WO2013161767A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2013161767A1
WO2013161767A1 PCT/JP2013/061802 JP2013061802W WO2013161767A1 WO 2013161767 A1 WO2013161767 A1 WO 2013161767A1 JP 2013061802 W JP2013061802 W JP 2013061802W WO 2013161767 A1 WO2013161767 A1 WO 2013161767A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
material portion
element according
absorbing material
refractive index
Prior art date
Application number
PCT/JP2013/061802
Other languages
English (en)
French (fr)
Inventor
総 石戸
保高 弘樹
健介 小野
琢治 野村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380021772.7A priority Critical patent/CN104246544B/zh
Publication of WO2013161767A1 publication Critical patent/WO2013161767A1/ja
Priority to US14/524,893 priority patent/US9753299B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Definitions

  • the present invention relates to an optical element.
  • an optical diaphragm, a neutral density (ND) filter, or the like is used to adjust the amount of incident light incident on a lens or the like.
  • Cameras are increasingly installed in mobile phones and mobile terminals, and optical diaphragms are also used in such cameras (for example, Patent Document 1).
  • a typical optical aperture is shown in FIG.
  • the diaphragm 910 is formed in a plate shape with a light shielding material and has an opening 911 formed at the center thereof. Light in the peripheral portion is shielded, and light is transmitted through the central portion where the opening 911 is formed. Is.
  • FIG. 1A is a top view of the diaphragm 910, and FIG.
  • FIG. 1B shows the light transmittance at the one-dot chain line 1A-1B in FIG.
  • the size of mobile phones and mobile terminals has been reduced and the cameras have been downsized.
  • the optical diaphragm used is also reduced in size, in the small optical diaphragm 910, the occurrence of light diffraction around the opening 911 cannot be ignored, and it is difficult to increase the resolution. That is, there has been a demand for a small optical aperture that does not deteriorate the resolution while the number of pixels of the camera is increasing.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an optical element in which the light transmittance monotonously decreases from the central portion toward the peripheral portion as shown in FIG. To do.
  • the present invention is an optical element whose light transmittance monotonously decreases from the central portion toward the peripheral portion, and is formed of a material that absorbs a part of the light, and has a thickness from the central portion toward the peripheral portion. Is formed of a material that transmits light, and is formed of a material that transmits light, and a transparent material portion that is laminated on the absorbing material portion, and includes the absorbing material portion and the transparent material portion. The combined thickness is substantially constant.
  • an optical element in which the light transmittance monotonously decreases from the central portion toward the peripheral portion. Moreover, this element is formed by laminating an absorbing material portion and a transparent material portion, and the combined thickness of the absorbing material portion and the transparent material portion is substantially constant. Compared to the case where the transparent material part is not laminated, the optical action other than dimming does not work, so there is no side effect of diffusing light even if it is used in the optical path or taken out of the optical path Can be provided.
  • the optical element in this Embodiment is demonstrated based on FIG.
  • the optical element in the present embodiment is an optical filter and is called a so-called apodized filter. Specifically, it has the absorption material part 10 formed with the material which absorbs visible light, and the transparent material part 20 formed with the material which permeate
  • the optical filter of this embodiment the thickness D 1 of the absorbent material portion 10 is formed so as to continuously increase gradually toward the peripheral portion than the central portion. Thus, by forming such that the thickness D 1 of the absorbent material portion 10 becomes gradually thicker, the amount of light also increases gradually absorbed in the absorption material portion 10, the amount of light transmitted through the optical filter Gradually decreases.
  • the optical filter has a transmittance that gradually decreases gradually from the central portion toward the peripheral portion.
  • an optical filter in which the transmittance of the absorbing material portion 10 has a Gaussian distribution from the central portion toward the peripheral portion can be obtained.
  • visible light means light in the wavelength range of 380 nm to 700 nm.
  • the optical element in this Embodiment may be formed on the board
  • the transparent material portion 20 is formed so as to fill the concave portion where the absorbent material portion 10 is thinly formed, and the transparent material portion 20 is formed from the end of the absorbent material portion 10. comprising a portion of the thickness D 3 which is formed on the end portion and the absorbing material portion 10 of the thickness D 2, which is formed in the recess.
  • the thickness D 1m of the absorbent material portion 10 in the central portion is formed to be 0.5 ⁇ m or less. That is, it is formed so that D 1m ⁇ 0.5 ⁇ m. This is because a part of the light is absorbed by the absorbing material part 10, and if the absorbing material part is formed with a thickness of 0.5 ⁇ m or more, the transmittance of light passing through the central part cannot be kept high.
  • the thickness D 1m is the thickness of the portion of the absorbent material portion 10 where the thickness D 1 is the thinnest.
  • the transmittance is preferably given by a Gaussian function, and will be exemplified below.
  • is a real number. ⁇ may be determined according to the half-value width of the transmittance. For example, when the radius is 1 mm and the transmittance is 50%, ⁇ may be 0.85.
  • two or more optical filters in the present embodiment can be arranged and used as one optical filter.
  • a plurality of optical filters having different diameters are manufactured on a support substrate, which will be described later, and the diaphragm diameters can be switched by arranging and driving the optical filters as a plurality of optical filters having different diaphragm sizes in the optical path.
  • the thickness of the absorbing material portion and the transparent material portion combined by laminating the transparent material portion can produce a substantially constant optical filter.
  • the effective region in the optical filter of the present embodiment refers to a region having a visible light transmittance higher than 1%.
  • the optical filter in the present embodiment is configured so that optical action other than dimming does not work. Therefore, the sum of the thicknesses of D 1 and D 2 is constant regardless of X. Further, it is preferable that the refractive index n 1 of the material forming the absorbing material part 10 and the refractive index n 2 of the material forming the transparent material part 20 are substantially equal. That is,
  • the refractive index varies depending on the wavelength, the refractive index is preferably
  • the refractive index n 1 of the material forming the absorbing material part 10 and the refractive index n 2 of the material forming the transparent material part 20 are substantially equal.
  • the material forming the absorbent material portion 10 and the material forming the transparent material portion 20 are preferably materials having substantially the same refractive index temperature change rate.
  • is preferably 100 ppm / K or less, and more preferably 20 ppm / K or less.
  • the temperature change rate of a refractive index may be described as a refractive index temperature coefficient.
  • the optical filter in the present embodiment has the refractive index n of the material forming the transparent material portion 20 and the product of the refractive index n 1 and the thickness D 1 of the material forming the absorbing material portion 10.
  • P is an optical path length, and it is preferable that the optical filter has an optical path length difference equal to or less than a wavelength (also referred to as ⁇ ) within the effective region.
  • the optical path length of the optical filter is increased by the amount of the antireflection film, but in this case as well, the optical path length difference is preferably ⁇ or less in the effective region. .
  • the antireflection film 30 is formed on one surface or both surfaces of the optical filter.
  • FIG. 3 shows that the antireflection film 30 is formed on both surfaces of the optical filter, but the antireflection film 30 is formed only on one surface where light enters the optical filter. May be.
  • the antireflection film 30 is formed of, for example, a dielectric multilayer film, and has a low reflectance at a wavelength of 430 nm to 630 nm, and preferably has a reflectance of 2% or less in this wavelength region.
  • the antireflection film 30 preferably reflects light having a wavelength of less than 380 nm and transmits light having a wavelength of 380 nm or more.
  • the optical element of the present invention preferably contains an organic material.
  • the organic material is easily deteriorated by ultraviolet rays, and the light deterioration of the element is suppressed by reflecting light of less than 380 nm. Can do.
  • the arrangement location of the present element is not particularly limited, but an effect of suppressing ultraviolet deterioration of other optical components can also be expected.
  • the optical filter in the present embodiment may be laminated on a resin film that transmits visible light.
  • the absorbent material portion 10 is laminated on the resin film 130
  • the transparent material portion 20 is laminated on the resin film 131. Yes.
  • the absorbent material portion 10 preferably contains an inorganic pigment, the thermal expansion coefficient may be smaller than that of the transparent material portion 20.
  • the amount of curvature can be reduced.
  • a film having a larger thermal expansion coefficient than that of the absorbent material portion 10 is used, and in the case shown in FIG. 4B, a film having a smaller thermal expansion coefficient than that of the transparent material portion 20 is used. This is effective in reducing the amount of warping.
  • the film plays a role of a support substrate having excellent heat resistance, so that the optical filter can be prevented from being deformed.
  • a film having a glass transition point higher than that of the absorbent material portion 10 and the transparent material portion 20 can be preferably used.
  • the manufacturing method of this optical filter is demonstrated in FIG. 7 mentioned later as an example.
  • the resin film has high rigidity and is not easily deformed. If the resin film is deformed into a concave shape at the time of mold molding, an unintended optical action may occur, resulting in complicated lens control in the camera.
  • the optical filter is preferably excellent in handling as an optical component.
  • the resin film preferably has high rigidity, and the Young's modulus of the resin film is preferably 1.0 GPa or more, and more preferably 2.0 GPa or more.
  • the absolute value of the difference between the refractive index of the resin film and the refractive index of the transparent material portion 20 is small because the reflectance at the interface is low and the transmittance of the optical filter is high.
  • the absolute value of the difference between the refractive index of the resin film and the refractive index of the transparent material portion 20 is preferably 0.1 or less, and more preferably 0.05 or less.
  • the refractive index varies depending on the wavelength, the absolute value of the difference in refractive index in the visible wavelength band is preferably 0.1 or less, and more preferably 0.05 or less.
  • the absolute value of the difference between the refractive index of the resin film and the refractive index of the absorbing material portion 10 is small because the reflectance at the interface is low and the transmittance of the optical filter is high.
  • the absolute value of the difference between the refractive index of the resin film and the refractive index of the transparent material portion 20 is preferably 0.1 or less, and more preferably 0.05 or less.
  • the refractive index varies depending on the wavelength
  • the absolute value of the difference in refractive index in the visible wavelength band is preferably 0.1 or less, and more preferably 0.05 or less.
  • the optical filter has an optical path length difference of ⁇ or less within the effective region.
  • the optical path length becomes longer than the above-mentioned P by the refractive index and thickness of the resin film, and the optical path length of the optical filter becomes longer, but in this case, the optical path length difference in the effective region is ⁇ or less.
  • the configuration of the optical filter of the present invention is not limited to one, but can take a plurality of configurations. In any configuration, the optical path length difference is preferably ⁇ or less within the effective region.
  • the optical filter according to the present embodiment may have a structure in which the absorbent material portion 10 is formed by laminating two concave structures, and in this structure, it is not necessarily symmetrical in the thickness direction. I do not care. That is, D 2a and D 2b may not be equal, and similarly D 3a and D 3b may not be equal.
  • the optical filter may be fabricated on a resin film or a glass substrate that can also be used as a support substrate.
  • the optical filter is not only used independently as described above, but may be used by being laminated on an arbitrary member in the camera module.
  • it can be laminated on a cover glass, a lens, or an IR cut filter.
  • white plate glass or chemically tempered glass is preferably used.
  • the white plate glass include crown glass and borosilicate glass that are low in impurities such as iron, and chemically strengthened glass includes aluminosilicate glass and soda lime glass whose surface is ion-exchanged.
  • a ceramic material that is transparent in the visible range such as sapphire, or a resin material that is transparent in the visible range can also be used.
  • the resin material polycarbonate resin or acrylic resin is preferably used.
  • the cover glass may be laminated with a dielectric multilayer film that transmits visible light and reflects infrared light and ultraviolet light, and an antireflection film that transmits visible light.
  • the dielectric multilayer film is formed by alternately laminating a low refractive index material and a high refractive index material.
  • Low refractive index materials include silicon oxide (SiO 2 ) and magnesium fluoride (MgF 2 )
  • high refractive index materials include titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), and tantalum oxide (Ta 2 O). 5 ), zirconium oxide (ZrO 2 ) and the like.
  • an intermediate refractive index material layer may be inserted between the low refractive index material layer and the high refractive index material layer.
  • the intermediate refractive index material include aluminum oxide (Al 2 O 3 ).
  • Al 2 O 3 aluminum oxide
  • the above-mentioned low refractive index material, high refractive index material and intermediate refractive index material can be used. It is preferable to use a plurality of stacked layers because the reflectance can be lowered.
  • the opposite surface may be provided with a coating for preventing dirt and preventing fingerprint adhesion.
  • a material having a low surface energy is preferable, and a fluorine-based material, a silicone-based material, or a fluorosilicone-based material can be used.
  • perfluoropolyether silane it is preferable to use perfluoropolyether silane.
  • the coating may be applied directly to the cover glass, or after an antireflection film is formed on the cover glass, it may be applied thereon.
  • the surface provided with the coating is disposed on the outside, and the surface on which the optical filter of the present invention is laminated is disposed on the inside.
  • the inner side is a side closer to the solid-state imaging device described below.
  • the IR cut filter is also called an infrared cut filter, and is a color correction filter that cuts the wavelength in the near infrared region.
  • the IR cut filter is used for color correction of a solid-state imaging device such as a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD), and there are a plurality of methods.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • it is a glass material that absorbs light having a wavelength of about 700 nm or more, and phosphate glass or fluorophosphate glass containing Cu 2+ ions is preferably used.
  • the phosphoric acid-based glass has P 5+ as a main component of a cation, an alkali metal ion (Li + , Na + , K + ), an alkaline earth metal ion (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ), Al 3+ , Zn 2+ or the like may be contained, and the main component of the anion is O 2 ⁇ .
  • an alkali metal ion Li + , Na + , K +
  • an alkaline earth metal ion Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+
  • Al 3+ , Zn 2+ or the like may be contained, and the main component of the anion is O 2 ⁇ .
  • fluorophosphate glass in addition to the above anion, F - include.
  • the ions contained in the phosphate glass and fluorophosphate glass are not necessarily limited to the above, and may contain other ionic species.
  • a method using a dielectric multilayer film and a dielectric multilayer film that transmits visible light and reflects infrared light is used.
  • the dielectric multilayer film has a high reflectance of infrared light having a wavelength of about 700 nm or more, and is designed to cut infrared light.
  • the dielectric multilayer film is formed on a substrate that is transparent in the visible region, such as glass.
  • the cut wavelength of the dielectric multilayer film Shifts to shorter wavelengths.
  • the incident angle of light from the vertical is assumed to be zero, the transmittance at a wavelength of about 700 nm is high when the incident angle is small, while the transmittance is low when the incident light is oblique and the incident angle is large. turn into. That is, there is a problem that the transmittance varies depending on the incident angle. In order to improve this, it is used in combination with a material having little incident angle dependency, that is, an absorbing material.
  • a dye having absorption near 700 nm is preferable, and a resin containing the dye is preferably used in combination with the dielectric multilayer film.
  • the dielectric multilayer film may be formed by forming a film on a resin, or may be formed by forming a film on a transparent substrate such as glass. In the latter case, the resin is formed on the surface opposite to the surface on which the dielectric multilayer film is formed.
  • the absorbing material combined with the dielectric multilayer film may be phosphate glass or fluorophosphate glass containing the above Cu 2+ ions in addition to the dye.
  • a dielectric multilayer film that reflects ultraviolet light or an antireflection film that transmits visible light may be used in combination with an IR cut filter.
  • the lens a glass lens or a plastic lens is preferably used.
  • a plurality of convex lenses and concave lenses are used in the camera module, but the optical element can be laminated on any lens in the camera module.
  • the convex portion of the lens may be regarded as a transparent resin in the optical element described later, and an absorbing material may be laminated on the convex portion.
  • the absorbent material portion of the present invention and a transparent resin can be laminated on the plane side of the plano-convex lens or plano-concave lens.
  • the lens may be laminated with an antireflection film, and after the optical element is laminated on the lens, the antireflection film may be laminated on the optical element, or the optical element is laminated.
  • An antireflection film may be laminated on the non-reflection surface, and an antireflection film may be laminated on both the optical element and the surface where the optical element is not laminated.
  • Absorbent material part In the absorbent material portion of the present invention, (A) the absorbent material is contained in (B) the transparent resin.
  • Absorbing material include anthraquinone, phthalocyanine, benzimidazolone, quinacridone, azo chelate, azo, isoindolinone, pyranthrone, indanthrone, anthrapyrimidine, dibromoanthanthrone.
  • Organic pigments and organic pigments such as gold, silver, copper, tin, nickel, palladium, and their alloys such as flavinthrone, perylene, perinone, quinophthalone, thioindigo, dioxazine, aniline black, nigrosine black Metal nanoparticles used, barium sulfate, zinc white, lead sulfate, yellow lead, red rose, ultramarine, bitumen, chromium oxide, iron black, lead red, zinc sulfide, cadmium yellow, cadmium red, zinc, manganese purple, cobalt , Magnetite, carbon black, carbon nano Inorganic pigments such as tubes, graphene, titanium black, composite oxides of copper, iron, and manganese can be used.
  • titanium black is preferable because of its excellent dispersibility and high absorption coefficient. When added to a transparent resin to be described later and molded, the addition concentration of titanium black can be lowered, so that the viscosity can be kept low.
  • Titanium black is a low-order titanium oxide or compound represented by TiNxOy (0 ⁇ x ⁇ 1.5 and 0.16 ⁇ y ⁇ 2) or (1.0 ⁇ x + y ⁇ 2.0 and 2x ⁇ y)
  • the particles can be easily obtained.
  • the average particle size of the titanium black particles used in the present invention is preferably 100 nm or less, and more preferably 30 nm or less.
  • the average particle size is the primary particle size of particles obtained by photographing titanium black particles contained in an organic solvent with a transmission electron microscope (TEM), and means the number average particle size of 100 particles. .
  • TEM transmission electron microscope
  • a dispersant when particles are used, a dispersant may be used, and the same applies to titanium black.
  • the dispersant is used for uniformly dispersing in the resin.
  • Dispersants include polymer dispersants (alkyl ammonium and its salts, alkylol ammonium salts of copolymers having acid groups, hydroxyl group-containing carboxylic acid esters, carboxylic acid-containing copolymers, amide group-containing copolymers, pigments Derivatives, silane coupling agents, etc. Further, there may be functional groups or polymerizable functional groups that interact with the resin in the molecule of the dispersant, or these may be used alone. Well, two or more types may be used in combination.
  • the proportion of titanium black in the resin is preferably 0.3% by mass or more and 15% by mass or less, and more preferably 0.5% by mass to 13% by mass. This corresponds to an OD value at 10 ⁇ m of 0.2 or more and 4.0 or less. If it is less than 0.3% by mass, a film thickness of 100 ⁇ m or more is required to develop a desired transmittance, and molding may be very difficult. On the other hand, if it is greater than 15% by mass, the reduction in transmittance per unit film thickness becomes large, so that it is essential that the remaining film is almost zero in the central portion, which makes production difficult.
  • the transmittance of carbon black monotonously decreases from 700 nm to 380 nm, and exhibits characteristics opposite to those of titanium black. Therefore, by combining these two, the wavelength dependency of the transmittance can be reduced.
  • the carbon black used in the present invention is not particularly limited, but particles synthesized by an incomplete combustion method or a thermal decomposition method can be used.
  • carbon black synthesized by the channel black method which is a kind of incomplete combustion method, can be particularly preferably used because it has many surface functional groups and can be easily dispersed uniformly in the resin.
  • the average particle size of the carbon black particles used in the present invention is preferably 500 nm or less, and more preferably 200 nm or less.
  • the average particle diameter is a primary particle diameter of particles obtained by photographing carbon black particles contained in an organic solvent with a transmission electron microscope (TEM), and means the number average particle diameter of 100 particles. .
  • the proportion of carbon black in the resin is preferably 0.3% by mass or more and 15% by mass or less, and more preferably 0.5% by mass to 13% by mass. If it is less than 0.3% by mass, a film thickness of 100 ⁇ m or more is required to develop a desired transmittance, and molding may be very difficult. On the other hand, if it is larger than 15% by mass, the decrease in transmittance per unit film thickness becomes large, so that it is essential that the remaining film becomes almost zero in the central portion, which makes it difficult to produce an optical element.
  • the mass ratio of titanium black to carbon black is preferably between 0.5 and 3.0, more preferably between 0.8 and 2.0.
  • the wavelength dispersion of transmittance is small.
  • the chromatic dispersion of the transmittance is defined as the absolute value of the difference in transmittance between the wavelength 450 nm and the wavelength 650 nm, that is,
  • 5 %.
  • permeability in wavelength 380nm-700nm be visible light transmittance
  • the haze is small.
  • a material having absorption in the visible region is prepared, and the haze at a total light transmittance Tt of 10% is preferably 10% or less, and more preferably 5% or less.
  • thermoplastic resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polycarbonate (PC), cycloolefin (COP), polyimide (Thermosetting resins such as PI), polyetherimide (PEI), polyamide (PA), and polyamideimide (PAI), and energy ray curable resins such as acrylic and epoxy can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • COP cycloolefin
  • Thermosetting resins such as PI
  • PEI polyetherimide
  • PA polyamide
  • PAI polyamideimide
  • energy ray curable resins such as acrylic and epoxy
  • an absorbing material may be added at the stage of a polymerization precursor compound (hereinafter also referred to as a polymerizable compound) such as an oligomer or a monomer, and then cured.
  • a polymerizable compound such as an oligomer or a monomer
  • energy beam curable resins are preferably used.
  • a polymerizable compound can be used without particular limitation as long as it is a component that is cured by a polymerization reaction to form a cured product.
  • a radical polymerization type curable resin, a cationic polymerization type curable resin, and a radical polymerization type curable compound (monomer) can be used without particular limitation.
  • Radical polymerization type curable resins include (meth) acryloyloxy groups, (meth) acryloylamino groups, (meth) acryloyl groups, allyloxy groups, allyl groups, vinyl groups, vinyloxy groups, etc. Examples of the resin include a group having a bond.
  • the polymerizable compound used in the present invention is not particularly limited, but ethoxylated o-phenylphenol acrylate, 2- (perfluorohexyl) ethyl methacrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, Cyclodecane (meth) acrylate, tricyclodecane methanol (meth) acrylate, tricyclodecane ethanol (meth) acrylate, 1-adamantyl acrylate, 1-adamantyl methanol acrylate, 1-adamantyl ethanol acrylate, 2-methyl-2-adamantyl acrylate Monofunctional compounds such as 2-ethyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, and 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene Diethylene glycol di (meth) acrylate, 1,
  • the polymerizable compound may contain one type or two or more types. When only a monofunctional compound is used, cohesive failure may occur at the time of mold release after molding. Therefore, it is preferable to include a polyfunctional compound having a bifunctional or higher functionality.
  • the polyfunctional compound in the polymerizable compound group is preferably 1% by mass or more and 90% by mass or less, and more preferably 10% by mass or more and 80% by mass or less. When the amount of the polyfunctional compound is less than 1% by mass, the effect of improving the cohesive failure is insufficient, and when it exceeds 90% by mass, shrinkage after polymerization may be a serious problem.
  • a polymerizable compound that causes a ring-opening reaction such as an epoxy group can also be used.
  • a polyfunctional compound having a bifunctional or higher functionality since a monofunctional compound alone may cause cohesive failure at the time of mold release after molding, it is preferable to include a polyfunctional compound having a bifunctional or higher functionality.
  • the polyfunctional compound in the polymerizable compound group is preferably 1% by mass or more and 90% by mass or less, and more preferably 10% by mass or more and 80% by mass or less.
  • Radical initiators used for acrylic monomers include oxime ester initiators, titanocene initiators, acetophenone initiators, benzoin initiators, benzophenone initiators, thioxanthone initiators, ⁇ -aminoketone initiators, ⁇ -Photo radical initiators such as hydroxyketone initiators and thermal radical initiators such as peroxides, azo compounds and redox initiators can be used.
  • oxime ester initiators are preferably used because of the high activity of the initiator.
  • a radical initiator one type may be used alone, or two or more types may be used in combination.
  • the amount of the radical initiator is preferably 0.05 to 5% by mass with respect to the total amount of the polymerizable compounds.
  • radical initiators examples include IRGACURE784, IRGACURE OXE-01, IRGACURE OXE-02 (all manufactured by BASF).
  • additives may be included as necessary.
  • the additive include an antioxidant, a light stabilizer, a surfactant, a photosensitizer, and a resin other than the polymerizable compound.
  • examples of the antioxidant include phenolic antioxidants, sulfur antioxidants, and phosphorus antioxidants.
  • examples of the light stabilizer include hindered amine light stabilizers (HALS).
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant. Further, the surfactant may be a surfactant containing a fluorine atom.
  • the adjustment method of the photocurable absorbent material in the present invention is to add a dispersant and an organic solvent to the absorbent particles, and after performing a dispersion treatment, add a polymerizable compound, a radical initiator and other additives as required, It is obtained by distilling off the organic solvent by evaporation.
  • Examples of the dispersion treatment method include an ultrasonic homogenizer, stirring with a magnetic stirrer, stirring with a winged stirring bar, a high-pressure emulsifier, a wet pulverizer, a sand mill, and a ball mill.
  • These dispersion processes may be performed independently, or may be performed a plurality of times by combining a plurality of types of dispersion methods.
  • the organic solvent to be used can be used without particular limitation as long as the absorbent material is easily dispersed using a dispersant and the polymerizable compound, radical initiator and other additives are well dissolved.
  • a solvent satisfying these conditions alcohols, ketones, esters, alkanes, aromatics and the like can be preferably used. Specific examples include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl acetate, ethyl acetate, butyl acetate, cyclohexanone and the like.
  • Organic solvents may be used alone or in combination of two or more.
  • the concentration at the time of grinding is not particularly limited, but is preferably in the range of 0.01 mg / mL to 10 mg / mL, and more preferably in the range of 0.1 mg / mL to 5 mg / mL. If the concentration at the time of pulverization is lower than 0.01 mg / mL, the above-described evaporation process becomes complicated, and it is not preferable. If the concentration is higher than 10 mg / mL, the particles are likely to partially aggregate and haze is reduced. This is because it causes.
  • a dispersing agent and an organic solvent are added to the absorbent material powder 110 shown in FIG. 6A and irradiated with ultrasonic waves. After that, zirconia beads are added and the above dispersion treatment is performed, whereby FIG.
  • the organic solvent is removed, and the photocurable absorbent material shown in FIG. 6 (c). 112 is obtained.
  • the photocurable absorbent material 112 obtained by adding the photocurable acrylate and the radical initiator is cured by irradiating with ultraviolet rays.
  • the photocurable absorbent material 112 from which the solvent has been removed preferably has a low viscosity because of its excellent moldability.
  • the viscosity at 30 ° C. is preferably 30 mPa ⁇ s or more and less than 5000 mPa ⁇ s, and more preferably 50 mPa ⁇ s or more and less than 3500 mPa ⁇ s.
  • the viscosity of the photocurable absorbent material at 30 ° C. is 5000 mPa ⁇ s or more, the amount of outside air is increased and air bubbles are easily involved in the molded body, making it difficult to obtain a uniform molded body.
  • the viscosity at 30 ° C. is 30 mPa ⁇ s, it will cause dripping of the liquid, making it difficult to obtain a uniform molded body.
  • the refractive index of the absorbing material part is preferably 1.35 or more and 1.65 or less.
  • the wavelength of the refractive index is 589 nm.
  • Absorbing material portion is almost equal to the refractive index of transparent material portion, but since general transparent materials have a refractive index of 1.35 or more and 1.65 or less, the refractive index of absorbing material portion is in the above range. Is preferred.
  • the transparent material part of this invention is demonstrated.
  • the transparent resin used for the transparent material part the transparent resin described in the absorbent material part can be used.
  • energy ray curable resins are preferably used.
  • the linear expansion coefficients of the members forming the absorbing material portion and the transparent material portion are substantially the same.
  • the absolute value of the difference between the linear expansion coefficients is preferably 50 ppm / K or less, and more preferably 10 ppm / K or less. What is necessary is just to adjust a transparent material part suitably according to an absorption material part.
  • a quartz mold 120 made of quartz is prepared.
  • a convex portion is formed at the central portion, and a concave portion is formed around the convex portion.
  • a quartz mold is used, but a mold made of an optimal material can be used in consideration of moldability and mold release.
  • the resin film 130 is covered on the dripped photocurable absorption material 112, and the photocurable absorbent material 112 is irradiated by irradiating ultraviolet rays with an ultraviolet irradiation device.
  • the absorbent material portion 10 is formed by curing.
  • the cured absorbent material portion 10 is released from the quartz mold 120. Thereby, the absorbent material portion 10 having a shape corresponding to the shape of the quartz mold 120 is formed. Note that heat treatment may be performed after irradiation with ultraviolet rays or after release.
  • a transparent ultraviolet curable resin material that transmits light is dropped onto the concave portion of the absorbent material portion 10, covered with a resin film 131, and irradiated with ultraviolet rays by an ultraviolet irradiation device.
  • the ultraviolet curable resin material is cured to form the transparent material portion 20.
  • the ultraviolet curable resin material is adjusted so that the refractive index of the transparent material portion 20 formed from the ultraviolet curable resin material is substantially equal to the refractive index of the absorbent material portion 10.
  • the temperature change rates of the refractive indexes of the absorbing material part 10 and the transparent material part 20 are substantially equal.
  • optical filter in the present embodiment can be produced.
  • a photocurable absorbent material is produced on the convex portion, and after releasing from the mold, the absorbent material forming the concave portion is filled with a transparent photocurable material, but the molding order is reversed. It does not matter. That is, first, a mold having a concave portion is filled with a transparent material, covered with a resin film, and then the transparent material is cured by ultraviolet irradiation. Next, after releasing the absorbing material from the mold, the photocurable absorbing material is hung on the convex portion of the transparent material. After covering the resin film, the absorbing material is similarly cured by ultraviolet irradiation.
  • the optical filter in the present embodiment may remove either one of the two resin films shown in FIG. 4A shows the resin film 131 removed, and the absorbent material portion 10 is laminated on the resin film 130.
  • FIG. FIG. 4B shows the resin film 130 removed, and the transparent material part 20 is laminated on the resin film 131.
  • both the resin film 130 and the resin film 131 shown in FIG. 7 (e) may be removed, and the absorbent material portion 10 and the transparent material portion 20 may be configured as shown in FIG. 4 (c).
  • thermoplastic resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polycarbonate (PC), cycloolefin (COP) described as transparent resin materials, polyimide Thermosetting resins such as (PI), polyetherimide (PEI), polyamide (PA), and polyamideimide (PAI) can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • COP cycloolefin
  • PI polyimide Thermosetting resins
  • PEI polyetherimide
  • PA polyamide
  • PAI polyamideimide
  • molding can be performed by the following production method.
  • the above-described absorbent particles, dispersant, polymerizable compound, radical initiator are used.
  • the solution is coated on a mold patterned in a convex shape.
  • the organic solvent is distilled off by heating or reduced pressure, and finally the polymerizable compound is cured, whereby the absorbent material can be molded into an arbitrary shape.
  • the coating method include spin coating, dip coating, spray coating, flexographic printing, screen printing, gravure printing, roll coating, meniscus coating, and die coating.
  • Curing of the polymerizable compound may be photocuring or thermosetting, and any initiator can be used from the above radical initiators.
  • any initiator can be used from the above radical initiators.
  • it is preferable to remove oxygen with reduced pressure or an inert gas as necessary.
  • the mixed solution may be poured into a mold patterned in a convex shape.
  • a precursor of a thermosetting resin may be used instead of the thermosetting resin.
  • the absorbent material and the thermoplastic resin may be uniformly dispersed and then manufactured by injection molding.
  • a desired molded article can be produced by cooling the heat-melted resin composition after injection molding into a mold.
  • the absorbent material and the thermoplastic resin may be uniformly dispersed, and then manufactured by press molding using a heating mold. By heating above the glass transition point of the thermoplastic resin, the viscosity of the resin composition is lowered and molding becomes easy.
  • the optical element in the present invention can be manufactured by giving a film thickness distribution to the absorbing material or the transparent material and then filling it with the other material.
  • the optical filter in the present embodiment can be used by being stacked on another optical element configured in the camera module.
  • it can be laminated on a cover glass, a lens unit, an IR cut filter, or the like.
  • an optical filter excellent in handling can be provided.
  • an optical element having an ND filter function can be provided.
  • Examples relating to the absorbent material portion 10 forming the optical filter will be described. Specifically, samples in Examples 1 to 6 and Comparative Examples 1 to 4 in which an absorbent material film was formed of a material capable of forming the absorbent material portion were prepared. The prepared samples differed in conditions for manufacturing, and the OD value, haze value, refractive index, and viscosity were measured for the prepared samples in Examples 1 to 6 and Comparative Examples 1 to 4. .
  • titanium black (TB-1, TB-2) When preparing the sample, two types of titanium black (TB-1, TB-2) were used as the black material powder. Specifically, titanium black (TB-1) was used when preparing samples in Examples 1 to 6, and titanium black (TB-2) was used when preparing samples in Comparative Examples 1 to 4. ) was used. Titanium black (TB-1) is titanium black (fine-grained product) (manufactured by Mitsubishi Materials Corporation), and has a specific surface area of 79 m 2 / g and an average particle diameter of about 19 nm. Titanium black (TB-2) is titanium black 12S (manufactured by Mitsubishi Materials Corporation), which has a specific surface area of 22 m 2 / g and an average particle diameter of about 68 nm.
  • Photocurable acrylates include A-DCP (tricyclodecane dimethanol diacrylate: manufactured by Shin-Nakamura Chemical Co., Ltd.), FA-513AS (dicyclopentanyl acrylate: manufactured by Hitachi Chemical Co., Ltd.), Ogsol EA-F5003.
  • A-DCP tricyclodecane dimethanol diacrylate: manufactured by Shin-Nakamura Chemical Co., Ltd.
  • FA-513AS dicyclopentanyl acrylate: manufactured by Hitachi Chemical Co., Ltd.
  • Ogsol EA-F5003 One or more selected from (fluorene diacrylate: Osaka Gas Chemical Industry Co., Ltd.) and C6FMA (2- (perfluorohexyl) ethyl methacrylate: Asahi Glass Co., Ltd.) were used.
  • Irgacure OXE-02 manufactured by BASF was used as a radical initiator.
  • the OD value is based on the equation shown in the following formula 2 by measuring the transmittance T 600 at a wavelength of 600 nm with a spectrophotometer (manufactured by Hitachi High-Technologies: U3310). OD value was calculated. The OD value was measured at a thickness of 10 ⁇ m, and was prepared and measured so that the thicknesses of the samples in Examples 1 to 6 and Comparative Examples 1 to 4 were 10 ⁇ m.
  • the haze value was measured on the prepared sample using an automatic haze meter (manufactured by Tokyo Denshoku Co., Ltd .: TC-HIIIDPK / III).
  • the haze value is a value obtained from the formula shown in the following equation 3.
  • Tt is the total light transmittance
  • Td is the diffuse transmittance.
  • the haze value depends on the total light transmittance Tt. Specifically, when the total light transmittance Tt is 0.1%, if the haze value is 10%, the diffuse transmittance Td is 0.01%. When the total light transmittance Tt is 10% and the haze value is 10%, the diffuse transmittance Td is 1%.
  • the prepared sample was prepared by adjusting the film thickness so that the total light transmittance Tt was 10%. When the total light transmittance Tt was 10%, that is, the OD value was 1. The haze value in the case.
  • the refractive index is determined by removing the glass on one side of the prepared sample and exposing the absorbing material film, and then measuring the refractive index of the exposed absorbing material film with an ellipsometer (manufactured by JASCO Corporation: M-220). It is what.
  • the light used for the measurement is light with a wavelength of 589 nm.
  • Viscosity is the temperature of 30 ° C. using a cone plate type digital viscometer (manufactured by Brookfield: DVIII-ultra). Measured in the environment.
  • Example 1 Example 1 will be described.
  • a black material powder titanium black (TB-1): 24 mg, dispersant (DisperBYK2164): 24 mg, methyl acetate: 24 ml were weighed into a glass vial. Then, 70 minutes of zirconia beads having a diameter of 0.5 mm are added, followed by pulverization for 3 hours using a ball mill, whereby an absorbent material dispersion liquid that becomes the absorbent material dispersion liquid 111 is obtained. A1 was obtained.
  • A-DCP 120 mg of A-DCP, 180 mg of FA-513AS, and 9 mg of Irgacure OXE-02 were added to the resulting absorbent material dispersion A1, and then methyl acetate was distilled off using an evaporator, followed by photocurable absorption.
  • the composition ratio of titanium black in the photocurable absorbent material B1 was 6.9% by mass.
  • the obtained photocurable absorbing material B1 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 1 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 2 Next, Example 2 will be described.
  • the absorbent material dispersion A1 obtained in Example 1 1000 mg of A-DCP, 1500 mg of FA-513AS, and 75 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled using an evaporator.
  • the photocurable absorbent material B2 to be the photocurable absorbent material 112 was obtained.
  • the composition ratio of titanium black in the photocurable absorbent material B2 was 0.94% by mass.
  • the obtained photocurable absorbent material B2 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 2 was produced by heat-processing at 135 degreeC for 1 hour.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 3 Next, Example 3 will be described.
  • the absorbent material dispersion A1 obtained in Example 1 180 mg of A-DCP, 270 mg of FA-513AS and 13.5 mg of Irgacure OXE-02 were added, and then methyl acetate was used using an evaporator.
  • methyl acetate was used using an evaporator.
  • the composition ratio of titanium black in the photocurable absorbent material B3 was 4.8% by mass.
  • the obtained photocurable absorbing material B3 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 3 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 4 Next, Example 4 will be described.
  • the absorbent material dispersion A1 obtained in Example 1 was used, 67 mg of A-DCP, 100 mg of FA-513AS and 5 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled using an evaporator.
  • the composition ratio of titanium black in the photocurable absorbent material B4 was 11.1% by mass.
  • the obtained photocurable absorbent material B4 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 4 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 5 Next, Example 5 will be described.
  • the absorbent material dispersion A1 obtained in Example 1 was used, 450 mg of Ogsol EA-F5003 and 13.5 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled off using an evaporator.
  • a photocurable absorbent material B5 to be the photocurable absorbent material 112 was obtained.
  • the composition ratio of titanium black in the photocurable absorbent material B5 was 4.8% by mass.
  • the obtained photocurable absorbent material B5 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 5 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Example 6 Next, Example 6 will be described.
  • the absorbent material dispersion A1 obtained in Example 1 was used, 450 mg of C6FMA and 13.5 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled off using an evaporator.
  • a photocurable absorbent material B6 to be the absorbent material 112 was obtained.
  • the composition ratio of titanium black in the photocurable absorbent material B6 was 4.8% by mass.
  • the obtained photocurable absorbent material B6 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 6 was produced by heat-processing at 135 degreeC for 1 hour.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Comparative Example 1 Comparative Example 1 will be described.
  • a black material powder titanium black (TB-2): 24 mg, dispersant (DisperBYK2164): 24 mg, methyl acetate: 24 ml were weighed into a glass vial. Then, ultrasonic irradiation was performed for 15 minutes, and after that, 70 g of zirconia beads having a diameter of 0.5 mm was added, and pulverization was performed for 3 hours using a ball mill to obtain an absorbent material dispersion liquid A2.
  • the obtained photocurable absorbing material B7 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in the comparative example 1 was produced by heat-processing at the temperature of 135 degreeC for 1 hour.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Comparative Example 2 Comparative Example 2
  • the absorbent material dispersion A2 obtained in Comparative Example 1 was used, 28 mg of A-DCP, 42 mg of FA-513AS and 2 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled using an evaporator.
  • methyl acetate was distilled using an evaporator.
  • the composition ratio of titanium black in the photocurable absorbent material B8 was 20% by mass.
  • the obtained photocurable absorbent material B8 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in the comparative example 2 was produced by heat-processing at the temperature of 135 degreeC for 1 hour.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • Comparative Example 3 Comparative Example 3
  • 300 mg of A-DCP, 450 mg of FA-513AS and 13.5 mg of Irgacure OXE-02 were added using the absorbent material dispersion A2 obtained in Comparative Example 1, and then methyl acetate was used using an evaporator.
  • methyl acetate was used using an evaporator.
  • the composition ratio of titanium black in the photocurable absorbent material B9 was 3.0% by mass.
  • the obtained photocurable absorbent material B9 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in the comparative example 3 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • Comparative Example 4 Next, Comparative Example 4 will be described.
  • the absorbent material dispersion A2 obtained in Comparative Example 1 180 mg of A-DCP, 270 mg of FA-513AS, and 13.5 mg of Irgacure OXE-02 were added, and then methyl acetate was used using an evaporator. Was distilled off to obtain a photocurable absorbent material B10.
  • the composition ratio of titanium black in the photocurable absorbent material B10 was 4.8% by mass.
  • the obtained photocurable absorbent material B10 was heated and sandwiched between two glass substrates whose gaps were appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting Co., Ltd.) was used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in the comparative example 4 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • Table 3 shows the results of measuring the OD value, haze value, refractive index, and viscosity of the samples of Examples 1 to 6 and the samples of Comparative Examples 1 to 4.
  • the sample in Example 1 had an OD value of 1.5, a haze value of 3.2%, a refractive index of 1.54, and a viscosity of 220 mPa ⁇ s.
  • the sample in Example 2 had an OD value of 0.28, a haze value of 3.1%, a refractive index of 1.51, and a viscosity of 190 mPa ⁇ s.
  • the sample in Example 3 had an OD value of 1.02, a haze value of 3.4%, a refractive index of 1.52, and a viscosity of 200 mPa ⁇ s.
  • the sample in Example 4 had an OD value of 2.44, a haze value of 3.8%, a refractive index of 1.57, and a viscosity of 340 mPa ⁇ s.
  • the sample in Example 5 had an OD value of 1.01, a haze value of 3.2%, a refractive index of 1.61, and a viscosity of 3500 mPa ⁇ s.
  • the sample in Example 6 had an OD value of 1.00, a haze value of 3.8%, a refractive index of 1.39, and a viscosity of 80 mPa ⁇ s.
  • the sample in Comparative Example 1 had an OD value of 0.05, a haze value of 3.8%, a refractive index of 1.51, and a viscosity of 180 mPa ⁇ s.
  • the sample in Comparative Example 2 had an OD value of 5.0, a haze value of 4.8%, a refractive index of 1.60, and a viscosity of 450 mPa ⁇ s.
  • the sample in Comparative Example 3 had an OD value of 0.51 and a haze value of 37%.
  • the sample in Comparative Example 4 had an OD value of 1.29 and a haze value of 42%.
  • the absorbent material portion is formed so that the OD value at a thickness of 10 ⁇ m is 0.2 or more and 2.5 or less and the haze value is 10% or less.
  • the absorbing material portion preferably has a refractive index of 1.35 or more and 1.65 or less in light having a wavelength of 589 nm.
  • the viscosity of the photocurable absorbent material before irradiation with ultraviolet rays used when forming the absorbent material portion is 50 mPa ⁇ s or more and 3500 mPa ⁇ s or less at 30 ° C., so the viscosity is low.
  • the absorbing material portion in the optical filter is formed by an imprint process or the like, it is preferable.
  • Example 7 Next, Example 7 will be described.
  • the present embodiment is an optical filter, and a method for manufacturing the optical filter will be described with reference to FIG.
  • a quartz mold 120 made of quartz is prepared.
  • a convex portion is formed at the central portion, and a concave portion is formed around the convex portion.
  • the height of this convex part is 30 micrometers, and the diameter of the area
  • a cycloolefin film having a thickness of about 188 ⁇ m (manufactured by Nippon Zeon Co., Ltd .: ZF-14, Young's modulus reference value 2) on the dropped photocurable absorbent material B3. .2 GPa) is applied, and a UV light of 300 mW / cm 2 is irradiated for 100 seconds by a fiber type UV exposure machine (Hamamatsu Photonics: Spotlight LC6) which is an ultraviolet irradiation device.
  • the absorbent material portion 10 is formed by curing the curable absorbent material B3.
  • the temperature change rate dn / dT of the refractive index in the range of 30 ° C. to 80 ° C. was ⁇ 216 ppm / K.
  • the cured absorbent material portion 10 is peeled off from the quartz mold 120 and subjected to heat treatment at a temperature of 135 ° C. for 1 hour.
  • A-DCP 32 parts, FA-513AS: 65 parts, Irgacure OXE-02: 3 as shown in Table 4 are formed in the concave part of the absorbent material part 10.
  • a transparent ultraviolet curable resin material that transmits light mixed with a portion is dropped, and a resin film 131 made of a cycloolefin film (Nippon Zeon Corporation: ZF-14) having a thickness of about 188 ⁇ m is covered with ultraviolet irradiation.
  • the transparent material portion 20 is formed by curing the UV curable resin material by irradiating UV light of 300 mW / cm 2 for 100 seconds with a fiber type UV exposure machine (manufactured by Hamamatsu Photonics Co., Ltd .: spot light LC6). To do. At this time, the refractive index of the transparent material portion 20 at 589 nm was 1.53. In this transparent material portion 20, the temperature change rate dn / dT of the refractive index in the range of 30 ° C. to 80 ° C. was ⁇ 181 ppm / K.
  • the difference in absolute value of the temperature change rate of the refractive index between the absorbing material part 10 and the transparent material part 20 is 35 ppm / K, and no optical action other than dimming works even if the ambient temperature changes. It can be suitably used as a soybean filter.
  • the optical filter in this example was produced.
  • the optical filter in this embodiment is installed at the spot position of the laser beam, condensed with a lens or the like so that the spot diameter becomes 50 ⁇ m, irradiated with the laser beam, and the intensity of the light transmitted through the optical filter is measured by the laser beam. Measured with the instrument.
  • the transmittance distribution in the optical filter in the present example was measured by irradiating laser light having a wavelength of 633 nm and moving the optical filter in the present example with an auto stage.
  • the transmittance of the central portion of the optical filter in this embodiment is 89%, and the transmittance of the optical filter in this embodiment is monotonous with respect to the distance from the central portion as shown in FIG. It was to decrease.
  • Example 8 Example 8 will be described.
  • 112 mg of titanium black (TB-1) as a black material powder, 85 mg of carbon black (FW200, manufactured by DEGUSSA), 107 mg of a dispersant (DisperBYK2164), and methyl acetate as a solvent 200 ml is weighed into a glass vial, irradiated with ultrasonic waves for 15 minutes, and then 400 g of zirconia beads having a diameter of 0.5 mm are added, followed by pulverization for 3 hours using a ball mill.
  • An absorbent material dispersion A3 to be the dispersion 111 was obtained.
  • a photocurable absorbent material B11 to be the photocurable absorbent material 112 was obtained.
  • the composition ratio of titanium black in the photocurable absorbent material B11 was 2.5% by mass, and the composition ratio of carbon black was 1.9% by mass.
  • the obtained photocurable absorbing material B11 is heated and sandwiched between two glass substrates whose gaps are appropriately adjusted to 1 to 30 ⁇ m, and an ultraviolet irradiation device (Toscure 751 manufactured by Harrison Toshiba Lighting) is used. Ultraviolet rays were irradiated at 40 ° C. for 5 minutes at an illuminance of 100 mW / cm 2 . Furthermore, the sample in Example 8 was produced by heat-processing for 1 hour at the temperature of 135 degreeC.
  • an ultraviolet irradiation device Toscure 751 manufactured by Harrison Toshiba Lighting
  • Example 9 will be described. Using the absorbent material dispersion A3 shown in Example 8, 0.86 g of A-DCP, 1.29 g of FA-513AS and 65 mg of Irgacure OXE-02 were added, and then the methyl acetate was distilled off using an evaporator. Thus, a photocurable absorbent material B12 to be the photocurable absorbent material 112 was obtained. The composition ratio of titanium black in the photocurable absorbent material B12 was 4.4% by mass, and the composition ratio of carbon black was 3.3% by mass. Next, the sample in Example 9 was produced by the method shown in Example 7.
  • Example 10 Example 10 will be described. Using the absorbent material dispersion A3 shown in Example 7, 7.6 g of A-DCP, 11.4 g of FA-513AS, and 950 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled off using an evaporator. Thus, a photocurable absorbent material B13 to be the photocurable absorbent material 112 was obtained. The composition ratio of titanium black in the photocurable absorbent material B13 was 0.55% by mass, and the composition ratio of carbon black was 0.42% by mass. Next, the sample in Example 10 was produced by the method shown in Example 7.
  • Example 11 Example 11 will be described. Using the absorbent material dispersion A3 shown in Example 7, 0.5 g of A-DCP, 0.76 g of FA-513AS and 64 mg of Irgacure OXE-02 were added, and then methyl acetate was distilled off using an evaporator. Thus, a photocurable absorbent material B14 to be the photocurable absorbent material 112 was obtained. The composition ratio of titanium black in the photocurable absorbent material B14 was 6.8% by mass, and the composition ratio of carbon black was 5.2% by mass. Next, the sample in Example 11 was produced by the method shown in Example 7.
  • Table 6 shows the results of measuring the OD value, haze value, refractive index, and viscosity of the samples of Examples 8 to 11.
  • the viscosity indicates the viscosity of the photocurable absorbent materials B11 to B14 in a state before being irradiated with the ultraviolet rays used in preparing the samples of Examples 8 to 11.
  • the sample in Example 8 had an OD value of 1.37, a haze value of 2.8%, a refractive index of 1.52, and a viscosity of 50 mPa ⁇ s.
  • the sample in Example 9 had an OD value of 2.44, a haze value of 2.9%, a refractive index of 1.53, and a viscosity of 110 mPa ⁇ s.
  • the sample in Example 10 had an OD value of 0.30, a haze value of 3.2%, a refractive index of 1.51, and a viscosity of 35 mPa ⁇ s.
  • the sample in Example 11 had an OD value of 3.80, a haze value of 3.0%, a refractive index of 1.57, and a viscosity of 230 mPa ⁇ s.
  • the absorbent material portion is formed so that the OD value at a thickness of 10 ⁇ m is 0.2 or more and 4.0 or less and the haze value is 10% or less.
  • the absorbing material portion preferably has a refractive index of 1.35 or more and 1.65 or less in light having a wavelength of 589 nm.
  • the viscosity of the photocurable absorbent material before irradiation with ultraviolet rays used when forming the absorbent material portion is 50 mPa ⁇ s or more and 3500 mPa ⁇ s or less at 30 ° C., so the viscosity is low.
  • the absorbing material portion in the optical filter is formed by an imprint process or the like, it is preferable.
  • Example 12 Next, Example 12 will be described. This example is an optical filter, and an optical filter was obtained by the same method except that B3 in Example 7 was replaced with B11.
  • the optical filter obtained in Example 12 is installed at the spot position of the laser beam, and is condensed with a lens or the like so that the spot diameter is 50 ⁇ m and irradiated with the laser beam, and the intensity of the light transmitted through the optical filter is increased. It measured with the laser beam measuring device. Specifically, the transmittance distribution in the optical filter in the present example was measured by irradiating laser light having a wavelength of 633 nm and moving the optical filter in the present example with an auto stage. As a result, the transmittance of the central portion of the optical filter in this example was 91%, and the film thickness of the absorbing material was 0.02 ⁇ m. Further, in the optical filter of this example, the transmittance monotonously decreased with respect to the distance from the central portion, as in FIG.
  • FIG. 9A is a central portion having a visible light transmittance of about 88.0%
  • 9B is a middle portion having a visible light transmittance of about 58.7%
  • 9C is a middle portion having a visible light transmittance of about 38.6%
  • 9D is a middle portion.
  • the visible light transmittance is an end portion of about 0.1%.
  • the transmittance T 450 at a wavelength of 450 nm is about 87.2%
  • the transmittance T 650 at a wavelength of 650 nm is about 90.0%.
  • T 450 is about 57.5%
  • T 650 is about 60.0%
  • the optical filter obtained in Example 12 has low absorption wavelength dependency and can be suitably used as an apodized filter.
  • the PV (peak to valley) value is 0.7 ⁇ , which is within the effective diameter of the element.
  • the difference ⁇ d between the maximum value and the minimum value of the film thickness was 860 nm.
  • the measurement wavelength was 650 nm and the measurement diameter was 2.5 mm.
  • the in-plane film thickness difference ⁇ d in the optical filter is small, and the optical path length difference PV is also small, so that there is no unintended optical action, so that it can be suitably used as an apodized filter.
  • Example 13 Next, Example 13 will be described.
  • an apodized filter is laminated on a glass having an IR cut function.
  • a dielectric multilayer film made of SiO 2 and TiO 2 was formed on one side of a fluorophosphate glass (NF50T manufactured by Asahi Glass Co., Ltd.) to produce a glass with ultraviolet and infrared cut function.
  • NF50T fluorophosphate glass manufactured by Asahi Glass Co., Ltd.
  • the photocurable absorbent material B11 is cured by irradiating UV light of 300 mW / cm 2 for 100 seconds with a fiber type UV exposure machine (Hamamatsu Photonics Corporation: spot light LC6) which is an ultraviolet irradiation device.
  • the absorbent material part 10 was formed.
  • the cured absorbent material part 10 was peeled off from the quartz mold 120 and heat-treated at a temperature of 135 ° C. for 1 hour.
  • a transparent ultraviolet curable resin material that transmits light shown in Table 4 was dropped on the concave portion of the absorbent material portion 10 and covered with a release-treated glass. Subsequently, the UV-curing resin material was cured by irradiating with UV light of 300 mW / cm 2 for 100 seconds to form the transparent material portion 20. Finally, the glass was released to obtain an apodized filter having an IR cut function.
  • FIG. 10A represents the spectral portion in the central portion of the apodized filter, 10B and 10C in the middle portion.
  • the optical element in Example 13 has an ultraviolet and infrared cut function, and functions as an apodized filter in visible light.

Abstract

【課題】携帯電話や携帯端末などに搭載されるカメラにおいて、回折の影響が小さく、解像度の劣化が少ない小型の光学絞りを提供する。 【解決手段】中心部分から周辺部分に向かって、光の透過率が単調に減少する光学素子において、光の一部を吸収する材料により形成されており、中心部分から周辺部分に向かって厚さが単調に増加する吸収材料部と、光を透過する材料により形成されており、前記吸収材料部に積層されている透明材料部と、を有し、前記吸収材料部と前記透明材料部とを合わせた厚さは略一定であることを特徴とする光学素子を提供することにより上記課題を解決する。

Description

光学素子
 本発明は、光学素子に関する。
 カメラ等の光学機器においては、レンズ等に入射する入射光の光量を調節するため、光学絞りや減光(ND:Neutral Density)フィルタ等が用いられている。携帯電話や携帯端末などにもカメラの搭載が進み、このようなカメラにも光学絞りが使用されている(例えば、特許文献1)。通常の光学絞りを図1に示す。絞り910は、遮光材料により板状に形成されたものの中心部分に開口部911を形成したものであり、周辺部分の光は遮光され、開口部911の形成されている中心部分において光が透過するものである。図1(a)は、絞り910の上面図であり、図1(b)は、図1(a)の一点鎖線1A-1Bにおける光の透過率を示す。最近は携帯電話や携帯端末の小型化や薄型化によりカメラも小型化している。そのため、使われる光学絞りも小型化しているが、小型の光学絞り910では、開口部911の周囲において光の回折の発生が無視できなくなっており、解像度を高めることが困難となっている。すなわち、カメラの高画素化が進む一方で、解像度を劣化させない小型の光学絞りが求められていた。
特開2006-301221号公報
 本発明は、上述のような課題を鑑みてなされたものであり、図2に示すように中心部分より周辺部分に向かって光の透過率が単調に減少する光学素子を提供することを目的とする。
 本発明は、中心部分から周辺部分に向かって、光の透過率が単調に減少する光学素子において、光の一部を吸収する材料により形成されており、中心部分から周辺部分に向かって厚さが単調に増加する吸収材料部と、光を透過する材料により形成されており、前記吸収材料部に積層されている透明材料部と、を有し、前記吸収材料部と前記透明材料部とを合わせた厚さは略一定であることを特徴とする。
 本発明により、中心部分より周辺部分に向かって光の透過率が単調に減少する光学素子を提供することができる。また、本素子は吸収材料部と透明材料部が積層されてなり、吸収材料部と透明材料部を合わせた厚さが略一定である。透明材料部が積層されない場合に比べて、減光以外の光学的な作用が働かないため、光路内に挿入または光路外に取り出すような使用方法であっても光を拡散する副作用のない使用方法を提供することができる。
絞りの説明図 アポダイズドフィルタの説明図 本実施の形態における光学フィルタの構造図 本実施の形態における光学フィルタの製造方法により製造される光学フィルタの説明図(1) 本実施の形態における光学フィルタの製造方法により製造される光学フィルタの説明図(2) 本実施の形態における光学フィルタの製造方法の説明図(1) 本実施の形態における光学フィルタの製造方法の説明図(2) 実施例7における光学フィルタの透過率分布図 光学フィルタにおける光の波長と透過率の相関図 実施例13における光学フィルタの透過率分布の説明図
 (光学フィルタ)
 本実施の形態における光学素子について図3に基づき説明する。本実施の形態における光学素子は光学フィルタであって、いわゆるアポダイズドフィルタと呼ばれるものである。具体的には、可視光を吸収する材料により形成された吸収材料部10と可視光を透過する材料により形成された透明材料部20とを有している。本実施の形態における光学フィルタでは、吸収材料部10における厚さDが、中心部分より周辺部分に向けて連続的に徐々に増加するように形成されている。このように、吸収材料部10の厚さDが徐々に厚くなるように形成することにより、吸収材料部10において吸収される光量も徐々に増加するため、この光学フィルタを透過する光の光量は徐々に減少する。これにより、中心部分より周辺部分に向けて透過率が連続的に徐々に減少する光学フィルタとなる。具体的には、例えば、吸収材料部10の透過率が中心部分から周辺部分に向かってガウシアン分布となるような光学フィルタにすることができる。なお、本実施の形態においては、可視光とは、波長が380nm~700nmの範囲における光を意味するものとする。また、本実施の形態における光学素子は、吸収材料部10及び透明材料部20が基材となる基板等の上に形成されたものであってもよい。
 また、実施の形態における光学フィルタは、吸収材料部10が薄く形成されている凹状の部分を埋めるように透明材料部20が形成されており、透明材料部20は吸収材料部10の端部より凹部内に形成されている厚さDの部位と吸収材料部10の端部上に形成されている厚さDの部位とからなる。吸収材料部10における厚さDと透明材料部20における厚さDとDの和である光学フィルタの厚さDが、略一定となるように形成されている。すなわち、D=D+D+Dであって、1つの素子内部におけるDの最大値とDの最小値の差が5μm以下、より好ましくは1μm以下になるように形成される。よって、この光学フィルタの一方の面と他方の面とは略平行となっている。また、DとDの厚さはゼロとなるように形成されていてもよい。
 また、本実施の形態における光学フィルタは、中心部分において光が透過するものであるため、中心部分における吸収材料部10の厚さD1mが0.5μm以下となるように形成されている。即ち、D1m≦0.5μmとなるように形成されている。これは、光の一部が吸収材料部10に吸収されるため、吸収材料部が0.5μm以上形成されると、中心部を通る光の透過率が高く保てなくなるためである。なお、厚さD1mは、吸収材料部10において最も厚さDが薄い部分の厚さである。また、中心からの距離をXとした場合に、Xが増加すると、吸収材料部10の厚さDは中心から端部にかけて増加する一方で、透過率は減少する。透過率はガウシアン関数で与えられることが好ましく、以下に例示する。
Figure JPOXMLDOC01-appb-M000001
 数1において、σは実数である。透過率の半値幅に応じてσを決定すればよく、例えば、半径1mmで透過率が50%とする場合には、σを0.85とすればよい。
 また、本実施の形態における光学フィルタを2つ以上配置して1つの光学フィルタとして用いることができる。例えば、後述する支持基板上に異なる径を有する複数の本光学フィルタを作製し、絞りサイズの異なる複数の光学フィルタとして光路中に配置し駆動させることにより絞り径を切り替えることができる。
 これらは光学設計に応じて適宜変更することができ、吸収材料部がいずれの形状を有している場合でも、透明材料部を積層することで吸収材料部と透明材料部とを合わせた厚さは略一定の光学フィルタを作製することができる。
 本実施の形態の光学フィルタにおける有効領域は、可視光透過率が1%より高い領域のことをいう。
 また、本実施の形態における光学フィルタは、減光以外に光学的な作用が働かないようにされている。そのため、DとDの厚みの総和がXによらず、一定なっている。さらに、吸収材料部10を形成している材料の屈折率nと透明材料部20を形成している材料の屈折率nとが略等しくなるように形成されていることが好ましい。すなわち、|n-n|≦0.1であることが好ましく、|n-n|≦0.05であることがより好ましい。屈折率は波長により変化するが、使用する波長帯域で屈折率が|n-n|≦0.1であることが好ましく、より好ましくは|n-n|≦0.05である。また、周囲の温度が変化した場合においても、吸収材料部10を形成している材料の屈折率nと透明材料部20を形成している材料の屈折率nとが略等しくなるように、吸収材料部10を形成している材料と透明材料部20を形成している材料とは、屈折率の温度変化率が略等しい材料が用いられていることが好ましい。|dn/dT-dn/dT|が100ppm/K以下であることが好ましく、20ppm/K以下であるとさらに好ましい。吸収材料部10と透明材料部20の異なる層が積層されてなるが、温度が変化しても屈折率が略等しいため積層された界面での光の屈折作用が抑制される。なお、本願においては、屈折率の温度変化率を屈折率温度係数と記載する場合がある。
 また、本実施の形態における光学フィルタは、吸収材料部10を形成している材料の屈折率nと厚さDとの積と、透明材料部20を形成している材料の屈折率nと厚さDとの積の和が、略一定となるように形成されている。すなわち、n×D+n×D+n×D=Pにおいて、PがXによらず略一定となる。Pは光路長であって、本光学フィルタはその有効領域内で、光路長差が波長(λともいう)以下であることが好ましい。なお、以下に説明する反射防止膜を形成した場合には、反射防止膜の分だけ光学フィルタの光路長は長くなるが、その場合も有効領域内で光路長差がλ以下であることが好ましい。
 また、本実施の形態における光学フィルタにおいては、光学フィルタの一方の面又は双方の面に反射防止膜30が形成されている。図3においては、光学フィルタの双方の面に反射防止膜30が形成されているものを示しているが、光学フィルタに光が入射する一方の面にのみ反射防止膜30を形成したものであってもよい。この反射防止膜30は、例えば、誘電体多層膜により形成されており、波長430nmから630nmにおける反射率が低く、この波長域で反射率が2%以下であることが好ましい。また、この反射防止膜30は波長が380nm未満の光を反射し、波長が380nm以上の光を透過することが好ましい。後述するように、本発明の光学素子は有機材料を含んでなることが好ましいが、有機材料は紫外線により劣化しやすく、380nm未満の光を反射することで、本素子の光劣化を抑制することができる。また、本素子の配置場所は特に限定されるものではないが、他の光学部品の紫外線劣化を抑制する効果も期待できる。
 また、本実施の形態における光学フィルタでは、可視光を透過する樹脂フィルムの上に積層されてもよい。例えば、図4(a)に示されるものは、樹脂フィルム130に吸収材料部10が積層されており、図4(b)に示されるものは、樹脂フィルム131に透明材料部20が積層されている。後述するように、吸収材料部10には好ましくは無機顔料が含まれるので、透明材料部20より熱膨張係数が小さい場合がある。熱膨張係数の違う2つの材料部を積層した場合では、反りが発生しやすいという課題がある。すなわち、図4(c)に示されるものに比較して、図4(a)や(b)に示されるもののように、フィルムを用いた場合は反り量を低減することできる。例えば、図4(a)に示されるものでは、吸収材料部10より熱膨張係数の大きなフィルムを、図4(b)に示されるものでは、透明材料部20より熱膨張係数の小さなフィルムを用いることで反り量低減に効果がある。また、耐熱性に優れた樹脂フィルムを用いてもよい。この場合には、熱膨張とは別の観点で、効果が期待できる。すなわち、組み立て時に加熱工程を必要とする場合において、フィルムが耐熱性に優れる支持基板の役割を果たすので、光学フィルタの形状が変形するのを抑制できる。吸収材料部10ならびに透明材料部20よりガラス転移点が高いフィルムを好ましく用いることができる。
 なお、本光学フィルタの作製方法は、一例として、後述する図7において説明する。作製工程において、樹脂フィルムは剛性が高く、変形しにくいことが好ましい。金型成型時に樹脂フィルムが凹状に変形すると、意図しない光学作用を生ずる結果、カメラ内のレンズ制御が複雑になる場合がある。また、本光学フィルタは光学部品としての取り扱いに優れること好ましい。この点からも、樹脂フィルムは剛性が高いことが好ましく、樹脂フィルムのヤング率が1.0GPa以上であることが好ましく、さらに2.0GPa以上であることがより好ましい。
 また、樹脂フィルムの屈折率と透明材料部20の屈折率の差の絶対値が小さいと、それら界面での反射率が低いことから、本光学フィルタの透過率が高くなり好ましい。樹脂フィルムの屈折率と透明材料部20の屈折率の差の絶対値は、0.1以下であることが好ましく、さらには0.05以下であることが好ましい。屈折率は波長により変化するが、可視波長帯域で屈折率の差の絶対値が0.1以下であることが好ましく、さらには0.05以下であることが好ましい。
 また、樹脂フィルムの屈折率と吸収材料部10の屈折率の差の絶対値が小さいと、それら界面での反射率が低いことから、本光学フィルタの透過率が高くなり好ましい。樹脂フィルムの屈折率と透明材料部20の屈折率の差の絶対値は、0.1以下であることが好ましく、さらには0.05以下であることが好ましい。屈折率は波長により変化するが、可視波長帯域で屈折率の差の絶対値が0.1以下であることが好ましく、さらには0.05以下であることが好ましい。
 また、本光学フィルタは、その有効領域内で、光路長差がλ以下であることが好ましい。樹脂フィルムを用いることで樹脂フィルムの屈折率と厚み分だけ光路長が前述のPより長くなり、光学フィルタの光路長は長くなるが、その場合も有効領域内の光路長差がλ以下であることが好ましい。本発明の光学フィルタは、その構成が1つに限定されず複数の構成をとることができるが、いずれの構成においてもその有効領域内で、光路長差がλ以下であることが好ましい。
 さらに、本実施の形態における光学フィルタでは、図5に示すように、吸収材料部10が二つの凹状構造を積層したような構造をとってもよく、この構造において、必ずしも厚み方向に対称でなくても構わない。すなわち、D2aとD2bは等しくなくても構わず、同様に、D3aとD3bも等しくなくても構わない。
 この場合においても、吸収材料部10を形成している材料の屈折率nと厚さDとの積と、透明材料部20を形成している材料の屈折率nと厚さDとの積の和が、略一定となるように形成されている。すなわち、n×D+n×D+n×D=Pにおいて、PがXによらず略一定となる。ここで、D=D2a+D2bであり、D=D3a+D3bである。
さらに、樹脂フィルムや同じく支持基板として用いることができるガラス基板上に該光学フィルタを作製してもよい。
さらにまた、該光学フィルタは上記のように独立して用いるだけでなく、カメラモジュール中、任意の部材に積層して用いてもよい。例えば、カバーガラス、レンズ、IRカットフィルターに積層し用いることができる。このように用いることでカメラモジュール中の部品点数を減らすことができる。
 カバーガラスには、白板ガラスや化学強化ガラスなどが好ましく用いられる。白板ガラスとしては鉄などの不純物が少ないクラウンガラスやホウケイ酸ガラスなど、化学強化ガラスはアルミノケイ酸ガラスやソーダライムガラスの表面にイオン交換処理されたガラスがあげられる。また、ガラス以外にもサファイアなど可視域で透明なセラミック材料や、可視域で透明な樹脂材料も用いることができる。樹脂材料としては、ポリカーボネート樹脂やアクリル樹脂などが好ましく用いられる。
 カバーガラスには、可視光を透過し赤外光や紫外光を反射する誘電体多層膜や、可視光を透過する反射防止膜が積層されてもよい。誘電体多層膜は低屈折率材料と高屈折率材料が交互に積層されてなる。低屈折率材料としては酸化ケイ素(SiO)、フッ化マグネシウム(MgF)など、高屈折率材料としては酸化チタン(TiO)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化ジルコニウム(ZrO)などがあげられる。また、低屈折率材料の層と高屈折率材料の層の間に、中間屈折率材料の層を挿入してもよい。中間屈折率材料としては酸化アルミニウム(Al)などがあげられる。反射防止膜は上記低屈折率材料、高屈折率材料、中間屈折率材料を用いることができる。複数層を積層して用いると、反射率を低くできることから好ましい。
 また、反対面には、汚れ防止や指紋付着防止のコーティングが施されてもよい。そのような材料として、表面エネルギーの低い材料が好ましく、フッ素系材料、シリコーン系材料やフルオロシリコーン系材料を用いることができる。特に、パーフルオロポリエーテルシランを用いることが好ましい。コーティングはカバーガラスに直接施してもよく、また、カバーガラス上に反射防止膜を成膜した後、その上に施してもよい。コーティングが付与された面は外側に、本発明の光学フィルタが積層された面は内側に配置される。ここで内側とは、下記に記載の固体撮像素子に近い側である。
 次に、IRカットフィルターは、赤外線カットフィルターとも呼ばれ、近赤外域の波長をカットする色補正用のフィルタである。IRカットフィルターは、相補型金属酸化膜半導体(CMOS)や電荷結合素子(CCD)などの固体撮像素子の色補正のために用いられ、複数の方式がある。例えば、波長約700nm以上の波長の光を吸収するガラス材料であり、Cu2+イオンを含むリン酸系ガラスやフツリン酸系ガラスが好ましく用いられる。リン酸系ガラスはP5+をカチオンの主成分とし、アルカリ金属イオン(Li、Na、K)、アルカリ土類金属イオン(Mg2+、Ca2+、Sr2+、Ba2+)、Al3+、Zn2+等を含んでもよく、アニオンの主成分はO2-である。また、フツリン酸系ガラスは上記アニオンに加え、Fが含まれる。リン酸系ガラス、フツリン酸系ガラスに含まれるイオンは必ずしも上記に限定されるものではなく、他のイオン種を含んでもかまわない。
 他の方式として、誘電体多層膜を用いる方式があり、可視光を透過し赤外光を反射する誘電体多層膜が用いられる。誘電体多層膜は波長約700nm以上の赤外光の反射率が高く、赤外光をカットするように設計される。誘電体多層膜は、ガラスなどの可視域で透明な基板上に成膜される。また、その他の方式として、上述の誘電体多層膜と色素を組み合わせた方式がある。通常、誘電体多層膜は波長約700nm以上の赤外光をカットするよう設計されるが、誘電体多層膜に対して垂直から斜めに光の入射角がシフトすると、誘電体多層膜のカット波長は短波長にシフトする。光が垂直から入射する角度を入射角度ゼロとすると、入射角度が小さい場合は波長約700nmでの透過率が高い一方で、光が斜めから入射し、その入射角度が大きい場合は透過率が低くなってしまう。すなわち、入射角度によって透過率が変動する問題がある。これを改善するためには、入射角度依存性の少ない材料、すなわち、吸収材料と組み合わせて用いられる。このような吸収材料としては、700nm近傍に吸収をもつ色素が好ましく、色素を含む樹脂を誘電体多層膜と組み合わせて用いることが好ましい。誘電体多層膜は、樹脂上に成膜することにより形成してもよく、また、ガラスなどの可視域で透明な基板上に成膜することにより形成してもよい。後者の場合、誘電体多層膜が成膜された面と反対側の面に樹脂が成膜される。なお、誘電体多層膜と組み合わされる吸収材料は、色素以外にも、上述のCu2+イオンを含むリン酸系ガラスやフツリン酸系ガラスでもあってもよい。更に、紫外光を反射する誘電体多層膜や可視光を透過する反射防止膜を、IRカットフィルターに組み合せて用いてもよい。
 レンズとしては、ガラスレンズやプラスチックレンズが好ましく用いられる。通常、カメラモジュールには凸レンズや凹レンズが複数用いられるが、カメラモジュール中の任意のレンズに本光学素子を積層することができる。例えば、レンズの凸部を後述する本光学素子における透明樹脂とみなし、この凸部に吸収材料を積層してもよい。また、平凸レンズや平凹レンズの平面側に本発明の吸収材料部と透明樹脂を積層して使うこともできる。
 また、レンズには反射防止膜が積層されていてもよく、本光学素子をレンズ上に積層後、本光学素子上に反射防止膜を積層してもよく、また、本光学素子を積層していない面に反射防止膜を積層してもよく、さらにまた、本光学素子上および本光学素子を積層していない面の双方に反射防止膜を積層してもよい。
 (吸収材料部)
 本発明の吸収材料部は(A)吸収材料が(B)透明樹脂に含まれてなる。
(A)吸収材料
 吸収材料としては、アントラキノン系、フタロシアニン系、ベンゾイミダゾロン系、キナクリドン系、アゾキレート系、アゾ系、イソインドリノン系、ピランスロン系、インダンスロン系、アンスラピリミジン系、ジブロモアンザンスロン系、フラバンスロン系、ペ
リレン系、ペリノン系、キノフタロン系、チオインジゴ系、ジオキサジン系、アニリンブラック、ニグロシンブラック等の有機色素や有機顔料、金、銀、銅、スズ、ニッケル、パラジウムやそれらの合金を用いた金属ナノ粒子、さらに、硫酸バリウム、亜鉛華、硫酸鉛、黄色鉛、ベンガラ、群青、紺青、酸化クロム、鉄黒、鉛丹、硫化亜鉛、カドミウムエロー、カドミウムレッド、亜鉛、マンガン紫、コバルト、マグネタイト、カーボンブラック、カーボンナノチューブ、グラフェン、チタンブラック、銅・鉄・マンガンからなる複合酸化物などの無機顔料を用いることができる。特に、チタンブラックは分散性に優れていることや吸収係数が高いことから好ましい。後述する透明樹脂に添加して成型する際に、チタンブラックの添加濃度を低くすることができるため、粘度を低く保つことができる。
 チタンブラックとは、TiNxOy(0≦x<1.5および0.16<y<2)、または(1.0≦x+y<2.0および2x<y)で表される低次酸化チタンか化合物であり、容易にその粒子を得ることができる。光学素子として用いる場合に、ヘイズは小さいことが好ましいことから、本発明で用いるチタンブラック粒子の平均粒径は100nm以下が好ましく、30nm以下がより好ましい。ここで、平均粒径とは、有機溶媒中に含まれるチタンブラック粒子を透過型電子顕微鏡(TEM)にて撮影した粒子の一次粒径であって、粒子100個における数平均粒子径を意味する。
 本発明において、粒子を用いる場合には、分散剤を用いてもよく、チタンブラックについても同様である。分散剤は樹脂中に均一分散させるために用いる。分散剤としては、高分子分散剤(アルキルアンモニウムとその塩、酸基を有する共重合物のアルキロールアンモニウム塩、水酸基含有カルボン酸エステル、カルボン酸含有共重合物、アミド基含有共重合物、顔料誘導体やシランカップリング剤等を挙げることができる。また、分散剤の分子中に樹脂と相互作用する官能基や重合性官能基が存在してもよい。また、これらを単独で使用してもよく、2種類以上組み合わせて使用してもよい。
 樹脂中におけるチタンブラックの割合は、0.3質量%以上、15質量%以下であることが好ましく、より好ましくは0.5質量%から13質量%である。なお、これは10μmにおけるOD値が、0.2以上、4.0以下に相当する。0.3質量%より小さいと所望の透過率を発現させるために100μm以上の膜厚が必要となり、成形が非常に困難となる場合がある。一方、15質量%より大きいと、単位膜厚当たりの透過率減が大きくなるため、中心部分において残膜がほぼゼロとなることが必須となり、作製が難しくなる。
 チタンブラック以外に他の材料を加えて用いても構わない。特にカーボンブラックは700nmから380nmに向かい透過率が単調に減少し、チタンブラックとは逆の特性を示すため、この両者を組み合わせることにより、透過率の波長依存性を小さくすることができる。
 本発明で用いるカーボンブラックは特に限定されないが、不完全燃焼法や熱分解法で合成された粒子を用いることができる。なかでも、不完全燃焼法の一種であるチャネルブラック法で合成されたカーボンブラックは、表面官能基が多く、樹脂中に均一分散させやすいことから特に好ましく用いることができる。
 光学素子として用いる場合に、ヘイズは小さいことが好ましいことから、本発明で用いるカーボンブラック粒子の平均粒径は500nm以下が好ましく、200nm以下がより好ましい。ここで、平均粒径とは、有機溶媒中に含まれるカーボンブラック粒子を透過型電子顕微鏡(TEM)にて撮影した粒子の一次粒径であって、粒子100個における数平均粒子径を意味する。
 樹脂中におけるカーボンブラックの割合は、0.3質量%以上、15質量%以下であることが好ましく、より好ましくは0.5質量%から13質量%である。0.3質量%より小さいと所望の透過率を発現させるために100μm以上の膜厚が必要となり、成形が非常に困難となる場合がある。一方、15質量%より大きいと、単位膜厚当たりの透過率減が大きくなるため、中心部分において残膜がほぼゼロとなることが必須となり、光学素子の作製が難しくなる。
 さらにまた、カーボンブラックと上述したチタンブラックの比率を制御することにより、後述する透過率の波長依存性を制御することができる。チタンブラックとカーボンブラックの質量比率(チタンブラックの質量/カーボンブラックの質量)は0.5から3.0の間が好ましく、より好ましくは0.8から2.0である。
 本発明の光学フィルタにおいて、透過率の波長分散は小さいことが好ましい。ここで、透過率の波長分散を波長450nmと波長650nmにおける透過率の差の絶対値、すなわち、|T450-T650|と定義する。これが5%以下であることが好ましく、1%以下であるとさらに好ましい。例えば、素子内のある1点で測定した波長450nmと波長650nmにおける透過率がそれぞれT450=55%、T650=50%のとき、透過率の波長分散を|55%-50%|=5%とする。ここで、波長380nmから700nmにおける透過率の平均値を可視光透過率とする。可視光透過率が40%から80%の領域において、|T450-T650|が上記条件を満たすことが好ましい。
 また、本発明の光学フィルタにおいては、ヘイズが小さいことが好ましい。可視域に吸収をもつ材料を調整し、全光線透過率Ttが10%におけるヘイズが10%以下であることが好ましく、より好ましくは5%以下となるように用いるとよい。
 (B)透明樹脂
 透明樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、シクロオレフィン(COP)などの熱可塑性樹脂や、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアミド(PA)、ポリアミドイミド(PAI)などの熱硬化性樹脂、アクリルやエポキシなどのエネルギー線硬化性樹脂を用いることができる。熱硬化性樹脂やエネルギー線硬化性樹脂を用いる場合にはオリゴマーやモノマーなどの重合前駆体化合物(以下、重合性化合物とも呼ぶ)の段階で、吸収材料を添加し、その後硬化すればよい。これらの中でも、エネルギー線硬化性樹脂が好ましく用いられる。このような重合性化合物としては、重合反応により硬化して硬化物となるような成分であれば、特に制限なく使用可能である。例えば、ラジカル重合型の硬化性樹脂、カチオン重合型の硬化性樹脂、ラジカル重合型の硬化性化合物(モノマー)が特に制限なく使用可能である。これらの中でも、重合速度や後述する成形性の観点から、ラジカル重合型の硬化性化合物(モノマー)が好ましい。ラジカル重合型の硬化性樹脂としては、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、(メタ)アクリロイル基、アリルオキシ基、アリル基、ビニル基、ビニルオキシ基等の炭素-炭素不飽和二重結合を有する基を有する樹脂が挙げられる。
 本発明に用いられる重合性化合物は特に限定されるものではないが、エトキシ化o-フェニルフェノールアクリレート、メタクリル酸2-(パーフルオロヘキシル)エチル、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、トリシクロデカンメタノール(メタ)アクリレート、トリシクロデカンエタノール(メタ)アクリレート、1-アダマンチルアクリレート、1-アダマンチルメタノールアクリレート、1-アダマンチルエタノールアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレートなどの単官能化合物や、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、ジエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、イソボニルジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリシクロデカンジエタノールジ(メタ)アクリレート、アダマンタンジアクリレート、アダマンタンジメタノールジアクリレートなどの二官能化合物や、トリメチロールプロパントリ(メタ)アクリレートなどの三官能化合物、ペンタエリスルトールテトラ(メタ)アクリレートなどの四官能化合物、ジペンタエリスルトールヘキサ(メタ)アクリレートなどの六官能化合物などが例示される。重合性化合物は1種類または2種類以上を含んでいても構わない。単官能化合物のみを用いる場合は、成型後の離型時に凝集破壊を起こす場合があるので、ニ官能以上の多官能化合物を含むことが好ましい。重合性化合物組中における多官能化合物は1質量%以上、90質量%以下であることが好ましく、さらに10質量%以上、80質量%以下であることが好ましい。多官能化合物の量が1質量%未満の場合は、凝集破壊を改善できる効果が不十分であり、90質量%を超える場合には、重合後の収縮が大きく問題になる場合がある。
 また、上記の炭素-炭素不飽和二重結合を有する官能基以外にエポキシ基のような開環反応を起こす重合性化合物も用いることができる。特に例示はしないが、この場合にも、単官能化合物のみでは、成型後の離型時に凝集破壊を起こす場合があるので、ニ官能以上の多官能化合物を含むことが好ましい。重合性化合物組中における多官能化合物は1質量%以上、90質量%以下であることが好ましく、さらに10質量%以上、80質量%以下であることが好ましい。これらの吸収材料部は積層する部材との屈折率差を小さくし界面反射を軽減したり、粘度を調整したりする目的で、単独で用いてもよく、複数組み合わせて用いてもよい。
 アクリルモノマーに用いられるラジカル開始剤としては、オキシムエステル系開始剤、チタノセン系開始剤、アセトフェノン系開始剤、ベンゾイン系開始剤、ベンゾフェノン系開始剤、チオキサントン系開始剤、α-アミノケトン系開始剤、α-ヒドロキシケトン系開始剤等の光ラジカル開始剤や、過酸化物、アゾ化合物、レドックス開始剤等の熱ラジカル開始剤を用いることができる。なかでも、開始剤の活性の高さから、オキシムエステル系開始剤が好適に用いられる。
 ラジカル開始剤、1種を単独で用いてもよく、2種以上を併用してもよい。ラジカル開始剤の量は、重合性化合物の合計量に対して、0.05~5質量%であることが好ましい。
 本発明において好適に用いることのできるラジカル開始剤の例は、IRGACURE784、IRGACURE OXE-01、IRGACURE OXE-02(いずれもBASF社製)である。
 また、必要に応じて各種添加剤を含んでもよい。添加剤としては、酸化防止剤、光安定剤、界面活性剤、光増感剤、上記重合性化合物以外の樹脂等が挙げられる。酸化防止剤としては、フェノール系酸化防止剤、イオウ系酸化防止剤、およびリン系酸化防止剤等が挙げられる。光安定剤としては、ヒンダードアミン系光安定剤(HALS)等が挙げられる。
 界面活性剤としては、アニオン性含界面活性剤、カチオン性界面活性剤、両性界面活性
剤、またはノニオン性界面活性剤のいずれであってもよい。また、界面活性剤はフッ素原
子を含む界面活性剤であってもよい。
 本発明における光硬化性吸収材料の調整方法は、吸収粒子に分散剤と有機溶媒を加え、分散処理を行った後、重合性化合物、ラジカル開始剤および必要に応じてその他の添加剤を加え、有機溶媒をエバポレーションによる留去することによって得られる。
 分散処理方法としては、超音波ホモジナイザー、マグネチックスターラーによる攪拌、羽つき攪拌棒による攪拌、高圧乳化装置、湿式粉砕機、サンドミル、ボールミルなどが挙げられる。
 これらの分散処理は、単独で行ってもよいし、複数種類の分散方法を組み合わせて複数回行ってもよい。
 用いる有機溶媒は、分散剤を用いて吸収材料が分散しやすく、かつ、重合性化合物、ラジカル開始剤およびその他の添加剤がよく溶解する溶媒であれば特に制限なく用いることができる。これらの条件を満たす溶媒としては、アルコール類、ケトン類、エステル類、アルカン類、芳香族類などを好適に用いることができる。具体例としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、シクロヘキサノンなどが挙げられる。
 有機溶媒は、1種単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 粉砕時の濃度は特に限定されないが、0.01mg/mLから10mg/mLの範囲が好ましく、より好ましくは、0.1mg/mLから5mg/mLの範囲である。粉砕時の濃度が0.01mg/mLより低濃度であると上記エバポレーション工程が煩雑になるため好ましくなく、また、10mg/mLより高濃度であると粒子が部分的に凝集しやすくなりヘイズの原因になるためである。
 次に、図6に基づき、本実施の形態における光硬化性吸収材料の製造方法について説明する。
 最初に、図6(a)に示される吸収材料粉末110に分散剤と有機溶剤を加えて超音波を照射し、この後、ジルコニアビーズを加え、上記分散処理を行うことにより、図6(b)に示される吸収材料分散液111を得る。
 次に、図6(b)に示される吸収材料分散液111に、光硬化性アクリレートとラジカル開始剤を加えた後、有機溶剤を除去し、図6(c)に示される光硬化性吸収材料112を得る。このように光硬化性アクリレートとラジカル開始剤を加えることにより得られた光硬化性吸収材料112は、紫外線を照射することにより硬化するものである。
 溶剤が除去された光硬化性吸収材料112は、成型性に優れることから、粘度が小さいことが好ましい。具体的には、30℃における粘度が、30mPa・s以上、5000mPa・s未満が好ましく、50mPa・s以上、3500mPa・s未満がより好ましい。
 30℃における光硬化性吸収材料の粘度が5000mPa・s以上であると外気の巻き込み量が増大し成型体に気泡を巻き込みやすく、均一な成型体を得にくくなる。一方、30℃における粘度が30mPa・sであると、液のダレの原因となり、均一な成型体を得にくくなる。
 また、本発明の光学フィルタにおいて、吸収材料部の屈折率は1.35以上、1.65以下であることが好ましい。ここで屈折率の波長は589nmである。吸収材料部は透明材料部の屈折率と略等しいが、一般的な透明材料は、屈折率が1.35以上、1.65以下が多いため、吸収材料部の屈折率は上記範囲にあることが好ましい。
 (透明材料部)
 続いて、本発明の透明材料部について説明する。透明材料部に用いられる透明樹脂は、吸収材料部に記載の透明樹脂を用いることができる。中でも、エネルギー線硬化性樹脂が好ましく用いられる。また、屈折率を調整する目的で、可視波長域で透明な無機酸化物材料のナノ粒子を含んでもよい。このような材料としては、Al、SiO、GeO、SnO、Y、La、CeO、TiO、ZrO、Nb、Ta等が挙げられる。
 また、温度変化による光学フィルタの反りを低減するため、吸収材料部と透明材料部を形成する部材の線膨張率は略一致していることが好ましい。線膨張率の差の絶対値は50ppm/K以下であることが好ましく、10ppm/K以下であるとさらに好ましい。吸収材料部に応じて、透明材料部を適宜調整すればよい。
 (光学フィルタの製造方法)
 次に、図7に基づき、本実施の形態における光学フィルタの製造方法について説明する。
 図7(a)に示すように、石英により形成された石英型120を準備する。この石英型120は、中央部分には凸部が形成されており、凸部の周囲には凹部が形成されている。なお、本実施例では石英製の型を用いているが、型の成型性や離型性などを考慮し、最適な材料で製造された型を用いることができる。
 次に、図7(b)に示すように、石英型120に、図6(c)に示される光硬化性吸収材料112を所定量滴下する。
 次に、図7(c)に示すように、滴下された光硬化性吸収材料112の上に、樹脂フィルム130を被せ、紫外線照射装置により紫外線を照射することにより、光硬化性吸収材料112を硬化させて吸収材料部10を形成する。
 次に、図7(d)に示すように、硬化させた吸収材料部10を石英型120から離型する。これにより、石英型120の形状に対応した形状の吸収材料部10が形成される。なお、紫外線を照射後もしくは離型後に、加熱処理を行っても構わない。
 次に、図7(e)に示すように、吸収材料部10の凹状の部分に、光を透過する透明な紫外線硬化樹脂材料を滴下し、樹脂フィルム131を被せ、紫外線照射装置により紫外線を照射することにより、紫外線硬化樹脂材料を硬化させ透明材料部20を形成する。なお、紫外線硬化樹脂材料は、紫外線硬化樹脂材料より形成される透明材料部20の屈折率が、吸収材料部10の屈折率と略等しくなるように調整されている。さらに、温度変動により、吸収材料部10と透明材料部20の屈折率差が生じないようにするため、吸収材料部10と透明材料部20の屈折率の温度変化率は略等しいことが好ましい。
 これにより、本実施の形態における光学フィルタを作製することができる。
 なお、上述した製造方法では、凸部に光硬化性吸収材料を作製し、型から離型後、凹部を形成する吸収材料に透明な光硬化性材料を充填したが、成型する順番が逆になっても構わない。すなわち、先ず凹状の部分を有する型に透明材料を充填し、樹脂フィルムを被せた後、紫外線照射により透明材料を硬化させる。次いで、吸収材料を型から離型後、前記透明材料の凸状の部分に、光硬化性吸収材料を垂らす。樹脂フィルムを被せた後、同様に紫外線照射によって吸収材料を硬化させる。
 また、本実施の形態における光学フィルタは、図7(e)に示す二つの樹脂フィルムのどちらか一方を除去してもよい。図4(a)は樹脂フィルム131を除去したものであって、樹脂フィルム130に吸収材料部10が積層されている。図4(b)は樹脂フィルム130を除去したものであって、樹脂フィルム131に透明材料部20が積層されている。さらに、図7(e)に示す樹脂フィルム130及び樹脂フィルム131の両方を除去し、図4(c)に示すように吸収材料部10と透明材料部20により構成されてもよい。
 樹脂フィルムとしては、透明樹脂材料として説明した、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、シクロオレフィン(COP)などの熱可塑性樹脂や、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアミド(PA)、ポリアミドイミド(PAI)などの熱硬化性樹脂を用いることができる。
 本発明では、物理的に膜厚のグラデーションをかける方法として、上記製造方法の他に、以下の製造方法により成型を行うことができる
 前述した吸収粒子、分散剤、重合性化合物、ラジカル開始剤を有機溶剤に溶解分散させ、その後、溶液を凸状にパターニングされた金型にコートする。次いで上記有機溶剤を加熱または減圧により留去し、最後に、重合性化合物を硬化させることにより吸収材料を任意の形状に成型することができる。コート方法としては、スピンコート法、ディップコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法、ダイコート法等が挙げられる。重合性化合物の硬化は、光硬化であっても熱硬化であっても構わず、上記ラジカル開始剤の中から任意の開始剤を用いることができる。硬化時は、酸素による重合阻害を防ぐため、必要に応じて減圧または不活性ガスによる酸素除去をすることが好ましい。
 また、吸収材料を熱可塑性樹脂と溶媒に均一に分散した後、この混合溶液を凸状にパターニングされた金型に流し込んでもよい。この際、熱硬化性樹脂の代わりに、熱硬化型樹樹脂の前駆体を用いてもよい。金型にコート後に、塗布、乾燥プロセスを経て、所望の成型体を作製することができる。
 また、吸収材料と熱可塑性樹脂を均一に分散した後、射出成型により作製してもよい。加熱溶融させた樹脂組成物を金型内に射出注入にて成型後、冷却することにより、所望の成型体を作製することができる。
 さらに、この他の方法として、吸収材料と熱可塑性樹脂を均一に分散した後、加熱モールドを用いプレス成型により作製してもよい。熱可塑性樹脂のガラス転移点以上に加熱することで、樹脂組成物の粘度が低下し、成型しやすくなる。
 なお、いずれも吸収材料部の成型方法について説明したが、透明材料部についても同様であり、適宜選択すればよい。
 以上、吸収材料もしくは透明材料に膜厚分布を与え、その後、もう一方の材料を用いて充填することにより、本発明における光学素子を製造することができる。
 本実施の形態における光学フィルタは、カメラモジュールに構成される他の光学素子に積層して用いることができる。例えば、カバーガラス、レンズユニット、IRカットフィルター、などに積層することができる。また、単にガラスに積層しても構わず、その場合、ハンドリングに優れる光学フィルタを提供することができる。さらには、NDフィルタに積層してもよい。なお、図3において、D1mを所望のOD値となるようにすることで、NDフィルタの機能を同時に有する光学素子を提供することができる。
 次に、光学フィルタを形成している吸収材料部10に関する実施例について説明する。具体的には、吸収材料部を形成することが可能な材料により吸収材料膜が形成された実施例1~6及び比較例1~4における試料を作製した。作製された試料は作製される条件等が異なっており、これらの作製された実施例1~6及び比較例1~4における試料について、OD値、ヘイズ値、屈折率、粘度の測定を行った。
 試料を作製する際、黒色材料粉末としては、2種類のチタンブラック(TB-1、TB-2)を用いた。具体的には、実施例1~6、における試料を作製する際には、チタンブラック(TB-1)を用い、比較例1~4における試料を作製する際には、チタンブラック(TB-2)を用いた。なお、チタンブラック(TB-1)は、チタンブラック(微粒品)(三菱マテリアル社製)であり、比表面積が79m/g、平均粒径は約19nmである。また、チタンブラック(TB-2)は、チタンブラック12S(三菱マテリアル社製)であり、比表面積が22m/g、平均粒径は約68nmである。
 また、分散剤には、DisperBYK2164(ビックケミージャパン社製)を用いた。また、光硬化性アクリレートには、A-DCP(トリシクロデカンジメタノールジアクリレート:新中村化学工業社製)、FA-513AS(ジシクロペンタニルアクリレート:日立化成工業社製)、オグソールEA-F5003(フルオレン系ジアクリレート:大阪ガス化学工業社製)、C6FMA(メタクリル酸2-(パーフルオロヘキシル)エチル:旭硝子社製)より選ばれる1または2以上のものを用いた。また、ラジカル開始剤には、Irgacure OXE-02(BASF社製)を用いた。
 なお、OD値は、作製した試料の透過率を分光光度計(日立ハイテクノロジーズ社製:U3310)により、波長が600nmの透過率T600を測定することにより、下記の数2に示す式に基づきOD値を算出した。また、このOD値は、厚さが10μmにおけるものであり、実施例1~6及び比較例1~4における試料の厚さが10μmとなるように作製し測定したものである。
Figure JPOXMLDOC01-appb-M000002
 ヘイズ値は、作製した試料をオートマチックヘーズメーター(東京電色社製:TC-HIIIDPK/III)を用いて測定した。なお、ヘイズ値は、下記の数3に示す式より得られる値である。また、Ttは全光線透過率であり、Tdは拡散透過率である。
Figure JPOXMLDOC01-appb-M000003
 数3に示されるように、ヘイズ値は、全光線透過率Ttに依存する値である。具体的には、全光線透過率Ttが0.1%の場合、ヘイズ値が10%であるならば、拡散透過率Tdは0.01%である。また、全光線透過率Ttが10%の場合、ヘイズ値が10%であるならば、拡散透過率Tdは1%である。なお、作製した試料は、全光線透過率Ttが10%となるように膜厚を調整して作製したものであり、全光線透過率Ttが10%の場合、すなわち、OD値が1となる場合におけるヘイズ値である。
 屈折率は、作製した試料の一方の面のガラスを取り除き、吸収材料膜を露出させた後、露出している吸収材料膜における屈折率をエリプソメーター(日本分光社製:M-220)により測定したものである。なお、測定の際に用いた光は波長が589nmの光である。
 粘度は、試料を作製する際に用いた紫外線が照射される前の状態の光硬化性吸収材料の粘度をコーンプレート型デジタル粘度計(Brookfield製:DVIII-ultra)を用いて、30℃の温度の環境において測定した。
 (実施例1)
 実施例1について説明する。本実施例では、最初に、表1に示されるように、黒色材料粉末としてチタンブラック(TB-1):24mg、分散剤(DisperBYK2164):24mg、酢酸メチル:24mlをガラス製バイアル瓶に秤量し、15分間超音波照射し、さらに、この後、直径が0.5mmのジルコニアビーズを70g加えて、ボールミルを用いて3時間粉砕処理を行うことにより、吸収材料分散液111となる吸収材料分散液A1を得た。
Figure JPOXMLDOC01-appb-T000004
 次に、得られた吸収材料分散液A1に、A-DCPを120mg、FA-513ASを180mg、Irgacure OXE-02を9mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B1を得た。なお、この光硬化性吸収材料B1におけるチタンブラックの組成比は、6.9質量%であった。
 次に、得られた光硬化性吸収材料B1を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例1における試料を作製した。
 (実施例2)
 次に、実施例2について説明する。本実施例では、実施例1において得られた吸収材料分散液A1を用い、A-DCPを1000mg、FA-513ASを1500mg、Irgacure OXE-02を75mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B2を得た。なお、この光硬化性吸収材料B2におけるチタンブラックの組成比は、0.94質量%であった。
 次に、得られた光硬化性吸収材料B2を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例2における試料を作製した。
 (実施例3)
 次に、実施例3について説明する。本実施例では、実施例1において得られた吸収材料分散液A1を用い、A-DCPを180mg、FA-513ASを270mg、Irgacure OXE-02を13.5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B2を得た。なお、この光硬化性吸収材料B3におけるチタンブラックの組成比は、4.8質量%であった。
 次に、得られた光硬化性吸収材料B3を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例3における試料を作製した。
 (実施例4)
 次に、実施例4について説明する。本実施例では、実施例1において得られた吸収材料分散液A1を用い、A-DCPを67mg、FA-513ASを100mg、Irgacure OXE-02を5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B4を得た。なお、この光硬化性吸収材料B4におけるチタンブラックの組成比は、11.1質量%であった。
 次に、得られた光硬化性吸収材料B4を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例4における試料を作製した。
 (実施例5)
 次に、実施例5について説明する。本実施例では、実施例1において得られた吸収材料分散液A1を用い、オグソールEA-F5003を450mg、Irgacure OXE-02を13.5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B5を得た。なお、この光硬化性吸収材料B5におけるチタンブラックの組成比は、4.8質量%であった。
 次に、得られた光硬化性吸収材料B5を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例5における試料を作製した。
 (実施例6)
 次に、実施例6について説明する。本実施例では、実施例1において得られた吸収材料分散液A1を用い、C6FMAを450mg、Irgacure OXE-02を13.5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B6を得た。なお、この光硬化性吸収材料B6におけるチタンブラックの組成比は、4.8質量%であった。
 次に、得られた光硬化性吸収材料B6を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例6における試料を作製した。
 (比較例1)
 比較例1について説明する。本比較例では、最初に、表2に示されるように、黒色材料粉末としてチタンブラック(TB-2):24mg、分散剤(DisperBYK2164):24mg、酢酸メチル:24mlをガラス製バイアル瓶に秤量し、15分間超音波照射し、さらに、この後、直径が0.5mmのジルコニアビーズを70g加えて、ボールミルを用いて3時間粉砕処理を行うことにより、吸収材料分散液A2を得た。
Figure JPOXMLDOC01-appb-T000005
 次に、得られた吸収材料分散液A2に、A-DCPを4700mg、FA-513ASを7050mg、Irgacure OXE-02を350mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料B7を得た。なお、この光硬化性吸収材料B7におけるチタンブラックの組成比は、0.2質量%であった。
 次に、得られた光硬化性吸収材料B7を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、比較例1における試料を作製した。
 (比較例2)
 次に、比較例2について説明する。本比較例では、比較例1において得られた吸収材料分散液A2を用い、A-DCPを28mg、FA-513ASを42mg、Irgacure OXE-02を2mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料B8を得た。なお、この光硬化性吸収材料B8におけるチタンブラックの組成比は、20質量%であった。
 次に、得られた光硬化性吸収材料B8を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、比較例2における試料を作製した。
 (比較例3)
 次に、比較例3について説明する。本比較例では、比較例1において得られた吸収材料分散液A2を用い、A-DCPを300mg、FA-513ASを450mg、Irgacure OXE-02を13.5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料B9を得た。なお、この光硬化性吸収材料B9におけるチタンブラックの組成比は、3.0質量%であった。
 次に、得られた光硬化性吸収材料B9を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、比較例3における試料を作製した。
 (比較例4)
 次に、比較例4について説明する。本比較例では、比較例1において得られた吸収材料分散液A2を用い、A-DCPを180mg、FA-513ASを270mg、Irgacure OXE-02を13.5mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料B10を得た。なお、この光硬化性吸収材料B10におけるチタンブラックの組成比は、4.8質量%であった。
 次に、得られた光硬化性吸収材料B10を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、比較例4における試料を作製した。
 (実施例1~6の試料及び比較例1~4の試料の評価)
 次に、実施例1~6の試料及び比較例1~4の試料の評価について説明する。具体的には、実施例1~6の試料及び比較例1~4の試料について、OD値、ヘイズ値、屈折率、粘度の測定を行った結果を表3に示す。なお、上述したように、粘度は、実施例1~6の試料及び比較例1~4の試料を作製する際に用いた紫外線が照射される前の状態の光硬化性吸収材料B1~B10における粘度を示す。
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、実施例1における試料は、OD値が1.5、ヘイズ値が3.2%、屈折率が1.54、粘度が220mPa・sであった。また、実施例2における試料は、OD値が0.28、ヘイズ値が3.1%、屈折率が1.51、粘度が190mPa・sであった。また、実施例3における試料は、OD値が1.02、ヘイズ値が3.4%、屈折率が1.52、粘度が200mPa・sであった。また、実施例4における試料は、OD値が2.44、ヘイズ値が3.8%、屈折率が1.57、粘度が340mPa・sであった。また、実施例5における試料は、OD値が1.01、ヘイズ値が3.2%、屈折率が1.61、粘度が3500mPa・sであった。また、実施例6における試料は、OD値が1.00、ヘイズ値が3.8%、屈折率が1.39、粘度が80mPa・sであった。また、比較例1における試料は、OD値が0.05、ヘイズ値が3.8%、屈折率が1.51、粘度が180mPa・sであった。また、比較例2における試料は、OD値が5.0、ヘイズ値が4.8%、屈折率が1.60、粘度が450mPa・sであった。また、比較例3における試料は、OD値が0.51、ヘイズ値が37%であった。また、比較例4における試料は、OD値が1.29、ヘイズ値が42%であった。
 実施例1~6の測定結果に基づくならば、厚さが10μmにおけるOD値が0.2以上、2.5以下であって、ヘイズ値が10%以下となるように吸収材料部を形成することにより、光学特性が良好な光学フィルタを形成することができる。さらに、吸収材料部は、波長が589nmの光における屈折率が、1.35以上、1.65以下であることが好ましい。また、吸収材料部を形成する際に用いられる紫外線が照射される前の状態の光硬化性吸収材料の粘度は、30℃において、50mPa・s以上、3500mPa・s以下であるため、粘度が低く、光学フィルタにおける吸収材料部をインプリントプロセス等により形成する場合において好ましい。
 (実施例7)
 次に、実施例7について説明する。本実施例は光学フィルタであり、この光学フィルタの製造方法について図7に基づき説明する。
 最初に、図7(a)に示すように、石英により形成された石英型120を準備する。この石英型120は、中央部分には凸部が形成されており、凸部の周囲には凹部が形成されている。凸部の表面における曲面は、中心から半径方向の長さをr、面の位置をZ(r)としたときに、Z(r)=A×rとなるように形成されている(Aは係数)。なお、この凸部の高さは30μmであり、凹部が形成されている領域の直径は3mmである。
 次に、図7(b)に示すように、石英型120に、実施例3において得られた光硬化性吸収材料B3を0.7mg滴下する。
 次に、図7(c)に示すように、滴下された光硬化性吸収材料B3の上に、厚さが約188μmのシクロオレフィンフィルム(日本ゼオン社製:ZF-14、ヤング率参考値2.2GPa)からなる樹脂フィルム130を被せ、紫外線照射装置であるファイバー型UV露光機(浜松フォトニクス社製:スポット光LC6)により、300mW/cmとなるUV光を100秒間照射することにより、光硬化性吸収材料B3を硬化させて吸収材料部10を形成する。光硬化性吸収材料B3において、30℃から80℃の範囲における屈折率の温度変化率dn/dTは-216ppm/Kであった。
 次に、図7(d)に示すように、硬化させた吸収材料部10を石英型120から剥離し、135℃の温度で1時間の熱処理を行なう。
 次に、図7(e)に示すように、吸収材料部10の凹状の部分に、表4に示されるようなA-DCP:32部、FA-513AS:65部、Irgacure OXE-02:3部を混合した光を透過する透明な紫外線硬化樹脂材料を0.5mg滴下し、厚さが約188μmのシクロオレフィンフィルム(日本ゼオン社製:ZF-14)からなる樹脂フィルム131を被せ、紫外線照射装置であるファイバー型UV露光機(浜松フォトニクス社製:スポット光LC6)により、300mW/cmとなるUV光を100秒間照射することにより、紫外線硬化樹脂材料を硬化させて透明材料部20を形成する。この際、透明材料部20の589nmの屈折率は1.53であった。この透明材料部20において、30℃から80℃の範囲における屈折率の温度変化率dn/dTは-181ppm/Kであった。吸収材料部10と透明材料部20の屈折率の温度変化率の絶対値の差は35ppm/Kであり、周囲の温度が変化しても減光以外の光学的な作用が働かないため、アポダイズドフィルタとして好適に用いることができる。
Figure JPOXMLDOC01-appb-T000007
 以上の工程により、本実施例における光学フィルタを作製した。本実施例における光学フィルタをレーザ光のスポット位置に設置して、レンズ等によりスポット径が50μmとなるように集光してレーザ光を照射し、光学フィルタを透過した光の強度をレーザ光計測装置により測定した。具体的には、波長が633nmのレーザ光を照射し、本実施例における光学フィルタをオートステージで移動させることにより、本実施例における光学フィルタにおける透過率分布を測定した。この結果、本実施例における光学フィルタにおける中心部分の透過率は89%であり、また、本実施例における光学フィルタは、図8に示されるように、中心部分からの距離に対し透過率は単調に減少するものであった。
 (実施例8)
 実施例8について説明する。本実施例では、表5に示されるように、黒色材料粉末としてチタンブラック(TB-1)を112mg、カーボンブラック(FW200、DEGUSSA社製)を85mg、分散剤(DisperBYK2164)107mg、溶剤として酢酸メチル200mlをガラス製バイアル瓶に秤量し、15分間超音波照射し、さらに、この後、直径が0.5mmのジルコニアビーズを400g加えて、ボールミルを用いて3時間粉砕処理を行うことにより、吸収材料分散液111となる吸収材料分散液A3を得た。
Figure JPOXMLDOC01-appb-T000008
 次に、得られた吸収材料分散液A3に、A-DCPを1.59g、FA-513ASを2.38g、Irgacure OXE-02を120mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B11を得た。なお、この光硬化性吸収材料B11におけるチタンブラックの組成比は、2.5質量%、カーボンブラックの組成比は、1.9質量%であった。
 次に、得られた光硬化性吸収材料B11を加熱下において、ギャップを1~30μmに適宜調整した2枚のガラス基板の間に挟み込み、紫外線照射装置(ハリソン東芝ライティング社製Toscure751)を用い、100mW/cmの照度で、5分間、40℃で紫外線を照射した。さらに、135℃の温度で1時間熱処理することにより、実施例8における試料を作製した。
 (実施例9)
 実施例9について説明する。実施例8で示した吸収材料分散液A3を用い、A-DCPを0.86g、FA-513ASを1.29g、Irgacure OXE-02を65mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B12を得た。なお、この光硬化性吸収材料B12におけるチタンブラックの組成比は、4.4質量%、カーボンブラックの組成比は、3.3質量%であった。次に、実施例7で示した手法により、実施例9における試料を作製した。
 (実施例10)
 実施例10について説明する。実施例7で示した吸収材料分散液A3を用い、A-DCPを7.6g、FA-513ASを11.4g、Irgacure OXE-02を950mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B13を得た。なお、この光硬化性吸収材料B13におけるチタンブラックの組成比は、0.55質量%、カーボンブラックの組成比は、0.42質量%であった。次に、実施例7で示した手法により、実施例10における試料を作製した。
 (実施例11)
 実施例11について説明する。実施例7で示した吸収材料分散液A3を用い、A-DCPを0.5g、FA-513ASを0.76g、Irgacure OXE-02を64mg加えた後、エバポレーターを用いて酢酸メチルを留去し、光硬化性吸収材料112となる光硬化性吸収材料B14を得た。なお、この光硬化性吸収材料B14におけるチタンブラックの組成比は、6.8質量%、カーボンブラックの組成比は、5.2質量%であった。次に、実施例7で示した手法により、実施例11における試料を作製した。
Figure JPOXMLDOC01-appb-T000009
 (実施例8~11の試料の評価)
 次に、実施例の試料8~11の試料の評価について説明する。具体的には、実施例8~11の試料について、OD値、ヘイズ値、屈折率、粘度の測定を行った結果を表6に示す。なお、上述したように、粘度は、実施例8~11の試料を作製する際に用いた紫外線が照射される前の状態の光硬化性吸収材料B11~B14における粘度を示す。
 表6に示されるように、実施例8における試料は、OD値が1.37、ヘイズ値が2.8%、屈折率が1.52、粘度が50mPa・sであった。また、実施例9における試料は、OD値が2.44、ヘイズ値が2.9%、屈折率が1.53、粘度が110mPa・sであった。また、実施例10における試料は、OD値が0.30、ヘイズ値が3.2%、屈折率が1.51、粘度が35mPa・sであった。また、実施例11における試料は、OD値が3.80、ヘイズ値が3.0%、屈折率が1.57、粘度が230mPa・sであった。
 実施例8~11の測定結果に基づくならば、厚さが10μmにおけるOD値が0.2以上、4.0以下であって、ヘイズ値が10%以下となるように吸収材料部を形成することにより、光学特性が良好な光学フィルタを形成することができる。さらに、吸収材料部は、波長が589nmの光における屈折率が、1.35以上、1.65以下であることが好ましい。また、吸収材料部を形成する際に用いられる紫外線が照射される前の状態の光硬化性吸収材料の粘度は、30℃において、50mPa・s以上、3500mPa・s以下であるため、粘度が低く、光学フィルタにおける吸収材料部をインプリントプロセス等により形成する場合において好ましい。
 (実施例12)
 次に、実施例12について説明する。本実施例は光学フィルタであり、実施例7におけるB3をB11に置き換えた以外は同様の手法で作製し、光学フィルタを得た。
 実施例12で得られた光学フィルタをレーザ光のスポット位置に設置して、レンズ等によりスポット径が50μmとなるように集光してレーザ光を照射し、光学フィルタを透過した光の強度をレーザ光計測装置により測定した。具体的には、波長が633nmのレーザ光を照射し、本実施例における光学フィルタをオートステージで移動させることにより、本実施例における光学フィルタにおける透過率分布を測定した。この結果、本実施例における光学フィルタにおける中心部分の透過率は91%であり、吸収材料の膜厚は0.02μmであった。また、本実施例における光学フィルタは、図8と同様に、中心部分からの距離に対し透過率は単調に減少するものであった。
 次に、実施例12で得られた光学フィルタの中心部、中間部、端部の分光スペクトル、即ち、光の波長と透過率との関係を測定した。測定結果を図9にそれぞれ示す。9Aは可視光透過率が約88.0%の中心部、9Bは可視光透過率が約58.7%の中間部、9Cは可視光透過率が約38.6%の中間部、9Dは、可視光透過率が約0.1%の端部である。
 9Aに示される可視光透過率が約88.0%の中心部においては、波長450nmにおける透過率T450は約87.2%であり、波長650nmにおける透過率T650は約90.0%であり、|T450-T650|は約1.8%であった。また、9Bに示される可視光透過率が約58.7%の中間部においては、T450は約57.5%であり、T650は約60.0%であり、|T450-T650|は約2.5%であった。また、9Cに示される可視光透過率が約38.6%の中間部においては、T450は約37.3%であり、T650は約40.0%であり、|T450-T650|は約2.7%であった。また、9Dに示される可視光透過率が約0.1%の端部においては、T450は約0.1%であり、T650は約0.1%であり、|T450-T650|は約0.0%であった。これより、実施例12で得られた光学フィルタは、吸収の波長依存性が低く、アポダイズドフィルタとして好適に用いることができる。
 次に、実施例12で得られた光学フィルタの透過波面収差を富士フィルム社製レーザ干渉計R10で測定した結果、PV(peak to valley)値で0.7λであり、素子の有効径内における膜厚の最大値と最小値の差Δdは860nmであった。なお、測定波長は650nm、測定径は2.5mmであった。
 これより、光学フィルタにおける面内の膜厚差Δdは小さく、また、光路長差PVも小さく意図しない光学作用がないため、アポダイズドフィルタとして好適に用いることができる。
 (実施例13)
 次に、実施例13について説明する。実施例13は、IRカット機能を有するガラス上にアポダイズドフィルタを積層したものである。
 まず、フツリン酸系ガラス(旭硝子社製NF50T)の片面にSiOとTiOからなる誘電体多層膜を形成し、紫外線及び赤外線カット機能付きガラスを作製した。
 次に、実施例7で用いた石英型120に、実施例8において得られた光硬化性吸収材料B11を0.7mg滴下し、さらに、上記ガラスの誘電体多層膜が積層されていない面を被せ、紫外線照射装置であるファイバー型UV露光機(浜松フォトニクス社製:スポット光LC6)により、300mW/cmとなるUV光を100秒間照射することにより、光硬化性吸収材料B11を硬化させて吸収材料部10を形成した。
 次に、硬化させた吸収材料部10を石英型120から剥離し、135℃の温度で1時間の熱処理を行なった。
 次に、吸収材料部10の凹状の部分に、表4に示す光を透過する透明な紫外線硬化樹脂材料を0.5mg滴下し、離型処理を施したガラスを被せた。続いて、300mW/cmとなるUV光を100秒間照射することにより、紫外線硬化樹脂材料を硬化させて透明材料部20を形成した。最後に、ガラスを離型し、IRカット機能を有するアポダイズドフィルタを得た。
 次に、得られたアポダイズドフィルタの中心部、中間部、端部の分光スペクトルを測定した。この結果を図10に示す。尚、図10において、10Aはアポダイズドフィルタの中心部、10B及び10Cは中間部における分光スペクトルを示す。図10に示されるように、実施例13における光学素子は、紫外線および赤外線カット機能を有しており、可視光においてはアポダイズドフィルタとして機能する光学素子であることがわかる。
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 本国際出願は、2012年4月26日に出願された日本国特許出願2012-101834号に基づく優先権及び2013年2月28日に出願された日本国特許出願2013-038498号に基づく優先権を主張するものであり、日本国特許出願2012-101834号及び日本国特許出願2013-038498号の全内容を本国際出願に援用する。
10    吸収材料部
20    透明材料部
30    反射防止膜
110   黒色材料粉末
111   吸収材料分散液
112   光硬化性吸収材料
120   石英型
130   樹脂フィルム
131   樹脂フィルム
 

Claims (22)

  1.  中心部分から周辺部分に向かって、光の透過率が単調に減少する光学素子において、
     光の一部を吸収する材料により形成されており、中心部分から周辺部分に向かって厚さが単調に増加する吸収材料部と、
     光を透過する材料により形成されており、前記吸収材料部に積層されている透明材料部と、
     を有し、前記吸収材料部と前記透明材料部とを合わせた厚さは略一定であることを特徴とする光学素子。
  2.  前記吸収材料部の透過率が中心部分から周辺部分に向かってガウシアン分布をしていることを特徴とする請求項1に記載の光学素子。
  3.  前記吸収材料部における屈折率と前記透明材料部における屈折率とは、略等しいことを特徴とする請求項1または2に記載の光学素子。
  4.  前記吸収材料部における中心部分における厚さが、0.5μm以下であることを特徴とする請求項1から3のいずれかに記載の光学素子。
  5.  前記吸収材料部における屈折率温度係数と前記透明材料部における屈折率温度係数とは略等しいことを特徴とする請求項1から4のいずれかに記載の光学素子。
  6.  前記吸収材料部は、厚さが10μmにおけるOD値が、0.2以上であることを特徴とする請求項1から5のいずれかに記載の光学素子。
  7.  前記吸収材料部は、OD値が1におけるヘイズ値が、10%以下であることを特徴とする請求項1から6のいずれかに記載の光学素子。
  8.  前記吸収材料部は、波長が589nmの光における屈折率が、1.35以上、1.65以下であることを特徴とする請求項1から7のいずれかに記載の光学素子。
  9.  波長380nmから700nmにおける透過率の平均値が40%から80%の領域において、波長450nmおよび650nmにおける透過率をそれぞれT450およびT650とした場合、
    |T450-T650|<5%
     を満たすことを特徴とする請求項1から8のいずれかに記載の光学素子。
  10.  前記吸収材料部と前記透明材料部の有効領域内における膜厚の最大値と最小値の差が1μm以下であることを特徴とする請求項1から9のいずれかに記載の光学素子。
  11.  前記吸収材料部は、チタンブラックおよりカーボンブラックのうち少なくともどちらか一方を含むことを特徴とする請求項1から10のいずれかに記載の光学素子。
  12.  前記吸収材料部及び前記透明材料部は、基材上に積層されており、前記基材が樹脂フィルムまたはガラスであることを特徴とする請求項1から11のいずれかに記載の光学素子。
  13.  前記吸収材料部及び前記透明材料部は、カバーガラスに積層されたものであることを特徴とする請求項1から12のいずれか記載の光学素子。
  14.  前記光は、可視光であることを特徴とする請求項1から13のいずれかに記載の光学素子。
  15.  前記光学素子の一方または双方の面には反射防止膜が形成されており、
     前記反射防止膜は、波長が430nmから630nmおける光の反射を低くするものであることを特徴とする請求項1から14のいずれかに記載の光学素子。
  16.  前記光学素子の有効領域内において、波長650nmにおける光路長差の最大値と最小値の差が波長以下であることを特徴とする請求項1から15のいずれかに記載の光学素子。
  17.  前記吸収材料部を形成する際に用いられる光硬化性吸収材料における粘度が、30℃において、50mPa・s以上、3500mPa・s以下であることを特徴とする請求項1から16のいずれかに記載の光学素子。
  18.  前記吸収材料部及び前記透明材料部は、IRカットフィルターに積層されていることを特徴とする請求項1から17のいずれかに記載の光学素子。
  19.  前記IRカットフィルターには、リン酸ガラスまたはフツリン酸ガラスが用いられていることを特徴とする請求項18に記載の光学素子。
  20.  前記IRカットフィルターには、色素が用いられていることを特徴とする請求項18に記載の光学素子。
  21.  前記IRカットフィルターには、誘電体多層膜が用いられていることを特徴とする請求項18に記載の光学素子。
  22.  前記吸収材料部がレンズに積層されていることを特徴とする請求項1から17のいずれかに記載の光学素子
     
PCT/JP2013/061802 2012-04-26 2013-04-22 光学素子 WO2013161767A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380021772.7A CN104246544B (zh) 2012-04-26 2013-04-22 光学元件
US14/524,893 US9753299B2 (en) 2012-04-26 2014-10-27 Optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-101834 2012-04-26
JP2012101834 2012-04-26
JP2013038498 2013-02-28
JP2013-038498 2013-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/524,893 Continuation US9753299B2 (en) 2012-04-26 2014-10-27 Optical element

Publications (1)

Publication Number Publication Date
WO2013161767A1 true WO2013161767A1 (ja) 2013-10-31

Family

ID=49483080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061802 WO2013161767A1 (ja) 2012-04-26 2013-04-22 光学素子

Country Status (4)

Country Link
US (1) US9753299B2 (ja)
JP (1) JPWO2013161767A1 (ja)
CN (1) CN104246544B (ja)
WO (1) WO2013161767A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254154A (ja) * 2012-06-08 2013-12-19 Toshiba Corp アポダイザ製造方法及び光学モジュール
EP2871500A1 (en) * 2013-11-08 2015-05-13 Barco, Naamloze Vennootschap (N.V) Optical filter and method for preparing same
WO2016063849A1 (ja) * 2014-10-21 2016-04-28 旭硝子株式会社 光学素子および撮像装置
JP2016210984A (ja) * 2015-04-28 2016-12-15 住友金属鉱山株式会社 分散体、着色層、着色膜、着色基材、着色合わせ基材、およびインク
JP2017187729A (ja) * 2016-03-31 2017-10-12 キヤノン株式会社 光学素子、光学系、撮像装置及びレンズ装置
JP2020079853A (ja) * 2018-11-13 2020-05-28 キヤノン株式会社 光学素子、光学系、および、光学機器
KR20210078748A (ko) * 2019-12-19 2021-06-29 주식회사 세코닉스 내면 반사를 개선한 소형 카메라용 렌즈

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871060B (zh) * 2012-12-17 2017-10-31 旭硝子株式会社 光学元件、光学系统以及摄像装置
WO2017029781A1 (en) * 2015-08-19 2017-02-23 Canon Kabushiki Kaisha Optical filter and optical system, image pickup apparatus, and lens apparatus which include the same
JP6808355B2 (ja) * 2015-08-19 2021-01-06 キヤノン株式会社 光学フィルタおよびそれを有する光学系、撮像装置
US10551534B2 (en) * 2016-03-31 2020-02-04 Canon Kabushiki Kaisha Optical element, optical system, image pickup apparatus, and lens apparatus
RU2683883C1 (ru) * 2018-04-02 2019-04-02 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали
CN111273379A (zh) * 2018-11-19 2020-06-12 北京小米移动软件有限公司 移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172319A (ja) * 1986-01-24 1987-07-29 Canon Inc 複合フイルタ
JPH11231209A (ja) * 1998-02-18 1999-08-27 Minolta Co Ltd 撮影レンズ系
JP2010156765A (ja) * 2008-12-26 2010-07-15 Jsr Corp Ndフィルター、その製造方法およびそれらを用いた光の透過率の調節方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958062A (en) * 1972-03-16 1976-05-18 E. I. Du Pont De Nemours And Company Solar energy reflecting film structure and process of manufacture therefor
JPH0323415A (ja) * 1989-06-20 1991-01-31 Canon Inc 光学的ローパスフィルター
JPH10268382A (ja) 1997-03-21 1998-10-09 Minolta Co Ltd フィルタ交換式カメラ
US6449081B1 (en) 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
KR100880875B1 (ko) * 2001-07-20 2009-01-30 마이클 사약 이미지 캡처 장치에 광학적으로 연결된 렌즈 시스템
JP2003124449A (ja) 2001-10-19 2003-04-25 Canon Inc 撮像装置
US7099555B2 (en) 2003-08-20 2006-08-29 Canon Kabushiki Kaisha Light amount adjusting apparatus, optical equipment, optical filter and image-taking apparatus
JP2005215225A (ja) 2004-01-29 2005-08-11 Canon Inc 光学フィルタ、光学フィルタの製造方法および蒸着マスク
JP2006301221A (ja) 2005-04-20 2006-11-02 Nidec Copal Corp 撮像レンズ
JP2007183525A (ja) * 2005-12-07 2007-07-19 Murakami Corp 誘電体多層膜フィルタ
US20070139792A1 (en) 2005-12-21 2007-06-21 Michel Sayag Adjustable apodized lens aperture
WO2009075348A1 (ja) * 2007-12-12 2009-06-18 Bridgestone Corporation 光学フィルタ、ディスプレイ用光学フィルタ及びこれを備えたディスプレイ並びにプラズマディスプレイパネル
TW201003151A (en) * 2008-07-04 2010-01-16 Jsr Corp ND filter and manufacturing method thereof
JP2011070150A (ja) * 2009-04-14 2011-04-07 Nippon Hoso Kyokai <Nhk> Ndフィルタ及びテレビカメラ並びにndフィルタの製造方法
JP2013254154A (ja) 2012-06-08 2013-12-19 Toshiba Corp アポダイザ製造方法及び光学モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172319A (ja) * 1986-01-24 1987-07-29 Canon Inc 複合フイルタ
JPH11231209A (ja) * 1998-02-18 1999-08-27 Minolta Co Ltd 撮影レンズ系
JP2010156765A (ja) * 2008-12-26 2010-07-15 Jsr Corp Ndフィルター、その製造方法およびそれらを用いた光の透過率の調節方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254154A (ja) * 2012-06-08 2013-12-19 Toshiba Corp アポダイザ製造方法及び光学モジュール
US8953249B2 (en) 2012-06-08 2015-02-10 Kabushiki Kaisha Toshiba Method of manufacturing an apodizer, and optical module
EP2871500A1 (en) * 2013-11-08 2015-05-13 Barco, Naamloze Vennootschap (N.V) Optical filter and method for preparing same
WO2015067789A1 (en) * 2013-11-08 2015-05-14 Barco N.V. Optical filter and method for preparing same
JPWO2016063849A1 (ja) * 2014-10-21 2017-08-10 旭硝子株式会社 光学素子および撮像装置
WO2016063849A1 (ja) * 2014-10-21 2016-04-28 旭硝子株式会社 光学素子および撮像装置
US10088730B2 (en) 2014-10-21 2018-10-02 AGC Inc. Optical element and imaging device
JP2016210984A (ja) * 2015-04-28 2016-12-15 住友金属鉱山株式会社 分散体、着色層、着色膜、着色基材、着色合わせ基材、およびインク
JP7075713B2 (ja) 2015-04-28 2022-05-26 住友金属鉱山株式会社 分散体、着色層、着色膜、着色基材、着色合わせ基材、およびインク
JP2017187729A (ja) * 2016-03-31 2017-10-12 キヤノン株式会社 光学素子、光学系、撮像装置及びレンズ装置
JP2020079853A (ja) * 2018-11-13 2020-05-28 キヤノン株式会社 光学素子、光学系、および、光学機器
US11513440B2 (en) 2018-11-13 2022-11-29 Canon Kabushiki Kaisha Optical element, optical system, and optical apparatus
KR20210078748A (ko) * 2019-12-19 2021-06-29 주식회사 세코닉스 내면 반사를 개선한 소형 카메라용 렌즈
KR102287990B1 (ko) 2019-12-19 2021-08-10 주식회사 세코닉스 내면 반사를 개선한 소형 카메라용 렌즈

Also Published As

Publication number Publication date
US20150192783A1 (en) 2015-07-09
JPWO2013161767A1 (ja) 2015-12-24
CN104246544B (zh) 2017-03-22
CN104246544A (zh) 2014-12-24
US9753299B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2013161767A1 (ja) 光学素子
TWI634144B (zh) 紅外線遮光組成物、紅外線遮光層、紅外線截止濾波器、照相機模組
CN104985842B (zh) 光学元件及其制造方法
US8124324B2 (en) Laminated diffractive optical element and resin composition therefor
TWI683183B (zh) 硬化性樹脂組成物、使用其的抗反射膜及固體攝像元件
TWI803686B (zh) 遮光性組成物、硬化膜、濾色器、遮光膜、光學元件、固體攝像元件、頭燈單元
JP6701324B2 (ja) 組成物、膜、硬化膜、光学センサおよび膜の製造方法
KR20190013943A (ko) 적층체, 키트, 적층체의 제조 방법 및 광학 센서
JP6825095B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、画像表示装置、及び自発光型ディスプレイ装置
WO2020003863A1 (ja) インプリント用光硬化性組成物
TW201915068A (zh) 硬化膜之製造方法、固體攝像元件之製造方法、圖像顯示裝置之製造方法
KR20190041493A (ko) 금속 질화물 함유 입자, 분산 조성물, 경화성 조성물, 경화막, 및 그들의 제조 방법과 컬러 필터, 고체 촬상 소자, 고체 촬상 장치, 적외선 센서
JP6589151B2 (ja) 光硬化性樹脂組成物及び高屈折性樹脂硬化体
WO2014115689A1 (ja) 光学素子、光学系及び撮像装置
JP7254946B2 (ja) 分散液、組成物、硬化膜、カラーフィルタ、固体撮像素子及び画像表示装置
KR20080080187A (ko) 컬러필터와 그 제조방법, 및 액정 표시 장치
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2007191687A (ja) 有機無機複合体形成用材料、有機無機複合体、その製造方法及び光学素子
KR101759740B1 (ko) 경화막
KR102025381B1 (ko) 디스플레이 장치의 전면 차광층 형성용 감광성 수지 조성물
JP2023058288A (ja) 光学素子、光学機器、撮像装置
KR20150014767A (ko) 디스플레이 장치의 전면 차광층 형성용 감광성 수지 조성물
KR20220137949A (ko) 감광성 조성물, 경화막, 컬러 필터, 차광막, 광학 소자, 고체 촬상 소자, 적외선 센서, 헤드라이트 유닛
WO2014098035A1 (ja) 光学素子、光学系及び撮像装置
TW202041590A (zh) 組成物、遮光膜、濾色器、光學元件、感測器、固體攝像元件、頭燈單元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780822

Country of ref document: EP

Kind code of ref document: A1