WO2019188235A1 - 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 - Google Patents
合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 Download PDFInfo
- Publication number
- WO2019188235A1 WO2019188235A1 PCT/JP2019/009880 JP2019009880W WO2019188235A1 WO 2019188235 A1 WO2019188235 A1 WO 2019188235A1 JP 2019009880 W JP2019009880 W JP 2019009880W WO 2019188235 A1 WO2019188235 A1 WO 2019188235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- dip galvanized
- alloyed hot
- hot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
- Y10T428/12618—Plural oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
- Y10T428/12965—Both containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
Definitions
- the present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing an alloyed hot-dip galvanized steel sheet.
- surface-treated steel sheets provided with corrosion resistance and the like are widely used.
- a surface-treated steel sheet for example, a plated steel sheet such as a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet is used.
- a nut for attaching the component to the plated steel plate is welded to the plated steel plate, and the bolt is fastened to the nut welded to the plated steel plate to attach the component to the plated steel plate.
- projection welding in which a nut (projection nut) having a projection (projection) on the seat surface is welded to the plated steel sheet or the like may be used.
- a welded base material having a projection on the seat surface such as a projection nut, may be projection welded to the plated steel sheet.
- the weight of transportation equipment in order to achieve low fuel consumption in transportation equipment such as automobiles.
- it is effective to reduce the plate thickness of the plated steel plate constituting the transportation equipment.
- transportation equipment must ensure the safety of passengers.
- the plated steel sheets constituting transportation equipment such as automobiles are required to have high strength including not only tensile strength but also yield strength.
- the plated steel sheet that constitutes the transportation equipment is required to suppress a decrease in ductility accompanying an increase in strength. Therefore, a steel plate having high strength and ductility is required for a plated steel plate used for transportation equipment such as automobiles.
- Examples of the plated steel sheet used in such transportation equipment include the plated steel sheets described in Patent Document 1 and Patent Document 2.
- Patent Document 1 discloses a plated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a steel sheet having a predetermined component composition, from the interface between the steel sheet and the plated layer toward the steel sheet side.
- a plated steel sheet having an internal oxide layer having a predetermined thickness and a layer including the internal oxide layer and having a soft layer having a predetermined thickness and a hard layer is described.
- a hot-dip galvanized steel sheet having excellent tensile properties of 980 MPa or more which is excellent in plateability, workability of bending workability and hole expansibility, and delayed fracture resistance, and also excellent in shock absorption. And that an alloyed hot-dip galvanized steel sheet is obtained.
- Patent Document 2 discloses a nut projection weldability having a predetermined chemical composition and defining a relationship between a coefficient DI that defines the influence of each element that affects the quenching depth, a carbon equivalent Ceq, and a plate thickness.
- the steel plate for automobile members excellent in the above is described.
- Patent Document 2 while securing the strength of the steel sheet itself, while improving the joint strength (indentation peel strength and torque peel strength) with the nut, it is also possible to provide a steel plate for automobile members that can reduce variations in joint strength. It is disclosed that it is obtained.
- An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property. Moreover, it aims at providing the manufacturing method of the galvannealed steel plate excellent in nut projection weldability and plating property.
- One aspect of the present invention is an alloyed hot-dip galvanized steel sheet comprising a steel sheet and an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in% by mass, and C: 0.10% or more.
- Another aspect of the present invention is a method for producing the alloyed hot-dip galvanized steel sheet, wherein the steel material having the composition of the steel sheet is soaked at 1100 to 1300 ° C., and the finishing temperature is 850 to Hot rolled at 950 ° C. and wound at 630 to 680 ° C. to obtain a hot rolled material, and the hot rolled material was used at a temperature of 60 to 90 ° C. using 3 to 20% by mass of hydrochloric acid. Pickling for 35 to 200 seconds, and cold rolling the hot-rolled material after pickling to obtain a cold-rolled material.
- the cold-rolled material has an Ac of 3 points or more and less than 880 ° C.
- a steel plate was obtained by soaking under conditions of 25 ° C. or lower, cooling to 3.0 ° C./second or more to a cooling stop temperature of 380 to 500 ° C., and performing annealing for 15 seconds or more at the cooling stop temperature.
- the steel plate It is a manufacturing method of the galvannealed steel plate which forms an galvannealed layer.
- FIG. 1 is an example of an SEM photograph in which a cross section at the t / 4 position of an galvannealed steel sheet is observed.
- FIG. 2 is a plan view of the projection nut used in the nut peeling test.
- the Si-based oxide was present at the weld interface, and the Si-based oxide present at the welded interface was the cause of the peeling. I found out.
- the inventors have found that the amount of oxide produced decreases as the coiling temperature during hot rolling decreases and as the oxidation treatment capability during annealing decreases.
- a method of increasing the amount of additive elements such as Si and Mn to form a so-called high alloy steel can be considered.
- the amount of the additive element is increased in this way, the plating property is lowered, and non-plating or alloying unevenness tends to occur.
- Such a decrease in plating performance can cause a decrease in productivity and cost deterioration due to a decrease in yield.
- This decrease in plating property is due to the fact that Si and Mn are concentrated on the surface of the steel sheet and an oxide film is formed, so that the wettability of molten Zn decreases, and the increase in substitutional elements such as Si and Mn increases the Fe content. This is considered to be caused by the reduction in diffusion.
- the Si content is as large as 0.5 to 2.5% by mass
- An internal oxide layer is positively formed on the surface layer portion of the steel sheet by increasing the coiling temperature during rolling or by maintaining the coil at a high temperature after coiling during hot rolling.
- Si and Mn are internally oxidized by using a redox method in the subsequent annealing. By doing so, it is disclosed that not only the plating property but also the bending workability can be improved.
- the high-strength plated steel sheet described in Patent Document 1 has not been studied at all for improving nut projection weldability.
- the plated steel sheet described in Patent Document 2 has been studied for enhancing nut projection weldability, no consideration has been given to ensuring plating properties. Specifically, no consideration has been given to the influence of the oxide layer formed on the surface layer portion of the steel sheet in order to ensure the plateability. From these, according to the study by the present inventors, in the conventional high-strength plated steel sheet, for example, the high-strength plated steel sheet described in Patent Document 1 and the plated steel sheet described in Patent Document 2, nut projection weldability and It has been found that a plated steel sheet having excellent plating properties may not be obtained.
- the inventors of the present invention focused on the fact that the nut projection weldability can be improved by adjusting the oxygen concentration of the steel sheet surface layer. Therefore, by using a steel material whose component composition such as Si amount is adjusted, by adjusting the manufacturing conditions of the plated steel sheet, such as the coiling temperature and annealing conditions during hot rolling, the structure fraction and the oxygen in the surface layer Concentration etc. were also adjusted. By doing so, it was found that both the nut projection weldability and the plating property can be adjusted while being a high-strength plated steel sheet, and the present invention has been conceived as follows.
- “Excellent nut projection weldability (high nut projection weldability)” means that a load is applied to the projection welded nut and the nut is peeled off (nut weld peel load) is 3200 N or more. Can be mentioned.
- “high strength” means that the tensile strength is 1100 to 1300 MPa and the yield strength is 800 MPa or more.
- the plated steel sheet according to the embodiment of the present invention is an alloyed hot-dip galvanized steel sheet including a steel plate and an alloyed hot-dip galvanized layer on the surface of the steel plate.
- the steel sheet (base steel sheet) has a component composition of mass%, C: 0.10% or more and 0.25% or less, Si: more than 0% and 0.50% or less, Mn: more than 2.0% 3.5 %: P: more than 0% and 0.1% or less, S: more than 0% and 0.05% or less, Al: 0.01% or more and 0.10% or less, Ti: more than 0% and 0.1% or less, B : 0.0020% to 0.0050%, N: more than 0% to 0.01% or less, Cr: more than 0% to 0.5% or less, and Mo: more than 0% to 0.5% or less, the balance Are iron and inevitable impurities.
- the steel sheet has an average oxygen concentration of 0.10% by mass or less in a region (surface layer part) from the interface between the steel sheet and the alloyed hot-dip galvanized layer to 1 ⁇ m toward the steel sheet.
- the steel sheet has a martensite content of 50 to 85 area% and a bainite content of 15 to 50 area% in the metal structure at the t / 4 position where the thickness of the galvannealed steel sheet is t. Yes, ferrite is 5 area% or less.
- the alloyed hot-dip galvanized steel sheet has the above component composition, and includes a steel sheet in which the average oxygen concentration in the surface layer part and the metal structure at the t / 4 position are within the above ranges, respectively, and the surface of the steel sheet
- an alloyed hot-dip galvanized steel sheet having high strength and excellent plating properties and nut projection weldability can be obtained.
- This alloyed hot-dip galvanized steel sheet is specifically an alloyed hot-dip galvanized steel sheet having a high tensile strength of 1100 to 1300 MPa, a yield strength of 800 MPa or more, and an elongation of 8.0% or more. It is.
- this galvannealed steel sheet is a plated steel sheet excellent in nut projection weldability and plating property.
- this galvannealed steel sheet can be suitably used for automobiles.
- the steel sheet has an average oxygen concentration in the surface layer portion of 0.10% by mass or less. Since the average oxygen concentration in the surface layer portion of the steel sheet is within the above range, the alloyed hot-dip galvanized steel sheet is excellent in nut projection weldability while having good plating properties and high strength. In order to effectively exhibit such an action, the upper limit of the average oxygen concentration in the surface layer portion is 0.10% by mass or less, preferably 0.09% by mass or less, more preferably 0.08% by mass or less. And If the average oxygen concentration in the surface layer portion is too high, the nut projection weldability is lowered, specifically, the nut weld peeling load tends to be lowered.
- the lower the average oxygen concentration in the surface layer portion the better.
- the most preferable is 0% by mass. That is, the lower limit of the average oxygen concentration in the surface layer is preferably 0.03% by mass or more, more preferably 0.02% by mass or more, further preferably 0.01% by mass or more, and most preferably 0% by mass. That's it. From these things, if the average oxygen concentration in the said surface layer part is in the said range, it will be excellent in nut projection weldability, specifically, if it is 0.10 mass% or less, nut weld peeling load will be 3200 N or more. Can be secured.
- the interface between the alloyed hot-dip galvanized layer and the steel sheet is a layer having a high content of the main component of the alloyed hot-dip galvanized layer in the thickness direction of the alloyed hot-dip galvanized steel sheet. It means an interface with a layer having a high content of Fe as a main component.
- a layer having a high content of Fe as a main component.
- the “surface layer portion” is a region from the interface between the steel plate and the galvannealed layer to the steel plate up to 1 ⁇ m, that is, a region from the interface to a depth of 1 ⁇ m. is there.
- the average oxygen concentration in the surface layer portion is calculated by obtaining a profile of the oxygen concentration in the depth direction (plate thickness direction) from the steel plate surface by glow discharge optical emission spectrometry (Glow Discharge Optical Emission Spectrometry: GDOES). be able to.
- the average oxygen concentration in the surface layer portion is the arithmetic average value of the oxygen concentration in a region from the interface between the alloyed hot-dip galvanized layer and the steel plate to a position of 1 ⁇ m toward the inside in the thickness direction.
- the concentration profile is also obtained for Fe, Mn, Si, C, O, Zn, and Cr by GDOES.
- the average oxygen concentration in the surface layer portion of the hot dip galvanized steel sheet is regarded as the interface between the alloyed hot dip galvanized layer and the steel sheet, where the concentration profile of Fe and Zn is the same in the concentration profile.
- the steel sheet has a metal structure at the t / 4 position of martensite of 50 to 85 area%, bainite of 15 to 50 area%, and ferrite of 5 area% or less.
- the t / 4 position is a position at a depth of t / 4 from the surface of the alloyed hot-dip galvanized steel sheet in the thickness direction, where t is the thickness of the alloyed hot-dip galvanized steel sheet. It is.
- t / 4 position here is a position deeper than the area
- the lower limit value of the area ratio of martensite in the metal composition other than the surface layer part in the metal composition at the t / 4 position, that is, the steel sheet (base steel sheet), is preferably 50 area% or more, more preferably 51 area% or more. Is 52 area% or more.
- the upper limit of the martensite area ratio is 85 area% or less, preferably 83 area% or less, and more preferably 82 area% or less.
- the lower limit of the area ratio of bainite is 15 area% or more, preferably 17 area% or more, more preferably 18 area% or more.
- the upper limit of the area ratio of bainite is 50 area% or less, preferably 49 area% or less, more preferably 48 area% or less.
- the steel sheet may be a metal structure composed of martensite and bainite in a region other than the surface layer portion, or may include a structure other than martensite and bainite.
- the other structure include ferrite, pearlite, and retained austenite.
- the retained austenite is measured by, for example, X-ray diffraction.
- the upper limit of the area ratio of ferrite is 5 area% or less, preferably 4 area% or less, more preferably 3 area% or less.
- the area ratio of ferrite at the t / 4 position may be 0 area%, that is, the lower limit value of the area ratio of ferrite is 0 area% or more, preferably 1 area% or more, more preferably 2 areas. % Or more.
- the metal composition at the t / 4 position that is, the metal structure other than the surface layer portion in the steel sheet (base steel sheet) is a structure as described above, whereby a high-strength galvannealed steel sheet, specifically, Can realize an galvannealed steel sheet having a tensile strength of 1100 to 1300 MPa, a yield strength of 800 MPa or more, and an elongation of 8.0% or more.
- the area ratio of the metal structure can be obtained, for example, as follows. First, the t / 4 position in the cross section of the alloyed hot-dip galvanized steel sheet corroded with nital is observed with a scanning electron microscope (SEM). By this observation, each metal structure (martensite, bainite, and ferrite) is divided. The area ratio of each metal structure can be obtained by determining the area ratio of the regions occupied by these.
- % means “% by mass”.
- C is an element that contributes to improving the strength of the steel sheet.
- the C content is 0.10% or more, preferably 0.11% or more, more preferably 0.12% or more.
- the C content is 0.25% or less, preferably 0.23% or less, more preferably 0.20% or less.
- Si more than 0% and 0.50% or less
- Si is known as a solid solution strengthening element, and is an element that effectively acts to improve strength while suppressing a decrease in ductility.
- Si is contained. That is, the Si content is more than 0%, preferably 0.050% or more, more preferably 0.10% or more.
- the Si content is 0.50% or less, preferably 0.48% or less, more preferably 0.46% or less.
- Mn is an element that contributes to improving the strength of the steel sheet.
- the Mn content is more than 2.0%, preferably 2.1% or more, more preferably 2.2% or more.
- the Mn content is 3.5% or less, preferably 3.3% or less, more preferably 3.0% or less.
- P more than 0% and 0.1% or less
- P is an element that is unavoidably contained, and is an element that decreases the workability of the steel sheet. Therefore, the P content is 0.1% or less, preferably 0.08% or less, more preferably 0.06% or less.
- the P content since it is better that the P content is as small as possible, it may be more than 0%, but industrially, for example, it is 0.0005% or more.
- S is an element that is inevitably contained, and is an element that forms sulfides such as MnS and reduces workability such as bending workability of the steel sheet. Therefore, the S content is 0.05% or less, preferably 0.03% or less, more preferably 0.01% or less. In addition, since it is better that the S content is as small as possible, it may be over 0%, but industrially it is, for example, 0.0001% or more.
- Al 0.01% or more and 0.10% or less
- Al is an element that acts as a deoxidizer.
- the Al content is 0.01% or more, preferably 0.02% or more.
- the Al content is 0.10% or less, preferably 0.09% or less, and more preferably 0.08% or less.
- Ti more than 0% and 0.1% or less
- Ti can suppress the reduction of the action effect produced by B by combining Ti and B by generating TiN. That is, the Ti content is more than 0%, preferably 0.005% or more, more preferably 0.01% or more. However, when the Ti content is excessive, the strength of the steel sheet after hot rolling is increased, and cold rolling properties such as cracking are reduced during cold rolling. Therefore, the Ti content is 0.1% or less, preferably 0.09% or less, more preferably 0.08% or less.
- B is an element that suppresses precipitation of the high-temperature transformation phase, and is an element that enables high strength of the steel sheet.
- the B content is set to 0.0020% or more, preferably 0.0022% or more, more preferably 0.0024% or more.
- the B content is 0.0050% or less, preferably 0.0048% or less, more preferably 0.0046% or less.
- N is an element that is inevitably contained, and is an element that reduces the precipitation inhibiting power of the high-temperature transformation phase by forming BN and reducing the amount of dissolved B.
- the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.006% or less.
- the N content should be more than 0%.
- Cr more than 0% and 0.5% or less
- Cr is an element effective for improving the hardenability and improving the strength of the steel sheet.
- the Cr content is more than 0%, preferably 0.05% or more, more preferably 0.1% or more.
- the Cr content is 0.5% or less, preferably 0.4% or less.
- Mo more than 0% and 0.5% or less
- Mo is an element effective for improving the strength of the steel sheet.
- Mo is contained. That is, the Mo content is more than 0%, preferably 0.05% or more. However, even if the Mo content is excessively increased, the effect of Mo is saturated. In order to suppress the cost, the Mo content is 0.5% or less, preferably 0.4% or less.
- the steel sheet satisfies the above component composition, and the balance is iron and inevitable impurities.
- the inevitable impurities include not only P, S, and N, but also O, Pb, Bi, Sb, which may be brought into steel depending on the situation of raw materials, materials, manufacturing equipment, and the like.
- Trump elements such as Sn may be included.
- the inevitable impurities here are impurities other than the above P, S, and N, and examples thereof include O, and trump elements such as Pb, Bi, Sb, and Sn.
- the steel sheet may contain elements such as Nb, V, Cu, and Ni in the range shown below, if necessary, and the alloyed molten zinc according to the type of the element contained.
- the properties of the plated steel sheet are further improved. These elements can be contained alone or in appropriate combination within the following ranges.
- Nb is an element effective for improving the strength of the steel sheet by refining the structure of the steel sheet or precipitating carbides in the steel sheet, and may be contained as necessary. In order to effectively exert such effects, the Nb content is preferably more than 0%. In addition, since it is not necessary to contain Nb in the said steel plate, content of Nb is 0% or more. However, if Nb is contained excessively, the weldability and toughness of the steel sheet tend to deteriorate, so the Nb content is preferably 0.2% or less.
- V is an element effective for improving the strength of the steel sheet by refining the structure of the steel sheet or precipitating carbides in the steel sheet, and may be contained as necessary. In order to effectively exhibit such an action, the V content is preferably more than 0%. In addition, since it is not necessary to contain V in the said steel plate, content of V is 0% or more. However, if V is contained excessively, the weldability and toughness of the steel sheet tend to deteriorate, so the V content is preferably 0.2% or less.
- Cu is an element effective for improving the corrosion resistance of the steel sheet and for improving the delayed fracture property, and may be contained as necessary. In order to exhibit such an action effectively, the Cu content is preferably more than 0%. In addition, since it is not necessary to contain Cu in the said steel plate, content of Cu is 0% or more. However, if Cu is contained excessively, the workability of the steel sheet tends to be lowered, so the Cu content is preferably 1% or less.
- Ni is an element effective for improving the corrosion resistance of the steel sheet and thereby improving the delayed fracture property, and may be contained as necessary. In order to exhibit such an action effectively, the Ni content is preferably more than 0%. In addition, since it is not necessary to contain Ni in the said steel plate, content of Ni is 0% or more. However, if Ni is contained excessively, the workability of the steel sheet tends to be lowered, so the Ni content is preferably 1% or less.
- the alloyed hot-dip galvanized layer is not particularly limited as long as it is an alloyed hot-dip galvanized layer provided in the alloyed hot-dip galvanized steel sheet.
- the adhesion amount (plating adhesion amount) of the galvannealed layer is preferably 45 to 65 g / m 2 per side.
- the alloyed hot-dip galvanized steel sheet has high strength as described above.
- the lower limit value of the tensile strength is preferably 1100 MPa or more, and more preferably 1150 MPa or more.
- the higher the tensile strength the better.
- the tensile strength is actually 1300 MPa or less, and the upper limit of the tensile strength is 1300 MPa or less.
- the lower limit of the yield strength is preferably 800 MPa or more, and more preferably 810 MPa or more.
- the upper limit of the yield strength is 980 MPa or less from the viewpoint of a decrease in elongation.
- the alloyed hot-dip galvanized steel sheet has a lower limit of elongation of preferably 8.0% or more, and more preferably 8.2% or more. Further, the higher the elongation, the better, and there is no particular limitation.
- the tensile strength, yield strength, and elongation can be measured by, for example, a tensile test based on JIS Z 2241: 2011.
- the manufacturing method of the galvannealed steel plate which concerns on this embodiment is a method of manufacturing the galvannealed steel plate mentioned above.
- a steel material having the composition of the steel sheet is soaked at 1100 to 1300 ° C., hot-rolled at a finishing temperature of 850 to 950 ° C., and wound at 630 to 680 ° C.
- hot rolling process To obtain a hot rolled material (hot rolling process).
- the hot-rolled material is pickled using 3 to 20% by mass of hydrochloric acid at 60 to 90 ° C. for 35 to 200 seconds (pickling process).
- the hot-rolled material after pickling is cold-rolled to obtain a cold-rolled material (cold rolling step).
- the cold-rolled material is soaked under conditions of Ac 3 or higher and lower than 880 ° C. and dew point ⁇ 25 ° C. or lower, and cooled to a cooling stop temperature of 380 to 500 ° C. at 3.0 ° C./second or higher.
- the steel sheet is obtained by performing the annealing for 15 seconds or more at the cooling stop temperature (annealing step).
- the alloyed hot-dip galvanized layer is formed on the steel sheet by plating the steel sheet (plating process).
- the manufacturing method includes the hot rolling step, the pickling step, the cold rolling step, the annealing step, and the plating step in order. According to such a manufacturing method, the above-described alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property can be suitably manufactured.
- Hot rolling process First, a hot rolling process is implemented. In the hot rolling step, first, steel is melted in accordance with a conventional method, and then a steel piece such as a slab obtained by continuous casting is soaked at 1100 ° C. to 1300 ° C. in a heating furnace. This steel slab has the above component composition.
- the heated steel slab is placed on a hot rolling line and hot rolled into a steel plate (hot rolled material) having a predetermined thickness by a rolling mill.
- This hot rolling is performed so as to be completed within a predetermined finishing temperature range.
- the hot rolled material is wound up at a predetermined winding temperature by a coiler or the like.
- the finishing temperature is 850 ° C. to 950 ° C.
- the winding temperature is 630 to 680 ° C.
- the soaking temperature is too low, solution of the additive element tends to be insufficient. On the other hand, if the soaking temperature is too high, the oxide scale becomes thick, and it takes time to remove the scale, and the productivity tends to deteriorate. Therefore, when the soaking temperature is within the above range, solutionization of carbide and the like proceeds and a uniform annealed plate structure is obtained.
- the finishing temperature When the finishing temperature is too low, the annealed plate structure becomes non-uniform and the elongation tends to decrease. Moreover, when the said finishing temperature is too high, an annealing board structure will coarsen and there exists a tendency for elongation to fall. Therefore, when the finishing temperature is within the above range, a uniform annealed plate structure is obtained and workability is improved.
- the hot-rolled sheet strength becomes high and the cold rolling property tends to deteriorate and the plating property tends to decrease.
- the said coiling temperature is too high, there exists a tendency for the average oxygen concentration of a surface layer part to become high. Therefore, when the winding temperature is within the above range, excellent plating properties and nut weldability are provided.
- pickling process Next, a pickling process is implemented.
- the steel sheet (hot rolled material) fed out from the wound coil is immersed in the pickling solution.
- pickling is performed using hydrochloric acid having a concentration of 3 to 20% by weight as the pickling solution, at a pickling solution temperature of 60 to 90 ° C., and for a pickling time of 35 to 200 seconds.
- the lower limit of the hydrochloric acid concentration of the pickling solution is 3% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more. Further, the upper limit of the hydrochloric acid concentration of the pickling solution is 20% by mass or less, preferably 19% by mass or less, more preferably 18% by mass or less.
- the lower limit of the pickling solution temperature is 60 ° C. or higher, preferably 65 ° C. or higher, more preferably 70 ° C. or higher.
- it is 90 degrees C or less, Preferably it is 88 degrees C or less, More preferably, it is 85 degrees C or less.
- the lower limit of the pickling time is 35 seconds or longer, preferably 40 seconds or longer.
- the upper limit of the pickling time is 200 seconds or less, preferably 180 seconds or less, more preferably 160 seconds or less.
- the pickling ability tends to be insufficient. Further, when the pickling solution temperature is too low or when the pickling time is too short, the pickling ability tends to be insufficient. When the pickling ability is insufficient, the scale removal generated by hot rolling becomes insufficient, resulting in deterioration of the properties of the steel sheet surface and surface damage of the rolling roll, and the productivity tends to deteriorate. On the other hand, even if the steel sheet is excessively pickled by increasing the hydrochloric acid concentration of the pickling liquid, increasing the pickling liquid temperature, and increasing the pickling time, the effect of removing the scale is saturated.
- the pickled steel plate (hot rolled material) is rolled at room temperature to a predetermined thickness.
- the cold rolling is not particularly limited, and includes conventional cold rolling according to a conventional method.
- an annealing process is implemented.
- the cold-rolled steel sheet (cold rolled material) is soaked at a temperature of Ac 3 or higher and lower than 880 ° C. and a dew point of ⁇ 25 ° C. or lower, and then an average cooling rate of 3.0 ° C.
- the cooling is stopped at a cooling stop temperature of 380 to 500 ° C. at / second or more, and the cooling stop temperature is maintained for 15 seconds or more.
- the lower limit of the soaking temperature is Ac 3 points or higher, preferably Ac 3 points + 10 ° C. or higher.
- the upper limit of the soaking temperature is less than 880 ° C.
- the Ac 3 points are defined by the following formula (1).
- the lower limit of the dew point is preferably ⁇ 55 ° C. or higher, more preferably ⁇ 50 ° C. or higher.
- the upper limit of the dew point is ⁇ 25 ° C., preferably ⁇ 30 ° C. or lower, more preferably ⁇ 35 ° C. or lower.
- the dew point is too low, it is necessary to increase the gas flow rate, and the manufacturing cost tends to increase. Moreover, when the said dew point is too high, there exists a tendency for nut projection weldability to fall. This is presumably because the average oxygen concentration in the surface layer portion is high, and there are many Si-based oxides present in the weld interface portion.
- the lower limit value of the soaking time in the soaking step is preferably 20 seconds or more, more preferably 30 seconds or more.
- the upper limit of the soaking time is 150 seconds or shorter, more preferably 140 seconds or shorter. If the soaking time is too short, the reverse transformation behavior becomes insufficient and the strength tends to decrease. On the other hand, if the soaking time is too long, the structure becomes coarse and the elongation tends to decrease. Therefore, when the soaking time is within the above range, desired tensile properties tend to be obtained.
- the atmosphere in the soaking process for example, it is preferably carried out in a mixed gas atmosphere of a mixture of 4 vol% H 2 in N 2 (N 2 -4% H 2).
- the lower limit of the average cooling rate is 3.0 ° C./second or more, preferably 3.2 ° C./second or more.
- the upper limit value of the average cooling rate is preferably 15.0 ° C./second or less, more preferably 14.8 ° C./second or less.
- the average cooling rate is too low, the strength tends to decrease. Moreover, when the said average cooling rate is too high, there exists a tendency for production stability to deteriorate or for manufacturing cost to become high. Therefore, when the average cooling rate is within the above range, precipitation of the high temperature transformation phase is suppressed, and the desired tensile strength tends to be obtained.
- the lower limit of the cooling stop temperature is 380 ° C. or higher, preferably 390 ° C. or higher, more preferably 400 ° C. or higher.
- the upper limit of the cooling stop temperature is 500 ° C. or lower, preferably 490 ° C. or lower, more preferably 480 ° C. or lower.
- the lower limit of the holding time at the cooling stop temperature is 15 seconds or longer, preferably 20 seconds or longer.
- the upper limit value of the holding time is preferably 150 seconds or shorter, more preferably 140 seconds or shorter.
- the holding time is too short, the strength tends to increase and the elongation tends to decrease. Moreover, when the holding time is too high, the strength tends to decrease. Therefore, when the holding time is within the above range, desired tensile properties can be obtained.
- the plating step Next, a plating process is performed.
- the steel sheet (annealed material) obtained in the annealing step is subjected to galvannealing treatment.
- the alloying hot dip galvanizing treatment the steel plate (annealed material) obtained in the annealing step is kept at a cooling stop temperature, and then immersed in a galvanizing bath, and alloyed at 500 to 600 ° C.
- the process etc. which perform a conversion process are mentioned.
- the plating step is preferably a plating step in which the adhesion amount (plating adhesion amount) of the alloyed hot dip galvanized layer is 45 to 65 g / m 2 per side.
- the alloyed hot-dip galvanized steel sheet according to this embodiment can be manufactured through the above steps.
- One aspect of the present invention is an alloyed hot-dip galvanized steel sheet comprising a steel sheet and an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in% by mass, and C: 0.10% or more.
- an alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property can be provided. Specifically, even in the case of a high-strength plated steel sheet having a tensile strength of 1100 to 1300 MPa, a yield strength of 800 MPa or more, and an elongation of 8.0% or more, alloyed molten zinc having excellent nut projection weldability and plating properties.
- a plated steel sheet can be provided.
- this galvannealed steel sheet can be suitably used for automobiles.
- Another aspect of the present invention is a method for producing the alloyed hot-dip galvanized steel sheet, wherein the steel material having the composition of the steel sheet is soaked at 1100 to 1300 ° C., and the finishing temperature is 850 to Hot rolled at 950 ° C. and wound at 630 to 680 ° C. to obtain a hot rolled material, and the hot rolled material was used at a temperature of 60 to 90 ° C. using 3 to 20% by mass of hydrochloric acid. Pickling for 35 to 200 seconds, and cold rolling the hot-rolled material after pickling to obtain a cold-rolled material.
- the cold-rolled material has an Ac of 3 points or more and less than 880 ° C.
- a steel plate was obtained by soaking under conditions of 25 ° C. or lower, cooling to 3.0 ° C./second or more to a cooling stop temperature of 380 to 500 ° C., and performing annealing for 15 seconds or more at the cooling stop temperature.
- the steel plate It is a manufacturing method of the galvannealed steel plate which forms an galvannealed layer.
- an alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property can be suitably manufactured.
- an alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property can be provided.
- the manufacturing method of the galvannealed steel plate excellent in nut projection weldability and plating property can be provided.
- An angle ⁇ 350 mm) (lab material: steel types h, i) was subjected to hot rolling, pickling, cold rolling, annealing, and plating treatment to obtain a plated steel sheet.
- Table 1 below also shows the Ac 3 points of steel sheets having the component compositions shown in steel types a to i.
- the steel plates manufactured to have the component compositions shown in steel types a to g are steel plates manufactured using actual equipment, and the steel plates manufactured to have the component compositions shown in steel types h and i are manufactured using laboratory equipment. Steel plate.
- the cold-rolled cold-rolled material was annealed using an all-radiant tube type annealing furnace or a NOF type annealing furnace as an annealing furnace.
- Table 2 when an all-radiant tube type annealing furnace is used, 1 is shown as the furnace item, and when a NOF type annealing furnace is used, 2 is shown as the furnace item.
- the oxidation process is carried out in an atmosphere of air ratio 0.9-1.2, reduction step, carried out in a mixed gas atmosphere of a mixture of 15 vol% H 2 in N 2 (N 2 -15% H 2) It was.
- the annealed steel sheet (annealed material) was kept at the cooling stop temperature, immersed in a galvanizing bath, and alloyed at 500 to 600 ° C. By doing so, as a plated steel sheet, Experiment No. Alloyed hot-dip galvanized steel sheets according to 1 to 13 were obtained.
- concentration profile of Fe and Zn in the thickness direction from the surface of the alloyed hot-dip galvanized steel sheet, and use this concentration profile to find the locations where the Fe concentration and Zn concentration are the same. It was set as the interface of a layer and a steel plate. Then, a profile of the oxygen concentration in the thickness direction from the surface of the galvannealed steel sheet is obtained, and the oxygen concentration in the region (surface layer portion) between 1 ⁇ m from the interface to the position of 1 ⁇ m toward the inside in the thickness direction. The average value of was calculated. This average value is the average oxygen concentration of the surface layer portion.
- the GDOES measurement conditions were as follows.
- GDA750 manufactured by Rigaku Corporation Measurement frequency: Non-pulse measurement Anode diameter (analysis area): Diameter 4 mm Discharge power: 30W Ar gas pressure: 2.5 hPa Element to be measured: Fe, Mn, Si, C, O, Zn, Cr
- the respective alloyed hot-dip galvanized steel sheets were polished so that a cross section at the t / 4 position appeared as a cross section parallel to the rolling direction, and were corroded with a nital solution to reveal a metal structure. This surface was observed with an SEM at an observation magnification of 1000 times. From the observation results, the area ratios of martensite, bainite, and ferrite with respect to the entire structure were calculated by a point calculation method (100 points). Specifically, first, 10 vertical lines at equal intervals and 10 horizontal lines at equal intervals were drawn in a grid pattern on the photographed photo. As a result, 100 intersections of vertical lines and horizontal lines were formed.
- the area ratio of martensite was determined by dividing the number of intersections where martensite is located by the total number of intersections (100). Similarly, the area ratios of bainite and ferrite were also determined.
- the metal structure was identified as follows. An example of the SEM photograph which observed the cross section of the t / 4 position of a galvannealed steel plate is shown in FIG.
- FIG. 1 An example of the SEM photograph which observed the cross section of the t / 4 position of a galvannealed steel plate is shown in FIG.
- ferrite that was black and did not have fine white particles inside was determined as ferrite as indicated by 1.
- those that appear black and have fine white particles inside as indicated by 2 were determined to be bainite.
- the one that appears white as shown by 3 was determined to be martensite.
- the adhesion amount (plating adhesion amount) of the alloyed hot dip galvanized layer of each alloyed hot dip galvanized steel sheet according to 1 to 13 was derived by a melting method.
- a 50 mm square test piece taken from the galvannealed steel sheet was used.
- a through hole having a diameter of 11 mm is formed at the center of the test piece, and a hexagonal welded (M10) nut having a projection (projection) on the seating surface as shown in FIG. 2 so as to be concentric with the through hole ( A projection nut) was welded to the test piece.
- the welding conditions were as follows.
- the projection nut 11 includes one weld projection 12 in the vicinity of the center of every other side of the six sides of the surface to be welded.
- the welding projection 12 has a substantially triangular frustum shape.
- FIG. 2 is a plan view of the projection nut used in the nut peeling test.
- the indentation peeling test was conducted with reference to the indentation peeling test method of JIS B 1196 Annex A. Specifically, an alloyed hot-dip galvanized steel sheet, which is an evaluation material, is placed in a jig whose spacer hole diameter is 30 mm, a bolt is passed through a nut welded to the evaluation material, and the center of the load is the center of the bolt. Matching as much as possible, the bolt was pushed in under the condition of a pushing speed of 5 mm / min, and a load (nut peeling load) when the nut peeled from the galvannealed steel sheet was measured. In addition, this nut peeling load set 3200N or more as the pass.
- the hot-rolled steel sheet (hot rolled material) was dipped in a pickling tank that became hydrochloric acid with an average concentration of 12% by mass and pickled. Specifically, the hot-rolled material was immersed for 10 minutes in a pickling solution having a liquid temperature (pickling solution temperature) of 80 ° C.
- the cold-rolled cold-rolled material was cut into a thickness of 1.4 mm, a width of 150 mm, and a length of 70 mm, and the cut-out cold-rolled material was annealed using a laboratory heat treatment furnace (CAL simulator).
- CAL simulator laboratory heat treatment furnace
- 3 is shown as the furnace item.
- the cold-rolled cold rolled material was soaked at a soaking time shown in Table 2 and at a soaking temperature shown in Table 2. Then, it cooled to the cooling stop temperature shown in Table 2 with the cooling rate (average cooling rate) shown in Table 2. Thereafter, the holding time shown in Table 2 was held at the cooling stop temperature shown in Table 2.
- each steel plate after heat treatment (thickness 1.4 mm, width 150 mm, length 70 mm) is cut into a thickness 1.4 mm, width 15 mm, and length 10 mm, and a cross section parallel to the rolling direction of the cut steel plate after heat treatment is cut out.
- Polished so that a cross section at the t / 4 position appears, and corroded with a nital solution to reveal a metal structure.
- This surface was observed with an SEM at an observation magnification of 1000 times. From the observation results, the area ratios of martensite, bainite, and ferrite with respect to the entire structure were calculated by a point calculation method (100 points).
- the metal structure was identified as follows. An example of the SEM photograph which observed the cross section of the t / 4 position of the steel plate after heat processing is shown in FIG. In FIG. 1, ferrite that was black and did not have fine white particles inside was determined as ferrite as indicated by 1. In FIG. 1, those that appear black and have fine white particles inside as indicated by 2 were determined to be bainite. In FIG. 1, the one that appears white as shown by 3 was determined to be martensite. Moreover, since the steel plate after the heat treatment has the same heat pattern as the alloyed hot-dip galvanized steel plate, it is the same except for the presence or absence of the alloyed hot-dip galvanized layer, and for example, the metal structure is also the same.
- each heat-treated steel sheet according to 14 to 16 was measured by the same methods as those for measuring the tensile strength, yield strength, and elongation described above.
- the steel plate after the heat treatment is the alloyed hot dip galvanized steel plate (Experiment Nos. 1 to 13: each alloyed hot dip galvanized steel plate (actual plating material) according to Experiment Nos. 1 to 13), Experiment Nos. 14 to 16. : Each alloyed hot-dip galvanized steel sheet (lab plating material) according to Experiment Nos. 14 to 16 has the same heat pattern, and is the same except for the presence or absence of an alloyed hot-dip galvanized layer.
- the tensile strength, yield strength, and elongation of the steel plate after heat treatment are the same as the tensile strength, yield strength, and elongation of the steel plate in the galvannealed steel plate.
- concentration profile of Fe and Zn in the thickness direction from the surface of the alloyed hot-dip galvanized steel sheet, and use this concentration profile to find the locations where the Fe concentration and Zn concentration are the same. It was set as the interface of a layer and a steel plate. Then, a profile of the oxygen concentration in the thickness direction from the surface of the galvannealed steel sheet is obtained, and the oxygen concentration in the region (surface layer portion) between 1 ⁇ m from the interface to the position of 1 ⁇ m toward the inside in the thickness direction. The average value of was calculated. This average value is the average oxygen concentration of the surface layer portion.
- the GDOES measurement conditions were as follows.
- Apparatus Marcus type high-frequency glow discharge emission spectrometer (rf-GD-OES) (GD-Profiler2 manufactured by Horiba, Ltd.) Measurement frequency: Non-pulse measurement Anode diameter (analysis area): Diameter 4 mm Discharge power: 35W Ar gas pressure: 6.0 hPa Element to be measured: Fe, Mn, Si, C, O, Zn, Cr
- plating treatment An alloyed hot-dip galvanized layer was formed on the annealed steel sheet (annealed material) so that the plating adhesion amount was 50 g / m 2 per side. Specifically, after holding the annealed steel sheet (annealed material) at a cooling stop temperature (for example, 460 ° C. in the case of Experiment No. 1), zinc having an Al concentration of 0.13% by mass and a bath temperature of 460 ° C. The plating treatment was performed by immersing in a plating bath for 4 seconds, lifting at a pulling rate of 100 mm / sec, and wiping at 200 L / min.
- a cooling stop temperature for example, 460 ° C. in the case of Experiment No. 1
- the plating treatment was performed by immersing in a plating bath for 4 seconds, lifting at a pulling rate of 100 mm / sec, and wiping at 200 L / min.
- the steel plate subjected to the plating treatment was subjected to alloying treatment by holding at a plate temperature of 500 ° C. for 18 seconds. By doing so, as a plated steel sheet, Experiment No. Alloyed galvanized steel sheets according to 14 to 16 were obtained.
- the adhesion amount (plating adhesion amount) of the alloyed hot-dip galvanized layer of each alloyed hot-dip galvanized steel sheet according to Experiment No. 14 to 16 was measured by the same method as the above-described method for measuring the plating adhesion amount.
- the tensile strength was less than 1100 MPa and the yield strength was less than 800 MPa. This is considered to be due to the fact that at least one of bainite and martensite is small and the amount of ferrite is large.
- the Si content was high as the component composition (Experiment Nos. 6 to 10, 12, and 16), the average oxygen concentration in the surface layer portion was high, and the nut peeling load was also low.
- the Si content is large, it is considered that the amount of Si-based oxides present at the weld interface increases in order to ensure plating properties, and the nut projection weldability decreases.
- the component composition when there was much Si content and the coiling temperature at the time of hot rolling was low (experiment No. 6), even if it used NOF type annealing furnace, plating property was inadequate.
- an alloyed hot-dip galvanized steel sheet excellent in nut projection weldability and plating property is provided.
- the manufacturing method of the galvannealed steel plate excellent in nut projection weldability and plating property is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
本発明の一局面は、鋼板と、前記鋼板の表面上に合金化溶融亜鉛めっき層とを備える合金化溶融亜鉛めっき鋼板であって、前記鋼板は、所定の成分組成を有し、前記鋼板は、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域における平均酸素濃度が0.10質量%以下であり、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときのt/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である合金化溶融亜鉛めっき鋼板である。
Description
本発明は、合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法に関する。
自動車産業等の各種産業において、鋼板に耐食性等を付与した表面処理鋼板が広く用いられている。このような表面処理鋼板としては、例えば、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板等のめっき鋼板が用いられている。
また、自動車産業等の各種産業において、部品を組み立てる際に、めっき鋼板に部品を後付けする場合や、めっき鋼板に直接溶接できない部品をめっき鋼板に取り付ける場合等がある。このような場合には、例えば、めっき鋼板に部品を取り付けるためのナットをめっき鋼板に溶接させておき、このめっき鋼板に溶接されたナットにボルトを締結させることによって、めっき鋼板に部品を取り付けることがある。このようなめっき鋼板に対するナットの溶接としては、座面に突起部(プロジェクション)を備えたナット(プロジェクションナット)をめっき鋼板等に溶接させるプロジェクション溶接が用いられることがある。このように、めっき鋼板には、プロジェクションナットのような、座面に突起部を備えた溶接母材を、プロジェクション溶接させることがある。
また、自動車等の輸送機器における低燃費化を実現するために、輸送機器を軽量化することが望まれている。軽量化のためには、輸送機器を構成するめっき鋼板の板厚を薄くすることが有効である。また、輸送機器には、乗員の安全性を確保する必要もある。これらのことから、自動車等の輸送機器を構成するめっき鋼板には、引張強度だけではなく降伏強度も含めた高強度化が求められている。さらに、輸送機器を構成するめっき鋼板には、高強度化に伴う延性の低下が抑制されていることも求められている。よって、自動車等の輸送機器に用いられるめっき鋼板には、強度及び延性が共に高い鋼板が求められている。
このような輸送機器等に用いられるめっき鋼板としては、例えば、特許文献1及び特許文献2に記載のめっき鋼板等が挙げられる。
特許文献1には、所定の成分組成を有する鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、前記鋼板と前記めっき層との界面から鋼板側に向かって順に、所定の厚みの内部酸化層と、前記内部酸化層を含む層であって、所定の厚みの軟質層と、硬質層とを有するめっき鋼板が記載されている。特許文献1によれば、めっき性、曲げ加工性及び穴拡げ性の加工性、並びに耐遅れ破壊特性に優れており、更には耐衝撃吸収性にも優れた引張強度980MPa以上の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板が得られる旨が開示されている。
また、特許文献2には、所定の化学組成を有し、焼入れ深度に影響を与える各元素の影響力を規定した係数DI、炭素当量Ceq、及び板厚の関係を規定した、ナットプロジェクション溶接性に優れた自動車部材用鋼板が記載されている。特許文献2によれば、鋼板自体の強度を確保しつつ、ナットとの接合強度(押込み剥離強度およびトルク剥離強度)を向上させると共に、接合強度のばらつきも低減することができる自動車部材用鋼板が得られる旨が開示されている。
本発明は、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。また、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
本発明の一局面は、鋼板と、前記鋼板の表面上に合金化溶融亜鉛めっき層とを備える合金化溶融亜鉛めっき鋼板であって、前記鋼板は、質量%で、C:0.10%以上0.25%以下、Si:0%超0.50%以下、Mn:2.0%超3.5%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.01%以上0.10%以下、Ti:0%超0.1%以下、B:0.0020%以上0.0050%以下、N:0%超0.01%以下、Cr:0%超0.5%以下、及びMo:0%超0.5%以下を含有し、残部が鉄及び不可避的不純物であり、前記鋼板は、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域における平均酸素濃度が0.10質量%以下であり、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときのt/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である合金化溶融亜鉛度めっき鋼板である。
また、本発明の他の一局面は、前記合金化溶融亜鉛めっき鋼板を製造する方法であって、前記鋼板の成分組成を有する鋼素材を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、630~680℃で巻き取ることによって、熱延材を得て、前記熱延材を、3~20質量%の塩酸を用いて、60~90℃の条件下で、35~200秒間酸洗し、前記酸洗後の熱延材を冷間圧延することによって、冷延材を得て、前記冷延材を、Ac3点以上880℃未満で、露点が-25℃以下の条件下で均熱し、380~500℃の冷却停止温度まで3.0℃/秒以上で冷却し、前記冷却停止温度で15秒間以上保持する焼鈍を行うことによって、鋼板を得て、前記鋼板にめっき処理を施すことによって、前記鋼板上に前記合金化溶融亜鉛めっき層を形成する合金化溶融亜鉛めっき鋼板の製造方法である。
前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載から明らかになるであろう。
プロジェクション溶接によりナットが溶接されためっき鋼板に、部品をボルトによって取り付ける際に、めっき鋼板とナットとの溶接部が剥離して、生産性を低下させることがあった。本発明者等の検討によれば、従来の高強度めっき鋼板、例えば、特許文献1に記載の高強度めっき鋼板にナットをプロジェクション溶接すると、めっき鋼板とナットとの溶接部が剥離しやすい場合があった。
そこで、本発明者等が、この溶接部の剥離について調査した結果、溶接界面部にSi系の酸化物を確認し、この溶接界面部に存在するSi系の酸化物が、剥離の原因であることを見出した。そして、この酸化物の生成量は、熱間圧延時の巻き取り温度が低いほど、また、焼鈍時の酸化処理能力が低いほど少なくなることを見出した。
また、鋼板を高強度化させるためには、例えば、SiやMn等の添加元素量を増やして、いわゆる高合金鋼にする方法等が考えられる。このように添加元素量を増やすと、めっき性が低下して、不めっきや合金化むらが発生しやすくなる傾向がある。このようなめっき性の低下は、生産性低下、及び歩留まりの低下によるコスト悪化を招く原因となりえる。このめっき性の低下は、SiやMnが鋼板表面で濃化し酸化被膜が形成されたことにより溶融Znの濡れ性が低下したことや、Si及びMn等の置換型元素の増加に伴ってFeの拡散を低下させたこと等に起因すると考えられる。このため、めっき性に影響を与える元素を減らすことや、この元素を鋼板表面近傍で酸化物として固定させておくことが、めっき性の低下を抑制する点で効果的であると考えられる。めっき性に影響を与える元素を鋼板表面近傍で酸化物として固定させておく方法としては、例えば、熱間圧延時の巻き取り温度を高めることや、NOF(Non oxygen furnace)タイプの焼鈍炉を用いた酸化還元処理を行うこと等が挙げられる。
例えば、特許文献1に記載の高強度めっき鋼板の場合であれば、Si量が0.5~2.5質量%と、Siの含有量が多いため、めっき性を確保するために、熱間圧延時の巻き取り温度を高温化させるか、又は、熱間圧延時の巻き取り後に高温で保持することで、鋼板の表層部に内部酸化層を積極的に形成させている。さらに、その後の焼鈍で、酸化還元法を用いることで、Si及びMnを内部で酸化させている。そうすることによって、めっき性だけではなく、曲げ加工性を良好にすることができる旨が開示されている。その一方で、特許文献1に記載の高強度めっき鋼板は、ナットプロジェクション溶接性を高めることについては何ら検討されていない。また、特許文献2に記載のめっき鋼板は、ナットプロジェクション溶接性を高めることについて検討しているものの、めっき性を確保することについては何ら検討されていない。具体的には、めっき性を確保するために、鋼板の表層部に形成される酸化物層の影響について、何ら検討されていない。これらのことから、本発明者等の検討によれば、従来の高強度めっき鋼板、例えば、特許文献1に記載の高強度めっき鋼板及び特許文献2に記載のめっき鋼板では、ナットプロジェクション溶接性及びめっき性に優れためっき鋼板を得ることができない場合があることを見出した。
本発明者等は、種々検討した結果、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板、及びその製造方法を提供するといった上記目的は、以下の本発明により達成されることを見出した。
本発明者等は、鋼板表層部の酸素濃度を調整することによって、ナットプロジェクション溶接性を高められることに着目した。そのために、Si量等の成分組成を調整した鋼素材を用い、熱間圧延時の巻き取り温度や焼鈍条件等の、めっき鋼板の製造条件を調整することによって、組織分率及び表層部の酸素濃度等も調整した。そうすることによって、高強度めっき鋼板でありながら、ナットプロジェクション溶接性及びめっき性をともに調整できることを見出し、以下のような本発明を想到するに到った。なお、「ナットプロジェクション溶接性に優れる(ナットプロジェクション溶接性が高い)」とは、プロジェクション溶接したナットに荷重を加え、ナットが剥離する際の荷重(ナット溶接剥離荷重)が3200N以上であることが挙げられる。また、本明細書において、「高強度」とは、引張強度が1100~1300MPaであって、降伏強度が800MPa以上であることを意味する。
以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
本発明の実施形態に係るめっき鋼板は、鋼板と、前記鋼板の表面上に合金化溶融亜鉛めっき層とを備える合金化溶融亜鉛めっき鋼板である。前記鋼板(素地鋼板)は、成分組成が、質量%で、C:0.10%以上0.25%以下、Si:0%超0.50%以下、Mn:2.0%超3.5%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.01%以上0.10%以下、Ti:0%超0.1%以下、B:0.0020%以上0.0050%以下、N:0%超0.01%以下、Cr:0%超0.5%以下、及びMo:0%超0.5%以下を含有し、残部が鉄及び不可避的不純物である。また、前記鋼板は、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域(表層部)における平均酸素濃度が0.10質量%以下である。また、前記鋼板は、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときのt/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である。
前記合金化溶融亜鉛めっき鋼板は、上記のような成分組成であり、前記表層部における平均酸素濃度、及びt/4位置における金属組織が、それぞれ上記範囲内である鋼板を備え、前記鋼板の表面上に合金化溶融亜鉛めっき層を有することによって、高強度でありながら、めっき性及びナットプロジェクション溶接性に優れる合金化溶融亜鉛めっき鋼板が得られる。この合金化溶融亜鉛めっき鋼板は、具体的には、引張強度が1100~1300MPa及び降伏強度が800MPa以上と高強度であって、さらに、伸びが8.0%以上である合金化溶融亜鉛めっき鋼板である。さらに、この合金化溶融亜鉛めっき鋼板は、ナットプロジェクション溶接性及びめっき性に優れためっき鋼板である。また、この合金化溶融亜鉛めっき鋼板は、自動車用として好適に用いることができる。
[表層部における平均酸素濃度]
前記鋼板は、前記表層部における平均酸素濃度が0.10質量%以下である。前記鋼板における前記表層部における平均酸素濃度が上記範囲内であるから、前記合金化溶融亜鉛めっき鋼板は、良好なめっき性と高強度とでありながら、ナットプロジェクション溶接性に優れる。このような作用を有効に発揮させるためには、前記表層部における平均酸素濃度の上限値は、0.10質量%以下、好ましくは0.09質量%以下、より好ましくは0.08質量%以下とする。前記表層部における平均酸素濃度が高すぎると、ナットプロジェクション溶接性が低下し、具体的には、ナット溶接剥離荷重が低下する傾向がある。このため、前記表層部における平均酸素濃度は低くければ低いほどよく、0質量%であることが最も好ましい。すなわち、前記表層部における平均酸素濃度の下限値としては、好ましくは0.03質量%以上、より好ましくは0.02質量%以上、さらに好ましくは0.01質量%以上、最も好ましくは0質量%以上である。これらのことから、前記表層部における平均酸素濃度が上記範囲内であれば、ナットプロジェクション溶接性に優れ、具体的には、0.10質量%以下であれば、ナット溶接剥離荷重が3200N以上を確保することができる。
前記鋼板は、前記表層部における平均酸素濃度が0.10質量%以下である。前記鋼板における前記表層部における平均酸素濃度が上記範囲内であるから、前記合金化溶融亜鉛めっき鋼板は、良好なめっき性と高強度とでありながら、ナットプロジェクション溶接性に優れる。このような作用を有効に発揮させるためには、前記表層部における平均酸素濃度の上限値は、0.10質量%以下、好ましくは0.09質量%以下、より好ましくは0.08質量%以下とする。前記表層部における平均酸素濃度が高すぎると、ナットプロジェクション溶接性が低下し、具体的には、ナット溶接剥離荷重が低下する傾向がある。このため、前記表層部における平均酸素濃度は低くければ低いほどよく、0質量%であることが最も好ましい。すなわち、前記表層部における平均酸素濃度の下限値としては、好ましくは0.03質量%以上、より好ましくは0.02質量%以上、さらに好ましくは0.01質量%以上、最も好ましくは0質量%以上である。これらのことから、前記表層部における平均酸素濃度が上記範囲内であれば、ナットプロジェクション溶接性に優れ、具体的には、0.10質量%以下であれば、ナット溶接剥離荷重が3200N以上を確保することができる。
なお、前記合金化溶融亜鉛めっき層と前記鋼板との界面は、前記合金化溶融亜鉛めっき鋼板の板厚方向において、前記合金化溶融亜鉛めっき層の主成分の含有率が高い層と前記鋼板の主成分であるFeの含有率が高い層との界面を意味する。例えば、合金化溶融亜鉛めっき鋼板の場合、Feの含有率とZnの含有率とが同値となる面を指す。また、ここで、「表層部」とは、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域であり、すなわち、前記界面から1μmの深さまでの領域である。
また、前記表層部における平均酸素濃度は、グロー放電発光分析法(Glow Discharge Optical Emission Spectrometry:GDOES)により、鋼板表面から深さ方向(板厚方向)における酸素濃度のプロファイルを求めることにより、算出することができる。前記表層部における平均酸素濃度は、前記合金化溶融亜鉛めっき層と前記鋼板との界面から板厚方向内部に向かって1μmの位置までの領域の酸素濃度の算術平均値とする。めっき鋼板では、例えば、溶融亜鉛めっき鋼板の場合、GDOESにより、Fe、Mn、Si、C、O、Zn、及びCrについても濃度プロファイルを求める。溶融亜鉛めっき鋼板における前記表層部における平均酸素濃度は、濃度プロファイルでFeとZnとの濃度が同じになった箇所を、前記合金化溶融亜鉛めっき層と前記鋼板との界面とみなし、この界面から鋼板の板厚方向内部に向かって1μmまでの領域の酸素濃度の算術平均値とする。
[金属組織]
前記鋼板は、前記t/4位置における金属組織が、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である。前記t/4位置とは、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときの、前記合金化溶融亜鉛めっき鋼板の表面から、板厚方向に向かってt/4の深さの位置である。そして、ここでのt/4位置とは、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域(表層部)よりも深い位置である。
前記鋼板は、前記t/4位置における金属組織が、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である。前記t/4位置とは、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときの、前記合金化溶融亜鉛めっき鋼板の表面から、板厚方向に向かってt/4の深さの位置である。そして、ここでのt/4位置とは、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域(表層部)よりも深い位置である。
前記t/4位置における金属組成、すなわち、前記鋼板(素地鋼板)における前記表層部以外の金属組織におけるマルテンサイトの面積率の下限値は、50面積%以上、好ましくは51面積%以上、より好ましくは52面積%以上とする。また、マルテンサイトの面積率の上限値は、85面積%以下、好ましくは83面積%以下、より好ましくは82面積%以下とする。
また、ベイナイトの面積率の下限値は、15面積%以上、好ましくは17面積%以上、より好ましくは18面積%以上とする。また、ベイナイトの面積率の上限値は、50面積%以下、好ましくは49面積%以下、より好ましくは48面積%以下とする。
また、前記鋼板(素地鋼板)は、前記表層部以外の領域では、マルテンサイト及びベイナイトからなる金属組織であってもよく、マルテンサイト及びベイナイト以外の他の組織を含んでいてもよい。前記他の組織としては、フェライト、パーライト、及び残留オーステナイト等が挙げられる。なお、残留オーステナイトは、例えば、X線回折によって測定される。この中でも、例えば、フェライトの面積率の上限値は、5面積%以下、好ましくは4面積%以下、より好ましくは3面積%以下とする。また、前記t/4位置におけるフェライトの面積率は0面積%であってもよく、すなわち、フェライトの面積率の下限値は、0面積%以上、好ましくは1面積%以上、より好ましくは2面積%以上とする。
前記t/4位置における金属組成、すなわち、前記鋼板(素地鋼板)における前記表層部以外の金属組織が、上記のような組織であることによって、高強度な合金化溶融亜鉛めっき鋼板、具体的には、引張強度が1100~1300MPa、降伏強度が800MPa以上、伸びが8.0%以上である合金化溶融亜鉛めっき鋼板を実現できる。
なお、前記金属組織の面積率は、例えば、以下のように求めることができる。まず、ナイタールで腐食させた前記合金化溶融亜鉛めっき鋼板の断面における、前記t/4位置を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察する。この観察によって、各金属組織(マルテンサイト、ベイナイト、及びフェライト)を分ける。これらがそれぞれ占める領域の面積比を求めることにより、各金属組織の面積率が得られる。
次に、本実施形態に係る合金化溶融亜鉛めっき鋼板の成分組成について説明する。なお、下記成分組成における「%」は、いずれも「質量%」を意味する。
[C:0.10%以上0.25%以下]
Cは、鋼板の強度を向上させるのに寄与する元素である。鋼板の強度を確保するためには、C含有量は、0.10%以上、好ましくは0.11%以上、より好ましくは0.12%以上とする。しかし、C含有量が過剰になると、熱間圧延後における鋼板の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、C含有量は、0.25%以下、好ましくは0.23%以下、より好ましくは0.20%以下とする。
Cは、鋼板の強度を向上させるのに寄与する元素である。鋼板の強度を確保するためには、C含有量は、0.10%以上、好ましくは0.11%以上、より好ましくは0.12%以上とする。しかし、C含有量が過剰になると、熱間圧延後における鋼板の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、C含有量は、0.25%以下、好ましくは0.23%以下、より好ましくは0.20%以下とする。
[Si:0%超0.50%以下]
Siは、Siは固溶強化元素として知られており、延性の低下を抑えつつ、強度を向上させることに有効に作用する元素である。このような効果を発揮させるためには、Siを含有させる。すなわち、Si含有量は、0%超、好ましくは0.050%以上、より好ましくは0.10%以上とする。しかし、Si含有量が過剰になると、不めっき等が発生したり、ナットプロジェクション溶接性が低下する。このため、Si含有量は、0.50%以下、好ましくは0.48%以下、より好ましくは0.46%以下とする。
Siは、Siは固溶強化元素として知られており、延性の低下を抑えつつ、強度を向上させることに有効に作用する元素である。このような効果を発揮させるためには、Siを含有させる。すなわち、Si含有量は、0%超、好ましくは0.050%以上、より好ましくは0.10%以上とする。しかし、Si含有量が過剰になると、不めっき等が発生したり、ナットプロジェクション溶接性が低下する。このため、Si含有量は、0.50%以下、好ましくは0.48%以下、より好ましくは0.46%以下とする。
[Mn:2.0%超3.5%以下]
Mnは、鋼板の強度を向上させるのに寄与する元素である。このような作用を有効に発揮させるため、Mn含有量は、2.0%超、好ましくは2.1%以上、より好ましくは2.2%以上とする。しかし、Mn含有量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、Mn含有量は、3.5%以下、好ましくは3.3%以下、より好ましくは3.0%以下とする。
Mnは、鋼板の強度を向上させるのに寄与する元素である。このような作用を有効に発揮させるため、Mn含有量は、2.0%超、好ましくは2.1%以上、より好ましくは2.2%以上とする。しかし、Mn含有量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、Mn含有量は、3.5%以下、好ましくは3.3%以下、より好ましくは3.0%以下とする。
[P:0%超0.1%以下]
Pは、不可避的に含有する元素であり、鋼板の加工性を低下させる元素である。このため、P含有量は、0.1%以下、好ましくは0.08%以下、より好ましくは0.06%以下とする。なお、P含有量は、できるだけ少ないほうがよいため、0%超であればよいが、工業的には、例えば、0.0005%以上である。
Pは、不可避的に含有する元素であり、鋼板の加工性を低下させる元素である。このため、P含有量は、0.1%以下、好ましくは0.08%以下、より好ましくは0.06%以下とする。なお、P含有量は、できるだけ少ないほうがよいため、0%超であればよいが、工業的には、例えば、0.0005%以上である。
[S:0%超0.05%以下]
Sは、Pと同様、不可避的に含有する元素であり、MnS等の硫化物を形成して、鋼板の曲げ加工性等の加工性を低下させる元素である。このため、S含有量は、0.05%以下、好ましくは0.03%以下、より好ましくは0.01%以下とする。なお、S含有量は、できるだけ少ないほうがよいため、0%超であればよいが、工業的には、例えば、0.0001%以上である。
Sは、Pと同様、不可避的に含有する元素であり、MnS等の硫化物を形成して、鋼板の曲げ加工性等の加工性を低下させる元素である。このため、S含有量は、0.05%以下、好ましくは0.03%以下、より好ましくは0.01%以下とする。なお、S含有量は、できるだけ少ないほうがよいため、0%超であればよいが、工業的には、例えば、0.0001%以上である。
[Al:0.01%以上0.10%以下]
Alは、脱酸剤として作用する元素である。このような作用を有効に発揮させるには、Al含有量は、0.01%以上、好ましくは0.02%以上とする。しかし、Al含有量を過剰に増やしても、Alが奏する作用効果が飽和する。コストを抑制するためにも、Al含有量は、0.10%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
Alは、脱酸剤として作用する元素である。このような作用を有効に発揮させるには、Al含有量は、0.01%以上、好ましくは0.02%以上とする。しかし、Al含有量を過剰に増やしても、Alが奏する作用効果が飽和する。コストを抑制するためにも、Al含有量は、0.10%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
[Ti:0%超0.1%以下]
Tiは、TiNを生成させることでBとNとが結合してBが奏する作用効果が低減することを抑制することができる。すなわち、Ti含有量は、0%超、好ましくは0.005%以上、より好ましくは0.01%以上とする。しかし、Ti含有量が過剰になると、熱間圧延後における鋼板の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、Ti含有量は、0.1%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
Tiは、TiNを生成させることでBとNとが結合してBが奏する作用効果が低減することを抑制することができる。すなわち、Ti含有量は、0%超、好ましくは0.005%以上、より好ましくは0.01%以上とする。しかし、Ti含有量が過剰になると、熱間圧延後における鋼板の強度が上昇し、冷間圧延時に割れが生じる等の冷間圧延性が低下する。このため、Ti含有量は、0.1%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
[B:0.0020%以上0.0050%以下]
Bは、高温変態相の析出を抑制する元素であり、鋼板の高強度化を可能とする元素である。このような効果を有効に発揮させるため、B含有量は、0.0020%以上、好ましくは0.0022%以上、より好ましくは0.0024%以上とする。しかし、B含有量を過剰に増やしても、Bが奏する作用効果が飽和する。コストを抑制するためにも、B含有量は、0.0050%以下、好ましくは0.0048%以下、より好ましくは0.0046%以下とする。
Bは、高温変態相の析出を抑制する元素であり、鋼板の高強度化を可能とする元素である。このような効果を有効に発揮させるため、B含有量は、0.0020%以上、好ましくは0.0022%以上、より好ましくは0.0024%以上とする。しかし、B含有量を過剰に増やしても、Bが奏する作用効果が飽和する。コストを抑制するためにも、B含有量は、0.0050%以下、好ましくは0.0048%以下、より好ましくは0.0046%以下とする。
[N:0%超0.01%以下]
Nは、Pと同様、不可避的に含有する元素であり、BNを形成し固溶B量が減少することで高温変態相の析出抑止力を低下させる元素である。Bが奏する作用効果を充分に発揮させるため、N含有量は、0.01%以下、好ましくは0.008%以下、より好ましくは0.006%以下とする。なお、N含有量は、できるだけ少ないほうがよいため、0%超であればよい。
Nは、Pと同様、不可避的に含有する元素であり、BNを形成し固溶B量が減少することで高温変態相の析出抑止力を低下させる元素である。Bが奏する作用効果を充分に発揮させるため、N含有量は、0.01%以下、好ましくは0.008%以下、より好ましくは0.006%以下とする。なお、N含有量は、できるだけ少ないほうがよいため、0%超であればよい。
[Cr:0%超0.5%以下]
Crは、焼き入れ性を高めて鋼板の強度を向上させるのに有効な元素である。このような効果を発揮させるためには、Crを含有させる。すなわち、Cr含有量は、0%超、好ましくは0.05%以上、より好ましくは0.1%以上とする。しかし、Cr含有量が過剰になると、めっき性が低下する。このため、Cr含有量は、0.5%以下、好ましくは0.4%以下とする。
Crは、焼き入れ性を高めて鋼板の強度を向上させるのに有効な元素である。このような効果を発揮させるためには、Crを含有させる。すなわち、Cr含有量は、0%超、好ましくは0.05%以上、より好ましくは0.1%以上とする。しかし、Cr含有量が過剰になると、めっき性が低下する。このため、Cr含有量は、0.5%以下、好ましくは0.4%以下とする。
[Mo:0%超0.5%以下]
Moは、鋼板の強度を向上させるのに有効な元素である。このような作用を発揮させるためには、Moを含有させる。すなわち、Moの含有量は、0%超、好ましくは0.05%以上とする。しかし、Mo含有量を過剰に増やしても、Moが奏する作用効果が飽和する。コストを抑制するためにも、Mo含有量は、0.5%以下、好ましくは0.4%以下とする。
Moは、鋼板の強度を向上させるのに有効な元素である。このような作用を発揮させるためには、Moを含有させる。すなわち、Moの含有量は、0%超、好ましくは0.05%以上とする。しかし、Mo含有量を過剰に増やしても、Moが奏する作用効果が飽和する。コストを抑制するためにも、Mo含有量は、0.5%以下、好ましくは0.4%以下とする。
[その他の成分]
前記鋼板は、上記成分組成を満足し、残部は鉄及び不可避的不純物である。前記不可避的不純物としては、例えば、鋼中に、原料、資材、及び製造設備等の状況によって持ち込まれることがある、上記P、S、及びNだけではなく、Oや、Pb、Bi、Sb、及びSn等のトランプ元素が含まれることがある。なお、ここでの不可避的不純物は、上記P、S、及びN以外の不純物であり、例えば、Oや、Pb、Bi、Sb、及びSn等のトランプ元素が挙げられる。
前記鋼板は、上記成分組成を満足し、残部は鉄及び不可避的不純物である。前記不可避的不純物としては、例えば、鋼中に、原料、資材、及び製造設備等の状況によって持ち込まれることがある、上記P、S、及びNだけではなく、Oや、Pb、Bi、Sb、及びSn等のトランプ元素が含まれることがある。なお、ここでの不可避的不純物は、上記P、S、及びN以外の不純物であり、例えば、Oや、Pb、Bi、Sb、及びSn等のトランプ元素が挙げられる。
また、前記鋼板には、必要に応じて、Nb、V、Cu、及びNi等の元素を以下に示す範囲で含有させてもよく、含有される元素の種類に応じて、前記合金化溶融亜鉛めっき鋼板の特性がさらに改善される。これらの元素は、それぞれ以下に示す範囲で、単独で又は適宜組み合わせて含有させることができる。
[Nb:0%以上0.2%以下]
Nbは、鋼板の組織を微細化させたり、鋼板中に炭化物を析出させて、鋼板の強度を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Nb含有量は、好ましくは0%超である。なお、前記鋼板には、Nbを含有させなくてもよいので、Nbの含有量は、0%以上である。しかし、Nbを過剰に含有すると、鋼板の溶接性及び靱性が劣化する傾向があることから、Nbの含有量は、好ましくは0.2%以下である。
Nbは、鋼板の組織を微細化させたり、鋼板中に炭化物を析出させて、鋼板の強度を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Nb含有量は、好ましくは0%超である。なお、前記鋼板には、Nbを含有させなくてもよいので、Nbの含有量は、0%以上である。しかし、Nbを過剰に含有すると、鋼板の溶接性及び靱性が劣化する傾向があることから、Nbの含有量は、好ましくは0.2%以下である。
[V:0%以上0.2%以下]
Vは、鋼板の組織を微細化させたり、鋼板中に炭化物を析出させて、鋼板の強度を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、V含有量は、好ましくは0%超である。なお、前記鋼板には、Vを含有させなくてもよいので、Vの含有量は、0%以上である。しかし、Vを過剰に含有すると、鋼板の溶接性及び靱性が劣化する傾向があることから、Vの含有量は、好ましくは0.2%以下である。
Vは、鋼板の組織を微細化させたり、鋼板中に炭化物を析出させて、鋼板の強度を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、V含有量は、好ましくは0%超である。なお、前記鋼板には、Vを含有させなくてもよいので、Vの含有量は、0%以上である。しかし、Vを過剰に含有すると、鋼板の溶接性及び靱性が劣化する傾向があることから、Vの含有量は、好ましくは0.2%以下である。
[Cu:0%以上1%以下]
Cuは、鋼板の耐食性を向上させ、これによる遅れ破壊性を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Cu含有量は、好ましくは0%超である。なお、前記鋼板には、Cuを含有させなくてもよいので、Cuの含有量は、0%以上である。しかし、Cuを過剰に含有すると、鋼板の加工性が低下する傾向があることから、Cuの含有量は、好ましくは1%以下である。
Cuは、鋼板の耐食性を向上させ、これによる遅れ破壊性を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Cu含有量は、好ましくは0%超である。なお、前記鋼板には、Cuを含有させなくてもよいので、Cuの含有量は、0%以上である。しかし、Cuを過剰に含有すると、鋼板の加工性が低下する傾向があることから、Cuの含有量は、好ましくは1%以下である。
[Ni:0%以上1%以下]
Niは、鋼板の耐食性を向上させ、これによる遅れ破壊性を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Ni含有量は、好ましくは0%超である。なお、前記鋼板には、Niを含有させなくてもよいので、Niの含有量は、0%以上である。しかし、Niを過剰に含有すると、鋼板の加工性が低下する傾向があることから、Niの含有量は、好ましくは1%以下である。
Niは、鋼板の耐食性を向上させ、これによる遅れ破壊性を向上させるのに有効な元素であり、必要に応じて含有させてもよい。こうした作用を有効に発揮させるには、Ni含有量は、好ましくは0%超である。なお、前記鋼板には、Niを含有させなくてもよいので、Niの含有量は、0%以上である。しかし、Niを過剰に含有すると、鋼板の加工性が低下する傾向があることから、Niの含有量は、好ましくは1%以下である。
[合金化溶融亜鉛めっき層]
前記合金化溶融亜鉛めっき層は、合金化溶融亜鉛めっき鋼板に備えられる合金化溶融亜鉛めっき層であれば、特に限定されない。また、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、片面あたり、45~65g/m2であることが好ましい。
前記合金化溶融亜鉛めっき層は、合金化溶融亜鉛めっき鋼板に備えられる合金化溶融亜鉛めっき層であれば、特に限定されない。また、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、片面あたり、45~65g/m2であることが好ましい。
前記合金化溶融亜鉛めっき鋼板は、上述したように、高強度である。具体的には、引張強度の下限値としては、1100MPa以上であることが好ましく、1150MPa以上であることがより好ましい。また、引張強度は高ければ高いほど好ましく、特に限定されないが、実際には、1300MPa以下となり、引張強度の上限値を挙げるとすれば、1300MPa以下である。また、降伏強度の下限値としては、800MPa以上であることが好ましく、810MPa以上であることがより好ましい。降伏強度の上限値は、伸びの低下の観点から980MPa以下である。
また、前記合金化溶融亜鉛めっき鋼板は、伸びの下限値としては、8.0%以上であることが好ましく、8.2%以上であることがより好ましい。また、伸びは高ければ高いほど好ましく、特に限定されない。
なお、引張強度、降伏強度、及び伸びは、例えば、JIS Z 2241:2011に準拠した引張試験により測定できる。
[合金化溶融亜鉛めっき鋼板の製造方法]
次に、本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法について説明する。
次に、本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法について説明する。
本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法は、上述した合金化溶融亜鉛めっき鋼板を製造する方法である。そして、この製造方法は、まず、前記鋼板の成分組成を有する鋼素材を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、630~680℃で巻き取ることによって、熱延材を得る(熱間圧延工程)。次に、前記熱延材を、3~20質量%の塩酸を用いて、60~90℃の条件下で、35~200秒間酸洗する(酸洗工程)。次に、前記酸洗後の熱延材を冷間圧延することによって、冷延材を得る(冷間圧延工程)。次に、前記冷延材を、Ac3点以上880℃未満で、露点が-25℃以下の条件下で均熱し、380~500℃の冷却停止温度まで3.0℃/秒以上で冷却し、前記冷却停止温度で15秒間以上保持する焼鈍を行うことによって、鋼板を得る(焼鈍工程)。最後に、前記鋼板にめっき処理を施すことによって、前記鋼板上に前記合金化溶融亜鉛めっき層を形成する(めっき工程)。前記製造方法は、上述したように、前記熱間圧延工程、前記酸洗工程、前記冷間圧延工程、前記焼鈍工程、及び前記めっき工程を順に備える。このような製造方法によれば、上述したような、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を好適に製造することができる。
以下、各工程について説明する。
[熱間圧延工程]
まず、熱間圧延工程が実施される。前記熱間圧延工程では、まず、常法に従って鋼を溶製した後、連続鋳造することにより得られたスラブ等の鋼片が、加熱炉において1100℃~1300℃に均熱される。この鋼片は、上記の成分組成を有する。
まず、熱間圧延工程が実施される。前記熱間圧延工程では、まず、常法に従って鋼を溶製した後、連続鋳造することにより得られたスラブ等の鋼片が、加熱炉において1100℃~1300℃に均熱される。この鋼片は、上記の成分組成を有する。
加熱された鋼片が熱延ラインに載せられ、圧延機によって所定の厚みを有する鋼板(熱延材)に熱間圧延される。この熱間圧延は、所定の仕上げ温度の範囲内で完了するように行なわれる。その後、前記熱延材がコイラー等によって所定の巻き取り温度で巻き取られる。本実施形態では、仕上げ温度は850℃~950℃とし、巻き取り温度は630~680℃とする。
前記均熱温度が低すぎると、添加元素の溶体化が不足する傾向がある。また、前記均熱温度が高すぎると、酸化スケールが厚くなり、スケール除去等に時間を要し、生産性が悪化する傾向がある。よって、前記均熱温度が上記範囲内であると、炭化物等の溶体化が進み均質な焼鈍板組織が得られる。
前記仕上げ温度が低すぎると、焼鈍板組織が不均一になり、伸びが低下する傾向がある。また、前記仕上げ温度が高すぎると、焼鈍板組織が粗大化し、伸びが低下する傾向がある。よって、前記仕上げ温度が上記範囲内であると、均質な焼鈍板組織が得られ加工性が向上する。
前記巻き取り温度が低すぎると、熱延板強度が高くなり冷間圧延性が悪化する傾向やめっき性が低下する傾向がある。また、前記巻き取り温度が高すぎると、表層部の平均酸素濃度が高くなる傾向がある。よって、前記巻き取り温度が上記範囲内であると、優れためっき性とナット溶接性とが兼備される。
[酸洗工程]
次に、酸洗工程が実施される。前記酸洗工程では、巻き取られたコイルから繰り出された鋼板(熱延材)を、酸洗液に浸漬する。具体的には、酸洗液として、濃度3~20質量%の塩酸を用いて、酸洗液温度として、60~90℃の条件下で、35~200秒間の酸洗時間で酸洗する。
次に、酸洗工程が実施される。前記酸洗工程では、巻き取られたコイルから繰り出された鋼板(熱延材)を、酸洗液に浸漬する。具体的には、酸洗液として、濃度3~20質量%の塩酸を用いて、酸洗液温度として、60~90℃の条件下で、35~200秒間の酸洗時間で酸洗する。
前記酸洗液の塩酸濃度の下限値としては、3質量%以上、好ましくは5質量%以上、より好ましくは7質量%以上である。また、前記酸洗液の塩酸濃度の上限値としては、20質量%以下、好ましくは19質量%以下、より好ましくは18質量%以下である。
前記酸洗液温度の下限値としては、60℃以上、好ましくは65℃以上、より好ましくは70℃以上である。また、前記酸洗液温度の上限値としては、90℃以下、好ましくは88℃以下、より好ましくは85℃以下である。
前記酸洗時間の下限値としては、35秒間以上、好ましくは40秒間以上である。また、前記酸洗時間の上限値としては、200秒間以下、好ましくは180秒間以下、より好ましくは160秒間以下である。
酸洗液の塩酸濃度が低すぎると、酸洗能力が不充分になる傾向がある。また、酸洗液温度が低すぎる場合も、酸洗時間が短すぎる場合も、酸洗能力が不充分になる傾向がある。酸洗能力が不充分である場合には、熱延で生成したスケール除去が不充分になり、鋼板表面の性状悪化や圧延ロールの表面損傷をもたらし、生産性が悪化する傾向がある。一方、酸洗液の塩酸濃度を高める、酸洗液温度を高める、及び酸洗時間を長くすること等によって、鋼板を過剰に酸洗しても、スケール除去の効果は飽和する。
[冷間圧延工程]
次に、冷間圧延工程が実施される。前記冷間圧延工程では、酸洗された鋼板(熱延材)を、所定の厚さまで室温で圧延する。前記冷間圧延としては、特に限定されず、常法に従った、従来の冷間圧延等が挙げられる。
次に、冷間圧延工程が実施される。前記冷間圧延工程では、酸洗された鋼板(熱延材)を、所定の厚さまで室温で圧延する。前記冷間圧延としては、特に限定されず、常法に従った、従来の冷間圧延等が挙げられる。
[焼鈍工程]
次に、焼鈍工程が実施される。前記焼鈍工程では、冷間圧延された鋼板(冷延材)を、Ac3点以上880℃未満の温度、露点が-25℃以下の条件下で均熱した後、平均冷却速度3.0℃/秒以上で、冷却停止温度である380~500℃まで冷却し、前記冷却停止温度で15秒間以上保持する。
次に、焼鈍工程が実施される。前記焼鈍工程では、冷間圧延された鋼板(冷延材)を、Ac3点以上880℃未満の温度、露点が-25℃以下の条件下で均熱した後、平均冷却速度3.0℃/秒以上で、冷却停止温度である380~500℃まで冷却し、前記冷却停止温度で15秒間以上保持する。
前記均熱温度の下限値としては、Ac3点以上、好ましくはAc3点+10℃以上である。前記均熱温度の上限値としては、880℃未満である。なお、Ac3点は、下記式(1)で規定される。
Ac3(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni] (3)
前記均熱温度が低すぎると、強度が低下する傾向がある。また、前記均熱温度が高すぎると、ナット溶接性が低下する傾向や伸びが低下する傾向がある。このことは、前記均熱温度が高すぎると、表層部における平均酸素濃度(表層酸素濃度)が高くなることによると考えられる。よって、前記均熱温度が上記範囲内であると、所望する強度と伸びとが得られる。
前記均熱温度が低すぎると、強度が低下する傾向がある。また、前記均熱温度が高すぎると、ナット溶接性が低下する傾向や伸びが低下する傾向がある。このことは、前記均熱温度が高すぎると、表層部における平均酸素濃度(表層酸素濃度)が高くなることによると考えられる。よって、前記均熱温度が上記範囲内であると、所望する強度と伸びとが得られる。
前記露点の下限値としては、好ましくは-55℃以上、より好ましくは-50℃以上である。前記露点の上限値としては、-25℃、好ましくは-30℃以下、より好ましくは-35℃以下である。
前記露点が低すぎると、ガス流量の増量が必要になり、製造コストが増加する傾向がある。また、前記露点が高すぎると、ナットプロジェクション溶接性が低下する傾向がある。このことは、表層部における平均酸素濃度が高く、溶接界面部に存在するSi系の酸化物が多いためと考えられる。
前記均熱工程における均熱時間の下限値としては、好ましくは20秒間以上、より好ましくは30秒間以上である。前記均熱時間の上限値としては、150秒間以下、より好ましくは140秒間以下である。前記均熱時間が短すぎると、逆変態挙動が不充分になり、強度が低下する傾向がある。また、前記均熱時間が長すぎると、組織が粗大化し、伸びが低下する傾向がある。よって、前記均熱時間が上記範囲内であると、所望する引張特性が得られる傾向がある。
前記均熱工程の雰囲気としては、例えば、N2に4体積%のH2を混合した混合ガス雰囲気(N2-4%H2)で行うことが好ましい。
前記平均冷却速度の下限値としては、3.0℃/秒以上、好ましくは3.2℃/秒以上である。前記平均冷却速度の上限値としては、好ましくは15.0℃/秒以下、より好ましくは14.8℃/秒以下である。
前記平均冷却速度が低すぎると、強度が低下する傾向がある。また、前記平均冷却速度が高すぎると、生産安定性が悪化したり、製造コストが高くなる傾向がある。よって、前記平均冷却速度が上記範囲内であると、高温変態相の析出が抑制され、所望する引張強度が得られる傾向にある。
前記冷却停止温度の下限値としては、380℃以上、好ましくは390℃以上、より好ましくは400℃以上である。前記冷却停止温度の上限値としては、500℃以下、好ましくは490℃以下、より好ましくは480℃以下である。
前記冷却停止温度が低すぎると、強度が増加し、伸びが低下する傾向がある。また、前記冷却停止温度が高すぎると、強度が増加し、伸びが低下する傾向がある。よって、前記冷却停止温度が上記範囲内であると、所望する引張特性が得られる。
前記冷却停止温度での保持時間の下限値としては、15秒間以上、好ましくは20秒間以上である。前記保持時間の上限値としては、好ましくは150秒間以下、より好ましくは140秒間以下である。
前記保持時間が短すぎると、強度が増加し、伸びが低下する傾向がある。また、前記保持時間が高すぎると、強度が低下する傾向がある。よって、前記保持時間が上記範囲内であると、所望する引張特性が得られる。
[めっき工程]
次に、めっき工程が実施される。前記めっき工程では、前記焼鈍工程で得られた鋼板(焼鈍材)に対して、合金化溶融亜鉛めっき処理を施す。前記合金化溶融亜鉛めっき処理としては、具体的には、前記焼鈍工程で得られた鋼板(焼鈍材)を、冷却停止温度で保持した後、亜鉛めっき浴に浸漬させ、500~600℃で合金化処理を行う処理等が挙げられる。また、前記めっき工程は、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)が、片面あたり、45~65g/m2となるめっき工程が好ましい。
次に、めっき工程が実施される。前記めっき工程では、前記焼鈍工程で得られた鋼板(焼鈍材)に対して、合金化溶融亜鉛めっき処理を施す。前記合金化溶融亜鉛めっき処理としては、具体的には、前記焼鈍工程で得られた鋼板(焼鈍材)を、冷却停止温度で保持した後、亜鉛めっき浴に浸漬させ、500~600℃で合金化処理を行う処理等が挙げられる。また、前記めっき工程は、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)が、片面あたり、45~65g/m2となるめっき工程が好ましい。
以上の工程により、本実施形態に係る合金化溶融亜鉛めっき鋼板を製造することができる。
本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
本発明の一局面は、鋼板と、前記鋼板の表面上に合金化溶融亜鉛めっき層とを備える合金化溶融亜鉛めっき鋼板であって、前記鋼板は、質量%で、C:0.10%以上0.25%以下、Si:0%超0.50%以下、Mn:2.0%超3.5%以下、P:0%超0.1%以下、S:0%超0.05%以下、Al:0.01%以上0.10%以下、Ti:0%超0.1%以下、B:0.0020%以上0.0050%以下、N:0%超0.01%以下、Cr:0%超0.5%以下、及びMo:0%超0.5%以下を含有し、残部が鉄及び不可避的不純物であり、前記鋼板は、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域における平均酸素濃度が0.10質量%以下であり、前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときのt/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である合金化溶融亜鉛度めっき鋼板である。
このような構成によれば、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を提供することができる。具体的には、引張強度が1100~1300MPa、降伏強度が800MPa以上、伸びが8.0%以上である高強度めっき鋼板であっても、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を提供することができる。また、この合金化溶融亜鉛めっき鋼板は、自動車用として好適に用いることができる。
また、本発明の他の一局面は、前記合金化溶融亜鉛めっき鋼板を製造する方法であって、前記鋼板の成分組成を有する鋼素材を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、630~680℃で巻き取ることによって、熱延材を得て、前記熱延材を、3~20質量%の塩酸を用いて、60~90℃の条件下で、35~200秒間酸洗し、前記酸洗後の熱延材を冷間圧延することによって、冷延材を得て、前記冷延材を、Ac3点以上880℃未満で、露点が-25℃以下の条件下で均熱し、380~500℃の冷却停止温度まで3.0℃/秒以上で冷却し、前記冷却停止温度で15秒間以上保持する焼鈍を行うことによって、鋼板を得て、前記鋼板にめっき処理を施すことによって、前記鋼板上に前記合金化溶融亜鉛めっき層を形成する合金化溶融亜鉛めっき鋼板の製造方法である。
このような構成によれば、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を好適に製造することができる。
本発明によれば、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板を提供することができる。また、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板の製造方法を提供することができる。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
実験No.1~16
[鋼の成分組成]
まず、下記表1に示す鋼種a~gに示す成分組成となるように、鋼素材(残部は鉄及び不可避的不純物である)を溶製し、溶製された鋼素材(鋼片)を、熱間圧延、酸洗、冷間圧延、焼鈍、及びめっき処理することによって、めっき鋼板を得た。また、下記表1に示す鋼種h,iに示す成分組成となるように、鋼素材(残部は鉄及び不可避的不純物である)を溶製し、溶製された鋼素材(鋼片)(120mm角×350mm)(ラボ材:鋼種h,i)を、熱間圧延、酸洗、冷間圧延、焼鈍、及びめっき処理することによって、めっき鋼板を得た。なお、下記表1には、鋼種a~iに示す成分組成の鋼板のAc3点も示す。また、鋼種a~gに示す成分組成となるように製造した鋼板は、実機設備で製造した鋼板であって、鋼種h,iに示す成分組成となるように製造した鋼板は、ラボ設備によって製造した鋼板である。
[鋼の成分組成]
まず、下記表1に示す鋼種a~gに示す成分組成となるように、鋼素材(残部は鉄及び不可避的不純物である)を溶製し、溶製された鋼素材(鋼片)を、熱間圧延、酸洗、冷間圧延、焼鈍、及びめっき処理することによって、めっき鋼板を得た。また、下記表1に示す鋼種h,iに示す成分組成となるように、鋼素材(残部は鉄及び不可避的不純物である)を溶製し、溶製された鋼素材(鋼片)(120mm角×350mm)(ラボ材:鋼種h,i)を、熱間圧延、酸洗、冷間圧延、焼鈍、及びめっき処理することによって、めっき鋼板を得た。なお、下記表1には、鋼種a~iに示す成分組成の鋼板のAc3点も示す。また、鋼種a~gに示す成分組成となるように製造した鋼板は、実機設備で製造した鋼板であって、鋼種h,iに示す成分組成となるように製造した鋼板は、ラボ設備によって製造した鋼板である。
<実験No.1~13(鋼種a~gを用いて、実機設備で製造した例)>
[熱間圧延]
製造した各鋼片(鋼種a~g)を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、下記表2に示す巻き取り温度で巻き取った。
[熱間圧延]
製造した各鋼片(鋼種a~g)を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、下記表2に示す巻き取り温度で巻き取った。
[酸洗]
(実験No.1~9、11~13)
巻き取られた鋼板(熱延材)は、平均濃度10質量%の塩酸になる複数の酸洗槽に浸漬し酸洗を行った。具体的には、液温(酸洗液温度)を85℃にした酸洗液に、前記熱延材を40秒間浸漬させた。
(実験No.1~9、11~13)
巻き取られた鋼板(熱延材)は、平均濃度10質量%の塩酸になる複数の酸洗槽に浸漬し酸洗を行った。具体的には、液温(酸洗液温度)を85℃にした酸洗液に、前記熱延材を40秒間浸漬させた。
(実験No.10)
なお、実験No.10における酸洗工程は、酸洗時間を40秒間から150秒間に変えたこと以外は、実験No.1~9、11~13の酸洗工程と同様に行った。
なお、実験No.10における酸洗工程は、酸洗時間を40秒間から150秒間に変えたこと以外は、実験No.1~9、11~13の酸洗工程と同様に行った。
[焼鈍]
冷間圧延した冷延材を、焼鈍炉として、オールラジアントチューブタイプの焼鈍炉、又はNOFタイプの焼鈍炉を用いて焼鈍した。なお、表2において、オールラジアントチューブタイプの焼鈍炉を用いた場合、炉の項目として、1と示し、NOFタイプの焼鈍炉を用いた場合、炉の項目として、2と示す。
冷間圧延した冷延材を、焼鈍炉として、オールラジアントチューブタイプの焼鈍炉、又はNOFタイプの焼鈍炉を用いて焼鈍した。なお、表2において、オールラジアントチューブタイプの焼鈍炉を用いた場合、炉の項目として、1と示し、NOFタイプの焼鈍炉を用いた場合、炉の項目として、2と示す。
1.オールラジアントチューブタイプの焼鈍炉を用いた場合
冷間圧延した冷延材を、N2に4体積%のH2を混合した混合ガス雰囲気(N2-4%H2)で、表2に示す均熱時間、表2に示す露点の条件下で、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。
冷間圧延した冷延材を、N2に4体積%のH2を混合した混合ガス雰囲気(N2-4%H2)で、表2に示す均熱時間、表2に示す露点の条件下で、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。
2.NOFタイプの焼鈍炉を用いた場合
NOFタイプの焼鈍炉を用いた場合、酸化工程の後、還元工程を実施する。このため、冷間圧延した冷延材に酸化工程を施した後、還元工程を施す際、酸化工程を施した冷延材を、表2に示す露点の条件下で、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。なお、酸化工程は、空気比0.9~1.2の雰囲気で行い、還元工程は、N2に15体積%のH2を混合した混合ガス雰囲気(N2-15%H2)で行った。
NOFタイプの焼鈍炉を用いた場合、酸化工程の後、還元工程を実施する。このため、冷間圧延した冷延材に酸化工程を施した後、還元工程を施す際、酸化工程を施した冷延材を、表2に示す露点の条件下で、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。なお、酸化工程は、空気比0.9~1.2の雰囲気で行い、還元工程は、N2に15体積%のH2を混合した混合ガス雰囲気(N2-15%H2)で行った。
[めっき処理]
焼鈍した鋼板(焼鈍材)を、冷却停止温度で保持した後、亜鉛めっき浴に浸漬させ、500~600℃で合金化処理を施した。そうすることによって、めっき鋼板として、実験No.1~13に係る合金化溶融亜鉛めっき鋼板が得られた。
焼鈍した鋼板(焼鈍材)を、冷却停止温度で保持した後、亜鉛めっき浴に浸漬させ、500~600℃で合金化処理を施した。そうすることによって、めっき鋼板として、実験No.1~13に係る合金化溶融亜鉛めっき鋼板が得られた。
[表層部の平均酸素濃度]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、表層部における平均酸素濃度をグロー放電発光分析法(GDOES)により測定した。酸素濃度測定には、下記ナット剥離荷重を測定した剥離試験に用いた試験片を用い、溶接及び剥離試験の影響を受けていない領域について測定した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、表層部における平均酸素濃度をグロー放電発光分析法(GDOES)により測定した。酸素濃度測定には、下記ナット剥離荷重を測定した剥離試験に用いた試験片を用い、溶接及び剥離試験の影響を受けていない領域について測定した。
合金化溶融亜鉛めっき鋼板の、表面からの板厚方向における、FeおよびZnの濃度プロファイルを求め、この濃度プロファイルでFeの濃度とZnの濃度とが同じになった箇所を、合金化溶融亜鉛めっき層と鋼板との界面とした。そして、合金化溶融亜鉛めっき鋼板の、表面からの板厚方向における酸素濃度のプロファイルを求め、前記界面から板厚方向内部に向かって1μmの位置までの1μm間の領域(表層部)の酸素濃度の平均値を算出した。この平均値が、表層部の平均酸素濃度である。
なお、GDOESの測定条件は以下の通りとした。
装置:株式会社リガク製のGDA750
測定周波数:ノンパルス測定
アノード径(分析領域):直径4mm
放電電力:30W
Arガス圧:2.5hPa
測定対象元素:Fe、Mn、Si、C、O、Zn、Cr
測定周波数:ノンパルス測定
アノード径(分析領域):直径4mm
放電電力:30W
Arガス圧:2.5hPa
測定対象元素:Fe、Mn、Si、C、O、Zn、Cr
[金属組織]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板における、金属組織(t/4位置の組織分率)を以下のように測定した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板における、金属組織(t/4位置の組織分率)を以下のように測定した。
前記各合金化溶融亜鉛めっき鋼板の圧延方向に平行な断面として、t/4位置の断面が現れるように研磨し、ナイタール液で腐食させて、金属組織を顕出させた。この面を、SEMにて、観察倍率1000倍で観察した。その観測結果から、点算法(100点)で、全組織に対する、マルテンサイト、ベイナイト、及びフェライトのそれぞれの面積率を算出した。具体的には、まず、撮影した写真に対し、等間隔の10本の縦線と、等間隔の10本の横線を、格子状になるように引いた。これにより、縦線と横線の交点を100個形成した。100個の交点のうち、マルテンサイト、ベイナイト、及びフェライトのそれぞれが位置する交点の数を計測した。マルテンサイトが位置する交点の数を、交点の総数(100個)で除することにより、マルテンサイトの面積率を求めた。ベイナイト及びフェライトに関しても、同様に、それぞれの面積率を求めた。
なお、金属組織は、以下のように見分けた。合金化溶融亜鉛めっき鋼板のt/4位置の断面を観察したSEM写真の一例を図1に示す。図1において、1で示されるような、黒く見えてその内部に微細な白い粒子を有していないものをフェライトと判断した。図1において、2で示されるような、黒に見えて内部に微細な白い粒子を有するものをベイナイトと判断した。図1において、3で示されるような、全面白色に見えるものをマルテンサイトと判断した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、引張強度、降伏強度、伸び、めっき性、及びナット剥離荷重は、以下のようにして測定した。
[引張強度、降伏強度、及び伸び]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、引張強度TS、降伏強度YS、及び伸びELは、JIS Z 2241:2011に準拠した引張試験により測定した。具体的には、実験No.1~13に係る合金化溶融亜鉛めっき鋼板から、引張強度、降伏強度、及び伸びを測定するための試験片を切り出した。試験片は、JIS Z 2241:2011に規定される5号試験片とした。その際、試験片は、その長手方向が圧延方向に垂直な方向(コイル幅方向)と平行になるように採取した。この試験片を用いて、JIS Z 2241(2011)に準拠した引張試験(引張速度10mm/分、常温)により測定した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、引張強度TS、降伏強度YS、及び伸びELは、JIS Z 2241:2011に準拠した引張試験により測定した。具体的には、実験No.1~13に係る合金化溶融亜鉛めっき鋼板から、引張強度、降伏強度、及び伸びを測定するための試験片を切り出した。試験片は、JIS Z 2241:2011に規定される5号試験片とした。その際、試験片は、その長手方向が圧延方向に垂直な方向(コイル幅方向)と平行になるように採取した。この試験片を用いて、JIS Z 2241(2011)に準拠した引張試験(引張速度10mm/分、常温)により測定した。
[めっき付着量]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、溶解法によって導出した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、溶解法によって導出した。
[めっき性]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の表面を目視で観察した。その結果、不めっきや合金化むら等が確認できず、めっき性に優れていると判断されれば、「○」と評価し、不めっきや合金化むら等が確認でき、めっき性に劣っていると判断されれば、「×」と評価した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板の表面を目視で観察した。その結果、不めっきや合金化むら等が確認できず、めっき性に優れていると判断されれば、「○」と評価し、不めっきや合金化むら等が確認でき、めっき性に劣っていると判断されれば、「×」と評価した。
[ナット剥離荷重]
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板のナットプロジェクション溶接性を評価するため、剥離試験として、下記の「押込み剥離試験」を行い、そのときの剥離荷重(ナット剥離荷重)を測定した。
実験No.1~13に係る各合金化溶融亜鉛めっき鋼板のナットプロジェクション溶接性を評価するため、剥離試験として、下記の「押込み剥離試験」を行い、そのときの剥離荷重(ナット剥離荷重)を測定した。
剥離試験には、合金化溶融亜鉛めっき鋼板から採取した50mm角の試験片を使用した。試験片の中央には、直径11mmの貫通孔を形成させ、貫通孔と同心となるように、図2に示すような、座面に突起部(プロジェクション)を備えた六角溶接(M10)ナット(プロジェクションナット)を試験片に溶接した。溶接条件は、以下の通りとした。
溶接機:直流溶接機
加圧力:4000N
通電時間:133ミリ秒(8サイクル、60Hz)
電流値:9.5kA
プロジェクションナット11は、図2に示すように、溶接される面の6つの辺のうち1つおきの辺の中央部近傍にそれぞれ1個の溶接突起部12を備える。溶接突起部12は、略三角錐台状である。なお、図2は、ナット剥離試験に用いたプロジェクションナットの平面図である。
加圧力:4000N
通電時間:133ミリ秒(8サイクル、60Hz)
電流値:9.5kA
プロジェクションナット11は、図2に示すように、溶接される面の6つの辺のうち1つおきの辺の中央部近傍にそれぞれ1個の溶接突起部12を備える。溶接突起部12は、略三角錐台状である。なお、図2は、ナット剥離試験に用いたプロジェクションナットの平面図である。
(押込み剥離試験)
押込み剥離試験は、JIS B 1196 附属書Aの押込み剥離試験方法を参考にして行った。具体的には、評価材である合金化溶融亜鉛めっき鋼板を、スペーサーの穴径が30mmである冶具に設置し、評価材に溶接されたナットにボルトを通し、荷重の中心がボルトの中心と可能な限り一致させて、押込み速度5mm/分の条件で、前記ボルトを押し込んで、合金化溶融亜鉛鋼板からナットが剥離するときの荷重(ナット剥離荷重)を測定した。なお、このナット剥離荷重が3200N以上を合格とした。
押込み剥離試験は、JIS B 1196 附属書Aの押込み剥離試験方法を参考にして行った。具体的には、評価材である合金化溶融亜鉛めっき鋼板を、スペーサーの穴径が30mmである冶具に設置し、評価材に溶接されたナットにボルトを通し、荷重の中心がボルトの中心と可能な限り一致させて、押込み速度5mm/分の条件で、前記ボルトを押し込んで、合金化溶融亜鉛鋼板からナットが剥離するときの荷重(ナット剥離荷重)を測定した。なお、このナット剥離荷重が3200N以上を合格とした。
これらの結果を、製造条件、表層部における平均酸素濃度、組織分率、合金化溶融亜鉛めっき鋼板の板厚、及びめっき付着量とともに、表2及び表3に示す。なお、実験No.2に係る合金化溶融亜鉛めっき鋼板は、めっき性が悪くて、表層部における平均酸素濃度、めっき付着量及びナット剥離荷重を測定しておらず、表2及び表3において、「-」と示す。
<実験No.14~16(鋼種h,iを用いて、ラボ設備で製造した例)>
[熱間圧延]
製造した各ラボ材を、1250℃で30分間均熱し、仕上げ温度を885~920℃、仕上げ厚さ2.3mmとなるように熱間圧延し、下記表2に示す巻き取り温度で巻き取ったと模擬される冷却を行った。
[熱間圧延]
製造した各ラボ材を、1250℃で30分間均熱し、仕上げ温度を885~920℃、仕上げ厚さ2.3mmとなるように熱間圧延し、下記表2に示す巻き取り温度で巻き取ったと模擬される冷却を行った。
[酸洗]
熱間圧延させた鋼板(熱延材)は、平均濃度12質量%の塩酸になる酸洗槽に浸漬し酸洗を行った。具体的には、液温(酸洗液温度)を80℃にした酸洗液に、前記熱延材を10分間浸漬させた。
熱間圧延させた鋼板(熱延材)は、平均濃度12質量%の塩酸になる酸洗槽に浸漬し酸洗を行った。具体的には、液温(酸洗液温度)を80℃にした酸洗液に、前記熱延材を10分間浸漬させた。
[冷間圧延]
酸洗した鋼板を、板厚が2.3mmから1.4mmとなるように、冷間圧延した。
酸洗した鋼板を、板厚が2.3mmから1.4mmとなるように、冷間圧延した。
[焼鈍]
冷間圧延した冷延材を、厚み1.4mm、幅150mm、長さ70mmに切り出し、この切り出した冷延材を、ラボ熱処理炉(CALシミュレータ)を用いて焼鈍した。なお、表2において、炉の項目として、3と示す。具体的には、冷間圧延した冷延材を、表2に示す均熱時間、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。
冷間圧延した冷延材を、厚み1.4mm、幅150mm、長さ70mmに切り出し、この切り出した冷延材を、ラボ熱処理炉(CALシミュレータ)を用いて焼鈍した。なお、表2において、炉の項目として、3と示す。具体的には、冷間圧延した冷延材を、表2に示す均熱時間、表2に示す均熱温度で均熱した。その後、表2に示す冷却速度(平均冷却速度)で、表2に示す冷却停止温度まで冷却した。その後、表2に示す冷却停止温度で、表2に示す保持時間保持した。
[熱処理]
合金化溶融亜鉛めっき鋼板を得る、後述するめっき処理とは別に、めっき層は形成させないで、上記めっき処理におけるヒートパターンと同じヒートパターンとなるように熱処理を行った。なお、これにより得られた鋼板は、熱処理後鋼板と呼ぶ。すなわち、それぞれ、実験No.14~16に係る、熱処理後鋼板と呼ぶ。
合金化溶融亜鉛めっき鋼板を得る、後述するめっき処理とは別に、めっき層は形成させないで、上記めっき処理におけるヒートパターンと同じヒートパターンとなるように熱処理を行った。なお、これにより得られた鋼板は、熱処理後鋼板と呼ぶ。すなわち、それぞれ、実験No.14~16に係る、熱処理後鋼板と呼ぶ。
[金属組織]
実験No.14~16に係る、熱処理後鋼板における、金属組織(t/4位置の組織分率)を以下のように測定した。
実験No.14~16に係る、熱処理後鋼板における、金属組織(t/4位置の組織分率)を以下のように測定した。
まず、前記各熱処理後鋼板(厚み1.4mm、幅150mm、長さ70mm)を、厚み1.4mm、幅15mm、長さ10mmに切り出し、この切り出した熱処理後鋼板の圧延方向に平行な断面として、t/4位置の断面が現れるように研磨し、ナイタール液で腐食させて、金属組織を顕出させた。この面を、SEMにて、観察倍率1000倍で観察した。その観測結果から、点算法(100点)で、全組織に対する、マルテンサイト、ベイナイト、及びフェライトのそれぞれの面積率を算出した。具体的には、まず、撮影した写真に対し、等間隔の10本の縦線と、等間隔の10本の横線を、格子状になるように引いた。これにより、縦線と横線の交点を100個形成した。100個の交点のうち、マルテンサイト、ベイナイト、及びフェライトのそれぞれが位置する交点の数を計測した。マルテンサイトが位置する交点の数を、交点の総数(100個)で除することにより、マルテンサイトの面積率を求めた。ベイナイト及びフェライトに関しても、同様に、それぞれの面積率を求めた。
なお、金属組織は、以下のように見分けた。熱処理後鋼板のt/4位置の断面を観察したSEM写真の一例を図1に示す。図1において、1で示されるような、黒く見えてその内部に微細な白い粒子を有していないものをフェライトと判断した。図1において、2で示されるような、黒に見えて内部に微細な白い粒子を有するものをベイナイトと判断した。図1において、3で示されるような、全面白色に見えるものをマルテンサイトと判断した。また、前記熱処理後鋼板は、前記合金化溶融亜鉛めっき鋼板とヒートパターンが同じであるので、合金化溶融亜鉛めっき層の存在の有無以外は同じであり、例えば、金属組織も同じである。
実験No.14~16に係る各熱処理後鋼板の、引張強度、降伏強度、及び伸びは、上述した引張強度、降伏強度、及び伸びの測定方法と同様の方法により測定した。なお、前記熱処理後鋼板は、前記合金化溶融亜鉛めっき鋼板(実験No.1~13:実験No.1~13に係る各合金化溶融亜鉛めっき鋼板(実機めっき材)、実験No.14~16:実験No.14~16に係る各合金化溶融亜鉛めっき鋼板(ラボめっき材))とヒートパターンが同じであるので、合金化溶融亜鉛めっき層の存在の有無以外は同じであり、例えば、前記熱処理後鋼板の引張強度、降伏強度、及び伸びは、前記合金化溶融亜鉛めっき鋼板における鋼板の引張強度、降伏強度、及び伸びと同じである。
[表層部の平均酸素濃度]
実験No.14~16に係る各合金化溶融亜鉛めっき鋼板の、表層部における平均酸素濃度をグロー放電発光分析法(GDOES)により測定した。酸素濃度測定には、下記ナット剥離荷重を測定した剥離試験に用いた試験片を用い、溶接及び剥離試験の影響を受けていない領域について測定した。
実験No.14~16に係る各合金化溶融亜鉛めっき鋼板の、表層部における平均酸素濃度をグロー放電発光分析法(GDOES)により測定した。酸素濃度測定には、下記ナット剥離荷重を測定した剥離試験に用いた試験片を用い、溶接及び剥離試験の影響を受けていない領域について測定した。
合金化溶融亜鉛めっき鋼板の、表面からの板厚方向における、FeおよびZnの濃度プロファイルを求め、この濃度プロファイルでFeの濃度とZnの濃度とが同じになった箇所を、合金化溶融亜鉛めっき層と鋼板との界面とした。そして、合金化溶融亜鉛めっき鋼板の、表面からの板厚方向における酸素濃度のプロファイルを求め、前記界面から板厚方向内部に向かって1μmの位置までの1μm間の領域(表層部)の酸素濃度の平均値を算出した。この平均値が、表層部の平均酸素濃度である。
なお、GDOESの測定条件は以下の通りとした。
装置:マーカス型高周波グロー放電発光分析装置(rf-GD-OES)(株式会社堀場製作所製のGD-Profiler2)
測定周波数:ノンパルス測定
アノード径(分析領域):直径4mm
放電電力:35W
Arガス圧:6.0hPa
測定対象元素:Fe、Mn、Si、C、O、Zn、Cr
測定周波数:ノンパルス測定
アノード径(分析領域):直径4mm
放電電力:35W
Arガス圧:6.0hPa
測定対象元素:Fe、Mn、Si、C、O、Zn、Cr
[めっき処理]
焼鈍した鋼板(焼鈍材)を、めっき付着量が、片面あたり、50g/m2となるように、合金化溶融亜鉛めっき層を形成させた。具体的には、焼鈍した鋼板(焼鈍材)を、冷却停止温度(例えば、実験No.1の場合、460℃)で保持した後、Al濃度が0.13質量%、浴温460℃の亜鉛めっき浴に4秒間浸漬させ、引上げ速度100mm/秒で引き上げ、200L/分でワイピングすることによって、めっき処理を施した。このめっき処理を施した鋼板を、板温500℃で18秒間保持することによって、合金化処理を施した。そうすることによって、めっき鋼板として、実験No.14~16に係る合金化溶融亜鉛めっき鋼板が得られた。
焼鈍した鋼板(焼鈍材)を、めっき付着量が、片面あたり、50g/m2となるように、合金化溶融亜鉛めっき層を形成させた。具体的には、焼鈍した鋼板(焼鈍材)を、冷却停止温度(例えば、実験No.1の場合、460℃)で保持した後、Al濃度が0.13質量%、浴温460℃の亜鉛めっき浴に4秒間浸漬させ、引上げ速度100mm/秒で引き上げ、200L/分でワイピングすることによって、めっき処理を施した。このめっき処理を施した鋼板を、板温500℃で18秒間保持することによって、合金化処理を施した。そうすることによって、めっき鋼板として、実験No.14~16に係る合金化溶融亜鉛めっき鋼板が得られた。
[めっき付着量]
実験No14~16に係る各合金化溶融亜鉛めっき鋼板の、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、上述しためっき付着量の測定方法と同様の方法により測定した。
実験No14~16に係る各合金化溶融亜鉛めっき鋼板の、前記合金化溶融亜鉛めっき層の付着量(めっき付着量)は、上述しためっき付着量の測定方法と同様の方法により測定した。
[めっき性およびナット剥離荷重]
実験No.14~16に係る各合金化溶融亜鉛めっき鋼板の、めっき性、及びナット剥離荷重は、上述しためっき性、及びナット剥離荷重の測定方法と同様の方法により測定した。
実験No.14~16に係る各合金化溶融亜鉛めっき鋼板の、めっき性、及びナット剥離荷重は、上述しためっき性、及びナット剥離荷重の測定方法と同様の方法により測定した。
これらの結果を、組織分率、引張強度、降伏強度、伸び、及び合金化溶融亜鉛めっき鋼板の板厚とともに、表3に示す。なお、実験No.2に係る合金化溶融亜鉛めっき鋼板は、めっき性が悪くて、ナット剥離荷重を測定しておらず、表3において、「-」と示す。
これらの結果を、製造条件、表層部における平均酸素濃度、組織分率、合金化溶融亜鉛めっき鋼板の板厚、及びめっき付着量とともに、表2及び表3に示す。
表2及び表3によれば、上記成分組成を満たす鋼素材を用い、上述の製造方法によって、合金化溶融亜鉛めっき鋼板を製造すると(実験No.1、11、及び13)、表層部における平均酸素濃度が0.10質量%以下であり、前記t/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下であるめっき鋼板が得られる。そして、この実験No.1、11、及び13に係るめっき鋼板は、引張強度が1100~1300MPa、降伏強度が800MPa以上と高強度であり、さらに、伸びが8.0%以上である合金化溶融亜鉛めっき鋼板である。さらに、めっき性だけではなく、ナット剥離荷重も3200N以上と高く、ナットプロジェクション溶接性にも優れている。
また、熱間圧延時の巻き取り温度が低いと(実験No.2、6、及び7)、良好な合金化溶融亜鉛めっき層を形成することができなかった。
また、露点が高い条件下で焼鈍した場合(実験No.3、5、7、10、及び15)、表層部における平均酸素濃度が高く、ナット剥離荷重も低かった。このことから、露点が高いと、溶接界面部に存在するSi系の酸化物が多くなってしまい、ナットプロジェクション溶接性が低下すると考えられる。
また、均熱温度が高い条件下で焼鈍した場合(実験No.8、9、12、及び14~16)、表層部における平均酸素濃度が高く、ナット剥離荷重も低かった。このことから、均熱温度が高いと、溶接界面部に存在するSi系の酸化物が多くなってしまい、ナットプロジェクション溶接性が低下すると考えられる。
また、成分組成として、B含有量が少ない場合(実験No.4~7)、引張強度が1100MPa未満であり、降伏強度が800MPa未満であった。このことは、ベイナイト及びマルテンサイトのうちの少なくとも一方が少なく、フェライトが多いことによると考えられる。
また、成分組成として、Si含有量が多い場合(実験No.6~10、12、及び16)、表層部における平均酸素濃度が高く、ナット剥離荷重も低かった。Si含有量が多い場合には、めっき性を確保するために、溶接界面部に存在するSi系の酸化物が多くなってしまい、ナットプロジェクション溶接性が低下すると考えられる。なお、成分組成として、Si含有量が多く、熱間圧延時の巻き取り温度が低い場合(実験No.6)、NOFタイプの焼鈍炉を用いても、めっき性が不充分であった。
この出願は、2018年3月28日に出願された日本国特許出願特願2018-062586及び2019年2月19日に出願された日本国特許出願特願2019-027330を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板が提供される。また、本発明によれば、ナットプロジェクション溶接性及びめっき性に優れた合金化溶融亜鉛めっき鋼板の製造方法が提供される。
Claims (2)
- 鋼板と、前記鋼板の表面上に合金化溶融亜鉛めっき層とを備える合金化溶融亜鉛めっき鋼板であって、
前記鋼板は、質量%で、
C:0.10%以上0.25%以下、
Si:0%超0.50%以下、
Mn:2.0%超3.5%以下、
P:0%超0.1%以下、
S:0%超0.05%以下、
Al:0.01%以上0.10%以下、
Ti:0%超0.1%以下、
B:0.0020%以上0.0050%以下、
N:0%超0.01%以下、
Cr:0%超0.5%以下、及び
Mo:0%超0.5%以下
を含有し、残部が鉄及び不可避的不純物であり、
前記鋼板は、前記鋼板と前記合金化溶融亜鉛めっき層との界面から前記鋼板に向かって1μmまでの領域における平均酸素濃度が0.10質量%以下であり、
前記合金化溶融亜鉛めっき鋼板の板厚をtとしたときのt/4位置における金属組織において、マルテンサイトが50~85面積%であり、ベイナイトが15~50面積%であり、フェライトが5面積%以下である合金化溶融亜鉛めっき鋼板。 - 請求項1に記載の合金化溶融亜鉛めっき鋼板を製造する方法であって、
請求項1に記載の鋼板の成分組成を有する鋼素材を、1100~1300℃で均熱し、仕上げ温度を850~950℃として熱間圧延し、630~680℃で巻き取ることによって、熱延材を得て、
前記熱延材を、3~20質量%の塩酸を用いて、60~90℃の条件下で、35~200秒間酸洗し、
前記酸洗後の熱延材を冷間圧延することによって、冷延材を得て、
前記冷延材を、Ac3点以上880℃未満で、露点が-25℃以下の条件下で均熱し、380~500℃の冷却停止温度まで3.0℃/秒以上で冷却し、前記冷却停止温度で15秒間以上保持する焼鈍を行うことによって、鋼板を得て、
前記鋼板にめっき処理を施すことによって、前記鋼板上に前記合金化溶融亜鉛めっき層を形成する合金化溶融亜鉛めっき鋼板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/040,348 US11408047B2 (en) | 2018-03-28 | 2019-03-12 | Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method |
CN201980020814.2A CN111886353B (zh) | 2018-03-28 | 2019-03-12 | 合金化热浸镀锌钢板以及合金化热浸镀锌钢板的制造方法 |
KR1020207030559A KR102503320B1 (ko) | 2018-03-28 | 2019-03-12 | 합금화 용융 아연도금 강판, 및 합금화 용융 아연도금 강판의 제조 방법 |
MX2020010006A MX2020010006A (es) | 2018-03-28 | 2019-03-12 | Lamina de acero aleada galvanizada en caliente y metodo de produccion de la misma. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-062586 | 2018-03-28 | ||
JP2018062586 | 2018-03-28 | ||
JP2019-027330 | 2019-02-19 | ||
JP2019027330A JP7137492B2 (ja) | 2018-03-28 | 2019-02-19 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188235A1 true WO2019188235A1 (ja) | 2019-10-03 |
Family
ID=68061642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009880 WO2019188235A1 (ja) | 2018-03-28 | 2019-03-12 | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111886353B (ja) |
MX (1) | MX2020010006A (ja) |
WO (1) | WO2019188235A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146606A1 (ja) * | 2012-03-27 | 2013-10-03 | 株式会社神戸製鋼所 | 板幅方向における中央部と端部の強度差が少なく、曲げ加工性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびこれらの製造方法 |
WO2013161831A1 (ja) * | 2012-04-23 | 2013-10-31 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 |
WO2016103535A1 (ja) * | 2014-12-22 | 2016-06-30 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP6281671B1 (ja) * | 2017-07-31 | 2018-02-21 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5176885B2 (ja) * | 2008-11-10 | 2013-04-03 | 新日鐵住金株式会社 | 鋼材及びその製造方法 |
JP2015034334A (ja) * | 2013-07-12 | 2015-02-19 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
CN103757534B (zh) * | 2013-12-27 | 2016-01-20 | 首钢总公司 | 一种具有良好凸缘焊接性能的冷轧钢板及其生产方法 |
-
2019
- 2019-03-12 MX MX2020010006A patent/MX2020010006A/es unknown
- 2019-03-12 CN CN201980020814.2A patent/CN111886353B/zh active Active
- 2019-03-12 WO PCT/JP2019/009880 patent/WO2019188235A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146606A1 (ja) * | 2012-03-27 | 2013-10-03 | 株式会社神戸製鋼所 | 板幅方向における中央部と端部の強度差が少なく、曲げ加工性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびこれらの製造方法 |
WO2013161831A1 (ja) * | 2012-04-23 | 2013-10-31 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品 |
WO2016103535A1 (ja) * | 2014-12-22 | 2016-06-30 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP6281671B1 (ja) * | 2017-07-31 | 2018-02-21 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板 |
Also Published As
Publication number | Publication date |
---|---|
CN111886353B (zh) | 2022-02-22 |
CN111886353A (zh) | 2020-11-03 |
MX2020010006A (es) | 2020-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6525114B1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
JP6777173B2 (ja) | スポット溶接用高強度亜鉛めっき鋼板 | |
WO2018146828A1 (ja) | 高強度亜鉛めっき鋼板及びその製造方法 | |
WO2019189842A1 (ja) | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 | |
JP6249113B2 (ja) | 高降伏比型高強度亜鉛めっき鋼板及びその製造方法 | |
JP6086162B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
WO2015093043A1 (ja) | 高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP6094649B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5531757B2 (ja) | 高強度鋼板 | |
JP5825343B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP6249140B1 (ja) | 高降伏比型高強度亜鉛めっき鋼板及びその製造方法 | |
JP6384623B2 (ja) | 高強度鋼板およびその製造方法 | |
WO2017131055A1 (ja) | 高降伏比型高強度亜鉛めっき鋼板及びその製造方法 | |
WO2019189841A1 (ja) | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 | |
WO2015133061A1 (ja) | 冷延鋼板、その製造方法、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板 | |
WO2018142849A1 (ja) | 高強度溶融亜鉛めっき熱延鋼板およびその製造方法 | |
JP7137492B2 (ja) | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 | |
JP6323617B1 (ja) | 高強度亜鉛めっき鋼板及びその製造方法 | |
JP5167867B2 (ja) | 表面性状に優れた合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2010053074A1 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2019188235A1 (ja) | 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法 | |
JP6136672B2 (ja) | 高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2024203603A1 (ja) | ホットスタンプ用亜鉛系めっき鋼板およびその製造方法 | |
CN116648525A (zh) | 镀覆性优异的高强度热浸镀锌钢板及其制造方法 | |
JP2010024525A (ja) | 合金化亜鉛めっき鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19774602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207030559 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19774602 Country of ref document: EP Kind code of ref document: A1 |