WO2013157598A1 - 鋼箔及びその製造方法 - Google Patents

鋼箔及びその製造方法 Download PDF

Info

Publication number
WO2013157598A1
WO2013157598A1 PCT/JP2013/061472 JP2013061472W WO2013157598A1 WO 2013157598 A1 WO2013157598 A1 WO 2013157598A1 JP 2013061472 W JP2013061472 W JP 2013061472W WO 2013157598 A1 WO2013157598 A1 WO 2013157598A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
steel
steel foil
plating
rolling
Prior art date
Application number
PCT/JP2013/061472
Other languages
English (en)
French (fr)
Inventor
石塚 清和
久保 祐治
中塚 淳
修司 長▲崎▼
Original Assignee
新日鐵住金株式会社
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 新日鉄住金マテリアルズ株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201380003330.XA priority Critical patent/CN103857818B/zh
Priority to US14/343,466 priority patent/US9997786B2/en
Priority to JP2013547768A priority patent/JP6124801B2/ja
Priority to KR1020147008367A priority patent/KR101599166B1/ko
Priority to EP13779056.4A priority patent/EP2743365B1/en
Publication of WO2013157598A1 publication Critical patent/WO2013157598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a steel foil that can be used for a negative electrode current collector foil of a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and a method for producing the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, and are therefore used as power sources for mobile communications or portable information terminals.
  • the market is growing rapidly. Accordingly, in order to pursue further downsizing and weight reduction of the device, there is a demand for performance improvement for further downsizing and weight reduction of the battery occupying a large volume in the device.
  • the negative electrode active material (hereinafter sometimes referred to as an active material) used in the secondary battery is mainly a graphite-based carbonaceous material.
  • Graphite-based carbonaceous material is a key material that affects battery performance.
  • the amount of lithium that can be reversibly inserted into and desorbed from the graphite-based carbonaceous material is limited to one lithium atom per six carbon atoms.
  • the theoretical limit capacity of charge / discharge of the carbon material calculated from this limit value is 372 mAh / g in terms of electric capacity. Since the current secondary battery is used at a level close to this limit capacity, a dramatic improvement in performance cannot be expected in the future.
  • the above-described high-capacity active material has a large volume fluctuation due to insertion and extraction of lithium compared to conventional graphite-based carbonaceous material. As a result, as the charge and discharge are repeated, the active material is pulverized or the active material is peeled off from the current collector. Thus, the active materials disclosed in Patent Documents 1 and 2 have a problem that good charge / discharge cycle characteristics cannot be obtained.
  • an electrode for a lithium secondary battery formed by depositing an amorphous silicon thin film or a microcrystalline silicon thin film as an active material on a current collector such as a copper foil by a CVD method or a sputtering method is It has been found that good charge / discharge cycle characteristics are exhibited (see Patent Document 3). This is because the active material thin film is in close contact with the current collector.
  • a conductive intermediate layer containing polyimide is disposed as a binder in a layer containing a silicon-based active material or between a layer containing a silicon-based active material and a metal foil current collector, and then the metal foil current collector
  • a method for producing a current collector has been found in which a conductive intermediate layer is disposed thereon and sintered in a non-oxidizing atmosphere (see Patent Document 4).
  • the conductive intermediate layer suppresses separation of the mixture layer from the current collector due to the expansion and contraction of the negative electrode active material accompanying the charge / discharge reaction, and therefore, between the mixture layer and the current collector. Increase adhesion.
  • a higher-strength current collector that can withstand the stress generated by the volume expansion of the active material is required.
  • One way to increase the tensile strength of the current collector is to increase the thickness of the current collector.
  • simply increasing the thickness of the current collector cannot be expected to greatly improve the tensile strength of the current collector, but it also reduces the energy density of the battery due to the increase in the weight and volume of the battery. Occurs.
  • Typical copper foils for the negative electrode current collector include those produced by rolling and those produced by an electrolytic method (electrolytic copper foil).
  • electrolytic copper foil there is a limit to increasing the strength of the current collector using copper foil with electrolytic copper foil. Therefore, production of high-strength copper foil by a rolling method has been studied, and it has been proposed to use this rolled copper alloy foil as a negative electrode current collector (see Patent Document 5).
  • the potential of the negative electrode when the lithium ion battery is operating normally is less than 2 V (relative to Li) and very low.
  • the potential may be greater than 3V (vs. Li). At such a high potential, there is a problem that copper dissolves rapidly and causes deterioration of battery characteristics.
  • copper is a metal having a large specific gravity (specific gravity: 8.9)
  • specific gravity 8.9
  • the weight ratio of the negative electrode current collector foil to the battery is relatively high, and energy per weight Impedes density improvement.
  • copper foil is more expensive than Al foil used for the positive electrode.
  • iron Since iron has a higher electrical resistance than copper, it tends to be questionable about its properties as a current collector. However, with recent improvements in battery structure and diversification of battery applications and required characteristics, electrical resistance has not necessarily become a problem.
  • Patent Document 6 proposes to use an electrolytic iron foil having a thickness of 35 microns or less as a current collector for a negative electrode. From the viewpoint of rust prevention, it has also been proposed to use electrolytic iron foil plated with Ni.
  • Ni plating on the electrolytic foil is a factor that increases the cost. Furthermore, unless the Ni plating is formed thick (1 ⁇ m or more), Fe elution during overdischarge is inevitable.
  • Patent Document 7 proposes to use, as a negative electrode current collector, a metal foil obtained by forming iron sesquioxide on the surface of an iron foil or a nickel-plated iron foil.
  • a metal foil obtained by forming iron sesquioxide on the surface of an iron foil or a nickel-plated iron foil.
  • Fe elution during overdischarge is unavoidable, and side reactions at the negative electrode potential easily occur. As a result, the efficiency or life of the battery tends to be hindered.
  • Patent Document 8 proposes a ferritic stainless steel foil current collector.
  • ferritic stainless steel foil has a large electrical resistance, problems such as heat generation occur especially when the current collector becomes thinner. There is a problem that it becomes obvious. Further, ferritic stainless steel foil is not economical even when compared with copper foil.
  • the demand for thinning is particularly strong, so in conventional high-strength steel, the strength and electrical resistance after thinning are reduced. It is difficult to balance.
  • Patent Document 9 discloses a copper-coated steel foil for supporting a negative electrode active material of a lithium ion secondary battery, but the strength of the foil does not satisfy a necessary level, and the strength of the foil is increased. The knowledge about coexistence and electrical resistance is not disclosed. In this technique, since the surface layer is coated with copper that is softer and inferior in heat resistance than steel, the strength after heating tends to decrease. Further, since the surface layer is coated with copper, the overdischarge solubility is only the same as that of the copper foil, and a remarkable improvement effect or the like by the disclosed configuration is not recognized.
  • An object of the present invention is to provide a steel foil for a negative electrode current collector that uses both a thin, strong, lightweight and economical steel foil, and which has both a strength and an electric resistance that are normally in a trade-off relationship.
  • the gist of the present invention that achieves the above object is as follows.
  • the steel foil according to one embodiment of the present invention is, in mass%, C: 0.0001 to 0.02%, Si: 0.001 to 0.01%, Mn: 0.01 to 0.3% , P: 0.001 to 0.02%, S: 0.0001 to 0.01%, Al: 0.0005 to 0.1%, and N: 0.0001 to 0.004%,
  • the steel foil described in the above (1) may further contain 0.1% or less of one or two of Ti and Nb by mass%.
  • the steel foil according to (1) or (2) may further have a Ni plating layer or a Cr plating layer on the surface layer of the steel foil.
  • the method for producing a steel foil according to another embodiment of the present invention is, in mass%, C: 0.0001 to 0.02%, Si: 0.001 to 0.01%, Mn: 0.01 to 0.3%, P: 0.001 to 0.02%, S: 0.0001 to 0.01%, Al: 0.0005 to 0.1%, and N: 0.0001 to 0.004% ,
  • the steel sheet may further contain 0.1% or less of one or two of Ti and Nb by mass%.
  • the method for manufacturing a steel foil according to (4) or (5) may further include a plating step of forming a Ni plating layer or a Cr plating layer on a surface layer of the steel foil after the foil rolling step. Good.
  • the Ni plating layer may be a soft Ni plating layer.
  • the method for manufacturing a steel foil according to (4) or (5) may further include a pre-rolling plating step of forming a Ni plating layer on a surface layer of the steel plate before the foil rolling step.
  • the Ni plating layer may be a soft Ni plating layer.
  • the rolled steel foil for a negative electrode current collector according to the present embodiment (hereinafter sometimes referred to as “steel foil according to the present embodiment”) has the following component composition (% is mass%) and has a thickness of 5 ⁇ m or more. It is characterized by being 15 ⁇ m or less and a tensile strength of more than 900 MPa and 1200 MPa or less.
  • the manufacturing method of the steel foil which concerns on this embodiment performs cold rolling on the steel plate of the said component composition (mass%) with the cumulative rolling rate of 90% or more, thickness is 5 micrometers or more and 15 micrometers or less, and tensile strength. Is a steel foil of more than 900 MPa and not more than 1200 MPa.
  • the steel foil according to this embodiment does not employ a strengthening mechanism such as solid solution strengthening, precipitation strengthening, or structure strengthening that is used in general high-strength steel materials.
  • a strengthening mechanism such as solid solution strengthening, precipitation strengthening, or structure strengthening that is used in general high-strength steel materials.
  • the content of elements that increase strength is suppressed to a level lower than that of conventional high-strength steel materials, and instead, strength is secured by using work hardening described later. This makes it possible to achieve both strength and electrical resistance.
  • % means the mass%.
  • C (C: 0.0001 to 0.02%) C is an element that increases the strength of the steel, but if contained excessively, the electrical resistance of the steel may deteriorate, so the upper limit of the C content is 0.02%.
  • the lower limit of the C content is not particularly specified, but the limit in the current refining technology is about 0.0001%, so this was set as the lower limit.
  • the C content is more preferably 0.001% to 0.01%.
  • Si 0.001 to 0.01%
  • Si is an element that increases the strength of steel, but if contained excessively, the electrical resistance of the steel may deteriorate, so the upper limit of Si content is 0.01%. If the Si content is less than 0.001%, the scouring cost increases, so the lower limit of the Si content is set to 0.001%.
  • the Si content is more preferably 0.001% to 0.008%.
  • Mn 0.01 to 0.3%) Mn is an element that increases the strength of steel, but if contained excessively, the electrical resistance of steel may deteriorate, so the upper limit of Mn content is set to 0.3%. If the Mn content is less than 0.01%, the refining cost becomes great, and the steel becomes too soft and rollability is lowered, which may lead to an increase in production cost. .01%.
  • the Mn content is more preferably 0.05% to 0.2%.
  • P is an element that increases the strength of the steel, but if contained excessively, the electrical resistance of the steel may deteriorate, so the upper limit of the P content is 0.02%. If the P content is less than 0.001%, the scouring cost may increase, so the lower limit of the P content is 0.001%.
  • the P content is more preferably 0.001% to 0.01%.
  • S is an element that lowers the hot workability and corrosion resistance of steel, the smaller the amount, the better. Furthermore, in the case of a thin steel foil such as the steel foil according to the present embodiment, if there is a large amount of S, the electrical resistance is deteriorated by inclusions due to the presence of S, or the strength of the steel is reduced. Therefore, the upper limit of the S content is 0.01%. If the S content is less than 0.0001%, the scouring cost may increase. Therefore, the lower limit of the S content is set to 0.0001%. The S content is more preferably 0.001% to 0.008%.
  • Al 0.0005 to 0.1%)
  • Al contains 0.0005% or more as a deoxidizing element of steel. If excessively contained, the electrical resistance deteriorates and the production cost may increase, so the upper limit of the Al content is 0.1%.
  • the Al content is more preferably 0.01% to 0.05%.
  • N 0.0001-0.004% Since N is an element that decreases the hot workability and workability of steel, the smaller the content, the better.
  • the upper limit of the N content is 0.004%. If the N content is less than 0.0001%, the cost may increase, so the lower limit of the N content is 0.0001%.
  • the N content is more preferably 0.001% to 0.003%.
  • the balance of the components of the steel foil according to the present embodiment is Fe and impurities, but may further contain 0.1% or less of Ti and / or Nb.
  • Ti and / or Nb can fix C and N in the steel as carbides and nitrides to improve the workability of the steel. However, when it adds excessively, the increase in manufacturing cost and the deterioration of electrical resistance may be caused.
  • the preferred content ranges are Ti: 0.01 to 0.8%, Nb: 0.005 to 0.05%. More preferable content ranges are Ti: 0.01 to 0.1% and Nb: 0.005 to 0.04%.
  • the steel foil according to the present embodiment may additionally contain B, Cu, Ni, Sn, Cr or the like as long as the characteristics of the steel foil according to the present embodiment are not impaired.
  • the thickness of the steel foil according to this embodiment is 5 ⁇ m or more and 15 ⁇ m or less. This is because a thin current collector foil, that is, a thin steel foil is desired in reducing the size and weight of the battery. From the viewpoint of size reduction and weight reduction, the steel foil is preferably thinner, and there is no need to particularly limit the lower limit. However, when considering the uniformity of cost or thickness, 5 ⁇ m or more is preferable. In addition, when rolling the steel material which does not satisfy the component composition mentioned above and manufacturing steel foil, an electrical resistance may deteriorate notably in the area
  • the tensile strength of the steel foil according to this embodiment is more than 900 MPa and not more than 1200 MPa.
  • the tensile strength is a measured value at normal temperature.
  • the tensile strength is 900 MPa or less, there is a possibility that the steel foil is deformed or the active material is peeled off due to the expansion and contraction of the active material accompanying charging and discharging. This tendency is remarkable when a high capacity negative electrode active material is applied to the steel foil.
  • the steel foil according to the present embodiment has a certain degree of elongation, but even if it is not present (even if it is at an unmeasurable level), there is no problem in achieving the object of the present invention.
  • the preferable elongation of the steel foil according to this embodiment is 0.1% or more.
  • a current collector foil when a current collector foil is coated with an active material to produce an electrode, heat treatment at a maximum of about 400 ° C. may be performed.
  • the steel foil according to the present embodiment has good heat resistance in addition to tensile strength, and even when subjected to a heat treatment of about 400 ° C., the strength hardly decreases, and even if the strength decreases, the maximum decrease in tensile strength is 10 %.
  • the tensile strength reduction rate is a percentage of the tensile strength reduction amount with respect to the tensile strength before the heat treatment.
  • the manufacturing method of the steel foil which concerns on this embodiment shown by FIG.1 and FIG.2 is as follows. First, a thin plate (steel plate) having a predetermined composition described above is manufactured according to a normal thin plate manufacturing method. Then, the above-mentioned thin plate is made into a steel foil of 5 ⁇ m or more and 15 ⁇ m or less by cold rolling (foil rolling) under large pressure. Utilizing work hardening caused by cold rolling under large pressure, a high strength of more than 900 MPa and 1200 MPa or less is achieved.
  • the cumulative rolling rate during foil rolling is 90% or more.
  • the cumulative rolling rate is a percentage of the cumulative reduction amount (the difference between the inlet plate thickness before the first pass and the outlet plate thickness after the final pass) with respect to the inlet plate thickness of the first rolling stand. If the cumulative rolling rate is less than 90%, sufficient foil strength is not exhibited.
  • the cumulative rolling rate during foil rolling is preferably 95% or more.
  • the upper limit of the cumulative rolling rate is not particularly limited. However, with normal rolling capacity, about 98% is the limit of the cumulative rolling rate that can be achieved.
  • Cold rolling is performed by one or more passes, but if annealing is performed during rolling, the tensile strength may be insufficient. Therefore, it is preferable not to perform the annealing process during rolling. Since the steel foil according to the present embodiment has good rolling properties depending on its component composition, intermediate annealing is not necessary.
  • the surface layer of the steel foil according to the present embodiment may be plated with Ni or Cr after foil rolling. Thereby, the metal elution property at the time of overdischarge can be improved. Depending on the type of plating, there is not only an improvement effect, but rather deterioration. In particular, Cu plating, Zn plating and the like cannot be used in the steel foil of the present invention. Further, the strength may decrease depending on the type of plating.
  • a plating such as Ni or Cr
  • pre-rolling plating it is possible to apply a plating such as Ni or Cr to the steel plate before foil rolling (pre-rolling plating), and to roll the steel plate (thin plate) having a plating layer on the surface layer under the above-mentioned conditions.
  • careful attention is required for the selection of plating.
  • the elongation of plating during foil rolling is smaller than the elongation of steel, defects such as cracks occur in the plating layer, and this defect may cause a decrease in foil strength.
  • the foil strength may be significantly reduced when rolling is performed at a cumulative rolling rate of 90% or more. .
  • the foil strength tends to decrease if the plating layer itself is too soft.
  • the foil strength may still be adversely affected. If the elongation of the plating is smaller than the elongation of the steel foil, defects such as cracks may occur when the steel foil expands and contracts due to temperature changes. If the elongation of the plating is larger than the elongation of the steel foil, the foil strength tends to decrease.
  • soft Ni plating is particularly suitable. Specifically, pure Ni plating containing no impurities other than those deposited on the steel plate is subjected to a heat treatment at 300 ° C. or higher, whereby the Ni plating in which the strain of the plating layer is released is referred to as soft Ni plating in this embodiment. To do.
  • foil rolling of a steel sheet is performed in a state where plating other than Ni plating or Cr plating is adhered, the foil strength is lowered for the reasons described above, and the target performance of the present invention may not be obtained. Moreover, even when plating other than Ni plating or Cr plating is performed on the steel foil after foil rolling, the foil strength may be lowered due to the above-described reason.
  • the preferable adhesion amount range of the Ni plating adhered on the steel foil according to the present embodiment is 1 g / m 2 or more.
  • the more preferable adhesion amount of Ni plating is 5 g / m 2 or more and 20 g / m 2 or less.
  • the preferable adhesion amount range of Cr plating adhered on the steel foil according to the present embodiment is 0.01 g / m 2 or more.
  • the adhesion amount of Cr plating exceeds 0.5 g / m 2 , the crack of the plating layer on the steel foil increases, and the effect of improving the metal dissolution property is lost due to this crack, and the foil strength is reduced. There is. From the viewpoint of metal elution, a remarkable effect is observed with Cr plating with a smaller amount of deposition than with Ni plating.
  • a more preferable adhesion amount of Cr plating is 0.1 g / m 2 or more and 0.3 g / m 2 or less.
  • Example 1 Cold rolled steel sheets (annealed materials) having the component compositions shown in Table 1 were manufactured by a normal sheet manufacturing method, and then foil rolling was performed. Table 1 also shows the original thickness of the cold-rolled steel sheet, the cumulative rolling rate of foil rolling, and the thickness of the foil.
  • Overdischarge solubility A tripolar beaker cell was assembled in a glove box in an argon atmosphere (dew point -60 ° C). A working electrode was obtained by tape-sealing the edge and back surface of each test material. Metal lithium was used as a counter electrode and a reference electrode.
  • electrolytic solution a solution obtained by dissolving 1 mol / L LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.
  • the cell was held at 25 ° C., scanned from the immersion potential in a noble direction at 5 mV / sec, and a potential at which a current of 0.01 mA / cm 2 flowed was measured.
  • the dissolution potential was expressed as a Li reference potential (V).
  • Foil strength In parallel with the rolling direction, a 13B tensile test piece described in JIS Z 2201 was collected, and the tensile strength was determined according to JIS Z2241. The tensile strength of each of the steel foil as it was (the steel foil which was rolled only) and the steel foil after heating at 400 ° C. for 30 minutes was determined. The tensile strength after heating was determined as a reference value because the steel foil may be heated in the battery manufacturing process. However, since the value of the tensile strength required for the steel foil after heating differs depending on the battery, no pass / fail judgment was made regarding the tensile strength of the steel foil after heating.
  • Volume resistivity was measured at 20 ° C. by the four probe method.
  • a sample with an electrical resistance of less than 14 ⁇ cm is grade A
  • a sample with an electrical resistance of 14 ⁇ cm to less than 16 ⁇ cm is Grade B
  • a sample with an electrical resistance of 16 ⁇ cm to less than 20 ⁇ cm is Grade C
  • a sample with an electrical resistance of 20 ⁇ cm or more is rated as Grade D Grade A and B samples were accepted.
  • Table 1 shows the tensile strength and electrical resistance.
  • Table 1 shows the tensile strength and electrical resistance.
  • the overdischarge solubility since all the examples were better than the Cu foil and there was no great difference between the levels, it was not shown in Table 1 (the test was conducted for the Cu foil of 3.4 V). (Examples and comparative examples are 3.5 to 3.6 V).
  • both tensile strength and electrical resistance which are likely to be in a trade-off relationship, can be achieved. What deviates from the scope of the present invention cannot achieve both tensile strength and electrical resistance.
  • Examples 22 to 25 and Comparative Example 10 Various platings were formed on the steel foil produced in Example 1 by electroplating.
  • the Ni plating conditions are as follows. Using a bath composed of Ni sulfate: 320 g / l, Ni chloride: 70 g / l, boric acid: 40 g / l, various deposition amounts of Ni were plated at a bath temperature of 65 ° C. and a current density of 20 A / dm 2 . .
  • the Cr plating conditions are as follows. Using a bath composed of chromic anhydride: 150 g / l and sulfuric acid: 1.5 g / l, various deposits of Cr were plated at a bath temperature of 50 ° C. and a current density of 50 A / dm 2 .
  • the Zn plating conditions are as follows. Zn was plated at a bath temperature of 60 ° C. and a current density of 50 A / dm 2 using a bath composed of Zn sulfate: 250 g / l, sulfuric acid: 15 g / l, sodium sulfate: 50 g / l.
  • Example 12 For the steel foil produced in Example 19, 1 g / m in a plating bath consisting of copper pyrophosphate: 80 g / l, potassium pyrophosphate: 300 g / l, aqueous ammonia: 3 ml / l in advance. 2 Cu strike plating, and then using a bath composed of copper sulfate: 210 g / l, sulfuric acid: 45 g / l, and a 20 g / m 2 Cu plating at a liquid temperature of 40 ° C. and a current density of 10 A / dm 2 . went.
  • a plating bath consisting of copper pyrophosphate: 80 g / l, potassium pyrophosphate: 300 g / l, aqueous ammonia: 3 ml / l in advance. 2 Cu strike plating, and then using a bath composed of copper sulfate: 210 g / l, sulfuric acid: 45
  • the evaluation method is the same as the previous example.
  • overdischarge solubility could be improved from the Cu level (3.4 V) by plating with Ni or Cr.
  • the Zn-plated one was worse in overdischarge solubility than Cu.
  • Those subjected to Cu plating had the same level of overdischarge solubility as Cu, and no improvement effect was found.
  • the tensile strength after heating of the steel foil plated with Zn decreased. This is because Zn forms a brittle Zn—Fe intermetallic compound layer by heating, and the breakage of this layer causes the steel foil to break. Those plated with Cu also had a reduced tensile strength. This is because Cu, which is extremely soft compared to steel, is present in the surface layer. Since Cu was further softened by heating, the tensile strength of the steel foil further decreased after heating.
  • Examples 30 to 33 and Comparative Examples 13 to 14 Various types of plating were formed on the cold-rolled steel sheet (annealed material, 0.3 mm) used in Example 1.
  • the Ni plating treatment was performed under the same conditions as in the previous example.
  • the plating conditions for Ni—P are as follows.
  • the evaluation method is the same as the previous example.
  • the overdischarge solubility could be improved from the Cu level (3.4 V). Further, there was no decrease in tensile strength due to plating with Ni. However, as shown in the comparative example, the tensile strength was significantly reduced in the case where Ni—P was plated.
  • Ni—P is amorphous and very hard when plated (when only plating is performed). Further, when heated, Ni—P becomes harder due to precipitation of the Ni 3 P compound. When rolling with a high cumulative rolling rate was performed with such a layer in the surface layer, cracks occurred frequently in the plating layer, and these cracks reached the steel foil of the base material, resulting in a decrease in tensile strength.
  • a thin, strong, lightweight and economical steel foil can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 本発明の一態様に係る鋼箔は、質量%で、C:0.0001~0.02%、Si:0.001~0.01%、Mn:0.01~0.3%、P:0.001~0.02%、S:0.0001~0.01%、Al:0.0005~0.1%、及び、N:0.0001~0.004%、を含み、残部:Fe及び不純物からなる鋼箔であって、厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下である。

Description

鋼箔及びその製造方法
 本発明は、リチウムイオン二次電池に代表される非水系電解液二次電池の負極集電箔に用いることができる鋼箔と、その製造方法とに関するものである。
 本願は、2012年4月19日に日本にて出願された特願2012-095840号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池に代表される非水系電解液二次電池は、高エネルギー密度を有するので、移動体通信、又は携帯用情報端末用電源として利用され、近年は、車載用にも実用され始め、その市場が急速に伸びている。それに伴い、機器の小型化、軽量化を、さらに追及するために、機器の中で大きな容積を占める電池に対し、さらなる小型化、及び軽量化のための性能改善が求められている。
 現在、その二次電池に使用されている負極活物質(以下、活物質と記載する場合がある)は、主に、黒鉛系炭素質材料である。黒鉛系炭素質材料は、電池性能を左右するキーマテリアルとなっている。しかし、黒鉛系炭素質材料中に可逆的に挿入・脱離できるリチウムの量は、炭素6原子に対してリチウム1原子が限界である。この限界値から算出される炭素材料の充放電の理論的な限界容量は、電気容量にして372mAh/gである。現行の二次電池は、この限界容量に近いレベルで使用されているので、今後の飛躍的な性能改善は期待できない。
 このような状況の下、炭素以外の材料、例えば、合金又は無機化合物であるとともに372mAh/gを大きく上回る電気容量を有する材料の探索が行われつつある。中でも、特に、錫、及び/又はケイ素を含んだ結晶質酸化材料又は非晶質酸化物材料において、1000mAh/gに近い放電容量を示す材料が見いだされている(例えば、特許文献1及び2、参照)。
 しかし、前述の高容量活物質は、リチウムを吸蔵・放出することによる体積の変動が、従来の黒鉛系炭素質材材料に比べて大きい。これにより、充放電の繰り返しに伴い、活物質の微粉化、又は活物質の集電体からの剥離などが生じる。このように、特許文献1及び2に開示された活物質は、良好な充放電サイクル特性を得ることができないという問題を有する。
 この問題に対して、CVD法又はスパッタリング法により、銅箔などの集電体の上に、非晶質シリコン薄膜又は微結晶シリコン薄膜を活物質として堆積させて形成したリチウム二次電池用電極は、良好な充放電サイクル特性を示すことが見出されている(特許文献3、参照)。これは、活物質薄膜が集電体に密着しているからである。
 また、シリコン系活物質を含む層中、又は、シリコン系活物質を含む層と金属箔集電体との間に、ポリイミドを含む導電性中間層をバインダーとして配し、次いで金属箔集電体上に導電性中間層を配置した状態でこれらを非酸化雰囲気下にて焼結する集電体製造方法が見出されている(特許文献4参照)。ここで、導電性中間層は、充放電反応に伴う負極活物質の膨張収縮により、合剤層が集電体から剥離することを抑制し、従って、合剤層と集電体との間の密着性を高める。
 しかし、このようなリチウム二次電池用電極においては、活物質層と集電体とが密着しているので、充放電反応に伴う活物質薄膜の体積変動により、集電体に大きな応力が働くという問題がある。この応力によって、集電体に変形が生じ、しわなどが発生し、さらには、集電体と活物質との密着性が低下し、電池寿命が低下する。
 このような応力発生への対策として、活物質の体積膨張により生じる応力に耐え得る、より高強度な集電体が要求されている。集電体の引張強度を高める手段の一つとしては、集電体を厚くすることが考えられる。しかし、単に集電体を厚くするだけでは、集電体の引張強度の大きな向上は期待できず、そればかりでなく、電池の重量及び体積増加により、電池のエネルギー密度を低下させてしまうというデメリットが生じる。
 現在、負極集電体の金属箔としては、主に、銅箔が使用されている。負極集電体用の銅箔としては、圧延により製造されるものと、電解法により製造されるもの(電解銅箔)とが代表的である。しかし、銅箔を用いた集電体の高強度化については、電解銅箔では限界がある。したがって、圧延法による高強度銅箔の製造が検討されており、この圧延銅合金箔を負極集電体として用いることが提案されている(特許文献5、参照)。
 しかし、圧延銅箔は、厚さが低下するに伴い製造コストが上昇し、高価になる。したがって、薄く、かつ、高強度の集電体を得ることは可能であるが、この集電体には、経済性に劣るという問題がある。
 さらに、負極集電体として銅箔を用いることは、電池特性の観点からみても、最適な選択とはいえない。リチウムイオン電池が正常に作動している際の負極の電位は、多くの場合、2V(対Li)未満であり非常に低いが、電池に短絡又は過放電等が生じた場合には、負極の電位は、3V(対Li)超となる場合がある。このような高電位では、銅が急速に溶解し、電池特性の低下を引き起こしてしまうという問題が有る。
 さらに、銅は比重が大きな金属(比重:8.9)であるので、負極集電体として銅箔を用いる場合、電池に占める負極集電箔の重量割合が比較的高くなり、重量当たりのエネルギー密度向上を妨げる。また、コスト的にも銅箔には問題がある。例えば、正極に使用されるAl箔と比較して銅箔は高価である。
 以上の背景から、薄くて強度があり、軽量で、経済的で、かつ過放電時の耐金属溶出性に優れた負極集電箔が切望されており、その材料として、鉄系の箔に対して期待が寄せられている。
 鉄は、銅に比較すると電気抵抗が大きいので、集電体としての特性に疑問を持たれがちであった。しかしながら、近年の電池構造の改良、並びに電池の用途及び要求特性の多様化によって、電気抵抗は必ずしも問題とはならなくなってきた。
 負極集電体に鉄箔を用いるものとしては、以下の技術を挙げることができる。特許文献6では、厚さ35ミクロン以下の電解鉄箔を負極の集電体として用いることが提案されている。また、防錆性の観点から、Niめっきされた電解鉄箔を用いることも提案されている。
 しかし、電解鉄箔は電解時の効率を上げることが難しく、必ずしも経済的ではない。また、電解箔にNiめっきを施すことも、コストを引き上げる要因となる。さらには、Niめっきを厚く(1μm以上)形成しない限りは、過放電時のFe溶出が避けられない。
 特許文献7では、鉄箔又はニッケルメッキを施した鉄箔の表面に三二酸化鉄を形成してなる金属箔を、負極集電体として用いることが提案されている。しかし、この金属箔においても過放電時のFe溶出が避けられず、さらに負極電位での副反応が起き易く、このことは結果として、電池の効率又は寿命を阻害し易い。
 特許文献8では、フェライト系ステンレス鋼箔の集電体が提案されているが、フェライト系ステンレス鋼箔は電気抵抗が大きいので、特に、集電体が薄膜化していくと、発熱などの問題が顕在化してしまうという問題がある。また、フェライト系ステンレス鋼箔は、銅箔と比較しても、経済的ではない。
 一般に、鋼材の高強度化の分野においては、成分組成又は熱処理条件を工夫し、固溶強化、析出強化、及び組織強化などの強化機構を利用して高強度化を達成し、種々の高強度鋼板が実用化されている。しかし、これらの従来の高強度鋼板を二次電池負極集電体に適用しようとすると、添加成分、又はその析出形態等の影響で、一般的な鋼材よりも電気抵抗が高くなり、特に、板厚が薄い場合にその傾向が強くなるという問題がある。
 本発明が目的とする非水系電解液二次電池の負極集電箔については、特に、薄膜化の要求が強いので、従来の高強度鋼では、薄膜化した上での強度と電気抵抗との両立は難しい。
 特許文献9には、リチウムイオン二次電池の負極活物質担持用銅被覆鋼箔が開示されているが、箔の強度は、必要なレベルを満足するものではなく、また、箔の高強度化と電気抵抗との両立に関する知見は開示されていない。この技術では、鋼に比べ軟質でかつ耐熱性も劣る銅が表層に被覆されているので、特に加熱後の強度が低下しやすい。また、表層が銅で被覆されているので、過放電溶解性は銅箔と同程度でしかなく、開示された構成による顕著な改善効果等は認められない。
日本国特開平07-220721号公報 日本国特開平07-249409号公報 日本国特開2002-83594号公報 日本国特開2004-288520号公報 日本国特開2003-7305号公報 日本国特開平06-310147号公報 日本国特開平06-310126号公報 日本国特開2010-33782号公報 日本国特開2012-33470号公報
 本発明は、薄くて強度があり、軽量で経済的な鋼箔を用い、通常、トレードオフの関係となる強度と電気抵抗の双方が両立した負極集電体用鋼箔を提供することを目的とする。
 上記目的を達成する本発明の要旨は、以下の通りである。
 (1)本発明の一態様に係る鋼箔は、質量%で、C:0.0001~0.02%、Si:0.001~0.01%、Mn:0.01~0.3%、P:0.001~0.02%、S:0.0001~0.01%、Al:0.0005~0.1%、及び、N:0.0001~0.004%、を含み、残部:Fe及び不純物からなる鋼箔であって、厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下である。
 (2)前記(1)に記載の鋼箔は、さらに、質量%で、Ti及びNbの1種又は2種をそれぞれ0.1%以下含有してもよい。
 (3)前記(1)又は(2)に記載の鋼箔は、さらに、前記鋼箔の表層に、Niめっき層又はCrめっき層を有していてもよい。
 (4)本発明の別の態様に係る鋼箔の製造方法は、質量%で、C:0.0001~0.02%、Si:0.001~0.01%、Mn:0.01~0.3%、P:0.001~0.02%、S:0.0001~0.01%、Al:0.0005~0.1%、及び、N:0.0001~0.004%、を含み、残部:Fe及び不純物からなる鋼板に、90%以上98%以下の累積圧延率で冷間圧延を施し、厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下の鋼箔とする箔圧延工程を含む。
 (5)前記(4)に記載の鋼箔の製造方法は、前記鋼板が、さらに、質量%で、Ti及びNbの1種又は2種を0.1%以下含有してもよい。
 (6)前記(4)又は(5)に記載の鋼箔の製造方法は、前記箔圧延工程後に、前記鋼箔の表層に、Niめっき層又はCrめっき層を形成するめっき工程をさらに含んでもよい。
 (7)前記(6)に記載の鋼箔の製造方法は、前記Niめっき層が軟質Niめっき層であってもよい。
 (8)前記(4)又は(5)に記載の鋼箔の製造方法は、前記箔圧延工程前に、前記鋼板の表層にNiめっき層を形成する圧延前めっき工程をさらに含んでもよい。
 (9)前記(8)に記載の鋼箔の製造方法は、前記Niめっき層が軟質Niめっき層であってもよい。
 本発明によれば、薄くて強度があり、軽量で経済的な鋼箔を得ることができる。
本発明に係る鋼箔の製造方法を示すフローチャートである。 本発明に係る鋼箔の製造方法を示すフローチャートである。
 本実施形態に係る負極集電体用圧延鋼箔(以下「本実施形態に係る鋼箔」ということがある。)は、下記の成分組成からなり(%は質量%)、厚さが5μm以上15μm以下、引張強度が900MPa超1200MPa以下であることを特徴とする。
 C:0.0001~0.02%、
 Si:0.001~0.01%、
 Mn:0.01~0.3%、
 P:0.001~0.02%、
 S:0.0001~0.01%、
 Al:0.0005~0.1%、
 N:0.0001~0.004%、及び、
 残部Fe及び不純物。
 また、本実施形態に係る鋼箔の製造方法は、上記成分組成(質量%)の鋼板に、90%以上の累積圧延率で冷間圧延を施し、厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下の鋼箔とすることを特徴とする。
 本実施形態に係る鋼箔では、一般的な高強度鋼材で用いられている、固溶強化、析出強化、組織強化などの強化機構を採用していない。強度を高める元素の含有量は、いずれも、従来の高強度鋼材よりも低いレベルに抑えられており、その代わりに後述する加工硬化を利用して強度を確保している。このことにより、強度と電気抵抗とを両立させることが可能となる。
 本実施形態に係る鋼箔の成分組成の限定理由を、以下に説明する。なお、%は質量%を意味する。
(C:0.0001~0.02%)
 Cは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、C含有量の上限を0.02%とする。C含有量の下限は、特に規定されないが、現行の精錬技術における限界が0.0001%程度であるので、これを下限とした。C含有量は、より好ましくは0.001%~0.01%である。
(Si:0.001~0.01%)
 Siは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、Si含有量の上限を0.01%とする。Si含有量を0.001%未満にすると、精練コストが多大となるので、Si含有量の下限は0.001%とする。Si含有量は、より好ましくは0.001%~0.008%である。
(Mn:0.01~0.3%)
 Mnは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、Mn含有量の上限を0.3%とする。Mn含有量を0.01%未満にすると、精練コストが多大となるとともに、鋼が軟質化しすぎて圧延性が低下し、製造コストの増大を招く場合があるので、Mn含有量の下限は0.01%とする。Mn含有量は、より好ましくは0.05%~0.2%である。
(P:0.001~0.02%)
 Pは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、P含有量の上限を0.02%とする。P含有量を0.001%未満にすると、精練コストが多大となる場合があるので、P含有量の下限は0.001%とする。P含有量は、より好ましくは0.001%~0.01%である。
(S:0.0001~0.01%)
 Sは、鋼の熱間加工性及び耐食性を低下させる元素であるから、少ないほど好ましい。さらに、本実施形態に係る鋼箔のような薄い鋼箔の場合、Sが多いと、Sの存在に起因する介在物によって電気抵抗が悪化したり、また、鋼の強度が低下したりする場合があるので、S含有量の上限は0.01%とする。S含有量を0.0001%未満にすると、精練コストが多大となる場合があるので、S含有量の下限は0.0001%とする。S含有量は、より好ましくは0.001%~0.008%である。
(Al:0.0005~0.1%)
 Alは、鋼の脱酸元素として0.0005%以上を含有させる。過剰に含有させると、電気抵抗が悪化し、また、製造コストの増大を招く場合があるので、Al含有量の上限は0.1%とする。Al含有量は、より好ましくは0.01%~0.05%である。
(N:0.0001~0.004%)
 Nは、鋼の熱間加工性及び加工性を低下させる元素であるから、少ないほど好ましく、N含有量の上限は0.004%とする。N含有量を0.0001%未満にすると、コストが多大となる場合があるので、N含有量の下限は0.0001%とする。N含有量は、より好ましくは0.001%~0.003%である。
(残部Fe及び不純物)
 本実施形態に係る鋼箔の成分の残部は,Fe及び不純物であるが、さらにTi及び/又はNbを0.1%以下含有することができる。Ti及び/又はNbは、鋼中のC及びNを炭化物及び窒化物として固定して、鋼の加工性を向上させることができる。ただし、過剰に添加すると、製造コストの増大、及び電気抵抗の悪化を招く場合がある。好ましい含有量範囲は、Ti:0.01~0.8%、Nb:0.005~0.05%である。さらに好ましい含有量範囲は、Ti:0.01~0.1%、Nb:0.005~0.04%である。
 本実施形態に係る鋼箔は、さらに、付加的に、B、Cu、Ni、Sn、Crなどを、本実施形態に係る鋼箔の特性を損なわない範囲で含有してもよい。
 本実施形態に係る鋼箔の厚さは、5μm以上15μm以下である。これは、電池を小型化及び軽量化していくうえで、薄い集電箔、すなわち薄い鋼箔が望まれるからである。小型化及び軽量化の観点からは、鋼箔はより薄い方が好ましく、下限を特に限定する必要はない。しかしながら、コスト又は厚さの均一性を考えると、5μm以上がよい。なお、前述した成分組成を満足しない鋼材を圧延して鋼箔を製造した場合、厚さが15μm以下の領域で顕著に電気抵抗が悪化する場合がある。
 本実施形態に係る鋼箔の引張強度は、900MPa超1200MPa以下である。なお、引張強度は、常温での測定値である。引張強度が900MPa以下では、充放電に伴う活物質の膨張収縮により、鋼箔が変形したり活物質が剥がれたりする問題が起きる可能性がある。この傾向は、鋼箔に高容量負極活物質を適用した場合において著しい。
 鋼箔の変形及び活物質の剥離を防止する観点からは、特に、引張強度の上限を限定する必要はない。しかしながら、取り扱いの容易性、及び工業的な圧延による加工強化によって強度を得る際の安定性を考慮すると、1200MPaが鋼箔の引張強度の実質的な上限となる。
 本実施形態に係る鋼箔の伸びは、ある程度あった方が好ましいが、なくても(測定不能レベルであっても)、本発明の目的達成には支障がない。本実施形態に係る鋼箔の好ましい伸びは0.1%以上である。
 一般に、集電箔に活物質を被覆して電極を作製する際には、最大400℃程度の熱処理を行うことがある。本実施形態に係る鋼箔は、引張強度に加えて耐熱性も良好であり、400℃程度の熱処理を受けても、強度は殆ど低下せず、低下しても、引張強度低下率は最大10%程度である。ここで、引張強度低下率とは、熱処理前の引張強度に対する引張強度低下量の百分率である。
 図1及び図2に示される、本実施形態に係る鋼箔の製造方法は、以下の通りである。まず、通常の薄板製法に従って、前述した所定の成分組成の薄板(鋼板)を製造する。その後、大圧下の冷間圧延(箔圧延)によって、前述の薄板を5μm以上15μm以下の鋼箔とする。大圧下の冷間圧延によって生じる加工硬化を利用して、900Mpa超1200MPa以下の高強度を達成する。
 箔圧延の際の累積圧延率は90%以上とする。ここで、累積圧延率とは、最初の圧延スタンドの入口板厚に対する累積圧下量(最初のパス前の入口板厚と最終パス後の出口板厚との差)の百分率である。累積圧延率が90%未満であると、十分な箔強度が発現しない。箔圧延の際の累積圧延率は、好ましくは95%以上である。累積圧延率の上限は、特に限定されない。しかしながら通常の圧延能力では、98%程度が達成できる累積圧延率の限界である。冷間圧延は、1回又は複数回のパスによって行うが、圧延途中で焼鈍処理を行うと引張強度が不足する場合がある。従って、圧延途中で焼鈍処理を行わないことが好ましい。本実施形態に係る鋼箔は、その成分組成によって圧延性が良好であるので、中間での焼鈍は不要である。
 本実施形態に係る鋼箔の表層に、箔圧延後にNi又はCrなどのめっきを施してもよい。これによって、過放電時の金属溶出性を改善することができる。めっきの種類によっては、改善効果がないばかりか、むしろ悪化する場合もある。特に、Cuめっき、及びZnめっきなどは、本発明鋼箔で用いることはできない。また、めっきの種類によっては強度が低下する場合もある。
 また、箔圧延前の鋼板にNi又はCrなどのめっきを施し(圧延前めっき)、この表層にめっき層を有する鋼板(薄板)を、前述の条件で箔圧延することが可能であるが、この場合、めっきの選定には細心の注意を要する。例えば、箔圧延の際のめっきの伸びが鋼の伸びに比較して小さい場合、めっき層にクラックなどの欠陥が発生し、この欠陥が箔強度の低下を引き起こす場合がある。特に、金属間化合物層のような硬質な層が基材とめっきとの界面に存在すると、累積圧延率90%以上の条件で圧延を行った場合に、箔強度が顕著に低下する場合がある。例えばCuめっきのような、めっきの伸びが大きく、箔圧延の際にクラックなどの欠陥が発生しにくいめっきであっても、めっき層自体が軟質すぎると箔強度も低下しやすいので、好ましくない。
 なお、めっきの伸びが鋼箔の伸びに比較して小さい、又は大きい場合、このめっきが箔圧延後に施された場合であっても、やはり箔強度に悪影響を及ぼす場合がある。めっきの伸びが鋼箔の伸びに比較して小さいと、鋼箔が温度変化によって伸縮した場合に、クラックなどの欠陥が発生する可能性がある。めっきの伸びが鋼箔の伸びに比較して大きいと、やはり箔強度が低下しやすい。
 箔強度を低下させないめっきとしては、軟質Niめっきが特に好適である。具体的には、鋼板上に付着させた不純物以外は含有しない純Niめっきを、300℃以上の熱処理を行い、これによって、めっき層のひずみを解放したNiめっきを本実施形態における軟質Niめっきとする。
 Niめっき又はCrめっき以外のめっきを付着させた状態で鋼板の箔圧延を行うと、上述の理由により箔強度が低下し、本発明の目的とする性能が得られない可能性がある。また、Niめっき又はCrめっき以外のめっきを箔圧延後の鋼箔に行った場合でも、やはり上述の理由により箔強度が低下する場合がある。
 本実施形態に係る鋼箔上に付着したNiめっきの好ましい付着量範囲は、1g/m以上である。Niめっきの付着量が多いほど、金属溶出性が改善されるが、コストは増加する。Ni付着量が50g/mを超えても、顕著な性能向上は認められないので、コスト対効果の観点から、Niめっき付着量の実質的な上限は50g/mである。Niめっきのより好ましい付着量は、5g/m以上20g/m以下である。
 本実施形態に係る鋼箔上に付着したCrめっきの好ましい付着量範囲は、0.01g/m以上である。Crめっきの付着量が0.5g/mを超えると、鋼箔上のめっき層のクラックが増加し、このクラックに起因して金属溶出性の改善効果がなくなるとともに、箔強度が低下する場合がある。金属溶出性の観点からは、NiめっきよりもCrめっきのほうが、より少ない付着量で、顕著な効果が認められる。Crめっきのより好ましい付着量は、0.1g/m以上0.3g/m以下である。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、これら一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1~21及び比較例1~9)
 通常の薄板製造方法で、表1に示す成分組成の冷延鋼板(焼鈍材)を製造し、次いで、箔圧延を行った。冷延鋼板の元厚さ、箔圧延の累積圧延率、及び、箔の厚さも、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (評価方法)
 過放電溶解性:アルゴン雰囲気(露点-60℃)のグローブボックス内にて、三極式ビーカーセルを組み立てた。各供試材のエッジと裏面とをテープシールしたものを作用極とした。対極及び参照極としては金属リチウムを用いた。電解液としては、1mol/LのLiPFを、体積比で1:1のエチレンカーボネートとジエチルカーボネートとの混合溶媒に溶解させたものを用いた。
 上記セルを25℃に保持し、浸漬電位から、5mV/secで貴方向に走査し、0.01mA/cmの電流が流れる電位を計測して、この電位を溶解電位とした。溶解電位は、Li基準の電位(V)で表記した。
 箔強度:圧延方向と平行に、JIS Z 2201に記載の13B引張試験片を採取し、JIS Z2241により引張強度を求めた。供試材ままの鋼箔(圧延のみを行った鋼箔)、及び、400℃、30分加熱後の鋼箔それぞれの引張強度を求めた。加熱後の引張強度は、鋼箔が電池製造工程で加熱される可能性があるので参考値として求めた。しかし、加熱後の鋼箔に要求される引張強度の値は電池によって異なるので、加熱後の鋼箔の引張強度に関し、合否の判定は特に行わなかった。
 電気抵抗:四端子法により、体積抵抗率を20℃にて測定した。電気抵抗が14μΩcm未満の試料をグレードA、電気抵抗が14μΩcm以上16μΩcm未満の試料をグレードB、電気抵抗が16μΩcm以上20μΩcm未満の試料をグレードC、及び電気抵抗が20μΩcm以上の試料をグレードDと評価し、グレードA及びBの試料を合格とした。
 引張強度及び電気抵抗を表1に併せて示す。なお、過放電溶解性については、いずれの実施例も、Cu箔よりも良好であり水準間で大きな差がなかったので、表1には示していない(Cu箔3.4Vに対して、実施例、比較例とも3.5~3.6V)。本発明の実施例においては、トレードオフの関係となり易い引張強度と電気抵抗とが両立できている。本発明の範囲から外れるものは、引張強度と電気抵抗とが両立できていない。
 (実施例22~25及び比較例10)
 実施例1で製造した鋼箔に対して、各種のめっきを電気めっき法で形成した。Niめっき条件は、次の通りである。硫酸Ni:320g/l、塩化Ni:70g/l、ほう酸:40g/lからなる浴を用い、浴温度:65℃、電流密度:20A/dmにて、種々の付着量のNiをめっきした。
 Crめっき条件は次の通りである。無水クロム酸:150g/l、硫酸:1.5g/lからなる浴を用い、浴温度:50℃、電流密度:50A/dmにて、種々の付着量のCrをめっきした。Znめっき条件は、次の通りである。硫酸Zn:250g/l、硫酸:15g/l、硫酸ナトリウム:50g/lからなる浴を用い、浴温度:60℃、電流密度:50A/dmにてZnをめっきした。
 (実施例26~29及び比較例11)
 実施例9で製造した鋼箔に対して、先の例と同様の手法で各種のめっき処理を行った。
 (比較例12)実施例19で製造した鋼箔に対して、予め、ピロリン酸銅:80g/l、ピロリン酸カリウム:300g/l、アンモニア水:3ml/lからなるめっき浴にて1g/mのCuストライクめっきを行い、次いで、硫酸銅:210g/l、硫酸:45g/lからなる浴を用い、液温:40℃、電流密度10A/dmにて20g/mのCuめっきを行った。
 評価方法は先の例と同一である。
 表2に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 Ni又はCrをめっきすることによって、過放電溶解性を、Cuのレベル(3.4V)より改善することができた。比較例に示すように、Znをめっきしたものは、過放電溶解性がCuよりも悪化した。Cuめっきを行ったものは、過放電溶解性がCuと同レベルであり改善効果が見いだせなかった。
 さらに、Znをめっきした鋼箔の、加熱後の引張強度は低下した。これは、加熱によってZnが、脆いZn-Feの金属間化合物層を形成し、この層の破壊が起点となって鋼箔の破断が発生したからである。Cuをめっきしたものも引張強度が低下した。これは、鋼に比較して極めて軟質なCuが表層に存在するからである。加熱によってCuは更に軟質化するので、鋼箔の引張強度は加熱後さらに低下した。
 (実施例30~33及び比較例13~14)
 実施例1で用いた冷延鋼板(焼鈍材、0.3mm)に対して、各種のめっきを形成した。Niめっき処理は、先の例と同条件で行った。Ni-Pのめっき条件は、次の通りである。
 硫酸Ni:300g/l、塩化Ni:70g/l、ほう酸:40g/l、亜りん酸:10g/lからなる浴を用い、浴温度:60℃、電流密度:20A/dmにて、P5%のNi-Pめっきを鋼板表面に形成した。
 めっき後に、加熱処理を行う場合には、400℃で30分の処理を行った。めっき後、95%の累積圧延率で鋼板を圧延して、15μm厚の鋼箔を製造した。
 評価方法は先の例と同一である。
 表3に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 Niをめっきすることによって、過放電溶解性を、Cuのレベル(3.4V)より改善することができた。また、Niをめっきすることによる引張強度の低下はなかった。ただし、比較例に示したように、Ni-Pをめっきしたものは、引張強度が顕著に低下した。
 Ni-Pは、めっきまま(めっきだけを行った状態)では、アモルファス状で非常に硬く、また、加熱すると、NiP化合物の析出により、さらに硬くなる。このような層を表層に有する状態で累積圧延率の高い圧延を施すと、めっき層にクラックが多発し、このクラックが基材の鋼箔にまで達するので、引張強度が低下した。
 前述したように、本発明によれば、薄くて強度があり、軽量で経済的な鋼箔を得ることができる。その結果、リチウムイオン電池等の二次電池の性能、安全性、経済性を改善することが可能であり、本発明は、産業上の利用可能性が高いものである。
1  箔圧延工程
2  めっき工程
3  圧延前めっき工程

Claims (9)

  1.  質量%で、
     C:0.0001~0.02%、
     Si:0.001~0.01%、
     Mn:0.01~0.3%、
     P:0.001~0.02%、
     S:0.0001~0.01%、
     Al:0.0005~0.1%、及び、
     N:0.0001~0.004%、を含み、
     残部:Fe及び不純物からなる鋼箔であって、
     厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下であることを特徴とする鋼箔。
  2.  前記鋼箔が、さらに、質量%で、Ti及びNbの1種又は2種をそれぞれ0.1%以下含有することを特徴とする請求項1に記載の鋼箔。
  3.  前記鋼箔の表層に、Niめっき層又はCrめっき層を有することを特徴とする請求項1又は2に記載の鋼箔。
  4.  質量%で、
     C:0.0001~0.02%、
     Si:0.001~0.01%、
     Mn:0.01~0.3%、
     P:0.001~0.02%、
     S:0.0001~0.01%、
     Al:0.0005~0.1%、及び、
     N:0.0001~0.004%、を含み、
     残部:Fe及び不純物からなる鋼板に、90%以上98%以下の累積圧延率で冷間圧延を施し、厚さが5μm以上15μm以下、且つ引張強度が900MPa超1200MPa以下の鋼箔とする箔圧延工程
    を含むことを特徴とする鋼箔の製造方法。
  5.  前記鋼板が、さらに、質量%で、Ti及びNbの1種又は2種を0.1%以下含有することを特徴とする請求項4に記載の鋼箔の製造方法。
  6.  前記箔圧延工程後に、前記鋼箔の表層に、Niめっき層又はCrめっき層を形成するめっき工程をさらに含むことを特徴とする請求項4又は5に記載の鋼箔の製造方法。
  7.  前記Niめっき層が軟質Niめっき層であることを特徴とする請求項6に記載の鋼箔の製造方法。
  8.  前記箔圧延工程前に、前記鋼板の表層にNiめっき層を形成する圧延前めっき工程をさらに含むことを特徴とする請求項4又は5に記載の鋼箔の製造方法。
  9.  前記Niめっき層が軟質Niめっき層であることを特徴とする請求項8に記載の鋼箔の製造方法。
PCT/JP2013/061472 2012-04-19 2013-04-18 鋼箔及びその製造方法 WO2013157598A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380003330.XA CN103857818B (zh) 2012-04-19 2013-04-18 钢箔及其制造方法
US14/343,466 US9997786B2 (en) 2012-04-19 2013-04-18 Steel foil and method for manufacturing the same
JP2013547768A JP6124801B2 (ja) 2012-04-19 2013-04-18 非水系電解液二次電池の負極集電体用鋼箔及びその製造方法
KR1020147008367A KR101599166B1 (ko) 2012-04-19 2013-04-18 강박 및 그 제조 방법
EP13779056.4A EP2743365B1 (en) 2012-04-19 2013-04-18 Steel foil and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-095840 2012-04-19
JP2012095840 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013157598A1 true WO2013157598A1 (ja) 2013-10-24

Family

ID=49383551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061472 WO2013157598A1 (ja) 2012-04-19 2013-04-18 鋼箔及びその製造方法

Country Status (6)

Country Link
US (1) US9997786B2 (ja)
EP (1) EP2743365B1 (ja)
JP (1) JP6124801B2 (ja)
KR (1) KR101599166B1 (ja)
CN (1) CN103857818B (ja)
WO (1) WO2013157598A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866192A (zh) * 2014-02-21 2014-06-18 宝山钢铁股份有限公司 一种低电阻率钢及其制造方法
JP2015526859A (ja) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) リチウム電池用の持続可能な集電体
WO2021200506A1 (ja) * 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
WO2022210654A1 (ja) 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 集電体用鋼箔、電極、及び、電池
WO2023188757A1 (ja) * 2022-03-31 2023-10-05 東洋鋼鈑株式会社 合金電解箔
JP7474096B2 (ja) 2020-03-31 2024-04-24 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
JP7475931B2 (ja) 2020-03-31 2024-04-30 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792056B (zh) * 2017-03-17 2020-06-16 日立金属株式会社 二次电池的负极集电体用箔及其制造方法
CN111748747B (zh) * 2020-06-17 2021-10-01 武汉钢铁有限公司 一种超低硅超低铝半沸腾钢及冶炼方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310147A (ja) 1993-04-23 1994-11-04 Japan Storage Battery Co Ltd リチウム二次電池
JPH06310126A (ja) 1993-04-23 1994-11-04 Japan Storage Battery Co Ltd 非水電解質二次電池
JPH07220721A (ja) 1994-01-27 1995-08-18 Fuji Photo Film Co Ltd 非水二次電池
JPH07249409A (ja) 1994-03-11 1995-09-26 Fuji Photo Film Co Ltd 非水電解質二次電池
JP2002083594A (ja) 1999-10-22 2002-03-22 Sanyo Electric Co Ltd リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池
JP2003007305A (ja) 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2004288520A (ja) 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2007009272A (ja) * 2005-06-30 2007-01-18 Jfe Steel Kk 異方性の小さい鋼板およびその製造方法
JP2010033782A (ja) 2008-07-25 2010-02-12 Nisshin Steel Co Ltd リチウムイオン二次電池用集電体および負極材料
JP2011171158A (ja) * 2010-02-19 2011-09-01 Panasonic Corp アルカリ電池
WO2012005355A1 (ja) * 2010-07-09 2012-01-12 日新製鋼株式会社 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2013051113A (ja) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd 銅被覆鋼箔集合体および通電部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285098B2 (ja) * 1992-10-08 2002-05-27 川崎製鉄株式会社 缶用鋼板の製造方法
EP0826436A4 (en) * 1996-03-15 2003-04-16 Kawasaki Steel Co ULTRA-THIN STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
FR2760244B1 (fr) * 1997-02-28 1999-04-09 Usinor Procede de fabrication d'un feuillard en acier inoxydable ferritique a haute teneur en aluminium utilisable notamment pour un support de catalyseur d'echappement de vehicule automobile
JPH1133605A (ja) * 1997-07-14 1999-02-09 Daido Steel Co Ltd 極薄金属箔とこれを用いた表面被覆材等及びその製造方法
JP3900640B2 (ja) 1997-12-24 2007-04-04 Jfeスチール株式会社 封口部密封性の優れた2ピース電池缶用鋼板およびその製造方法
JP3544488B2 (ja) * 1999-03-23 2004-07-21 新日本製鐵株式会社 ステンレス極薄箔
JP4559918B2 (ja) * 2004-06-18 2010-10-13 新日本製鐵株式会社 加工性に優れたブリキおよびテインフリースチール用鋼板およびその製造方法
US9048508B2 (en) * 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
JP2009295470A (ja) 2008-06-06 2009-12-17 Nisshin Steel Co Ltd リチウムイオン二次電池

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310147A (ja) 1993-04-23 1994-11-04 Japan Storage Battery Co Ltd リチウム二次電池
JPH06310126A (ja) 1993-04-23 1994-11-04 Japan Storage Battery Co Ltd 非水電解質二次電池
JPH07220721A (ja) 1994-01-27 1995-08-18 Fuji Photo Film Co Ltd 非水二次電池
JPH07249409A (ja) 1994-03-11 1995-09-26 Fuji Photo Film Co Ltd 非水電解質二次電池
JP2002083594A (ja) 1999-10-22 2002-03-22 Sanyo Electric Co Ltd リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池
JP2003007305A (ja) 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2004288520A (ja) 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2007009272A (ja) * 2005-06-30 2007-01-18 Jfe Steel Kk 異方性の小さい鋼板およびその製造方法
JP2010033782A (ja) 2008-07-25 2010-02-12 Nisshin Steel Co Ltd リチウムイオン二次電池用集電体および負極材料
JP2011171158A (ja) * 2010-02-19 2011-09-01 Panasonic Corp アルカリ電池
WO2012005355A1 (ja) * 2010-07-09 2012-01-12 日新製鋼株式会社 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2012033470A (ja) 2010-07-09 2012-02-16 Nisshin Steel Co Ltd 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2013051113A (ja) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd 銅被覆鋼箔集合体および通電部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743365A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526859A (ja) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) リチウム電池用の持続可能な集電体
CN103866192A (zh) * 2014-02-21 2014-06-18 宝山钢铁股份有限公司 一种低电阻率钢及其制造方法
WO2021200506A1 (ja) * 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
JP7474096B2 (ja) 2020-03-31 2024-04-24 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
JP7475931B2 (ja) 2020-03-31 2024-04-30 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
WO2022210654A1 (ja) 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 集電体用鋼箔、電極、及び、電池
KR20230160915A (ko) 2021-03-31 2023-11-24 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 집전체용 강박, 전극 및 전지
WO2023188757A1 (ja) * 2022-03-31 2023-10-05 東洋鋼鈑株式会社 合金電解箔

Also Published As

Publication number Publication date
CN103857818A (zh) 2014-06-11
KR20140068114A (ko) 2014-06-05
CN103857818B (zh) 2016-03-23
US20150037684A1 (en) 2015-02-05
EP2743365B1 (en) 2020-09-16
JP6124801B2 (ja) 2017-05-10
KR101599166B1 (ko) 2016-03-02
JPWO2013157598A1 (ja) 2015-12-21
US9997786B2 (en) 2018-06-12
EP2743365A4 (en) 2015-12-09
EP2743365A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP6124801B2 (ja) 非水系電解液二次電池の負極集電体用鋼箔及びその製造方法
US10201953B2 (en) Steel foil and method for manufacturing the same
WO2012046879A1 (ja) 耐食性および電気伝導性に優れたフェライト系ステンレス鋼とその製造方法、固体高分子型燃料電池セパレータおよび固体高分子型燃料電池
JP6023513B2 (ja) 電池容器用表面処理鋼板、電池容器および電池
JP2013108146A (ja) 集電体用アルミニウム合金箔およびその製造方法
KR20140057584A (ko) 이차전지 집전체용 압연 동박 및 그 제조방법
JP2013014837A (ja) アルミニウム合金箔の製造方法およびアルミニウム合金箔
JP2013222696A (ja) 二次電池負極集電体用鋼箔
JP2012212528A (ja) 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池
JP2013211229A (ja) 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池
JP7078185B2 (ja) Niめっき鋼板、及びその製造方法
JP7148608B2 (ja) 二次電池正極用ステンレス箔集電体および二次電池
JP5130406B1 (ja) Cu−Zn−Sn系銅合金条
JP2021163639A (ja) ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
CN109216591A (zh) 电池用Ni材、负极和电池壳材
CN109565054B (zh) 二次电池的负极集电体用包层材料及其制造方法
JP2013131465A (ja) Sn−Cu合金活物質層担持電極部材用の中間製品金属シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003330.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013547768

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14343466

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013779056

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147008367

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE