WO2013157611A1 - 不織布の嵩を回復させる方法及び装置 - Google Patents

不織布の嵩を回復させる方法及び装置 Download PDF

Info

Publication number
WO2013157611A1
WO2013157611A1 PCT/JP2013/061524 JP2013061524W WO2013157611A1 WO 2013157611 A1 WO2013157611 A1 WO 2013157611A1 JP 2013061524 W JP2013061524 W JP 2013061524W WO 2013157611 A1 WO2013157611 A1 WO 2013157611A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
heating chamber
air
outlet
inlet
Prior art date
Application number
PCT/JP2013/061524
Other languages
English (en)
French (fr)
Inventor
淳 奥田
耕 出谷
徹 大庭
聡 光野
範朋 亀田
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to CN201380000977.7A priority Critical patent/CN103492626B/zh
Priority to US14/395,028 priority patent/US9637851B2/en
Priority to EP13778707.3A priority patent/EP2840178B1/en
Publication of WO2013157611A1 publication Critical patent/WO2013157611A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics

Definitions

  • the present invention relates to a method and apparatus for recovering the bulk of a nonwoven fabric.
  • Nonwoven fabric is formed into a strip shape, and then wound into a roll and stored. The nonwoven fabric is then unwound from the roll when the nonwoven fabric is to be used.
  • Nonwoven fabrics are used as constituent members such as top sheets of absorbent articles such as disposable diapers and sanitary napkins.
  • the nonwoven fabric when wound in the form of a roll, the nonwoven fabric may be compressed in the thickness direction and the bulk or thickness of the nonwoven fabric may be reduced.
  • the volume of the nonwoven fabric decreases, the liquid absorption rate of the nonwoven fabric may decrease, or the flexibility may decrease.
  • Patent Document 2 Also in the method of Patent Document 2, it is necessary for hot air to pass through the nonwoven fabric in order to recover the bulk (see paragraphs [0077], [0083], etc.). Therefore, the same problem as in Patent Document 1 may occur.
  • a method for recovering the bulk of a strip-shaped nonwoven fabric the step of preparing a heating chamber having an inlet and an outlet, and entering the heating chamber via the inlet and proceeding through the heating chamber Later, while transporting the nonwoven fabric to exit the heating chamber through the outlet, after entering the heating chamber through one of the inlet and outlet, and proceeding through the heating chamber while contacting the nonwoven fabric, the heating chamber through the other of the inlet and outlet Providing a heated fluid at a rate higher than the conveying speed of the nonwoven.
  • an apparatus for recovering the bulk of a strip-shaped non-woven fabric a heating chamber having an inlet and an outlet, and a heating chamber that enters the heating chamber through the inlet, and proceeds through the heating chamber. Through the heating chamber through one of the inlet and outlet, and after moving through the heating chamber while in contact with the nonwoven fabric, exit from the heating chamber through the other of the inlet and outlet.
  • a feeder for supplying a heated fluid at a speed higher than the conveyance speed of the nonwoven fabric.
  • the bulk of the nonwoven fabric can be recovered well.
  • FIG. 6 shows another embodiment according to the present invention.
  • FIG. 6 is a diagram showing still another embodiment according to the present invention. It is a general view of the bulk recovery apparatus of a comparative example.
  • an apparatus 1 for recovering the bulk of a nonwoven fabric includes a transporter 2 that unwinds and transports a strip-shaped nonwoven fabric F from a roll R.
  • the transporter 2 includes two roller pairs 2a and 2b.
  • Each roller pair 2a, 2b includes rollers that rotate in opposite directions, and when these rollers are rotated, the nonwoven fabric F is conveyed.
  • the nonwoven fabric F is conveyed by the conveyance direction MD which substantially corresponds to a horizontal direction so that the one surface and the other surface may face the upper direction and the downward direction substantially.
  • the bulk recovery device 1 also includes a heater 3 for heating the conveyed nonwoven fabric F with a fluid.
  • the heater 3 includes a fluid source 3a, a supply pipe 3b connected to the outlet of the fluid source 3a, a nozzle 3c connected to the outlet of the supply pipe 3b, a flow meter 3ba arranged in the supply pipe 3b, A regulator 3d disposed in the supply pipe 3b downstream of the flow meter 3ba, an electric heater 3e disposed in the supply pipe 3b downstream of the regulator 3d, and a housing 3f are provided.
  • the nozzle 3c has, for example, an elongated rectangular outlet.
  • the fluid is air and the fluid source 3a is a compressor.
  • the compressor 3a When the compressor 3a is operated, air flows through the supply pipe 3b.
  • the flow meter 3ba detects the flow rate of air flowing through the supply pipe 3b and outputs the air flow rate in the form of an amount in a standard state (0 ° C., 1 atm).
  • the air pressure in the supply pipe 3b is reduced from, for example, 0.6 MPaG to 3 MPaG to 0.01 MPaG by the regulator 3d.
  • the air is then heated by the electric heater 3e.
  • the heated air then flows out from the nozzle 3c.
  • the amount of air flowing out from the nozzle 3c is set to, for example, 440 L / min (0.44 m 3 / min, standard state).
  • the air is heated to, for example, 100 to 140 ° C. by the electric heater 3e so that the temperature of the air flowing out from the nozzle 3c becomes, for example, 70 to 90 ° C.
  • the temperature of the air flowing out from the nozzle 3c can be detected by a temperature sensor disposed in the vicinity of the outlet of the nozzle 3c.
  • the housing 3f includes a top wall 3fu and a bottom wall 3fb that are horizontally spaced apart from each other, and a pair of side walls 3fs that are disposed between the top wall 3fu and the bottom wall 3fb.
  • An internal space 3s having a rectangular cross section is defined by the top wall 3fu, the bottom wall 3fb, and the side walls 3fs, 3fs.
  • the internal space 3s includes a pair of openings 3si and 3so facing each other.
  • a heating chamber 3g having inlets 3gi and 3go is defined in the internal space 3s downstream of the outlet of the nozzle 3c.
  • the outlet of the nozzle 3c is arranged in the opening 3si of the internal space 3s. Therefore, the heating chamber 3g coincides with the internal space 3s.
  • the inlet 3gi of the heating chamber 3g matches the opening 3si of the internal space 3s, and the outlet 3go of the heating chamber 3g matches the opening 3so of the internal space 3s.
  • the nonwoven fabric F is transferred by the transfer device 2 so as to enter the heating chamber 3g through the inlet 3gi, travel through the heating chamber 3g, and then exit from the heating chamber 3g through the outlet 3go.
  • no roller or belt for conveying the nonwoven fabric F is disposed in the heating chamber 3g.
  • the nonwoven fabric F is conveyed without being supported in the heating chamber 3g.
  • the nonwoven fabric F is conveyed in the heating chamber 3g so that both surfaces Fs of the nonwoven fabric F continue to face the top wall 3fu and the bottom wall 3fb, which are partition walls defining the heating chamber 3g, respectively.
  • the air that has flowed out of the nozzle 3c enters the heating chamber 3g through the inlet 3gi, travels through the heating chamber 3g while being in contact with the nonwoven fabric F being conveyed, and then exits the heating chamber 3g through the outlet 3go.
  • air is supplied so that the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F.
  • the top wall 3fu and the bottom wall 3fb are formed of, for example, a stainless steel plate having a thickness of 3 mm.
  • the length L3 in the transport direction MD of the housing 3f or the heating chamber 3g is 1000 mm.
  • the width W3f of the housing 3f is 140 mm, and the width W3g of the heating chamber 3g is 100 mm.
  • the height H3f of the housing 3f is 9 mm, and the height H3g of the heating chamber 3g is 3 mm.
  • the top wall 3fu and the bottom wall 3fb extend in a horizontal plane.
  • the angle ⁇ (see FIG. 2) formed by the directional line of the nozzle 3c and the horizontal plane H is preferably 0 to 30 degrees, more preferably 0 to 10 degrees, and most preferably 0 degrees.
  • the bulk recovery device 1 also includes a cooler 4 downstream of the heater 3 for cooling the conveyed nonwoven fabric F with a fluid.
  • the cooler 4 includes a fluid source 4a, a supply pipe 4b connected to the outlet of the fluid source 4a, a nozzle 4c connected to the outlet of the supply pipe 4b, a regulator 4d arranged in the supply pipe 4b, and a cooling device. 4e and a housing 4f.
  • the fluid is air and the fluid source 4a is a compressor.
  • the compressor 4a When the compressor 4a is activated, air flows through the supply pipe 4b. The air pressure in the supply pipe 4b is reduced by the regulator 4d. The air is then cooled by the cooling device 4e. The cooled air then flows out from the nozzle 4c.
  • the housing 4f of the cooler 4 includes a top wall and a bottom wall that are spaced apart from each other, and a pair of side walls disposed between the top wall and the bottom wall.
  • the bottom wall and the side wall define a cooling chamber 4g having a rectangular cross section.
  • the cooling chamber 4g includes an inlet 4gi and an outlet 4go facing each other.
  • the nonwoven fabric F carried out from the heater 3 enters the cooling chamber 4g via the inlet 4gi by the carrier 2, and is conveyed so as to exit the cooling chamber 4g via the outlet 4go after traveling through the cooling chamber 4g. .
  • no roller or belt for conveying the nonwoven fabric F is disposed in the cooling chamber 4g.
  • the nonwoven fabric F is conveyed without being supported in the cooling chamber 4g.
  • the nonwoven fabric F is conveyed in the cooling chamber 4g so that both surfaces Fs of the nonwoven fabric F continue to face the top wall and the bottom wall, which are partition walls defining the cooling chamber 4g, respectively.
  • the nozzle 4c of the cooler 4 is arranged at the inlet 4gi. Accordingly, the air flowing out from the nozzle 4c enters the cooling chamber 4g through the inlet 4gi, travels through the cooling chamber 4g while being in contact with the nonwoven fabric F being conveyed, and then exits the cooling chamber 4g through the outlet 4go. In this case, in the cooling chamber 4g, air is supplied so that the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F.
  • the non-woven fabric F unwound from the roll R is first conveyed so as to pass through the heating chamber 3g of the heater 3.
  • air heated from the nozzle 3c of the heater 3 is supplied into the heating chamber 3g.
  • the nonwoven fabric F is heated in contact with the heated air, and the bulk of the nonwoven fabric F is increased. That is, the bulk of the nonwoven fabric F is recovered.
  • the linear velocity of air is higher than the conveying speed of the nonwoven fabric F in the heating chamber 3g.
  • the air flow adjacent to the surface Fs of the nonwoven fabric F is disturbed.
  • various molecules contained in the air collide with the surface Fs of the nonwoven fabric F at random angles. Therefore, the fibers of the nonwoven fabric F are loosened, and the recovery of the bulk is promoted.
  • the nonwoven fabric F flutters in the heating chamber 3g due to the turbulence of the air flow.
  • the heated air easily penetrates into the nonwoven fabric F, and the nonwoven fabric F can be efficiently heated.
  • the length L3f (FIG. 2) of the heating chamber 3g or the housing 3f can be shortened.
  • the housing 3f does not require equipment for supplying air and equipment for sucking air. Therefore, the size of the housing 3f can be further reduced.
  • the nonwoven fabric F is conveyed in the heating chamber 3g without being supported by a roll or the like. As a result, the bulk recovery of the nonwoven fabric F is not hindered by the roll or the like.
  • the nonwoven fabric F carried out from the heating chamber 3g is then conveyed so as to pass through the cooling chamber 4g of the cooler 4.
  • the air cooled from the nozzle 4c of the cooler 4 is supplied into the cooling chamber 4g.
  • the nonwoven fabric F is cooled in contact with the cooled air.
  • the linear velocity of air is higher than the conveying speed of the nonwoven fabric F in the cooling chamber 4g.
  • the whole nonwoven fabric F located in the cooling chamber 4g can be cooled. That is, the nonwoven fabric F can be efficiently cooled. For this reason, the size of the cooling chamber 4g or the housing 4f can be reduced.
  • the nonwoven fabric F carried out from the cooling chamber 4g is then transported by the transport device 2 to, for example, an absorbent article manufacturing apparatus.
  • the nonwoven fabric F is used as, for example, a top sheet of the absorbent article.
  • nonwoven fabric examples include nonwoven fabrics produced by various manufacturing methods such as air-through nonwoven fabric, point bond nonwoven fabric (heat roll nonwoven fabric), spunlace nonwoven fabric, spunbond nonwoven fabric, and melt blown nonwoven fabric.
  • fibers constituting the nonwoven fabric for example, single fibers or composite fibers made of thermoplastic resins such as low density polyethylene, high density polyethylene, linear polyethylene, polypropylene, polyethylene terephthalate, modified polypropylene, modified polyethylene terephthalate, nylon, polyamide, etc. Used.
  • thermoplastic resins such as low density polyethylene, high density polyethylene, linear polyethylene, polypropylene, polyethylene terephthalate, modified polypropylene, modified polyethylene terephthalate, nylon, polyamide, etc. Used.
  • the composite fiber for example, a core-sheath type in which the melting point of the core component is higher than the melting point of the sheath component, an eccentric core-sheath type, and a side-by-side type in which the left and right components have different melting points are used.
  • segmented by physical loads such as a hollow type fiber, atypical fibers, such as flat, Y type
  • Three-dimensional crimp shapes include spiral shapes, zigzag shapes, ⁇ shapes, and the like.
  • the fiber orientation is mainly directed in the plane direction but partially in the thickness direction.
  • the fineness of the non-woven fabric is preferably 1.1 to 8.8 dtex in consideration of liquid penetration and touch.
  • cellulose-based hydrophilic materials such as pulp, chemical pulp, rayon, acetate, natural cotton are used as the fibers constituting the nonwoven fabric. Sex fibers may be included.
  • the cellulosic fiber is difficult to discharge the liquid once absorbed, it is preferably contained in the range of 0.1 to 5% by mass with respect to the whole.
  • hydrophilic agent or a water repellent may be kneaded or coated on the hydrophobic synthetic fiber.
  • hydrophilicity may be imparted to the fiber by corona treatment or plasma treatment.
  • the fiber may contain an inorganic filler such as titanium oxide, barium sulfate, or calcium carbonate.
  • an inorganic filler may be contained only in the core, or an inorganic filler may be contained in the sheath.
  • the sheath is a fiber formed of high-density polyethylene and the core is made of polyethylene terephthalate, and the fiber length is 20 to 100 mm, preferably 35 to 65 mm, and the fineness is 1.1.
  • a nonwoven fabric mainly composed of core-sheath fibers is 8.8 dtex, preferably 2.2 to 5.6 dtex.
  • the nonwoven fabric includes crimped thermoplastic fibers.
  • the temperature of the air flowing out from the nozzle 3c of the heater 3 is preferably at least 50 ° C. lower than the melting point of the thermoplastic fiber and lower than the melting point. If the air temperature is lower than the melting point ⁇ 50 ° C., the bulk of the nonwoven fabric may not be sufficiently recovered. If the air temperature is equal to or higher than the melting point, the fiber is melted.
  • the cross-sectional area of the heating chamber 3g that is, the width W3g and the height H3g are small.
  • the nonwoven fabric F meanders in the width direction and flutters in the thickness direction. For this reason, if the width W3g or the height H3g is excessively small, the nonwoven fabric F may collide with the housing 3f.
  • the cross-sectional area of the heating chamber 3g that is, the air flow path area is excessively small, the pressure loss in the heating chamber 3g increases.
  • the width W3g is preferably 5 to 40 mm larger than the width of the nonwoven fabric F, and more preferably 10 to 20 mm larger than the width of the nonwoven fabric F.
  • the height H3g is preferably 2 to 10 mm, and more preferably 3 to 5 mm.
  • the nozzle 3c of the heater 3 is disposed at the inlet 3gi of the heating chamber 3g.
  • the nozzle 3c is disposed at the outlet 3go of the heating chamber 3g. In this case, after entering the heating chamber 3g through the outlet 3go, proceeding through the heating chamber 3g while being in contact with the conveyed nonwoven fabric F, air is supplied so as to exit the heating chamber 3g through the inlet 3gi. .
  • the conveyance direction MD of the nonwoven fabric F and the air flow are opposite to each other. For this reason, it is necessary to increase the force in the conveying direction MD acting on the nonwoven fabric F for conveyance, that is, the tension. When the tension is increased, the recovery of the bulk of the nonwoven fabric F may be hindered. The same problem may occur when the nonwoven fabric F is meandered alternately in the conveyance direction MD and in the opposite direction to the conveyance direction MD in the heating chamber 3g.
  • the nonwoven fabric F is placed in the heating chamber such that the nozzle 3c is disposed at the inlet 3gi and both surfaces Fs of the nonwoven fabric F continue to face the top wall 3fu and the bottom wall 3fb, respectively. It is conveyed in 3g. Therefore, in the heating chamber 3g, the conveyance direction MD of the nonwoven fabric F and the air flow continue to be in the same direction. As a result, it is possible to recover the bulk while maintaining a small tension applied to the nonwoven fabric F for conveyance.
  • the nozzle 3c is disposed above the nonwoven fabric F at the inlet 3gi. In another embodiment, the nozzle 3 c is disposed below the nonwoven fabric F. In yet another embodiment, the nozzles 3c are arranged both above and below the nonwoven fabric F.
  • the nozzle 3c includes a main body 3ca having a rectangular parallelepiped shape, for example.
  • the main body 3ca includes an internal space 3cb, an air inlet 3cc and an air outlet 3cd communicating with the internal space 3cb, and an air guide plate 3ce extending adjacent to the air outlet 3cd.
  • the air inlet 3cc is connected to the supply pipe 3b.
  • This nozzle 3c is integrally fixed to the housing 3f. That is, as shown in FIG. 4B, the air guide plate 3ce of the nozzle 3c is inserted into the internal space 3s through the inlet 3si of the internal space 3s of the housing 3f, and the main body 3ca is inserted into the top wall 3fu of the housing 3f. Fixed to. As a result, an air passage 5a is formed between the air guide plate 3ce and the top wall 3fu, and a nonwoven fabric passage 5b is formed between the air guide plate 3ce and the bottom wall 3fb.
  • the height H5a of the air passage 5a, the thickness t3ce of the air guide plate 3ce, and the height H5b of the nonwoven fabric passage 5b are each 1 mm, for example.
  • the width of the nozzle 3c substantially matches the width of the internal space 3s.
  • the air passage 5a communicates with the air outlet 3cd of the nozzle 3c on the one hand and communicates with the internal space 3s of the housing 3f on the other hand.
  • the heating chamber 3g is defined downstream of the outlet of the air passage 5a. Accordingly, the heated air supplied from the supply pipe 3b to the main body 3ca flows into the air passage 5a through the air outlet 3cd, flows through the air passage 5a, and then flows into the heating chamber 3g through the inlet 3gi.
  • the nonwoven fabric passage 5b communicates with the outside of the housing 3f on the one hand and communicates with the heating chamber 3g on the other hand.
  • the nonwoven fabric F enters the nonwoven fabric passage 5b from the outside of the housing 3f, travels through the nonwoven fabric passage 5b, and then enters the heating chamber 3g through the inlet 3gi.
  • the flow passage area at the outlet 3go of the heating chamber 3g is larger than the flow passage area of the nonwoven fabric passage 5b, and therefore the flow passage resistance at the outlet 3go is smaller than the flow passage resistance of the nonwoven fabric passage 5b. Therefore, the air flowing into the heating chamber 3g through the inlet 3gi is prevented from flowing back through the nonwoven fabric passage 5b, and can be reliably circulated through the heating chamber 3g toward the outlet 3go.
  • the bottom wall 3 fb of the housing 3 f is extended below the main body 3 ca of the nozzle 3 c as compared with the embodiment shown in FIG. 4.
  • the nonwoven fabric passage 5b is also extended to the lower side of the main body 3ca of the nozzle 3c.
  • the arrangement of the nozzle 4c of the cooler 4 is the same as the arrangement of the nozzle 3c of the heater 3.
  • the cooler 4 is provided downstream of the heater 3.
  • the cooler 4 is omitted. That is, the nonwoven fabric F carried out from the heater 3 is conveyed to the manufacturing apparatus without being cooled by the cooler 4.
  • a buffer is provided in the supply pipe 3b between the compressor 3a and the regulator 3d. This buffer suppresses pressure fluctuations in the supply pipe 3b.
  • the volume of the buffer is 400 L (0.4 m 3 ), for example.
  • a heater for heating the housing 3f is provided.
  • the temperature of the inner surface of the housing 3f that defines the heating chamber 3g is maintained at substantially the same temperature as the temperature of the air flowing out from the nozzle 3c, for example. If it does in this way, the bulk recovery of the nonwoven fabric F can be accelerated
  • a heater for the housing 3f a silicon rubber heater manufactured by Three High Co., Ltd. can be used.
  • a heater for heating the nozzle 3c is provided.
  • a heat insulating material covering the housing 3f is provided. With this heat insulating material, a temperature drop in the housing 3f or the heating chamber 3g is suppressed. In yet another embodiment, a heat insulating material covering the nozzle 3c is provided.
  • Examples 1 to 5 A non-woven fabric in the form of a roll was prepared.
  • the properties of the nonwoven fabric are shown in Table 1.
  • WF indicates the width of the nonwoven fabric
  • tm indicates the thickness of the nonwoven fabric before being wound around the roll R
  • t0 indicates the thickness of the nonwoven fabric before being unwound from the roll and carried into the bulk recovery device.
  • the thickness of the nonwoven fabric was measured using a thickness measuring device, FS-60DS, manufactured by Daiei Kagaku Seiki Seisakusho.
  • the pressure plate area was 20 cm 2 (circular), and the measurement load was 0.3 kPa (3 gf / cm 2 ).
  • the bulk recovery processing of the nonwoven fabric was performed using the bulk recovery device of the embodiment shown in FIGS.
  • As the nozzle 3c Y747-304SS manufactured by Spraying Systems Co., Ltd. was used.
  • As the flow meter 3ba PFD-802-40 manufactured by CKD Corporation was used.
  • AR30-03 manufactured by SMC Corporation was used as the regulator 3d.
  • As the electric heater 3e a micro cable air heater (model: MCA-3P-5000, 200V, 5KW) manufactured by Sakaguchi Electric Heat was used.
  • THAi is the temperature of air at the inlet of the heating chamber
  • qHA is the flow rate of air discharged from the compressor (0 ° C)
  • SHA W3g ⁇ H3g
  • VHA is the linear velocity of air in the heating chamber
  • VF is the conveying speed of the nonwoven fabric
  • ⁇ H is the heating time of the nonwoven fabric, that is, the time that the nonwoven fabric stayed in the heating chamber
  • QHA is The amount of air effective for the bulk recovery processing of the nonwoven fabric is shown.
  • the effective air amount QHA was calculated using the following formula in Examples 1 to 5.
  • the thickness t of the nonwoven fabric after bulk recovery at various effective air quantities QHA was measured, and the bulk recovery rate RR of the nonwoven fabric was calculated.
  • the conveyance speed VF of the nonwoven fabric was changed.
  • the bulk recovery rate RR was calculated using the following formula.
  • Comparative Examples 1 to 3 Nonwoven fabrics similar to those in Examples 1 to 5 were prepared.
  • the bulk recovery process of the nonwoven fabric was performed using the bulk recovery apparatus shown in FIG. Referring to FIG. 6, the bulk recovery devices of Comparative Examples 1 to 3 include a breathable belt 22 driven by a pair of rollers 21 and 21, and the nonwoven fabric FF rewound from the roll is placed on the belt 22. It was conveyed in the conveyance direction MD.
  • the bulk recovery device also sucks the air from the hot air supply device 31 that supplies hot air, the suction device 32 that sucks air from the hot air supply device 31, the cold air supply device 41 that supplies cold air, and the cold air supply device 41. And an aspirator 42.
  • the hot air supply device 31 was composed of a fan.
  • the hot air supply device 31 and the suction device 32 are arranged to face each other with a gap S3, and the cold air supply device 41 and the suction device 42 are arranged to face each other with a gap S4.
  • the belt 22 passed through the gaps S3 and S4, and therefore the nonwoven fabric FF was conveyed in the gaps S3 and S4.
  • hot air was supplied perpendicularly to the surface of the nonwoven fabric FF from the hot air supply device 31, and this hot air passed through the nonwoven fabric FF and was then sucked into the suction device 32.
  • cold air was supplied perpendicularly to the surface of the nonwoven fabric FF from the cold air supply device 41, and this cold air passed through the nonwoven fabric FF and was then sucked into the suction device 42.
  • THAi ′ is the temperature of the air flowing out from the hot air supplier 31
  • qHA ′ is the air flow rate (80 ° C.) discharged from the hot air supplier 31
  • Ps ′ is the static pressure ( 80 ° C.)
  • L3g ′ and W3g ′ are the length and width in the conveying direction of the hot air supply device 31 and the suction device 32 where the air flow occurs
  • the area of the nonwoven fabric part through which air passes VF ′ is the transport speed of the nonwoven fabric
  • ⁇ H ′ is the heating time, that is, the time
  • the effective air amount QHA ′ was calculated using the following formula in Comparative Examples 1 to 3.
  • C is a conversion coefficient for obtaining the air amount at 0 ° C. in consideration of the static pressure Ps in the hot air supply device 31.
  • the thickness t of the nonwoven fabric after bulk recovery at various effective air quantities QHA ' was measured, and the bulk recovery rate RR of the nonwoven fabric was calculated.
  • Table 4 shows the nonwoven fabric thickness t and bulk recovery rate RR at various effective air quantities QHA and QHA ′.
  • Example 4 when comparing the amount of effective air required to make the bulk recovery rate RR about 77.8%, it was 10.7 L in Example 4 and 912 L in Comparative Example 3. Thus, the effective air amount QHA of Example 4 was about 1/85 of the effective air amount QHA 'of Comparative Example 3. Therefore, in Examples 1 to 5, the bulk of the nonwoven fabric could be more efficiently reduced with an apparatus having a smaller size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 不織布の嵩を良好に回復させる。 入口3giを介し加熱室3g内に入り、加熱室3g内を進行した後に、出口3goを介し加熱室3gから出るように不織布Fを搬送しながら、入口3giを介し加熱室3g内に入り、不織布Fに接触しつつ加熱室3g内を進行した後に、出口3go介し加熱室3g内から出るように、加熱された空気を、不織布Fの搬送速度よりも高い速度でもって、供給する。

Description

不織布の嵩を回復させる方法及び装置
 本発明は不織布の嵩を回復させる方法及び装置に関する。
 不織布は、帯状に形成され、次いでロールの形に巻かれて保管される。次いで、不織布を使用すべきときには、不織布がロールから巻き戻される。不織布は例えば、使い捨てオムツや生理用ナプキンのような吸収性物品の、トップシートのような構成部材として用いられる。
 ところが、不織布がロールの形に巻かれると、不織布が厚さ方向に圧縮されて不織布の嵩ないし厚さが減少するおそれがある。不織布の嵩が減少すると、不織布の液吸収速度が低下し、又は柔軟性が低下するおそれがある。
 一方、不織布を加熱すると、圧縮により変形された不織布の繊維の形状が元に戻され、不織布の嵩が回復する。
 そこで、不織布に熱風を吹き付け、それにより不織布の嵩を回復させる方法が公知である(特許文献1参照)。この方法では、熱風が不織布の一面に対し垂直に供給される。
 また、互いに逆向きの第1の方向及び第2の方向に交互に進行するように不織布を蛇行させながら、第2の方向に熱風を供給する、不織布の嵩を回復させる別の方法も公知である(特許文献2の図6参照)。
特開2004-137655号公報 特開2007-177364号公報
 しかしながら、特許文献1の方法では、熱風により、不織布を圧縮する方向の力が不織布に作用する。したがって、不織布の嵩の回復が熱風によって妨げられるおそれがある。すなわち、不織布の嵩の回復が良好に行われないおそれがある。
 特許文献2の方法でも、嵩回復のために、熱風が不織布を通過することが必要である(段落[0077],[0083]等参照)。したがって、特許文献1と同じ問題が生じ得る。
 本発明の第1の観点によれば、帯状の不織布の嵩を回復させる方法であって、入口及び出口を有する加熱室を用意する段階と、入口を介し加熱室内に入り、加熱室内を進行した後に、出口を介し加熱室から出るように不織布を搬送しながら、入口及び出口の一方を介し加熱室内に入り、不織布に接触しつつ加熱室内を進行した後に、入口及び出口の他方を介し加熱室内から出るように、加熱された流体を、不織布の搬送速度よりも高い速度でもって、供給する段階と、を含む方法が提供される。
 本発明の第2の観点によれば、帯状の不織布の嵩を回復させる装置であって、入口及び出口を有する加熱室と、入口を介し加熱室内に入り、加熱室内を進行した後に、出口を介し加熱室から出るように不織布を搬送する搬送器と、入口及び出口の一方を介し加熱室内に入り、不織布に接触しつつ加熱室内を進行した後に、入口及び出口の他方を介し加熱室内から出るように、加熱された流体を、不織布の搬送速度よりも高い速度でもって、供給する供給器と、を含む装置が提供される。
 不織布の嵩を良好に回復させることができる。
嵩回復装置の全体図である。 加熱室の拡大断面図である。 加熱室の端面図である。 本発明による別の実施形態を示す図である。 本発明による更に別の実施形態を示す図である。 比較例の嵩回復装置の全体図である。
 図1を参照すると、不織布の嵩を回復させるための装置1は、帯状の不織布FをロールRから巻き戻して搬送する搬送器2を備える。本発明による実施形態では、搬送器2は2つのローラ対2a,2bを備える。各ローラ対2a,2bは互いに逆向きに回転するローラを備え、これらローラが回転されると不織布Fが搬送される。また、本発明による実施形態では、不織布Fは、その一面及び他面が概ね上方及び下方を向くように、水平方向にほぼ一致する搬送方向MDに、搬送される。
 嵩回復装置1はまた、搬送される不織布Fを流体でもって加熱するための加熱器3を備える。加熱器3は、流体源3aと、流体源3aの出口に連結された供給管3bと、供給管3bの出口に連結されたノズル3cと、供給管3b内に配置された流量計3baと、流量計3ba下流の供給管3b内に配置されたレギュレータ3dと、レギュレータ3d下流の供給管3b内に配置された電気ヒータ3eと、ハウジング3fとを備える。ノズル3cは例えば細長い長方形状の出口を有する。
 本発明による実施形態では、流体は空気であり、流体源3aはコンプレッサである。コンプレッサ3aが作動されると、空気が供給管3b内を流通する。流量計3baは供給管3b内を流通する空気の流量を検出し、空気流量を標準状態(0°C、1気圧)における量の形で出力する。供給管3b内の空気圧力はレギュレータ3dによって例えば0.6MPaGから3MPaG~0.01MPaGまで減圧される。空気は次いで、電気ヒータ3eによって加熱される。加熱された空気は次いでノズル3cから流出する。ノズル3cから流出する空気量は例えば440L/min(0.44m/min、標準状態)に設定される。ノズル3cから流出した空気の温度が例えば70~90°Cになるように空気が電気ヒータ3eによって例えば100~140°Cに加熱される。なお、ノズル3cから流出した空気の温度はノズル3cの出口近傍に配置された温度センサによって検出することができる。
 図2及び図3に示されるように、ハウジング3fは、互いに間隔を隔てて水平方向に拡がる頂壁3fu及び底壁3fbと、頂壁3fu及び底壁3fb間に配置された一対の側壁3fs,3fsとを備え、これら頂壁3fu、底壁3fb及び側壁3fs,3fsによって断面が長方形状の内部空間3sが画定される。内部空間3sは互いに対向する一対の開口3si,3soを備える。
 ノズル3cの出口下流の内部空間3s内には、入口3gi,3goを有する加熱室3gが画定される。本発明による実施形態では、ノズル3cの出口は内部空間3sの開口3siに配置される。したがって、加熱室3gは内部空間3sに一致する。また、加熱室3gの入口3giは内部空間3sの開口3siに一致し、加熱室3gの出口3goは内部空間3sの開口3soに一致する。
 不織布Fは搬送器2により、入口3giを介し加熱室3g内に入り、加熱室3g内を進行した後に、出口3goを介し加熱室3gから出るように、搬送される。この場合、加熱室3g内には、不織布Fを搬送するためのローラやベルトが配置されていない。言い換えると、不織布Fは加熱室3g内において支持されることなく搬送される。また、不織布Fの両面Fsが、加熱室3gを画定する隔壁である頂壁3fu及び底壁3fbにそれぞれ対面し続けるように不織布Fが加熱室3g内を搬送される。
 一方、ノズル3cから流出した空気は、入口3giを介し加熱室3g内に入り、搬送されている不織布Fに接触しつつ加熱室3g内を進行した後に、出口3goを介し加熱室3gから出る。この場合、加熱室3g内において、空気の線速度は不織布Fの搬送速度よりも高くなるように、空気が供給される。
 また、本発明による実施形態では、頂壁3fu及び底壁3fbは例えば厚さ3mmのステンレス板から形成される。ハウジング3fないし加熱室3gの搬送方向MDの長さL3は1000mmである。ハウジング3fの幅W3fは140mmであり、加熱室3gの幅W3gは100mmである。ハウジング3fの高さH3fは9mmであり、加熱室3gの高さH3gは3mmである。
 更に、本発明による実施形態では、頂壁3fu及び底壁3fbは水平面内に拡がっている。ノズル3cの指向線と水平面Hとのなす角度θ(図2参照)は、0から30度が好ましく、0から10度がより好ましく、0度が最も好ましい。
 嵩回復装置1はまた、加熱器3の下流に、搬送される不織布Fを流体でもって冷却するための冷却器4を備える。冷却器4は、流体源4aと、流体源4aの出口に連結された供給管4bと、供給管4bの出口に連結されたノズル4cと、供給管4b内に配置されたレギュレータ4d及び冷却装置4eと、ハウジング4fとを備える。
 本発明による実施形態では、流体は空気であり、流体源4aはコンプレッサである。コンプレッサ4aが作動されると、空気が供給管4b内を流通する。供給管4b内の空気圧力はレギュレータ4dによって減圧される。空気は次いで、冷却装置4eによって冷却される。冷却された空気は次いでノズル4cから流出する。
 冷却器4のハウジング4fは加熱器3のハウジング3fと同様に、互いに間隔を隔てて拡がる頂壁及び底壁と、頂壁及び底壁間に配置された一対の側壁とを備え、これら頂壁、底壁及び側壁によって断面が長方形状の冷却室4gが画定される。冷却室4gは互いに対向する入口4gi及び出口4goを備える。
 加熱器3から搬出された不織布Fは搬送器2により、入口4giを介し冷却室4g内に入り、冷却室4g内を進行した後に、出口4goを介し冷却室4gから出るように、搬送される。この場合、冷却室4g内には、不織布Fを搬送するためのローラやベルトが配置されていない。言い換えると、不織布Fは冷却室4g内において支持されることなく搬送される。また、不織布Fの両面Fsが、冷却室4gを画定する隔壁である頂壁及び底壁にそれぞれ対面し続けるように不織布Fが冷却室4g内を搬送される。
 本発明による実施形態では、冷却器4のノズル4cは入口4giに配置される。したがって、ノズル4cから流出した空気は、入口4giを介し冷却室4g内に入り、搬送されている不織布Fに接触しつつ冷却室4g内を進行した後に、出口4goを介し冷却室4gから出る。この場合、冷却室4g内において、空気の線速度は不織布Fの搬送速度よりも高くなるように、空気が供給される。
 さて、ロールRから巻き戻された不織布Fはまず加熱器3の加熱室3g内を通過するよう搬送される。同時に、加熱器3のノズル3cから加熱された空気が加熱室3g内に供給される。その結果、不織布Fが加熱された空気に接触して加熱され、不織布Fの嵩が増加される。すなわち、不織布Fの嵩が回復される。
 この場合、空気は主として不織布Fの表面Fsに沿って進行する。その結果、空気流によって、不織布Fの嵩が回復するのが妨げられない。すなわち、不織布Fの嵩が良好に回復される。
 更に、本発明による実施形態では、加熱室3g内において空気の線速度が不織布Fの搬送速度よりも高い。その結果、不織布Fの表面Fsに隣接する空気流に乱れが生ずる。このため、空気に含まれる各種分子は不織布Fの表面Fsにランダムな角度で衝突する。したがって、不織布Fの繊維がほぐされ、嵩の回復が促進される。また、空気流の乱れにより、加熱室3g内において不織布Fにバタつきが生ずる。その結果、不織布Fの内部に加熱された空気が容易に侵入し、不織布Fを効率的に加熱できる。このため、加熱室3gないしハウジング3fの長さL3f(図2)を短くすることができる。
 更に、ハウジング3fは空気を供給する設備及び空気を吸引する設備を必要としない。したがって、ハウジング3fの大きさを更に小さくできる。
 更に、加熱室3g内において不織布Fはロール等により支持されることなく搬送される。その結果、不織布Fの嵩の回復がロール等により妨げられない。
 加熱室3gから搬出された不織布Fは次いで、冷却器4の冷却室4gを通過するように搬送される。同時に、冷却器4のノズル4cから冷却された空気が冷却室4g内に供給される。その結果、不織布Fが冷却された空気に接触して冷却される。
 この場合、空気は主として不織布Fの表面Fsに沿って進行する。その結果、空気流によって、不織布Fの嵩が減少するのが妨げられる。
 また、冷却室4g内において空気の線速度が不織布Fの搬送速度よりも高い。その結果、冷却室4g内に位置する不織布F全体を冷却することができる。すなわち、不織布Fを効率的に冷却できる。このため、冷却室4gないしハウジング4fの大きさを小さくすることができる。
 冷却室4gから搬出された不織布Fは次いで、搬送器2により、例えば吸収性物品製造装置に搬送される。吸収性物品製造装置では、不織布Fは吸収性物品の例えばトップシートとして用いられる。
 不織布として、例えばエアスルー不織布、ポイントボンド不織布(ヒートロール不織布)、スパンレース不織布、スパンボンド不織布、メルトブローン不織布等の各種製法による不織布が用いられる。
 不織布を構成する繊維として、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、変性ポリプロピレン、変性ポリエチレンテレフタレート、ナイロン、ポリアミド等の熱可塑性樹脂からなる単独繊維又は複合繊維が用いられる。
 複合繊維として、例えば、芯成分の融点が鞘成分の融点よりも高い芯鞘タイプ、偏心芯鞘タイプ、左右成分の融点が互いに異なるサイドバイサイドタイプが用いられる。また、中空タイプの繊維、扁平、Y型、C型などの異型繊維、潜在捲縮繊維及び顕在捲縮のような立体捲縮繊維、水流、熱、エンボスなどの物理的負荷により分割された分割繊維などが混合されていてもよい。
 3次元捲縮形状の不織布を形成するために、顕在捲縮繊維及び潜在捲縮繊維の一方又は両方を配合することができる。3次元捲縮形状にはスパイラル形状、ジグザグ形状、Ω形状などが含まれる。この場合、繊維配向は主体的には平面方向へ向いていても部分的には厚さ方向へ向くことになる。これにより、不織布の厚さ方向における繊維の挫屈強度が高められるので、不織布に外圧が加わっても不織布の嵩が減少しにくい。また、スパイラル形状の場合、不織布への外圧が解放されたときに、嵩が回復しやすい。
 一方、上述したように、不織布Fがトップシートとして用いられる場合には、不織布の繊度は、液体の入り込み性や肌触りを考慮して、1.1から8.8dtexが好ましい。また、この場合、例えば、肌に残るような少量な経血や汗などをも吸収するために、不織布を構成する繊維に、パルプ、化学パルプ、レーヨン、アセテート、天然コットンなどのセルロース系の親水性繊維が含まれていてもよい。ただし、セルロース系繊維は、一度吸収した液体を排出しにくいので、全体に対し0.1から5質量%の範囲で含まれるのが好ましい。更に、液体の入り込み性やリウェットバックを考慮して、疎水性合成繊維に、親水剤や撥水剤などが練り込まれ又はコーティングされてもよい。また、コロナ処理やプラズマ処理によって繊維に親水性が付与されてもよい。
 また、白化性を高めるために、繊維に、酸化チタン、硫酸バリウム、炭酸カルシウムなどの無機フィラーが含有されていてもよい。繊維が芯鞘タイプの複合繊維である場合は、芯にのみ無機フィラーが含有されていてもよいし、鞘にも無機フィラーが含有されていてもよい。
 例えばエアスルー法を用いて作られた不織布として、鞘を高密度ポリエチレン、芯をポリエチレンテレフタレートから形成した繊維であって、繊維長が20から100mm、好ましくは35から65mmであり、繊度が1.1から8.8dtex、好ましくは2.2から5.6dtexである芯鞘繊維を主体とした不織布が好ましい。
 本発明による実施形態では、不織布は捲縮を有する熱可塑性繊維を含んでいる。この場合、加熱器3のノズル3cから流出する空気の温度は、熱可塑性繊維の融点よりも50°C低い温度以上、融点未満であるのが好ましい。空気温度が融点-50°Cよりも低いと、不織布の嵩が十分に回復されないおそれがある。空気温度が融点以上であると、繊維が溶けてしまう。
 不織布Fの効率的な加熱のことを考えると、加熱室3gの断面積、すなわち幅W3g及び高さH3gは小さいのが好ましい。しかしながら、搬送時、不織布Fは幅方向に蛇行し、厚さ方向にバタつく。このため、幅W3g又は高さH3gが過度に小さいと、不織布Fがハウジング3fに衝突するおそれがある。また、加熱室3gの断面積、すなわち空気の流路面積が過度に小さいと、加熱室3gにおける圧力損失が大きくなる。これらを考慮すると、幅W3gは不織布Fの幅よりも5から40mm大きいのが好ましく、不織布Fの幅よりも10から20mm大きいのがより好ましい。また、高さH3gは2から10mmが好ましく、3から5mmがより好ましい。
 これまで述べてきた実施形態では、加熱器3のノズル3cは加熱室3gの入口3giに配置される。別の実施形態では、ノズル3cは加熱室3gの出口3goに配置される。この場合、出口3goを介し加熱室3g内に入り、搬送されている不織布Fに接触しつつ加熱室3g内を進行した後に、入口3giを介し加熱室3gから出るように、空気が供給される。
 そうすると、入口3gi及び出口3goの一方を介し加熱室3g内に入り、不織布Fに接触しつつ加熱室3g内を進行した後に、入口3gi及び出口3goの他方を介し加熱室3g内から出るように空気が供給されるということになる。
 ところが、ノズル3cを出口3goに配置すると、不織布Fの搬送方向MDと空気流れとが互いに逆向きになる。このため、搬送のために不織布Fに作用する搬送方向MDの力、すなわち張力を増加させる必要がある。張力が増加されると、不織布Fの嵩の回復が妨げられるおそれがある。不織布Fを加熱室3g内において、搬送方向MDと、搬送方向MDと逆向きとに交互に蛇行させる場合も同様の問題が生じ得る。
 これに対し、図1から図3に示される実施形態では、ノズル3cが入口3giに配置され、不織布Fの両面Fsが頂壁3fu及び底壁3fbにそれぞれ対面し続けるように不織布Fが加熱室3g内を搬送される。したがって、加熱室3g内において、不織布Fの搬送方向MDと空気流れとが互いに同じ方向であり続ける。その結果、搬送のために不織布Fに印加される張力を小さく維持しつつ、嵩の回復を行うことができる。
 また、これまで述べてきた実施形態では、ノズル3cは入口3giにおいて不織布Fの上方に配置される。別の実施形態では、ノズル3cは不織布Fの下方に配置される。更に別の実施形態では、ノズル3cは不織布Fの上方及び下方の両方に配置される。
 図4(A)及び図4(B)はノズル3cの別の実施形態を示している。図4(A)を参照すると、ノズル3cは例えば直方体形状の本体3caを備える。本体3caは、内部空間3cbと、内部空間3cbに連通する空気入口3cc及び空気出口3cdと、空気出口3cdに隣接して拡がる空気ガイド板3ceと、を備える。空気入口3ccは供給管3bに連結される。
 このノズル3cはハウジング3fに一体的に固定される。すなわち、図4(B)に示されるように、ノズル3cの空気ガイド板3ceが、ハウジング3fの内部空間3sの入口3siを介し内部空間3s内に挿入され、本体3caがハウジング3fの頂壁3fuに固定される。その結果、空気ガイド板3ceと頂壁3fuとの間に空気通路5aが形成され、空気ガイド板3ceと底壁3fbとの間に不織布通路5bが形成される。この場合、空気通路5aの高さH5a、空気ガイド板3ceの厚さt3ce、及び不織布通路5bの高さH5bは例えば、それぞれ1mmである。なお、ノズル3cの幅は内部空間3sの幅にほぼ一致する。
 空気通路5aは、一方ではノズル3cの空気出口3cdに連通し、他方ではハウジング3fの内部空間3sに連通する。この場合、空気通路5aの出口下流に加熱室3gが画定される。したがって、供給管3bから本体3caに供給された加熱空気は空気出口3cdを介し空気通路5a内に流入し、空気通路5a内を流通した後に、入口3giを介し加熱室3g内に流入する。
 不織布通路5bは、一方ではハウジング3fの外部に連通し、他方では加熱室3gに連通する。不織布Fはハウジング3fの外部から不織布通路5b内に入り、不織布通路5b内を進行した後に、入口3giを介し加熱室3g内に入る。
 この場合、加熱室3gの出口3goにおける流路面積は不織布通路5bの流路面積よりも大きく、したがって出口3goにおける流路抵抗は不織布通路5bの流路抵抗よりも小さくなっている。したがって、入口3giを介し加熱室3g内に流入した空気が不織布通路5b内を逆流するのが抑制され、出口3goに向けて加熱室3g内を確実に流通することができる。
 図5に示される実施形態では、図4に示される実施形態と比べて、ハウジング3fの底壁3fbがノズル3cの本体3caの下方まで延長される。その結果、不織布通路5bもノズル3cの本体3caの下方まで延長される。
 冷却器4のノズル4cの配置も加熱器3のノズル3cの配置と同様である。
 更に、これまで述べてきた実施形態では、加熱器3の下流に冷却器4が設けられる。別の実施形態では、冷却器4が省略される。すなわち、加熱器3から搬出された不織布Fは、冷却器4により冷却されることなく、製造装置に搬送される。
 更に別の実施形態では、コンプレッサ3aとレギュレータ3dとの間の供給管3b内にバッファが設けられる。このバッファにより、供給管3b内の圧力変動が抑制される。バッファの容積は例えば400L(0.4m)である。
 更に別の実施形態では、ハウジング3fを加熱するための加熱器が設けられる。この加熱器により、加熱室3gを画定するハウジング3fの内面の温度が、例えばノズル3cから流出する空気の温度とほぼ同じ温度に維持される。このようにすると、不織布Fの嵩回復を促進することができる。ハウジング3fのための加熱器として、株式会社スリーハイ製のシリコンラバーヒータを用いることができる。更に別の実施形態では、ノズル3cを加熱するための加熱器が設けられる。
 更に別の実施形態では、ハウジング3fを覆う保温材が設けられる。この保温材により、ハウジング3fないし加熱室3g内の温度低下が抑制される。更に別の実施形態では、ノズル3cを覆う保温材が設けられる。
 これまで述べてきた種々の実施形態を互いに組み合わせることもできる。
(実施例1から5)
 ロールの形の不織布が用意された。不織布の特性を表1に示す。表1において、WFは不織布の幅を、tmはロールRに巻かれる前の不織布の厚さを、t0はロールから巻き戻され嵩回復装置に搬入される前の不織布の厚さを、それぞれ示している。不織布の厚さは、大栄科学精機製作所製の厚さ測定器、FS-60DSを用いて測定された。加圧板面積は20cm(円形)であり、測定荷重は0.3kPa(3gf/cm)であった。
Figure JPOXMLDOC01-appb-T000001
 図1から図3に示される実施形態の嵩回復装置を用いて不織布の嵩回復処理が行われた。ノズル3cとして、スプレーイングシステムス社製 Y747-304SSが用いられた。流量計3baとして、CKD株式会社製 PFD-802-40が用いられた。レギュレータ3dとして、SMC株式会社製 AR30-03が用いられた。電気ヒータ3eとして、坂口電熱製マイクロケーブルエアヒーター(型式:MCA-3P-5000,200V,5KW)が用いられた。
 実施例1から5における処理条件が表2に示される。表2において、THAiは加熱室の入口における空気の温度を、qHAはコンプレッサから排出される空気流量(0°C)を、SHA(=W3g・H3g)は加熱室における空気流路面積を、VHA(=qHA/SHA)は加熱室における空気の線速度を、VFは不織布の搬送速度を、τH(=L3g/VF)は不織布の加熱時間、すなわち不織布が加熱室内に滞在した時間を、QHAは不織布の嵩回復処理に有効な空気量を、それぞれ表している。
Figure JPOXMLDOC01-appb-T000002
 有効空気量QHAは実施例1から5では次式を用いて算出された。
   QHA=(VHA-VF)・SHA・τH
 種々の有効空気量QHAにおける、嵩回復後の不織布の厚さtが測定され、不織布の嵩回復率RRが算出された。有効空気量QHAを変更するために、不織布の搬送速度VFが変更された。嵩回復率RRは次式を用いて算出された。
   RR(%)=(t-t0)/(tm-t0)・100
(比較例1から3)
 実施例1から5と同様の不織布が用意された。図6に示される嵩回復装置を用いて不織布の嵩回復処理が行われた。図6を参照すると、比較例1から3の嵩回復装置は、一対のローラ21,21により駆動される通気性ベルト22を備え、ロールから巻き戻された不織布FFはベルト22上に載せられて搬送方向MDに搬送された。嵩回復装置はまた、熱風を供給する熱風供給器31と、熱風供給器31からの空気を吸引する吸引器32と、冷風を供給する冷風供給器41と、冷風供給器41からの空気を吸引する吸引器42と、を備えていた。熱風供給器31はファンから構成された。熱風供給器31と吸引器32とは間隙S3を隔てて互いに対面配置され、冷風供給器41と吸引器42とは間隙S4を隔てて互いに対面配置された。ベルト22はこれら間隙S3,S4内を通過し、したがって不織布FFは間隙S3,S4内を搬送された。同時に、熱風供給器31から不織布FFの表面に垂直に熱風が供給され、この熱風は不織布FFを通過し、次いで吸引器32に吸引された。同様に、冷風供給器41から不織布FFの表面に垂直に冷風が供給され、この冷風は不織布FFを通過し、次いで吸引器42に吸引された。
 比較例1から3における処理条件が表3に示される。表3において、THAi’は熱風供給器31から流出する空気の温度を、qHA’は熱風供給器31から排出される空気流量(80°C)を、Ps’は熱風供給器31における静圧(80°C)を、L3g’,W3g’は、熱風供給器31及び吸引器32のうち空気流れが生じている部分の搬送方向長さ及び幅を、SHA’(=L3g’・W3g’)は、間隙S3における空気流路面積を、VHA’(=qHA’/SHA’)は間隙S3における空気の線速度を、SF’(=L3g’・WF)は、間隙S3内に位置する不織布部分、すなわち空気が通過している不織布部分の面積を、VF’は不織布の搬送速度を、τH’は加熱時間、すなわち不織布が間隙S3内に滞在した時間を、QHA’は不織布の嵩回復処理に有効な空気量(0°C)を、それぞれ表している。
Figure JPOXMLDOC01-appb-T000003
 有効空気量QHA’は比較例1から3では、次式を用いて算出された。なお、Cは、熱風供給器31における静圧Psを考慮して0°Cでの空気量を求めるための換算係数である。
   QHA’=SF’・VHA’・τH’・C
 種々の有効空気量QHA’における、嵩回復後の不織布の厚さtが測定され、不織布の嵩回復率RRが算出された。
(結果)
 種々の有効空気量QHA,QHA’における不織布の厚さt及び嵩回復率RRが表4に示される。
Figure JPOXMLDOC01-appb-T000004
 例えば、嵩回復率RRを約77.8%にするのに必要な有効空気量を比べると、実施例4では10.7Lであり、比較例3では912Lであった。このように、実施例4の有効空気量QHAは比較例3の有効空気量QHA’の85分の1程度であった。したがって、実施例1から5では、寸法のより小さい装置でもって、不織布の嵩をより効率的に減少させることができた。
 1  嵩回復装置
 2  搬送器
 3  加熱器
 3e  電気ヒータ
 3c  ノズル
 3g  加熱室
 3gi  入口
 3go  出口
 4  冷却器
 F  不織布
 R  ロール
 MD  搬送方向

Claims (8)

  1.  帯状の不織布の嵩を回復させる方法であって、
     入口及び出口を有する加熱室を用意する段階と、
     入口を介し加熱室内に入り、加熱室内を進行した後に、出口を介し加熱室から出るように不織布を搬送しながら、入口及び出口の一方を介し加熱室内に入り、不織布に接触しつつ加熱室内を進行した後に、入口及び出口の他方を介し加熱室内から出るように、加熱された流体を、不織布の搬送速度よりも高い速度でもって、供給する段階と、
    を含む方法。
  2.  加熱された流体が入口を介し加熱室内に入り、出口を介し加熱室から出る、請求項1に記載の方法。
  3.  不織布が加熱室内において支持されることなく搬送される、請求項1又は2に記載の方法。
  4.  加熱室が、入口から出口まで、互いに間隔を隔てて拡がる2つの隔壁により画定されており、これら隔壁に不織布の両面がそれぞれ対面し続けるように不織布が加熱室内を搬送される、請求項1から3までのいずれか一項に記載の方法。
  5.  加熱室から出た不織布を冷却する段階を更に含む、請求項1から4までのいずれか一項に記載の方法。
  6.  不織布が熱可塑性繊維を含んでおり、加熱された流体の温度が、熱可塑性繊維の融点よりも50°C低い温度以上、融点未満である、請求項1から5までのいずれか一項に記載の方法。
  7.  不織布が捲縮を有する熱可塑性繊維を含んでいる、請求項1から6までのいずれか一項に記載の方法。
  8.  帯状の不織布の嵩を回復させる装置であって、
     入口及び出口を有する加熱室と、
     入口を介し加熱室内に入り、加熱室内を進行した後に、出口を介し加熱室から出るように不織布を搬送する搬送器と、
     入口及び出口の一方を介し加熱室内に入り、不織布に接触しつつ加熱室内を進行した後に、入口及び出口の他方を介し加熱室内から出るように、加熱された流体を、不織布の搬送速度よりも高い速度でもって、供給する供給器と、
    を含む装置。
PCT/JP2013/061524 2012-04-20 2013-04-18 不織布の嵩を回復させる方法及び装置 WO2013157611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380000977.7A CN103492626B (zh) 2012-04-20 2013-04-18 使无纺布的体积恢复的方法和装置
US14/395,028 US9637851B2 (en) 2012-04-20 2013-04-18 Method and device for recovering bulk of nonwoven fabric
EP13778707.3A EP2840178B1 (en) 2012-04-20 2013-04-18 Method and device for recovering bulk of nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012097087A JP5777558B2 (ja) 2012-04-20 2012-04-20 不織布の嵩を回復させる方法及び装置
JP2012-097087 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157611A1 true WO2013157611A1 (ja) 2013-10-24

Family

ID=49383563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061524 WO2013157611A1 (ja) 2012-04-20 2013-04-18 不織布の嵩を回復させる方法及び装置

Country Status (6)

Country Link
US (1) US9637851B2 (ja)
EP (1) EP2840178B1 (ja)
JP (1) JP5777558B2 (ja)
CN (2) CN106012396B (ja)
TW (1) TW201404964A (ja)
WO (1) WO2013157611A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050762A1 (ja) * 2012-09-28 2014-04-03 ユニ・チャーム株式会社 不織布
WO2015056543A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び、不織布の嵩回復方法
JP2015078463A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法
JP2015078466A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び嵩回復方法
JP2015078467A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置
WO2015056596A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832477B2 (ja) * 2013-05-31 2015-12-16 ユニ・チャーム株式会社 不織布の嵩回復方法
JP5707467B2 (ja) * 2013-10-18 2015-04-30 ユニ・チャーム株式会社 吸収性物品の製造装置、及び製造装置の改造方法
JP5753884B2 (ja) * 2013-10-18 2015-07-22 ユニ・チャーム株式会社 吸収性物品の製造装置、及び製造方法
ITPO20150006A1 (it) * 2015-03-22 2016-09-22 Biancalani Srl Apparato di trascinamento fluidico di un tessuto in un tumbler di trattamento
ITUB20155400A1 (it) 2015-11-09 2017-05-09 Sicam S R L Soc It Costruzioni Aeromeccaniche Forno per il settore tessile
IT201700039863A1 (it) * 2017-04-11 2018-10-11 Technoplants S R L Modulo, impianto e metodo per il trattamento di un tessuto non tessuto per l'ottenimento di un tessuto non tessuto volumizzato

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173471A (ja) * 1994-05-12 1996-07-09 Japan Pionics Co Ltd シート状発熱体
JP2004137655A (ja) 2002-09-25 2004-05-13 Kao Corp 不織布の嵩回復方法
JP2007177364A (ja) 2005-12-28 2007-07-12 Kao Corp 長尺状シートの熱処理装置
JP2010007219A (ja) * 2008-05-27 2010-01-14 Kao Corp 清掃用シートの製造方法
WO2010047292A1 (ja) * 2008-10-20 2010-04-29 ユニ・チャーム株式会社 不織布の厚さを増加させる方法およびそのための装置
WO2010074207A1 (ja) * 2008-12-25 2010-07-01 花王株式会社 不織布及びその製造方法
JP2010156076A (ja) * 2008-12-26 2010-07-15 Kao Corp 不織布の嵩増加方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE23384E (en) * 1951-07-03 Dungler
US2306019A (en) * 1939-10-21 1942-12-22 B F Sturtevant Co Drying apparatus
US2590849A (en) * 1947-12-31 1952-04-01 Dungler Julien Method for drying fibrous sheet material
US3078496A (en) * 1960-10-04 1963-02-26 Oxy Dry Sprayer Corp Web cleaning apparatus
DE2039273B2 (de) 1970-08-07 1978-05-24 Rosenkranz & Co Gmbh, 4050 Moenchengladbach Verfahren und Vorrichtung zum Schrumpfen von laufenden Garnen
US3766662A (en) * 1972-01-24 1973-10-23 R Moyer Apparatus for drying fabrics
US3868215A (en) * 1973-04-05 1975-02-25 Samcoe Holding Corp Method of steam processing tubular knit fabric or the like
US4270283A (en) * 1979-01-10 1981-06-02 Ellis James F Air recycling apparatus for drying a textile web
IT1272912B (it) * 1995-01-19 1997-07-01 Zonco Federico & Figlio Macchina per il trattamento ad umido ed a secco di tessuti in corda o in largo
DE19536070C2 (de) * 1995-09-28 2000-12-07 Krantz Textiltechnik Gmbh Düse zum Transport eines Stranges und Vorrichtung zum Behandeln von Textilgut in Form mindestens eines endlosen Stranges
AR017359A1 (es) * 1997-10-17 2001-09-05 Kimberly Clark Co Un metodo para formar un material compuesto texturizado y el material compuesto texturizado hecho a partir de dicho metodo y el producto de limpiezaque utiliza dicho material
US6168743B1 (en) * 1999-06-15 2001-01-02 Arteva North America S.A.R.L. Method of continuously heat treating articles and apparatus therefor
US8129297B2 (en) * 2002-07-29 2012-03-06 E. I. Du Pont De Nemours And Company Method and apparatus for heating nonwoven webs
US7131171B2 (en) 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
US7268323B2 (en) * 2003-03-04 2007-09-11 Mitsubishi Rayon Co., Ltd. Heat treating apparatus and heat treating method for sheet-like article
CN102257201B (zh) * 2008-12-25 2014-10-08 花王株式会社 无纺布及其制造方法
WO2012033728A1 (en) * 2010-09-10 2012-03-15 Megtec Systems, Inc. Air bar arrangement for drying tissue on a belt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173471A (ja) * 1994-05-12 1996-07-09 Japan Pionics Co Ltd シート状発熱体
JP2004137655A (ja) 2002-09-25 2004-05-13 Kao Corp 不織布の嵩回復方法
JP2007177364A (ja) 2005-12-28 2007-07-12 Kao Corp 長尺状シートの熱処理装置
JP2010007219A (ja) * 2008-05-27 2010-01-14 Kao Corp 清掃用シートの製造方法
WO2010047292A1 (ja) * 2008-10-20 2010-04-29 ユニ・チャーム株式会社 不織布の厚さを増加させる方法およびそのための装置
WO2010074207A1 (ja) * 2008-12-25 2010-07-01 花王株式会社 不織布及びその製造方法
JP2010156076A (ja) * 2008-12-26 2010-07-15 Kao Corp 不織布の嵩増加方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050762A1 (ja) * 2012-09-28 2014-04-03 ユニ・チャーム株式会社 不織布
WO2015056543A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び、不織布の嵩回復方法
JP2015078463A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法
WO2015056597A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法
JP2015078466A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び嵩回復方法
JP2015078467A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置
WO2015056596A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法
WO2015056532A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び嵩回復方法
JP2015078464A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び不織布の嵩回復方法
WO2015056544A1 (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置
JP2015078465A (ja) * 2013-10-18 2015-04-23 ユニ・チャーム株式会社 不織布の嵩回復装置、及び、不織布の嵩回復方法
US9777414B2 (en) 2013-10-18 2017-10-03 Unicharm Corporation Bulkiness recovery apparatus for nonwoven fabric
US9809913B2 (en) 2013-10-18 2017-11-07 Unicharm Corporation Bulk recovery apparatus for nonwoven fabric and bulk recovery method for the same
US9885134B2 (en) 2013-10-18 2018-02-06 Unicharm Corporation Bulk recovery apparatus for nonwoven fabric and bulk recovery method for the same
US9903057B2 (en) 2013-10-18 2018-02-27 Unicharm Corporation Bulkiness recovery apparatus and bulkiness recovery method for nonwoven fabric
US10041200B2 (en) 2013-10-18 2018-08-07 Unicharm Corporation Bulkiness recovery apparatus and bulkiness recovery method for nonwoven fabric

Also Published As

Publication number Publication date
JP2013224501A (ja) 2013-10-31
US20150067996A1 (en) 2015-03-12
CN106012396A (zh) 2016-10-12
CN106012396B (zh) 2019-02-01
CN103492626B (zh) 2016-08-17
CN103492626A (zh) 2014-01-01
TW201404964A (zh) 2014-02-01
JP5777558B2 (ja) 2015-09-09
EP2840178A4 (en) 2016-05-18
EP2840178B1 (en) 2018-01-10
EP2840178A1 (en) 2015-02-25
US9637851B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
JP5777558B2 (ja) 不織布の嵩を回復させる方法及び装置
JP5840100B2 (ja) 不織布
JP5498474B2 (ja) 積層不織布の製造方法
TWI485298B (zh) A method of increasing the thickness of the nonwoven fabric and a device thereof
EP2602372B1 (en) Device for increasing bulk of non-woven fabric
WO2011102544A1 (ja) 不織布シートおよびその製造方法
CN103596760B (zh) 将流体喷射到基底上的设备和方法
WO2007148497A1 (ja) 不織布
JP2008038269A (ja) メルトブロー紡糸装置およびメルトブロー紡糸方法
JP2010156076A (ja) 不織布の嵩増加方法
JP5791843B2 (ja) 不織布の嵩を回復させる方法及び装置
WO2017170791A1 (ja) 耐熱性繊維構造体
CN104499238A (zh) 无纺布的体积恢复装置以及无纺布的体积恢复方法
JP6843035B2 (ja) 不織布の製造方法及び不織布の製造装置
JP6033639B2 (ja) 不織布の製造装置及び製造方法
JP6782155B2 (ja) 複合伸縮部材の製造方法
JP6710038B2 (ja) ナノファイバー不織布及びそれを用いた吸音材
JP5827555B2 (ja) 不織布の製造方法、不織布および不織布の製造装置
JP2011190562A (ja) ワーク処理装置
JP2003127261A (ja) プリーツ加工に適した布地、およびプリーツ加工製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013778707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201406155

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14395028

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE