.0003%以上含有させることが好ましい。より好ましくは0.0005%以上(更に好ましくは0.0010%以上)とするのがよい。一方、Bが0.005%を超えると、ホットスタンプ成形品中に粗大なホウ化物が析出して成形品の靭性が劣化するため、好ましくは0.005%以下(より好ましくは0.004%以下)とする。
Tiは、Nを固定して、Bによる焼入れ効果を確保する役割を持つ元素である。またTiは、組織を微細化する効果も併せ持つ。組織が微細化することで部品延性が向上する。こうした作用を充分に発揮させるために、Ti量は、0.01%以上とすることが好ましい。より好ましくは0.02%以上である。しかし、Ti量が過剰であると、鋼板の延性が劣化するため、Ti量を0.10%以下とすることが好ましい。より好ましくは0.07%以下である。
CrおよびMoは、素地鋼板の焼入れ性を向上させるために有効な元素であり、これらの元素を含有させることによってホットスタンプ成形品における硬さばらつきの低減が期待できる。これらの元素は単独で添加しても良いし、2種類を併用しても良い。このような作用を有効に発揮させるためには、これら元素の合計量(単独で含むときは単独の量であり、2種類を併用するときは合計量である。)を0.01%以上とすることが好ましい。より好ましくは0.05%以上、更に好ましくは0.1%以上である。しかしながら、これらの合計量が過剰になると、上記効果が飽和すると共に、コストも上昇するため、その上限を1%以下とすることが好ましい。より好ましくは0.5%以下、更に好ましくは0.3%以下である。
Nb、Zr、Vは組織を微細化する効果を有しており、組織が微細化することで部品の延性を向上させる効果を有する。このような効果を有効に発揮させるには、これら元素の合計量(単独で含むときは単独の量であり、2種類以上を併用するときは合計量である。)の下限を0.01%以上とすることが好ましく、より好ましくは0.02%以上である。しかしながら、これらの元素の合計量が過剰になると、その効果が飽和してコストの上昇を招くため、その上限を0.1%以下とすることが好ましい。より好ましくは0.05%以下である。
CuおよびNiは、ホットスタンプ成形品に耐遅れ破壊性を付与したいときに、必要に応じて添加される元素である。これらの元素は、単独で添加しても良いし、2種類を併用しても良い。このような作用を有効に発揮させるためには、これら元素の合計量(単独で含むときは単独の量であり、2種類を併用するときは合計量である。)を0.01%以上とすることが好ましい。より好ましくは0.05%以上である。しかしながら、これらの量が過剰になると、鋼板製造時における表面疵の発生原因となるため、その上限を1%以下とすることが好ましい。より好ましくは0.5%以下である。
所定成分の鋼を鋳造→加熱→熱間圧延→酸洗(→必要に応じて、冷間圧延)→溶融亜鉛めっき工程(→必要に応じて、更に合金化工程)
そして本発明では、後に詳述する通り、溶融亜鉛めっき工程の焼鈍工程における、還元炉による焼鈍(還元性雰囲気下での熱処理)での焼鈍条件(温度および時間)を適切に制御したところに最大の特徴がある。
仕上げ圧延温度(FDT):800~950℃
巻き取り温度(CT):500~700℃
表1に記載の化学組成を有する鋼(単位は質量%)のスラブを、1200℃に加熱した後、表1に記載の方法で熱間圧延[FDT(仕上げ圧延)→CT(巻取)]→酸洗工程によるデスケーリング処理→冷間圧延を行なって冷延鋼板(原板、めっき鋼板における素地鋼板に相当)を得た。
上記冷延鋼板を切断して得られた短冊状ブランク(長さ:30mm、幅:210mm)を用い、ホットスタンプを模擬したヒートパターンを以下のように施した。
上記ホットスタンプ模擬実験後のブランクを、以下のスポット溶接試験に供し、接合部の強度(十字継手破断荷重)を測定した。溶接電流は、ナゲット径が4×√t(t:板厚)となるように調節した。
試験片条件:十字張力用試験片(JIS Z3137に準拠)
溶接機:単相交流式スポット溶接機
電極:先端径φ6mmのドームラジアスタイプ
加圧力:4kN
初期加圧時間:60サイクル
通電時間:10サイクル(電源周波数60Hz)
上記冷延鋼板を切断し、100mm×150mmの試験片を得た。この試験片を、60℃の3%オルソ珪酸ナトリウム中で20A、20秒間電解脱脂した後、水道水中で5秒間流水にて水洗した。このようにしてアルカリ脱脂した試験片を用いて、めっきシミュレータにて、5%H2-N2、露点-45℃または-15℃の還元性雰囲気下で表2に記載の焼鈍を行なった。
前記表1のNo.B、C、およびG~Mの冷延鋼板(素地鋼板)を用い、表4に示す条件で、焼鈍、亜鉛めっき、合金化処理を行なって、合金化溶融亜鉛めっき鋼板を得た。
得られた合金化溶融亜鉛めっき鋼板のめっき層の成分組成(特にFe濃度)は、次の様にして分析した。即ち、18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記めっき鋼板を浸漬してめっき層のみを溶解し、溶解前後の質量変化からめっき付着量を求めると共に、その溶解液をICP発光分光分析法(使用装置は、島津製作所製、ICPS-7510)で分析し、めっき層中のFe濃度を求めた。
得られた合金化亜鉛めっき鋼板のめっき層と素地鋼板の界面の酸素濃度の測定は、GDOES(グロー放電発光分光分析)(SPECTRUMA ANALYTIK GmbH製、GDA750)を用いて行った。詳細には、上記分析方法で、サンプルのめっき層深さ方向のZn、Fe、O濃度プロファイルを求め、この濃度プロファイルにおいて、ZnとFeが交差する位置(深さ)の上下3μmの範囲内(測定範囲内)で最も高いO濃度を、前記めっき層と素地鋼板の界面の酸素濃度(界面酸素濃度)として求めた。
ホットスタンプ部品の製造を模擬して、次の通り曲げ加工を行った。即ち、前記合金化溶融亜鉛めっき鋼板を50mm×100mmに切断して得られたサンプルを、電気炉に投入して加熱した後(炉温(加熱温度)と在炉時間(加熱時間)は表4に示す通りである)、以下の条件で図1に示す通り曲げ加工を施し、部品を模擬した試験片(L曲げ材)を得た。尚、880℃の炉で加熱したNo.5の試験片は120秒でAc3変態点以上の温度となり、920℃の炉で加熱したその他の試験片は加熱開始から90秒±15秒でAc3変態点以上の温度となった。
(加工条件)
素材寸法:長さ100mm×奥行き50mm
パッド圧:5トン
クリアランス(パンチと曲げ刃との間の距離):1.4mm(板厚と同じ)
曲げR(rp):2.5mm
プレス開始温度:750℃
下死点保持時間:10秒
部品のめっき層の元素濃度(特に、めっき層中のFe濃度)は、めっき層の断面をEDX面分析することで求めた。装置はLMEクラックの観察に用いたFE-SEMと同じ(SUPRA35、ZEISS製)である。この元素濃度の分析は、試験片の非曲げ部のめっき部分の断面を、前述のようなナイタールエッチングを施さずにノーエッチの状態で行い、合計10視野の値(Fe濃度)の平均値を算出した。
前記加工後のL曲げ材から、図2に示すように曲げ部の断面を観察できるようにサンプルを切り出し、支持基材内に埋め込み、研磨後にナイタールで軽くエッチングした後、該断面における曲げ外側(曲げによる引張応力発生側)の表層近傍をFE-SEM(SUPRA35、ZEISS製)で観察した(倍率:500倍、視野サイズ:230μm×155μm、視野数:10)。そして、めっき合金層と鋼板との界面(図3中、破線で表示)からのクラック(LMEクラック)の深さを測定した。前記ナイタールエッチングにより、前記図3のように鋼板の組織とめっき合金層の組織を明確に区別することが可能となる。前記LMEクラックは、必ずしも曲げ部の頂点が最も深いわけではなく、該頂点から若干平面部寄りの方が深いことが多い。よって、前記断面における曲げ部の全域を観察する必要がある。LMEクラックが複数発生している場合、最も深いLMEクラックの深さ(表4では「LME深さ」と表記)を測定した。上記10視野の観察は、1視野観察する毎に再研磨して数mm掘り下げ、上記と同様の観察を繰り返した。そして、上記LME深さが10μm以下の場合を、LMEが抑制されていると評価した。
実施例3では特に、めっき鋼板のめっき層中のFe濃度がプレス生産性(ホットスタンプ時の加熱時間)に及ぼす影響を確認した。
前記合金化溶融亜鉛めっき鋼板を50mm×100mmに切断して得られたサンプルを、920℃の電気炉に投入して加熱した後(加熱時間は種々の条件とした)、以下の条件で図1に示す通り曲げ加工を施した。試験片は加熱開始から90秒±15秒でAc3変態点以上の温度となった。
(加工条件)
素材寸法:長さ100mm×奥行き50mm
パッド圧:5トン
クリアランス(パンチと曲げ刃との間の距離):1.4mm(板厚と同じ)
曲げR(rp):2.5mm
プレス開始温度:750℃
下死点保持時間:10秒
(評価基準)
◎:6分未満
○:6分以上7分未満
△:7分以上9分未満
×:9分以上
Claims (19)
- C:0.10~0.5%(質量%の意味、以下、同じ)、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する熱延酸洗鋼板または冷延鋼板を、還元性雰囲気で焼鈍した後、めっきしてホットスタンプ用亜鉛めっき鋼板を製造する方法であって、
前記焼鈍を、500~700℃の範囲で30~270秒行なうことを特徴とするホットスタンプ用亜鉛めっき鋼板の製造方法。 - 前記熱延酸洗鋼板または冷延鋼板は、更に、Bを0.005%以下(0%を含まない)含むものである請求項1に記載の製造方法。
- 前記熱延酸洗鋼板または冷延鋼板は、更に、Tiを0.10%以下(0%を含まない)含むものである請求項1に記載の製造方法。
- 前記熱延酸洗鋼板または冷延鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
- 前記熱延酸洗鋼板または冷延鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
- 前記熱延酸洗鋼板または冷延鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含むものである請求項1に記載の製造方法。
- 前記亜鉛めっき鋼板は、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板である請求項1~6のいずれかに記載の製造方法。
- 素地鋼板がC:0.10~0.5%、Si:0.7~2.5%、Mn:1.0~3%、Al:0.01~0.5%を含有する合金化溶融亜鉛めっき鋼板であって、めっき層と素地鋼板の界面の酸素濃度が0.50%以下であることを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記めっき層中のFe濃度が16%以上である請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記素地鋼板は、更に、Bを0.005%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記素地鋼板は、更に、Tiを0.10%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記素地鋼板は、更に、CrおよびMoを合計で1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記素地鋼板は、更に、Nb、ZrおよびVを合計で0.1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 前記素地鋼板は、更に、CuおよびNiを合計で1%以下(0%を含まない)含む請求項8に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。
- 請求項8~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。 - 請求項9~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで560~750℃で合金化を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。 - 請求項9~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法であって、
請求項8、10~14のいずれかに記載の成分組成を満たす熱延酸洗鋼板または冷延鋼板を、還元性雰囲気にて500~700℃で30~270秒保持する焼鈍を行なった後、めっきし、次いで合金化を行ない、更に400~750℃で再焼鈍を行なうことを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板の製造方法。 - 素地鋼板が請求項8、10~14のいずれかに記載の成分組成を満たし、合金化溶融亜鉛めっき層を有するホットスタンプ部品であって、LMEクラックの深さが10μm以下であり、かつ前記めっき層中のFe濃度が72%以上であることを特徴とするホットスタンプ部品。
- 請求項8~14のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板を用いて得られるホットスタンプ部品であって、
LMEクラックの深さが10μm以下であり、かつめっき層中のFe濃度が72%以上であることを特徴とするホットスタンプ部品。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380021066.2A CN104271789B (zh) | 2012-04-23 | 2013-04-23 | 热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件 |
KR1020167011389A KR101716625B1 (ko) | 2012-04-23 | 2013-04-23 | 핫 스탬핑용 아연도금 강판의 제조 방법, 핫 스탬핑용 합금화 용융 아연도금 강판과 그의 제조 방법, 및 핫 스탬핑 부품 |
MX2014012798A MX2014012798A (es) | 2012-04-23 | 2013-04-23 | Metodo de fabricacion de hoja de acero galvanizado para estampacion en caliente, hoja de acero galvanizado y recocido por inmersion en caliente para estampacion en caliente y metodo de fabricacion de las mismas, y componente estampado en caliente. |
EP13781200.4A EP2843077B1 (en) | 2012-04-23 | 2013-04-23 | Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and the use |
KR1020147029173A KR101950546B1 (ko) | 2012-04-23 | 2013-04-23 | 핫 스탬핑용 아연도금 강판의 제조 방법, 핫 스탬핑용 합금화 용융 아연도금 강판과 그의 제조 방법, 및 핫 스탬핑 부품 |
US14/395,173 US20150125716A1 (en) | 2012-04-23 | 2013-04-23 | Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component |
US14/884,129 US20160032439A1 (en) | 2012-04-23 | 2015-10-15 | Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-098035 | 2012-04-23 | ||
JP2012098035 | 2012-04-23 | ||
JP2013011424 | 2013-01-24 | ||
JP2013-011424 | 2013-01-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/395,173 A-371-Of-International US20150125716A1 (en) | 2012-04-23 | 2013-04-23 | Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component |
US14/884,129 Division US20160032439A1 (en) | 2012-04-23 | 2015-10-15 | Method for manufacturing galvanized steel sheet for hot stamping, hot-dip galvannealed steel sheet for hot stamping and method for manufacturing same, and hot stamped component |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161831A1 true WO2013161831A1 (ja) | 2013-10-31 |
Family
ID=49483140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061951 WO2013161831A1 (ja) | 2012-04-23 | 2013-04-23 | ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20150125716A1 (ja) |
EP (1) | EP2843077B1 (ja) |
JP (2) | JP5973953B2 (ja) |
KR (2) | KR101950546B1 (ja) |
CN (2) | CN104271789B (ja) |
MX (1) | MX2014012798A (ja) |
WO (1) | WO2013161831A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106574344A (zh) * | 2014-08-29 | 2017-04-19 | 株式会社神户制钢所 | 热浸镀锌用或合金化热浸镀锌用原板及其制造方法以及热浸镀锌钢板或合金化热浸镀锌钢板 |
JPWO2016006232A1 (ja) * | 2014-07-10 | 2017-04-27 | Jfeスチール株式会社 | 熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板 |
US20180281348A1 (en) * | 2015-10-02 | 2018-10-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Galvanized steel sheet for hot pressing and method for producing hot pressed molded article |
WO2019188235A1 (ja) * | 2018-03-28 | 2019-10-03 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
JP2019173157A (ja) * | 2018-03-28 | 2019-10-10 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
US10837096B2 (en) | 2015-09-08 | 2020-11-17 | Nippon Steel Corporation | Nitrided steel part and method of production of same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6082451B2 (ja) * | 2015-03-18 | 2017-02-15 | 株式会社神戸製鋼所 | 熱間プレス用鋼板およびその製造方法 |
CN104694838B (zh) * | 2015-03-23 | 2016-08-17 | 苏州劲元油压机械有限公司 | 一种用于钢结构工程的高韧钢及其热处理工艺 |
CN104694837B (zh) * | 2015-03-23 | 2016-07-06 | 苏州劲元油压机械有限公司 | 一种用于建筑幕墙工程的高强钢结构件及其热处理工艺 |
CN107427889B (zh) * | 2015-03-31 | 2019-10-25 | 日本制铁株式会社 | 热冲压用钢板及其制造方法、以及热冲压成型体 |
JP6237937B2 (ja) * | 2016-03-11 | 2017-11-29 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
JP6805044B2 (ja) * | 2016-03-30 | 2020-12-23 | 株式会社神戸製鋼所 | ホットスタンプ用合金化溶融亜鉛めっき鋼板 |
RU2718021C1 (ru) * | 2017-02-20 | 2020-03-30 | Ниппон Стил Корпорейшн | Горячештампованное изделие |
KR102021200B1 (ko) * | 2017-06-27 | 2019-09-11 | 현대제철 주식회사 | 핫 스탬핑 부품 및 이의 제조방법 |
MA50447A (fr) * | 2017-10-24 | 2020-09-02 | Arcelormittal | Procédé de fabrication d'une tôle d'acier revêtue, deux feuilles métalliques soudées par points et leur utilisation |
CA3085282A1 (en) * | 2017-12-15 | 2019-06-20 | Nippon Steel Corporation | Steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet |
KR101999005B1 (ko) * | 2017-12-22 | 2019-07-10 | 주식회사 포스코 | 아연도금강판의 점용접 균열 방지방법 |
JP7006256B2 (ja) * | 2017-12-27 | 2022-02-10 | 日本製鉄株式会社 | ホットスタンプ用溶融亜鉛めっき鋼板及びホットスタンプ用溶融亜鉛めっき鋼板の製造方法 |
JP7006257B2 (ja) * | 2017-12-27 | 2022-01-24 | 日本製鉄株式会社 | ホットスタンプ成形体及びホットスタンプ成形体の製造方法 |
JP6916129B2 (ja) * | 2018-03-02 | 2021-08-11 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板およびその製造方法 |
JP7353768B2 (ja) * | 2018-03-27 | 2023-10-02 | 株式会社神戸製鋼所 | ホットスタンプ用鋼板 |
DE102018217835A1 (de) * | 2018-10-18 | 2020-04-23 | Sms Group Gmbh | Verfahren zum Herstellen eines warmumformbaren Stahlflachprodukts |
CN109365606A (zh) * | 2018-11-30 | 2019-02-22 | 宝山钢铁股份有限公司 | 一种耐腐蚀性优良的锌系镀层钢板或钢带的成形方法 |
DE102019108457B4 (de) * | 2019-04-01 | 2021-02-04 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge |
CN112877592B (zh) * | 2019-11-29 | 2022-06-28 | 宝山钢铁股份有限公司 | 具有优异漆膜附着力的热成形部件及其制造方法 |
CN111041382A (zh) * | 2019-12-03 | 2020-04-21 | 马鞍山钢铁股份有限公司 | 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法 |
CN111321341A (zh) * | 2019-12-03 | 2020-06-23 | 马鞍山钢铁股份有限公司 | 一种具有低高温摩擦系数的1500MPa级无镀层热成形钢及其制备方法 |
JP7443635B2 (ja) * | 2020-01-31 | 2024-03-06 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ部品及びホットスタンプ部品の製造方法 |
CN114101384B (zh) * | 2020-08-31 | 2024-01-09 | 宝山钢铁股份有限公司 | 板带焊缝过平整机和张紧辊时的张紧力控制方法 |
CN114657613A (zh) * | 2020-12-22 | 2022-06-24 | 苏州普热斯勒先进成型技术有限公司 | 冲压零件的制备方法 |
CN115261742B (zh) * | 2021-04-30 | 2023-06-13 | 宝山钢铁股份有限公司 | 一种抗拉强度1000MPa热冲压部件及其制造方法 |
CN116121636A (zh) * | 2021-11-12 | 2023-05-16 | 宝山钢铁股份有限公司 | 一种增强氧化层结合力的热冲压用钢及其制造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003126920A (ja) * | 2001-10-23 | 2003-05-08 | Sumitomo Metal Ind Ltd | 熱間プレス加工方法 |
JP2006037141A (ja) * | 2004-07-23 | 2006-02-09 | Sumitomo Metal Ind Ltd | 耐液体金属脆性に優れた熱処理用鋼板 |
JP2006037130A (ja) * | 2004-07-23 | 2006-02-09 | Nippon Steel Corp | ホットプレス用めっき鋼板の製造方法 |
JP2007056307A (ja) | 2005-08-24 | 2007-03-08 | Nippon Steel Corp | 塗装後耐食性に優れた亜鉛系めっきが施された熱間プレス鋼材 |
JP2007169679A (ja) | 2005-12-19 | 2007-07-05 | Kobe Steel Ltd | スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品 |
WO2010069588A1 (en) | 2008-12-19 | 2010-06-24 | Corus Staal Bv | Method for manufacturing a coated part using hot forming techniques |
JP2012041597A (ja) * | 2010-08-18 | 2012-03-01 | Nippon Steel Corp | 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法 |
JP2012098035A (ja) | 2010-10-29 | 2012-05-24 | Nippon Seiki Co Ltd | 計器照明装置 |
JP2013011424A (ja) | 2011-06-30 | 2013-01-17 | Hitachi Appliances Inc | 蒸気吸収式冷凍機 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1055510C (zh) * | 1993-06-25 | 2000-08-16 | 川崎制铁株式会社 | 高张力钢板的热浸镀锌方法 |
JPH07126747A (ja) * | 1993-11-05 | 1995-05-16 | Sumitomo Metal Ind Ltd | 溶融亜鉛めっき性に優れたSi含有鋼板の製造方法 |
US6517955B1 (en) * | 1999-02-22 | 2003-02-11 | Nippon Steel Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
EP1342801B1 (en) * | 2000-09-12 | 2011-02-02 | JFE Steel Corporation | High tensile strength hot dip plated steel sheet and method for production thereof |
EP1365037B1 (en) * | 2001-01-31 | 2008-04-02 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel sheet having excellent formability and method for production thereof |
JP3582511B2 (ja) * | 2001-10-23 | 2004-10-27 | 住友金属工業株式会社 | 熱間プレス成形用表面処理鋼とその製造方法 |
KR100646619B1 (ko) * | 2001-10-23 | 2006-11-23 | 수미도모 메탈 인더스트리즈, 리미티드 | 열간 프레스 방법, 이를 위한 도금 강철재 및 이의 제조방법 |
JP2003328099A (ja) * | 2002-05-02 | 2003-11-19 | Nippon Steel Corp | 高強度溶融亜鉛めっき鋼板の製造方法 |
CN100552076C (zh) * | 2003-02-10 | 2009-10-21 | 杰富意钢铁株式会社 | 镀层附着性优良的合金化热镀锌钢板及其制造方法 |
EP1612288B9 (en) * | 2003-04-10 | 2010-10-27 | Nippon Steel Corporation | A method for producing a hot-dip zinc coated steel sheet having high strength |
JP3885763B2 (ja) * | 2003-04-25 | 2007-02-28 | 住友金属工業株式会社 | 焼入用溶融亜鉛系めっき鋼板とその製造方法及び用途 |
JP4791482B2 (ja) * | 2005-10-14 | 2011-10-12 | 新日本製鐵株式会社 | Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置 |
JP5200463B2 (ja) * | 2007-09-11 | 2013-06-05 | Jfeスチール株式会社 | 溶融亜鉛めっき鋼板の製造方法 |
KR100985298B1 (ko) * | 2008-05-27 | 2010-10-04 | 주식회사 포스코 | 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법 |
JP2010235989A (ja) * | 2009-03-30 | 2010-10-21 | Nisshin Steel Co Ltd | 耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板およびその製造方法 |
DE102009018577B3 (de) * | 2009-04-23 | 2010-07-29 | Thyssenkrupp Steel Europe Ag | Verfahren zum Schmelztauchbeschichten eines 2-35 Gew.-% Mn enthaltenden Stahlflachprodukts und Stahlflachprodukt |
ATE554190T1 (de) * | 2009-08-25 | 2012-05-15 | Thyssenkrupp Steel Europe Ag | Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil |
JP5499664B2 (ja) * | 2009-11-30 | 2014-05-21 | 新日鐵住金株式会社 | 疲労耐久性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法 |
KR101171450B1 (ko) * | 2009-12-29 | 2012-08-06 | 주식회사 포스코 | 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품 |
JP5513216B2 (ja) * | 2010-03-31 | 2014-06-04 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板の製造方法 |
JP5609223B2 (ja) * | 2010-04-09 | 2014-10-22 | Jfeスチール株式会社 | 温間加工性に優れた高強度鋼板およびその製造方法 |
CN103827335B (zh) * | 2011-09-30 | 2015-10-21 | 新日铁住金株式会社 | 镀锌钢板及其制造方法 |
-
2013
- 2013-04-23 MX MX2014012798A patent/MX2014012798A/es unknown
- 2013-04-23 EP EP13781200.4A patent/EP2843077B1/en active Active
- 2013-04-23 KR KR1020147029173A patent/KR101950546B1/ko active IP Right Grant
- 2013-04-23 KR KR1020167011389A patent/KR101716625B1/ko active IP Right Grant
- 2013-04-23 JP JP2013090645A patent/JP5973953B2/ja active Active
- 2013-04-23 CN CN201380021066.2A patent/CN104271789B/zh active Active
- 2013-04-23 WO PCT/JP2013/061951 patent/WO2013161831A1/ja active Application Filing
- 2013-04-23 US US14/395,173 patent/US20150125716A1/en not_active Abandoned
- 2013-04-23 CN CN201611069267.1A patent/CN106756697B/zh active Active
-
2014
- 2014-04-28 JP JP2014093186A patent/JP5876895B2/ja active Active
-
2015
- 2015-10-15 US US14/884,129 patent/US20160032439A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003126920A (ja) * | 2001-10-23 | 2003-05-08 | Sumitomo Metal Ind Ltd | 熱間プレス加工方法 |
JP2006037141A (ja) * | 2004-07-23 | 2006-02-09 | Sumitomo Metal Ind Ltd | 耐液体金属脆性に優れた熱処理用鋼板 |
JP2006037130A (ja) * | 2004-07-23 | 2006-02-09 | Nippon Steel Corp | ホットプレス用めっき鋼板の製造方法 |
JP2007056307A (ja) | 2005-08-24 | 2007-03-08 | Nippon Steel Corp | 塗装後耐食性に優れた亜鉛系めっきが施された熱間プレス鋼材 |
JP2007169679A (ja) | 2005-12-19 | 2007-07-05 | Kobe Steel Ltd | スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品 |
WO2010069588A1 (en) | 2008-12-19 | 2010-06-24 | Corus Staal Bv | Method for manufacturing a coated part using hot forming techniques |
JP2012041597A (ja) * | 2010-08-18 | 2012-03-01 | Nippon Steel Corp | 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法 |
JP2012098035A (ja) | 2010-10-29 | 2012-05-24 | Nippon Seiki Co Ltd | 計器照明装置 |
JP2013011424A (ja) | 2011-06-30 | 2013-01-17 | Hitachi Appliances Inc | 蒸気吸収式冷凍機 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016006232A1 (ja) * | 2014-07-10 | 2017-04-27 | Jfeスチール株式会社 | 熱間プレス成形体およびその製造方法、ならびに熱間プレス成形体用めっき鋼板 |
CN106574344A (zh) * | 2014-08-29 | 2017-04-19 | 株式会社神户制钢所 | 热浸镀锌用或合金化热浸镀锌用原板及其制造方法以及热浸镀锌钢板或合金化热浸镀锌钢板 |
KR20170042667A (ko) * | 2014-08-29 | 2017-04-19 | 가부시키가이샤 고베 세이코쇼 | 용융 아연도금용 또는 합금화 용융 아연도금용 원판 및 그의 제조 방법, 및 용융 아연도금 강판 또는 합금화 용융 아연도금 강판 |
KR101958580B1 (ko) | 2014-08-29 | 2019-03-14 | 가부시키가이샤 고베 세이코쇼 | 용융 아연도금용 또는 합금화 용융 아연도금용 원판 및 그의 제조 방법, 및 용융 아연도금 강판 또는 합금화 용융 아연도금 강판 |
US10837096B2 (en) | 2015-09-08 | 2020-11-17 | Nippon Steel Corporation | Nitrided steel part and method of production of same |
US20180281348A1 (en) * | 2015-10-02 | 2018-10-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Galvanized steel sheet for hot pressing and method for producing hot pressed molded article |
WO2019188235A1 (ja) * | 2018-03-28 | 2019-10-03 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
JP2019173157A (ja) * | 2018-03-28 | 2019-10-10 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
JP7137492B2 (ja) | 2018-03-28 | 2022-09-14 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2843077B1 (en) | 2020-01-08 |
KR20160054035A (ko) | 2016-05-13 |
US20160032439A1 (en) | 2016-02-04 |
CN104271789A (zh) | 2015-01-07 |
JP5973953B2 (ja) | 2016-08-23 |
CN104271789B (zh) | 2017-06-06 |
KR20140136509A (ko) | 2014-11-28 |
EP2843077A1 (en) | 2015-03-04 |
JP2014159624A (ja) | 2014-09-04 |
CN106756697A (zh) | 2017-05-31 |
EP2843077A4 (en) | 2016-04-13 |
JP2014185395A (ja) | 2014-10-02 |
US20150125716A1 (en) | 2015-05-07 |
CN106756697B (zh) | 2020-03-13 |
MX2014012798A (es) | 2015-04-14 |
KR101716625B1 (ko) | 2017-03-14 |
JP5876895B2 (ja) | 2016-03-02 |
KR101950546B1 (ko) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5973953B2 (ja) | ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP5852690B2 (ja) | ホットスタンプ用合金化溶融亜鉛めっき鋼板 | |
CN108138282B (zh) | 热压用镀锌钢板和热压成形品的制造方法 | |
KR102428588B1 (ko) | 알루미늄계 도금 강판, 알루미늄계 도금 강판의 제조 방법 및 자동차용 부품의 제조 방법 | |
KR101784119B1 (ko) | 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재 | |
JP2016089274A (ja) | ホットスタンプ用めっき鋼板 | |
JP6805044B2 (ja) | ホットスタンプ用合金化溶融亜鉛めっき鋼板 | |
JP6094649B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5741413B2 (ja) | 合金化溶融亜鉛めっき鋼帯およびその製造方法 | |
JP5741412B2 (ja) | 合金化溶融亜鉛めっき鋼帯およびその製造方法 | |
KR102398731B1 (ko) | 핫 스탬핑용 아연도금 강판 및 그의 제조 방법 | |
JP7160203B2 (ja) | ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体 | |
JP7160204B2 (ja) | ホットスタンプ成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13781200 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013781200 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147029173 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14395173 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/012798 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |