WO2013159513A1 - 薄膜晶体管及其制造方法、阵列基板和显示装置 - Google Patents
薄膜晶体管及其制造方法、阵列基板和显示装置 Download PDFInfo
- Publication number
- WO2013159513A1 WO2013159513A1 PCT/CN2012/085212 CN2012085212W WO2013159513A1 WO 2013159513 A1 WO2013159513 A1 WO 2013159513A1 CN 2012085212 W CN2012085212 W CN 2012085212W WO 2013159513 A1 WO2013159513 A1 WO 2013159513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- thin film
- film transistor
- active layer
- metal
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 72
- 239000000758 substrate Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 68
- 229910052751 metal Inorganic materials 0.000 claims abstract description 68
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 19
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 17
- 239000010408 film Substances 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 10
- 125000004430 oxygen atom Chemical group O* 0.000 description 9
- 239000000969 carrier Substances 0.000 description 6
- 238000002161 passivation Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910003087 TiOx Inorganic materials 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78609—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
- H01L29/78693—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
Definitions
- Embodiments of the present invention relate to a thin film transistor, a method of fabricating the same, an array substrate, and a display device. Background technique
- the thin film Transistor-Liquid Crystal Display is mainly divided into an active matrix liquid crystal display (AM-LCD) and a passive matrix liquid crystal display (PM-LCD).
- the active layer of the active matrix liquid crystal display is mainly composed of amorphous silicon (a-Si) or polycrystalline silicon (p-Si).
- the disadvantage is that lower mobility and stability are more affected by temperature; for p-Si TFTs, the disadvantage is that the uniformity of the deposited film is different and the distribution of polycrystalline grain boundaries is different. Display performance differences are large. Since the above-mentioned defects of the thin film transistor having a silicon base as an active layer have always restricted the development of the liquid crystal display, it has gradually failed to meet the current needs.
- a metal oxide semiconductor such as a-IGZO (amorphous-indium gallium oxide) is substituted for the silicon substrate as an active layer of the thin film transistor, because the original structural design change of the TFT is small, and the remaining structures correspond to The process flow is basically unchanged, so the equipment transformation is relatively simple; most importantly, the performance of thin film transistors based on metal oxide semiconductors such as a-IGZO has been significantly improved, causing attention in the display field, replacing silicon-based thin film transistors and becoming the next generation. Mainstream technology.
- a-IGZO amorphous-indium gallium oxide
- Embodiments of the present invention provide a thin film transistor and a method of fabricating the same, an array substrate, and a display device for reducing leakage current of a thin film transistor and improving TFT stability.
- An aspect of the invention provides a thin film transistor including a gate electrode, a gate insulating layer, an active layer, and a source/drain electrode layer formed on a substrate, the source/drain electrode layer including a source of the thin film transistor and a drain electrode; wherein the active layer is made of a metal oxide semiconductor, and a metal layer is provided between the active layer and the gate insulating layer.
- Another aspect of the present invention provides a thin film transistor manufacturing method including a process of forming a gate electrode, a gate insulating layer, an active layer, and a source/drain electrode layer on a substrate; wherein the source/drain electrode layer includes the a source and a drain of the thin film transistor; the active layer is made of a metal oxide semiconductor; and, between the step of forming the gate insulating layer and the step of forming the active layer, the method further includes: forming a metal layer between the gate insulating layer and the active layer.
- Still another aspect of the present invention provides an array substrate including the above thin film transistor.
- Yet another aspect of the present invention provides a display device including the above array substrate.
- FIG. 1 is a schematic structural view of a thin film transistor according to an embodiment of the present invention.
- FIG. 2 is a schematic view showing the position of the metal layer 7 in FIG. 1;
- FIG. 3 is a second schematic view of the position of the metal layer 7 in FIG. 1;
- FIG. 4 is a schematic flowchart of a method for fabricating a thin film transistor according to an embodiment of the present invention
- FIG. 8 is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
- a thin film transistor according to an embodiment of the present invention includes a gate electrode 2, a gate insulating layer 3, an active layer 4, and a source/drain electrode layer formed on a substrate 1, the source/drain electrode layer including a thin film.
- a source 5 and a drain 6 of the transistor wherein the active layer 4 is made of a metal oxide semiconductor, and a metal layer 7 is provided between the active layer 4 and the gate insulating layer 3 to reduce the active Carrier trapping effect between layer 4 and gate insulating layer 3.
- the metal oxide semiconductor used for the active layer 4 may be, but not limited to, indium gallium oxide a- IGZO; as long as it is a transparent oxide film having good semiconductor characteristics. Can be used for the production of active layers.
- the structure of the thin film transistor provided by the present invention is described by taking a bottom gate type TFT as an example.
- a top gate type TFT those skilled in the art can obtain a modification according to the idea of the present invention. I will not repeat them here. It should be noted, however, that the top gate type TFT based on the improvement of the present invention is also within the scope of the present invention.
- the material of the metal layer 7 may be selected from titanium metal Ti; thus, at the contact surface between the metal Ti and the gate insulating layer 3, a large amount of carriers may be provided by Ti in the metal layer 7, effectively compensating for gate insulation.
- the carrier trapping effect at the layer interface, so the carrier trapping effect at the interface can be neglected, thereby lowering the threshold voltage of the TFT, increasing the on-state current, and reducing the power consumption.
- a contact surface is also formed between the metal layer 7 and the active layer 4; since the active layer 4 is made of a metal oxide semiconductor, a-IGZO is taken as an example, and the oxygen atom in the a-IGZO material is easy. It is adsorbed by the metal Ti, so a titanium oxide TiOx film is formed between the metal Ti and the active layer 4 (as shown in Fig. 2). The TiOx film can block the oxygen atoms in the a-IGZO active layer from further infiltrating into the gate insulating layer, thereby avoiding the oxygen-defective state v[o] which causes the gate insulating layer to generate a shallow level, thereby effectively reducing the thin film transistor. The generation of working leakage current.
- the metal layer 7 may also be made of other metals, such as metal aluminum A1.
- A1 can provide a sufficient amount of carriers to compensate for the carrier trapping effect.
- A1203 formed by oxidation of A1 can prevent oxygen atoms in the a-IGZO from diffusing into the gate insulating layer, thereby reducing the operating leakage current of the TFT and improving the stability of the TFT.
- the active layer 4 is completely covered with the metal layer 7.
- the two structures shown in FIGS. 2 and 3 can be referred to.
- the active layer 4 is overlaid on the metal layer 7 to avoid direct contact between the metal layer 7 and the source 5 and the drain 6 to cause TFT failure;
- the metal layer 7 may be embedded in the gate insulating layer 3 to form the structure shown in FIG.
- the structure for reducing the operating leakage current of the TFT should be within the scope of the present invention.
- an Etch Stop Layer (ESL) 8 is further provided above the active layer.
- a metal layer is disposed between the active layer and the gate insulating layer of the oxide thin film transistor, thereby forming a contact surface between the active layer and the metal layer, and a metal layer and a gate insulating layer. The contact surface between the layers.
- the metal layer At the contact surface between the metal layer and the gate insulating layer, a large number of carriers may be provided by the metal layer, effectively compensating for carrier trapping effect at the interface of the gate insulating layer, and thus carriers at the interface The trapping effect is negligible, the on-state current can be effectively increased, and the power consumption of the thin film transistor is reduced; meanwhile, at the contact surface between the active layer and the metal layer, the metal layer adsorbs oxygen in the active layer A layer of metal oxide film is formed by the atom to block the oxygen atoms in the active layer from further infiltrating into the gate insulating layer, thereby avoiding deep level transition of the oxygen atoms in the gate insulating layer due to illumination, and also reducing the working leakage of the TFT. Current.
- the thin film transistor provided in the present scheme effectively reduces the generation of leakage current, lowers the threshold voltage, increases the on-state current, and reduces the power consumption;
- the thin film transistor in this embodiment greatly improves the TFT stability.
- the embodiment of the invention further provides a method for manufacturing a thin film transistor, comprising the steps of sequentially forming a gate electrode, a gate insulating layer, an active layer and a source/drain electrode layer on a substrate; a drain electrode layer including a source and a drain of the thin film transistor; wherein, the active layer is made of a metal oxide semiconductor;
- the method further includes: forming a metal layer between the gate insulating layer and the active layer over the gate insulating layer.
- the substrate 1 may be, but not limited to, a glass substrate, a quartz substrate, or an organic material.
- the base substrate is formed.
- a metal thin film such as metal Ti
- the metal layer 7 can be sandwiched between the gate insulating layer 3 and the active layer. Between layers 4;
- the active layer 4 completely covers the metal layer 7. As shown in FIG. 7, the active layer 4 may be overlaid on the metal layer 7, such that the sides of the metal layer 7 do not fail due to contact with the source and drain of the thin film transistor.
- the pattern of the active layer 4 is formed by a patterning process, specifically: coating a photoresist over the oxide semiconductor film, and performing an exposure and development process, followed by, for example, wet etching on the oxide semiconductor layer. A pattern of the active layer 4 is formed.
- an etch stop layer 8 may be formed over the active layer 4 for protecting the active layer 4 in a subsequent process.
- oxygen atoms in a metal oxide such as a-IGZO in the active layer 4 diffuse toward a region having a low oxygen content, i.e., diffuse into the metal layer 7.
- the metal layer 7 may be made of a metal Ti. Since Ti easily adsorbs oxygen atoms in the active layer, the titanium at the contact faces of the active layer 4 and the metal layer 7 after the annealing treatment A layer of TiOx oxide film is easily formed by partial oxidation of the metal.
- a metal oxide film such as a-IGZO in the active layer is affected by temperature, and a valence bond is activated to generate a certain oxygen evolution; since the annealing treatment is performed under an oxygen atmosphere, the outside is performed.
- the oxygen concentration is greater than the oxygen concentration of the active layer, and part of the oxygen diffuses toward the active layer.
- the temperature-raising annealing reduces the defect state of the a-IGZO active layer, smoothes the interface from roughness, and makes the interface contact good.
- the solution in the embodiment of the present invention covers the metal layer Ti by designing the semiconductor a-IGZO thin film as an a-IGZO thin film active layer, thereby forming a dual-channel active layer, which not only reaches the barrier oxide semiconductor active layer.
- Oxygen atoms traverse into the gate insulating layer to reduce the operating leakage current, and at the same time effectively provide a large number of carriers to compensate for the carrier trapping effect at the interface of the insulating layer, thereby solving the technical problem of large leakage current and poor stability of the oxide body transistor.
- an array substrate including the thin film transistor described in the above embodiments is also provided in the embodiment of the present invention.
- the source/drain electrode layer includes a source 5 and a drain 6 of the thin film transistor; a passivation layer 9 is further formed over the gate insulating layer 3 and the source/drain electrode layer, and is further over the passivation layer 9. Forming a pixel electrode 10, the pixel electrode 10 being electrically connected to the drain 6 through a passivation layer via;
- the active layer 4 is made of a metal oxide semiconductor, and a metal layer 7 is provided between the active layer 4 and the gate insulating layer 3 to reduce the space between the active layer 4 and the gate insulating layer 3. Carrier trapping effect.
- the array substrate structure shown in Fig. 8 is only one form of the array substrate provided by the present invention; the scope of protection of the present invention is not limited thereto.
- the array substrate provided by the present invention may also be an array substrate based on an IPS (In-Plane Conversion) type or an ADS (Advanced Super-Dimensional Field Conversion) type pixel structure.
- a display device is further provided, and the display device comprises the above array substrate.
- the above display device may be a liquid crystal display device or other type of display device.
- the liquid crystal display device may be a liquid crystal panel, a liquid crystal television, a mobile phone, a liquid crystal display or the like, and includes a color filter substrate and the array substrate in the above embodiment.
- the array substrate and the display device provided in the embodiments of the present invention both include the thin film transistors provided in the above embodiments
- the array substrate and the display device in the embodiment also have the beneficial effects of the thin film transistors described above. The effect; that is, it can effectively reduce the generation of leakage current, lower the threshold voltage, increase the on-state current, and reduce power consumption.
- the thin film transistor and the manufacturing method thereof, the array substrate and the display device provided by the embodiments of the present invention form a metal layer between the active layer and the gate insulating layer of the oxide thin film transistor, thereby forming an active layer and a metal layer Contact surface and a contact surface between the metal layer and the gate insulating layer; and at the contact surface between the metal layer and the gate insulating layer, a large number of carriers can be provided by the metal layer, effectively compensating the gate insulating The carrier trapping effect at the layer interface, so the carrier trapping effect at the interface is negligible; compared with the existing oxide thin film transistor, the thin film transistor provided in the present scheme can effectively reduce the leakage current of the thin film transistor and improve TFT stability.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
Abstract
提供一种薄膜晶体管及其制造方法、阵列基板和显示装置,用以降低薄膜晶体管的漏电流,提高TFT稳定性。一种薄膜晶体管,包括形成在基板(1)上的栅极(2)、栅绝缘层(3)、有源层(4)和源漏电极层,源漏电极层包括薄膜晶体管的源极(5)和漏极(6);其中,有源层采用金属氧化物半导体,在有源层和栅绝缘层之间设有金属层(7),以降低有源层和栅绝缘层之间的载流子捕获效应。薄膜晶体管适用于任意的需要利用薄膜晶体管进行驱动的显示设备。
Description
薄膜晶体管及其制造方法、 阵列基板和显示装置 技术领域
本发明实施例涉及薄膜晶体管及其制造方法、 阵列基板和显示装置。 背景技术
目前比较常见的薄膜晶体管液晶显示器 ( Thin Film Transistor-Liquid Crystal Display, TFT-LCD )主要分为有源矩阵液晶显示器(AM-LCD )和无 源矩阵液晶显示器(PM-LCD ) 。 其中, 有源矩阵液晶显示器的有源层主要 由非晶硅 ( a-Si )或多晶硅(p-Si )构成。
对于 a-Si TFT, 不足之处是较低的迁移率和稳定性受温度影响较大; 对 于 p-Si TFT, 不足之处是沉积薄膜的均一性差和多晶晶界分布的不同而造成 的显示性能差异大。 由于上述以硅基作为有源层的薄膜晶体管所存在的缺陷 一直制约着液晶显示的发展, 逐渐不能满足当前的需要。
其中, 以 a-IGZO (非晶-铟镓辞氧化物)等金属氧化物半导体取代硅基 作为薄膜晶体管的有源层, 由于其对 TFT的原有结构设计改变较小, 且其余 结构对应的工艺流程基本不变更, 因此设备改造相对简单; 最为重要的, 基 于 a-IGZO等金属氧化物半导体的薄膜晶体管性能得到了明显提高, 引起了 显示领域的关注, 取代硅基薄膜晶体管而成为下一代的主流技术。
然而, 基于 a-IGZO等金属氧化物半导体的薄膜晶体管在接触到外界环 境的水和氧气时, 或者在沉积形成刻蚀阻挡层 Si02 的过程中, 氧原子会穿 越 a-IGZO TFT有源层而渗入到栅绝缘层; 同时在工作状态时, 背光源的光 线照射到阵列基板时, 会激活外界环境而产生浅能级缺陷态, 在有源层和栅 绝缘层的界面处发生载流子捕获效应, 进而造成相对较大的漏电流, 影响了 TFT稳定性。 发明内容
本发明的实施例提供一种薄膜晶体管及其制造方法、 阵列基板和显示装 置, 用以降低薄膜晶体管的漏电流, 提高 TFT稳定性。
本发明的一方面提供一种薄膜晶体管, 包括形成在基板上的栅极、 栅绝 缘层、 有源层和源 /漏电极层, 所述源 /漏电极层包括所述薄膜晶体管的源极 和漏极; 其中, 所述有源层釆用金属氧化物半导体, 在所述有源层和所述栅 绝缘层之间设有金属层。
本发明的另一方面提供一种薄膜晶体管制造方法, 包括在基板上形成栅 极、 栅绝缘层、 有源层和源 /漏电极层的过程; 其中, 所述源 /漏电极层包括 所述薄膜晶体管的源极和漏极; 所述有源层釆用金属氧化物半导体; 而且, 在形成所述栅绝缘层的步骤和形成所述有源层的步骤之间, 还包括: 形成介 于所述栅绝缘层和所述有源层之间的金属层。
本发明的再一方面提供一种阵列基板, 包括上述薄膜晶体管。
本发明的又一方面提供一种显示装置, 包括上述阵列基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例中提供的薄膜晶体管的结构示意图;
图 2为图 1中的金属层 7的位置示意图一;
图 3为图 1中的金属层 7的位置示意图二;
图 4〜图 7为本发明实施例提供的薄膜晶体管制作方法的流程示意图; 图 8为本发明实施例提供的一种阵列基板的结构示意图; 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面结合附图对本发明实施例提供的薄膜晶体管及其制造方法、 阵列基 板和显示装置进行详细描述。
如图 1所示, 本发明实施例提供的薄膜晶体管, 包括形成在基板 1上的 栅极 2、 栅绝缘层 3、 有源层 4和源 /漏电极层, 该源 /漏电极层包括薄膜晶体 管的源极 5和漏极 6; 其中, 所述有源层 4釆用金属氧化物半导体, 而且在 有源层 4和栅绝缘层 3之间设有金属层 7,以降低所述有源层 4和栅绝缘层 3 之间的载流子捕获效应。
在图 1所示的薄膜晶体管中, 有源层 4所釆用的金属氧化物半导体可以 是但不限于是铟镓辞氧化物 a-IGZO;只要是具备良好的半导体特性的透明氧 化物薄膜均可以用于有源层的制作。
在图 1及后续的实施例中,均是以底栅型 TFT为例来介绍本发明所提供 的薄膜晶体管结构; 对于顶栅型 TFT, 本领域技术人员可以根据本发明的思 想进行变型得到, 此处不再赘述。 不过需要说明的是, 基于本发明改进思想 的顶栅型 TFT同样也应属于本发明的保护范围之内。
例如, 上述金属层 7的材料可以选用金属钛 Ti; 这样, 在金属 Ti和栅 绝缘层 3之间的接触面处, 可以由金属层 7中的 Ti提供大量的载流子,有效 补偿栅绝缘层界面处的载流子捕获效应, 因此界面处的载流子捕获效应可以 忽略, 进而降低 TFT的阀值电压, 增大开态电流, 同时降低了功耗。
进一步地, 上述金属层 7与有源层 4之间也形成有接触面; 由于有源层 4釆用了金属氧化物半导体, 以 a-IGZO为例, 而 a-IGZO材料中的氧原子容 易被金属 Ti所吸附, 因此在金属 Ti和有源层 4之间会形成一层氧化钛 TiOx 薄膜(如图 2所示 )。 该 TiOx薄膜可以阻挡 a-IGZO有源层中的氧原子进一 步渗入到栅绝缘层, 而避免了造成栅绝缘层产生浅能级的氧缺陷态 v[o], 因 此同样可以有效地降低薄膜晶体管工作漏电流的产生。
当然, 上述金属层 7还可以选用其他金属, 比如金属铝 A1; 同样地, 在 金属 A1与栅金属层的接触面上, A1可以提供足量的载流子以补偿载流子捕 获效应, 同时在金属 A1与有源层的接触面上, A1被氧化形成的 A1203可以 阻止 a-IGZO中的氧原子向栅绝缘层扩散, 从而降低 TFT的工作漏电流, 提 升 TFT稳定性。
在本实施例中, 有源层 4是完全覆盖金属层 7的。 具体的, 可以参照图 2和图 3所示的两种结构。 从图 2中可以看到, 有源层 4包覆在金属层 7的 上方, 以避免金属层 7与源极 5、 漏极 6直接接触而造成 TFT失效; 除此之
夕卜, 也可以将金属层 7嵌设在栅绝缘层 3中, 形成图 3所示的结构。 只要是 在有源层 4和栅绝缘层 3之间设置金属层,用以降低 TFT工作漏电流的结构 都应该属于本发明的保护范围之内。
此外, 在本实施例提供的薄膜晶体管中, 在所述有源层的上方还设有刻 蚀阻挡层( Etch Stop Layer, ESL ) 8。
本发明实施例中提供的薄膜晶体管, 通过在氧化物薄膜晶体管的有源层 和栅绝缘层之间设置金属层, 从而形成了有源层和金属层之间的接触面以及 金属层和栅绝缘层之间的接触面。在所述金属层和栅绝缘层之间的接触面处, 可以由所述金属层提供大量的载流子, 有效补偿栅绝缘层界面处的载流子捕 获效应, 因此界面处的载流子捕获效应可以忽略, 可有效地增大开态电流, 降低薄膜晶体管的功耗; 同时, 在所述有源层和金属层之间的接触面处, 金 属层吸附所述有源层中的氧原子而形成一层金属氧化物薄膜, 阻挡有源层中 的氧原子进一步渗入到栅绝缘层, 避免了栅绝缘层中的氧原子因光照而发生 深能级跃迁, 同样可降低 TFT的工作漏电流。
与现有的氧化物薄膜晶体管相比, 本方案中提供的薄膜晶体管有效减少 了漏电流的产生, 降低了阀值电压, 增大了开态电流, 降低了功耗; 与现有 的具备单层 a-IGZO有源层的薄膜晶体管相比, 本实施例中的薄膜晶体管大 大提升了 TFT稳定性。
对应于上述薄膜晶体管, 本发明实施例还提供了一种薄膜晶体管的制造 方法, 包括在基板上依次形成栅极、栅绝缘层、有源层和源 /漏电极层的步骤; 所述源 /漏电极层包括所述薄膜晶体管的源极和漏极; 其中, 所述有源层釆用 金属氧化物半导体; 而且,
在形成所述栅绝缘层之后、 且在形成所述有源层之前, 还包括: 在所述 栅绝缘层上方形成介于所述栅绝缘层和所述有源层之间的金属层。
下面对上述薄膜晶体管制造方法进一步详细说明。 在后续的描述中, 仍 然以底栅型 TFT为例, 具体可参照图 4至图 7所示。
本实施例中的薄膜晶体管制造方法, 具体包括以下步骤:
Sl、 在基板 1上沉积栅金属薄膜, 并通过构图工艺形成栅线(图中未示 出 )和栅极 2, 如图 4所示;
其中, 基板 1可以是但不限于是玻璃基板、 石英基板或者由有机材料形
成的†底基板。
52、 在形成有栅线和栅极 2的基板上沉积栅绝缘层 3, 如图 5所示;
53、 在栅绝缘层 3上沉积一层金属薄膜, 例如金属 Ti, 并通过构图工艺 形成金属层 7的图案, 如图 6所示, 使金属层 7可以夹设在栅绝缘层 3和有 源层 4之间;
54、 在 Ar/02 氛围下, 在金属层 7上方沉积氧化物半导体薄膜, 比如 a-IGZO, 并通过构图工艺形成有源层 4的图案;
其中, 有源层 4完全覆盖所述金属层 7。 如图 7所示, 有源层 4可以是 包覆在所述金属层 7的上方, 使得金属层 7的两侧不会由于与薄膜晶体管的 源极、 漏极相接而导致 TFT失效。
其中, 通过构图工艺形成有源层 4的图案, 具体为: 在所述氧化物半导 体薄膜上方涂覆光刻胶, 并进行曝光、 显影工艺, 之后通过例如湿法刻蚀在 氧化物半导体层上形成有源层 4的图案。
此外,在完成步骤 S4之后,还可以在有源层 4的上方形成刻蚀阻挡层 8, 用以在后续的工艺中对有源层 4进行保护。
55、 在氧氛围下对所述有源层 4进行退火处理;
在 Ar/02氛围下, 有源层 4中的 a-IGZO等金属氧化物中的氧原子向着 含氧量较低的区域扩散, 即向金属层 7中扩散。
在本实施例中, 所述金属层 7可以釆用金属 Ti, 由于 Ti容易吸附有源 层中的氧原子, 因此在退火处理后, 在有源层 4和金属层 7的接触面处的钛 金属被部分氧化就很容易形成一层 TiOx氧化物薄膜。
具体地, 在退火处理步骤中, 有源层中的 a -IGZO等金属氧化物薄膜会 受到温度的影响, 价键激活而产生一定的氧逸出; 由于退火处理是在氧氛围 下进行, 外界氧浓度大于有源层的氧浓度, 会有部分的氧向有源层扩散。 前 述两个过程在退火处理时同时存在, 通过控制通氧量, 可以调节氧的逸出与 扩散进入的平衡态。 因此, 上述退火处理对有源层 4中的 a-IGZO等金属氧 化物的氧含量影响不大。
此外, 升温退火可使 a-IGZO有源层减少缺陷态, 使界面由粗糙变得平 滑, 使界面接触性良好。
S6、在有源层 4的上方沉积一层源 /漏金属薄膜, 并通过构图工艺形成薄
膜晶体管的源极 5和漏极 6; 最终形成的薄膜晶体管结构如图 1所示。
通过以上步骤即可完成薄膜晶体管的制作。
如果是阵列基板制作流程, 则只需在已形成了上述薄膜晶体管的基板上 继续形成钝化层、 像素电极层等结构。 由于后续工艺与现有的阵列基板制作 工艺类似, 此处不再赘述。
虽然上述方法描述均是以底栅型 TFT为例,但是对于本领域技术人员来 说, 可以很容易地将上述改进思想与顶栅型 TFT进行结合, 并通过具体步骤 来实现顶栅型 TFT 的制作过程。 对于釆用本发明改进思想制作顶栅型 TFT 的过程, 此处不再赘述; 不过, 基于本发明改进思想的顶栅型 TFT制作方法 应当属于本发明的保护范围之内。
本发明实施例中的方案通过将半导体 a-IGZO薄膜,设计为 a-IGZO薄膜 有源层覆盖金属层 Ti, 从而形成双通道的有源层, 不仅达到了阻挡氧化物半 导体有源层中的氧原子的穿越进入栅极绝缘层, 降低工作漏电流, 同时有效 提供大量载流子来补偿绝缘层界面载流子捕获效应, 从而解决了氧化物体晶 体管漏电流较大以及稳定性差的技术问题。
此外, 在本发明实施例中还提供了一种阵列基板, 该阵列基板包括上述 实施例中所描述的薄膜晶体管。
图 8所示为本发明实施例中提供的一种阵列基板结构, 其包括基板 1 , 以及依次形成在基板 1上的栅极 2、 栅绝缘层 3、 有源层 4和源 /漏电极层, 该源 /漏电极层包括薄膜晶体管的源极 5和漏极 6; 在所述栅绝缘层 3和源 / 漏电极层的上方还形成有钝化层 9,且在钝化层 9上方还形成有像素电极 10, 该像素电极 10通过钝化层过孔与所述漏极 6电连接;
其中, 所述有源层 4釆用金属氧化物半导体, 而且在有源层 4和栅绝缘 层 3之间设有金属层 7, 以降低所述有源层 4和栅绝缘层 3之间的载流子捕 获效应。
图 8所示的阵列基板结构仅是本发明所提供的阵列基板中的一种形式; 本发明的保护范围并不限于此。 比如, 本发明所提供的阵列基板还可以是基 于 IPS (平面内转换)型或 ADS (高级超维场转换)型像素结构的阵列基板。
进一步地, 在本发明实施例中还提供了一种显示装置, 该显示装置包括 上述阵列基板。
上述显示装置可以是液晶显示装置或者其他类型的显示装置。 其中, 液 晶显示装置可以是液晶面板、 液晶电视、 手机、 液晶显示器等, 其包括滤色 器基板、 以及上述实施例中的阵列基板。 上述其他类型显示装置, 比如电子 纸, 其不包括滤色器基板, 但是包括上述实施例中的阵列基板。
由于本发明实施例中所提供的阵列基板和显示装置中均包含有上述实施 例中所提供的薄膜晶体管, 因此本实施例中的阵列基板和显示装置也同时具 备上述薄膜晶体管所带来的有益效果; 即, 能够有效减少漏电流的产生, 降 低阀值电压, 增大开态电流, 降低功耗。
本发明实施例提供的薄膜晶体管及其制造方法、 阵列基板和显示装置, 通过在氧化物薄膜晶体管的有源层和栅绝缘层之间设置金属层, 从而形成了 有源层和金属层之间的接触面以及金属层和栅绝缘层之间的接触面; 而在所 述金属层和栅绝缘层之间的接触面处,可以由所述金属层提供大量的载流子, 有效补偿栅绝缘层界面处的载流子捕获效应, 因此界面处的载流子捕获效应 可以忽略; 与现有的氧化物薄膜晶体管相比, 本方案中提供的薄膜晶体管可 以有效降低薄膜晶体管的漏电流, 提高 TFT稳定性。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。
Claims
1、 一种薄膜晶体管, 包括形成在基板上的栅极、 栅绝缘层、有源层和源
/漏电极层, 所述源 /漏电极层包括所述薄膜晶体管的源极和漏极; 其中, 所 述有源层釆用金属氧化物半导体, 在所述有源层和所述栅绝缘层之间设有金 属层。
2、根据权利要求 1所述的薄膜晶体管, 其中, 所述有源层完全覆盖所述 金属层。
3、根据权利要求 1或 2所述的薄膜晶体管, 其中, 所述金属层的材料包 括金属钛。
4、根据权利要求 3所述的薄膜晶体管, 其中,在所述金属层与所述有源 层之间形成有氧化钛薄膜。
5、根据权利要求 1或 2所述的薄膜晶体管, 其中,在所述金属层与所述 有源层之间形成有金属氧化物薄膜。
6、 一种薄膜晶体管制造方法, 包括: 在基板上形成栅极、 栅绝缘层、 有 源层和源 /漏电极层的步骤;
其中, 所述源 /漏电极层包括所述薄膜晶体管的源极和漏极;
所述有源层包括金属氧化物半导体; 而且,
在形成所述栅绝缘层的步骤和形成所述有源层的步骤之间, 该方法还包 括: 形成介于所述栅绝缘层和所述有源层之间的金属层。
7、根据权利要求 6所述的薄膜晶体管制造方法, 其中, 所述形成介于所 述栅绝缘层和所述有源层之间的金属层的过程包括: 在所述栅绝缘层上方沉 积金属薄膜, 并通过构图工艺形成介于所述栅绝缘层和所述有源层之间的金 属层。
8、根据权利要求 6或 7所述的薄膜晶体管制造方法, 其中, 所述形成有 源层的过程包括: 在 Ar/02氛围下, 在所述金属层上方沉积氧化物半导体薄 膜, 并通过构图工艺形成有源层的图案。
9、 根据权利要求 6-8任一项所述的薄膜晶体管制造方法, 其中, 所述有 源层完全覆盖所述金属层。
10、 根据权利要求 6-9任一项所述的薄膜晶体管制造方法, 其中, 在形 成所述有源层之后, 该方法还包括:
11、 根据权利要求 6-10任一项所述的薄膜晶体管制造方法, 其中, 所述 金属层的材料包括金属钛。
12、根据权利要求 10所述的薄膜晶体管制造方法,其中,在退火处理后, 所述有源层和所述金属层的接触面处的金属层被部分氧化形成金属氧化物薄 膜。
13、 一种阵列基板, 包括权利要求 1至 5任一项所述的薄膜晶体管。
14、 一种显示装置, 包括权利要求 13所述的阵列基板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210133357.8 | 2012-04-28 | ||
CN201210133357.8A CN102709326B (zh) | 2012-04-28 | 2012-04-28 | 薄膜晶体管及其制造方法、阵列基板和显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013159513A1 true WO2013159513A1 (zh) | 2013-10-31 |
Family
ID=46901973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085212 WO2013159513A1 (zh) | 2012-04-28 | 2012-11-23 | 薄膜晶体管及其制造方法、阵列基板和显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102709326B (zh) |
WO (1) | WO2013159513A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102709326B (zh) * | 2012-04-28 | 2018-04-17 | 北京京东方光电科技有限公司 | 薄膜晶体管及其制造方法、阵列基板和显示装置 |
CN102945807B (zh) * | 2012-11-15 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种薄膜晶体管的制备方法及薄膜晶体管 |
CN103904125A (zh) * | 2012-12-26 | 2014-07-02 | 鸿富锦精密工业(深圳)有限公司 | 薄膜晶体管 |
CN103545378B (zh) * | 2013-11-05 | 2016-09-07 | 京东方科技集团股份有限公司 | 氧化物薄膜晶体管及其制作方法、阵列基板、显示装置 |
CN104779299A (zh) | 2015-04-16 | 2015-07-15 | 京东方科技集团股份有限公司 | 金属氧化物薄膜晶体管及制备方法、显示基板和显示装置 |
CN106298961B (zh) * | 2016-11-11 | 2019-09-13 | 河南大学 | 薄膜晶体管及其制备方法 |
CN107799605B (zh) * | 2017-10-27 | 2020-07-31 | 合肥鑫晟光电科技有限公司 | 一种薄膜晶体管及其制备方法、阵列基板、显示装置 |
CN109192704A (zh) * | 2018-09-05 | 2019-01-11 | 京东方科技集团股份有限公司 | 阵列基板及其制造方法、显示装置 |
CN110071122B (zh) * | 2019-04-18 | 2021-01-15 | 武汉华星光电半导体显示技术有限公司 | 一种阵列基板及其制备方法、显示面板 |
US11646379B2 (en) * | 2020-06-23 | 2023-05-09 | Taiwan Semiconductor Manufacturing Company Limited | Dual-layer channel transistor and methods of forming same |
CN115050757A (zh) * | 2022-06-15 | 2022-09-13 | 武汉华星光电半导体显示技术有限公司 | 显示面板及显示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673770A (zh) * | 2008-09-09 | 2010-03-17 | 富士胶片株式会社 | 薄膜场效应晶体管和使用该薄膜场效应晶体管的显示器 |
CN101728435A (zh) * | 2008-10-31 | 2010-06-09 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
CN101794821A (zh) * | 2009-02-04 | 2010-08-04 | 索尼公司 | 薄膜晶体管和显示装置 |
CN101794822A (zh) * | 2009-01-30 | 2010-08-04 | 株式会社半导体能源研究所 | 半导体装置及其制造方法 |
CN102709326A (zh) * | 2012-04-28 | 2012-10-03 | 北京京东方光电科技有限公司 | 薄膜晶体管及其制造方法、阵列基板和显示装置 |
-
2012
- 2012-04-28 CN CN201210133357.8A patent/CN102709326B/zh active Active
- 2012-11-23 WO PCT/CN2012/085212 patent/WO2013159513A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673770A (zh) * | 2008-09-09 | 2010-03-17 | 富士胶片株式会社 | 薄膜场效应晶体管和使用该薄膜场效应晶体管的显示器 |
CN101728435A (zh) * | 2008-10-31 | 2010-06-09 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
CN101794822A (zh) * | 2009-01-30 | 2010-08-04 | 株式会社半导体能源研究所 | 半导体装置及其制造方法 |
CN101794821A (zh) * | 2009-02-04 | 2010-08-04 | 索尼公司 | 薄膜晶体管和显示装置 |
CN102709326A (zh) * | 2012-04-28 | 2012-10-03 | 北京京东方光电科技有限公司 | 薄膜晶体管及其制造方法、阵列基板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102709326A (zh) | 2012-10-03 |
CN102709326B (zh) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013159513A1 (zh) | 薄膜晶体管及其制造方法、阵列基板和显示装置 | |
US9608127B2 (en) | Amorphous oxide thin film transistor, method for manufacturing the same, and display panel | |
US10615266B2 (en) | Thin-film transistor, manufacturing method thereof, and array substrate | |
JP6101357B2 (ja) | 半導体装置およびその製造方法 | |
WO2016041304A1 (zh) | 薄膜晶体管及制备方法、阵列基板及制备方法、显示装置 | |
JP6416899B2 (ja) | 半導体装置およびその製造方法 | |
CN103022145B (zh) | 阵列基板、显示装置及制备方法 | |
TW201310646A (zh) | 半導體裝置及其製造方法 | |
JP2014106539A (ja) | アレイ基板及びアレイ基板の製造方法、並びにディスプレイデバイス | |
CN107425044B (zh) | 一种柔性显示面板、其制作方法及显示装置 | |
WO2014183422A1 (zh) | 薄膜晶体管及其制备方法、阵列基板 | |
WO2015043220A1 (zh) | 薄膜晶体管及其制备方法、阵列基板和显示装置 | |
US20120223308A1 (en) | Thin-film transistor, process for production of same, and display device equipped with same | |
WO2018152875A1 (zh) | 薄膜晶体管的制作方法、薄膜晶体管及显示器 | |
WO2017018271A1 (ja) | 半導体装置およびその製造方法 | |
WO2017219412A1 (zh) | 顶栅型薄膜晶体管的制作方法 | |
WO2015100791A1 (zh) | 薄膜晶体管基板的制造方法 | |
JP2013051328A (ja) | アクティブマトリックス型表示素子およびその製造方法 | |
KR20160098455A (ko) | 저온폴리실리콘 박막 트랜지스터 및 그 제조방법 | |
US20100276686A1 (en) | Thin film transistor substrate and method of fabricating the same | |
WO2016090807A1 (zh) | 阵列基板及其制作方法、显示装置 | |
WO2015188476A1 (zh) | 薄膜晶体管及其制作方法、oled背板和显示装置 | |
WO2017076274A1 (zh) | 低温多晶硅薄膜晶体管及制作方法、阵列基板、显示面板和显示装置 | |
WO2019095408A1 (zh) | 阵列基板及其制作方法、显示面板 | |
TW201327839A (zh) | 薄膜電晶體、其製造方法、及顯示裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12875544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12875544 Country of ref document: EP Kind code of ref document: A1 |