WO2013153626A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013153626A1
WO2013153626A1 PCT/JP2012/059812 JP2012059812W WO2013153626A1 WO 2013153626 A1 WO2013153626 A1 WO 2013153626A1 JP 2012059812 W JP2012059812 W JP 2012059812W WO 2013153626 A1 WO2013153626 A1 WO 2013153626A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
value
deviation
control
Prior art date
Application number
PCT/JP2012/059812
Other languages
English (en)
French (fr)
Inventor
雄士 山口
中川 徳久
岡崎 俊太郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014509940A priority Critical patent/JP5787033B2/ja
Priority to DE112012006224.8T priority patent/DE112012006224B4/de
Priority to CN201280072308.6A priority patent/CN104220735B/zh
Priority to PCT/JP2012/059812 priority patent/WO2013153626A1/ja
Priority to US14/390,234 priority patent/US9885307B2/en
Publication of WO2013153626A1 publication Critical patent/WO2013153626A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients

Definitions

  • the present invention relates to a technical field of a control device for an internal combustion engine for suppressing deterioration of emission due to an imbalance of air-fuel ratio between cylinders in an internal combustion engine provided with an exhaust purification catalyst.
  • Patent Document 1 there is an apparatus using an exhaust system in which a first air-fuel ratio sensor without a catalyst layer and a second air-fuel ratio sensor with a catalyst layer are mounted upstream of a catalyst installed in an exhaust system.
  • a first air-fuel ratio sensor without a catalyst layer and a second air-fuel ratio sensor with a catalyst layer are mounted upstream of a catalyst installed in an exhaust system.
  • Patent Document 1 According to the cylinder-to-cylinder air-fuel ratio variation abnormality detection device disclosed in Patent Document 1, in the system, due to hydrogen generated due to variations in the air-fuel ratio between cylinders (that is, air-fuel ratio imbalance). The deviation of the output value of the first air-fuel ratio sensor to the air-fuel ratio rich side is determined based on the output difference between the two sensors. Therefore, it is said that it is difficult to be affected by noise, and it is possible to accurately detect an abnormality in the air-fuel ratio variation between cylinders.
  • the document also discloses a configuration in which the output of the first air-fuel ratio sensor is corrected based on the output peaks of the first air-fuel ratio sensor and the second air-fuel ratio sensor.
  • a sensor capable of acquiring the air-fuel ratio upstream and downstream of the catalyst is installed, and when the imbalance between cylinders occurs, the F / B correction amount by the downstream sensor is allowed to be outside the guard range, and the downstream air-fuel ratio target and An apparatus for setting a correction amount based on a difference in sensor output has also been proposed (see, for example, Patent Document 2).
  • the second air-fuel ratio sensor since the second air-fuel ratio sensor includes the catalyst layer, and hydrogen is consumed by the reaction in the catalyst layer, the output value of the second air-fuel ratio sensor is Not affected by hydrogen. Therefore, the logic is that the degree of deviation between the detected value of the first air-fuel ratio sensor and the actual air-fuel ratio can be estimated from the output difference between the two sensors.
  • the apparatus disclosed in Patent Document 1 has the following problems. That is, the catalyst layer provided in the second air-fuel ratio sensor is a three-way catalyst that is usually provided in the exhaust path of the internal combustion engine, although it has an exhaust purification function, it is an extremely small and simple catalyst provided with the sensor.
  • the so-called exhaust purification catalyst has a difference in its exhaust purification performance.
  • the catalyst layer theoretically purifies hydrogen considerably. That is, the output value of the second air-fuel ratio sensor is insufficient as a reference value for correcting the output value of the first air-fuel ratio sensor.
  • Patent Document 1 empties the gas (catalyst exhaust gas) after passing through an exhaust purification catalyst located downstream of these two air-fuel ratio sensors.
  • the fuel ratio state is detected by an oxygen concentration sensor having a so-called Z characteristic in which the output value is reversed at the theoretical air fuel ratio. Since this type of oxygen concentration sensor can detect the air-fuel ratio only in the vicinity of the theoretical air-fuel ratio, its output value should be used to correct the output value of the air-fuel ratio sensor upstream of the catalyst affected by hydrogen. Is difficult.
  • the present invention has been made in view of the above-described concerns, and an object of the present invention is to provide a control device for an internal combustion engine that can suppress the deterioration of emission when an air-fuel ratio imbalance occurs between cylinders.
  • an internal combustion engine control apparatus is provided with an exhaust purification catalyst installed in an exhaust path and an upstream side of the catalyst in accordance with the air-fuel ratio of the catalyst inflow gas.
  • An internal combustion engine comprising: a first air-fuel ratio sensor that outputs a first output value; and a second air-fuel ratio sensor that is installed downstream of the catalyst and that can output a second output value corresponding to the air-fuel ratio of the catalyst exhaust gas.
  • a control device for an internal combustion engine for controlling an engine, wherein the first output value is converged to the first target value according to a first deviation which is a deviation between the first output value and the first target value.
  • a first determining means for determining the first F / B control amount, and the second output value converges to the second target value according to a second deviation which is a deviation between the second output value and the second target value.
  • Second determining means for determining a second F / B control amount for causing the first F / B to be determined;
  • Control means for controlling the fuel injection amount of the internal combustion engine based on a control amount and the determined second F / B control amount, and detection means for detecting an air-fuel ratio imbalance among a plurality of cylinders of the internal combustion engine When the air-fuel ratio imbalance is detected, the fuel injection amount hardly changes toward the air-fuel ratio lean side according to the output deviation between the first air-fuel ratio sensor and the second air-fuel ratio sensor.
  • a correcting means for correcting the second F / B control amount in a direction (first term).
  • the first and second air-fuel ratio sensors according to the present invention each have a practically sufficient air-fuel ratio detection capability in a wide range of air-fuel ratio regions including air-fuel ratios richer and leaner than the stoichiometric air-fuel ratio. It is configured as an air-fuel ratio sensor. That is, the second air-fuel ratio sensor on the downstream side of the catalyst can only binaryly determine whether the air-fuel ratio is on the rich side (low side) or the lean side (high side) with respect to the stoichiometric air-fuel ratio. It is different from an oxygen concentration sensor having a so-called Z characteristic. However, the “output value” of these sensors in the present invention may vary depending on the sensor configuration.
  • the output value may be a voltage value that varies depending on whether the air-fuel ratio is high or low, or may be a voltage value that varies depending on whether the air-fuel ratio is high or low. Further, the output value is not necessarily a voltage value.
  • the control means is based on the first F / B control amount determined by the first determination means and the second F / B control amount determined by the second determination means.
  • the fuel injection amount is controlled.
  • the first F / B control amount is the first F / B control amount that is determined according to a deviation (first deviation) between the output value (first output value) of the first air-fuel ratio sensor and the target value (first target value).
  • This is a concept that includes control amounts of various F / B (feedback) controls (for example, PID control, PI control, etc.) for converging the output value to the first target value.
  • the first F / B control amount is used for various calculations (for example, addition / subtraction / multiplication / division calculation) with the basic fuel injection amount obtained by multiplying the first deviation by a predetermined F / B gain. May be a control amount.
  • the second F / B control amount is the second F / B control amount that is made according to a deviation (second deviation) between the output value (second output value) of the second air-fuel ratio sensor and its target value (second target value).
  • This is a concept that includes control amounts of various F / B (feedback) controls (for example, PID control, PI control, etc.) for converging the output value to the second target value.
  • the second F / B control amount is used for various calculations (for example, addition, subtraction, multiplication and division calculations) with the basic fuel injection amount obtained by multiplying the second deviation by a predetermined F / B gain. May be a control amount.
  • the second F / B control amount may be a control amount used for correcting the first F / B control amount.
  • the second F / B control amount is a correction amount for correcting the output value (first output value) of the first air-fuel ratio sensor that defines the first F / B control amount to the air-fuel ratio lean side or the air-fuel ratio rich side.
  • a correction amount for correcting the first F / B control amount itself. If the first output value or the first F / B control amount is corrected in this way, the first F / B control amount is determined including an element for converging the second output value to the second target value. As a result, the fuel injection amount can be made desirable.
  • the control related to the correction of the fuel injection amount based on the first F / B control amount is appropriately expressed as “first F / B control”, and is directly or indirectly based on the second F / B control amount.
  • the control related to the correction of the typical fuel injection amount is appropriately expressed as “second F / B control”.
  • the first and second F / B controls are included in the operation of the control means according to the present invention. The detailed mode of these F / B controls is ambiguous, but qualitatively, if the sensor output value is on the air-fuel ratio rich side (that is, the air-fuel ratio side is lower) than the target value, the fuel injection amount decreases.
  • the fuel injection amount increases (that is, the air / fuel ratio).
  • the basic fuel injection amount is corrected directly or indirectly to the rich side.
  • the second air-fuel ratio sensor on the downstream side of the catalyst is a conventional oxygen concentration sensor having a linear detection capability in a wide air-fuel ratio range including the theoretical air-fuel ratio. It is a different sensor.
  • the catalyst functions as a kind of buffer, the gas state of the exhaust gas to be detected by the second air-fuel ratio sensor is stable in both flow rate and uniformity compared to the upstream side of the catalyst. From these points, the air-fuel ratio downstream of the catalyst detected by the second air-fuel ratio sensor has high reliability.
  • the second F / B control amount is determined against the background of this high reliability, which is advantageous in that the air-fuel ratio inside the catalyst can be accurately controlled.
  • the air-fuel ratio in the exhaust path becomes rich.
  • the change in the air-fuel ratio due to the air-fuel ratio imbalance among the cylinders is suppressed by correcting the fuel injection amount to the air-fuel ratio lean side as a whole by the first F / B control.
  • the first air-fuel ratio sensor tends to detect hydrogen generated in the air-fuel ratio rich cylinder more than necessary. Yes, the first output value tends to deviate to the rich side from the actual air-fuel ratio. That is, a rich shift of the first output value tends to occur in the first air-fuel ratio sensor.
  • the rich shift occurs, the first F / B control is excessively shifted toward the air-fuel ratio lean side, and the air-fuel ratio in the exhaust path deviates from the target air-fuel ratio, which may deteriorate the emission.
  • the control apparatus for an internal combustion engine has a configuration in which the second F / B control amount is corrected by the correcting means. That is, the correcting means detects the air-fuel ratio of the fuel injection amount in accordance with the output deviation between the first air-fuel ratio sensor and the second air-fuel ratio sensor when the detecting means detects the air-fuel ratio imbalance between the cylinders.
  • the second F / B control amount is corrected in a binary, stepwise, or continuous manner in a direction that makes it difficult for changes to the lean side to occur.
  • the “output deviation” is not limited to the deviation of the output value, and is a concept that includes deviations of various index values of the same dimension that are derived from the output value.
  • the “change in the fuel injection amount toward the air-fuel ratio lean side” means a change toward the side in which the ratio of fuel to air is decreased. If the air amount is the same, the fuel injection amount decreases. This means a change to the side where the air amount increases if the fuel amount is the same. Therefore, the correction of the second F / B control amount made in the “direction in which the change in the fuel injection amount to the lean side of the air-fuel ratio is less likely to occur” is to reduce the reduction ratio of the fuel to air ratio, or Meaning correction to increase the ratio of fuel to air.
  • the lean side side where the excess fuel ratio decreases
  • the fuel injection amount is corrected directly or indirectly to the rich side (the side where the excess air ratio decreases).
  • the second F / B control acts to correct the fuel injection amount to the air-fuel ratio lean side.
  • the correction operation of the fuel injection amount to the air-fuel ratio lean side by the second F / B control overlaps with the correction operation of the excessive fuel injection amount to the lean side by the first F / B control due to the rich shift described above, Exhaust may be excessively lean and emissions may deteriorate.
  • the correction means allows for the correction of the fuel injection amount to the air-fuel ratio lean side originally generated by the second F / B control in anticipation of such a point, to the air-fuel ratio lean side by the first F / B control caused by the rich shift. It is configured to compensate for the excess fuel injection amount correction.
  • the air-fuel ratio on the downstream side of the catalyst can always be maintained at the target value, and deterioration of emissions can be suitably suppressed.
  • the rich shift is a phenomenon caused by hydrogen generated by the air-fuel ratio imbalance. Therefore, even if the detection of the rich deviation is replaced by the detection of the air-fuel ratio imbalance, the influence is small.
  • the detecting means detects imbalance
  • the present invention does not require a limitation on the method.
  • the air-fuel ratio imbalance between the cylinders can be determined by a time transition of the first output value as a simple method.
  • the air-fuel ratio of the exhaust gas from a specific cylinder is different from that of the other cylinders, it can be determined that an air-fuel ratio imbalance occurs between the cylinders.
  • the air-fuel ratio imbalance may be detected based on an index value such as an imbalance degree that can be determined in advance as the degree thereof.
  • the “degree of air-fuel ratio imbalance” is a quantitative index that means the degree of air-fuel ratio imbalance among a plurality of cylinders, and its practical aspect is ambiguous within the scope of the concept. is there.
  • the degree of air-fuel ratio imbalance may be a value determined for an internal combustion engine or a value determined for each cylinder according to a practical definition.
  • the “air-fuel ratio imbalance” may include those defined in the following (1) to (4).
  • the “corresponding value” below is a concept that includes a control amount, a physical amount, or an index value that can have a unique relationship with the target value.
  • a value corresponding to the ratio of the air-fuel ratio of each cylinder to the average value of the air-fuel ratio of all cylinders (2) A value corresponding to the ratio of the air-fuel ratio of a specific cylinder to the air-fuel ratio of the remaining cylinders (3) Target A value corresponding to the ratio of deviation between the target air-fuel ratio and the air-fuel ratio of each cylinder with respect to the air-fuel ratio (4) A value corresponding to the ratio of the air-fuel ratio of each cylinder with respect to the target air-fuel ratio
  • the correction means corrects the second F / B control amount so that the fuel injection amount increases as compared with a case where no correction is made (second control). Section).
  • the correcting means corrects the second F / B control amount so that the fuel injection amount increases as compared with the case where the second F / B control amount is not corrected. Therefore, the influence of the rich shift of the first air-fuel ratio sensor can be suitably mitigated.
  • the second F / B control amount may be a control amount that directly corrects the fuel injection amount, or corrects the first air-fuel ratio detected by the first air-fuel ratio sensor. May be a control amount that indirectly corrects the fuel injection amount, or may be a control amount that indirectly corrects the fuel injection amount by correcting the first F / B control amount.
  • Various forms of the actual second F / B control amount may be adopted in accordance with such a change in the correction mode.
  • the detection means detects the air-fuel ratio imbalance based on the output deviation (third term).
  • the exhaust purification catalyst has OSC (Oxygen Storage Capacity), and if the OSA (Oxygen Storage Amount) exceeds the maximum value specified by the OSC, oxygen that cannot be stored is stored. Since the air blows down to the downstream side of the catalyst, the downstream air-fuel ratio becomes lean. On the other hand, when OSA falls below the minimum value defined by OSC, the oxidation reaction at the catalyst becomes difficult to proceed, and the downstream air-fuel ratio becomes rich. On the other hand, the lean / rich change that occurs in the range of the OSC of the catalyst basically does not directly affect the air-fuel ratio downstream of the catalyst.
  • OSC Oxygen Storage Capacity
  • the output deviation between the first air-fuel ratio sensor and the second air-fuel ratio sensor is effective as a reference value for detecting the air-fuel ratio imbalance.
  • the control target air-fuel ratio is the stoichiometric air-fuel ratio and there is no air-fuel ratio imbalance between the cylinders
  • the air-fuel ratio upstream and downstream of the catalyst is ideal by the first and second F / B controls. Is maintained at the stoichiometric air-fuel ratio.
  • the air-fuel ratio on the downstream side of the catalyst does not change greatly.
  • the output deviation changes regardless of its definition. That is, if an appropriate criterion is provided for handling the output deviation, it is possible to suitably detect the occurrence of an air-fuel ratio imbalance between the cylinders that causes a rich shift of the first air-fuel ratio sensor.
  • the correction means corrects the second F / B control amount by correcting an element value constituting the second F / B control amount, and the element
  • the values correspond to the standard map corresponding to the case where the first output value is associated with the second deviation and the first output value does not deviate from the actual air-fuel ratio toward the air-fuel ratio rich side, and the first output value.
  • the second determination means corresponds to the second deviation from the standard map.
  • the second F / B control amount is determined by selecting an element value, and the correction means selects the second F / B control amount by selecting an element value corresponding to the second deviation from the correction map. Correct (Section 4).
  • the element value of the second F / B control amount has a standard map that should be used in a normal state in which no rich shift has occurred in advance, and a correction map that should be used in an abnormal state in which a rich shift has occurred. It is described in.
  • These maps are control maps that can be stored in various storage devices such as a ROM, for example, and can be appropriately referred to by the correction means and the second determination means.
  • the element value is a concept that encompasses the values constituting the second F / B control amount, and is a value that is not limited at all as long as the change can prompt the change of the second F / B control amount.
  • the element value is preferably an F / B gain correction coefficient, a learning value correction coefficient for the second F / B control amount, or the like.
  • the learning value is a value that is appropriately updated by the learning process. For example, when the F / B control is executed as PID control, PI control, or the like, the learning value is derived from the I term (integral term) or the like. It may be a value corresponding to a steady component to be calculated.
  • the second determining means can select the standard map at the normal time, select the element value from the standard map, and determine the second F / B control amount.
  • the correction means selects a correction map at the time of abnormality, selects an element value from the correction map, and replaces the second F / B control amount to be applied at the normal time. That is, as an operation of the correction means, it is only necessary to select a corresponding value from the correction map and perform the same processing as the second determination means, and the load related to the correction of the second F / B control amount is reduced.
  • the correction map may be a single map or a plurality of maps that should be switched in stages according to the output deviation.
  • the second deviation is closer to an air-fuel ratio rich side than a reference value.
  • the element value when in the region and the element value when the second deviation is in the region on the lean side of the air-fuel ratio with respect to the reference value are in a symmetrical relationship with different signs, and the correction map is
  • the element value when the second deviation is in an air-fuel ratio rich side region with respect to the reference value is changed in a direction in which the sensitivity to the second deviation decreases.
  • the element value when 2 deviation is in the region on the air-fuel ratio rich side with respect to the reference value, and the element value when the second deviation is in the region on the air-fuel ratio lean side with respect to the reference value
  • the element values for the second deviation are symmetrical values having different signs, and the correction to the lean side and the correction to the rich side are equally performed.
  • the element values for the second deviation have different signs and are asymmetric between the rich side and the lean side.
  • the correction map decreases the sensitivity of the element value with respect to the second deviation when the second deviation is on the air-fuel ratio rich side with respect to the reference value (usually the theoretical air-fuel ratio equivalent value) ( For example, when the element value is taken on the vertical axis and the second deviation is taken on the horizontal axis, the map corresponds to a map having a small inclination or a low height).
  • the first and second target values are values corresponding to the stoichiometric air-fuel ratio (Section 6).
  • the downstream side of the catalyst can be maintained at the theoretical air-fuel ratio as much as possible.
  • the correction means indicates that the first output value is on the air-fuel ratio rich side by a predetermined amount or more with respect to the second output value due to the output deviation.
  • the second F / B control amount is corrected in such a direction that the change of the fuel injection amount toward the air-fuel ratio lean side is suppressed (seventh term).
  • the rich deviation of the first air-fuel ratio sensor can be easily detected by providing an appropriate threshold for the output deviation.
  • the air-fuel ratio is richer than a predetermined value includes “a value obtained by subtracting the air-fuel ratio downstream of the catalyst from the air-fuel ratio upstream of the catalyst is a negative value”.
  • the considerations are not particularly limited and may be elastic.
  • the output deviation includes (1) a deviation between the first output value and the second output value, and (2) a peak value of the first output value. Deviation from the peak value of the second output value, (3) Deviation between the average value of the first output value and the average value of the second output value, and (4) Response speed of the first air-fuel ratio sensor Any one of deviations from the response speed of the second air-fuel ratio sensor is included (Section 8).
  • the correction means corrects a gain to be multiplied by the second deviation or a learning value of the second control amount (Section 9).
  • This type of gain or learning value is appropriate as an element constituting the second F / B control amount that is the F / B control amount (equivalent to the above element value), and is appropriate as a correction target of the correction means.
  • FIG. 1 is a schematic configuration diagram conceptually showing a configuration of an engine system according to an embodiment of the present invention. It is a block diagram of ECU at the time of performing air-fuel ratio F / B control. 3 is a flowchart of air-fuel ratio F / B control in FIG. 2. It is a conceptual diagram of the standard map referred in the air-fuel ratio F / B control of FIG. It is a conceptual diagram of the correction map referred in the air-fuel ratio F / B control of FIG.
  • FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the engine system 10.
  • an engine system 10 is mounted on a vehicle (not shown) and includes an ECU 100 and an engine 200.
  • the ECU 100 is an electronic control unit that includes a CPU, a ROM, a RAM, and the like and is configured to be able to control the operation of the engine system 10, and is an example of the “control device for an internal combustion engine” according to the present invention.
  • the ECU 100 is configured to execute air-fuel ratio F / B control, which will be described later, according to a control program stored in the ROM.
  • the ECU 100 is an integrated electronic control unit that can function as an example of each of the “first determination unit”, “second determination unit”, “control unit”, “detection unit”, and “correction unit” according to the present invention.
  • the physical, mechanical, and electrical configurations of the respective units according to the present invention are not limited thereto, and these units include, for example, a plurality of ECUs, various processing units, various controllers, or a microcomputer device. It may be configured as various computer systems.
  • Engine 200 is a multi-cylinder gasoline engine that is an example of an “internal combustion engine” according to the present invention.
  • the engine 200 includes a plurality of cylinders 201 accommodated in a cylinder block CB.
  • the cylinders 201 are arranged in the depth direction of the drawing, and only one cylinder 201 is shown in FIG. 1.
  • the combustion chamber formed in the cylinder 201 is provided with a piston 202 that reciprocates in the vertical direction in the figure in accordance with the explosive force accompanying the combustion of the air-fuel mixture.
  • the reciprocating motion of the piston 202 is converted into the rotational motion of the crankshaft 204 via the connecting rod 203 and is used as power for the vehicle on which the engine 200 is mounted.
  • crank position sensor 205 capable of detecting the rotational position (ie, crank angle) of the crankshaft 204 is installed.
  • the crank position sensor 205 is electrically connected to the ECU 100, and the detected crank angle is referred to the ECU 100 at a constant or indefinite period.
  • the crank position sensor 205 is used for calculation of the engine speed NE or other control. It becomes the composition which is done.
  • air sucked from the outside is purified by a cleaner (not shown) and then guided to a common intake pipe 206 for each cylinder.
  • the intake pipe 206 is provided with a throttle valve 207 that can adjust the amount of intake air that is the amount of intake air.
  • the throttle valve 207 is configured as a kind of electronically controlled throttle valve whose driving state is controlled by a throttle valve motor (not shown) electrically connected to the ECU 100.
  • the ECU 100 basically drives and controls the throttle valve motor so as to obtain a throttle opening corresponding to an accelerator opening Ta detected by an unillustrated accelerator position sensor. However, the ECU 100 can also adjust the throttle opening without intervention of the driver's intention through the operation control of the throttle valve motor.
  • the intake air appropriately adjusted by the throttle valve 207 is sucked into the cylinder through the intake port 208 corresponding to each cylinder 201 when the intake valve 209 is opened.
  • the intake valve 209 is configured such that its opening / closing timing is determined according to the cam profile of a cam 210 having a substantially elliptical shape in cross section as shown in the figure.
  • the cam 210 is fixed to an intake camshaft (reference number omitted) connected to the crankshaft 204 via power transmission means such as a cam sprocket or a timing chain. Therefore, the opening / closing phase of the intake valve 209 is uniquely related to the rotation phase of the crankshaft 204 (ie, the crank angle) in one fixed state.
  • the fixed state between the intake cam 210 and the intake camshaft varies depending on the hydraulic pressure of the control oil supplied by the hydraulic drive device 211. More specifically, the intake cam 210 is connected to the intake cam shaft via a wing-like member called a vane, and the rotational phase between the vane and the intake cam shaft is applied to the hydraulic chamber of the hydraulic drive device 211. The configuration changes according to the hydraulic pressure applied. Therefore, the rotational phase between the intake cam 210 fixed to the vane and the intake camshaft also changes according to the hydraulic pressure.
  • the hydraulic drive device 211 is in a state of being electrically connected to the ECU 100, and the ECU 100 can change the opening / closing timing of the intake valve 209 through the control of the hydraulic drive device 211.
  • the intake air guided to the intake port 208 is mixed with fuel (in this embodiment, gasoline) injected from the intake port injector 212 in which a part of the injection valve is exposed at the intake port 208 and mixed as described above. I'm worried. Gasoline as fuel is stored in a fuel tank (not shown), and is supplied to the intake port injector 212 via a delivery pipe (not shown) by the action of a low-pressure feed pump (not shown).
  • a drive device (not shown) that drives the injection valve is electrically connected to the ECU 100, and the intake port injector 212 controls the valve opening period of the injection valve via the drive device. By doing so, an amount of fuel spray corresponding to this valve opening period can be supplied to the intake port 208.
  • a part of a spark plug (not shown) of an ignition device 213 that is a spark ignition device is exposed.
  • the air-fuel mixture compressed in the compression stroke of the engine 200 is ignited and burned by the ignition operation of the spark plug.
  • the ignition device 213 is electrically connected to the ECU 100, and the ignition timing of the ignition device 213 is controlled by the ECU 100.
  • the air-fuel mixture that has undergone a combustion reaction in the combustion chamber is exhausted to be opened and closed according to the opening and closing timing determined according to the cam profile of the exhaust cam 214 that is indirectly connected to the crankshaft 204 in the exhaust stroke following the combustion stroke.
  • the valve 215 is opened, the exhaust port 216 is discharged.
  • An exhaust pipe 217 is connected to the exhaust port 216 of each cylinder via an exhaust manifold (not shown).
  • the exhaust pipe 217 is an example of the “exhaust path” according to the present invention.
  • the exhaust pipe 217 is provided with a three-way catalyst 218 as an example of the “catalyst for exhaust purification” according to the present invention.
  • the three-way catalyst 218 is a known catalyst device in which a noble metal such as platinum is supported on a catalyst carrier.
  • the three-way catalyst 218 emits exhaust gas by causing the oxidative combustion reaction of HC and CO and the reduction reaction of nitrogen oxide NOx to proceed substantially simultaneously. It can be purified.
  • a first air-fuel ratio sensor 219 capable of detecting an upstream air-fuel ratio A / Fin that is an air-fuel ratio of the catalyst inflow gas flowing into the three-way catalyst 218 is installed upstream of the three-way catalyst 218 in the exhaust pipe 217. Yes.
  • the first air-fuel ratio sensor 219 is, for example, a limiting current type wide-area air-fuel ratio sensor including a diffusion resistance layer, and is an example of the “first air-fuel ratio sensor” according to the present invention.
  • the first air-fuel ratio sensor 219 is a sensor that outputs an output voltage value Vf corresponding to the upstream air-fuel ratio A / Fin (that is, an example of the “first output value” according to the present invention).
  • the first air-fuel ratio sensor 219 employs a configuration that indirectly detects the input-side air-fuel ratio A / Fin based on a voltage value that is uniquely related to the upstream-side air-fuel ratio A / Fin.
  • This output voltage value Vf matches the reference output voltage value Vst when the upstream air-fuel ratio A / Fin is the stoichiometric air-fuel ratio.
  • the output voltage value Vf is lower than the reference output voltage value Vst when the upstream air-fuel ratio A / Fin is on the air-fuel ratio rich side, and when the upstream air-fuel ratio A / Fin is on the air-fuel ratio lean side. It becomes higher than the reference output voltage value Vst. That is, the output voltage value Vf continuously changes with respect to the change in the upstream air-fuel ratio A / Fin.
  • the first air-fuel ratio sensor 219 is electrically connected to the ECU 100, and the detected output voltage value Vf is referred to by the ECU 100 at a constant or indefinite period.
  • a second air-fuel ratio sensor 220 capable of detecting the downstream air-fuel ratio A / Fout that is the air-fuel ratio of the catalyst exhaust gas discharged from the three-way catalyst 218 is installed.
  • the second air-fuel ratio sensor 220 is, for example, a limiting current type wide-area air-fuel ratio sensor provided with a diffusion resistance layer, and is an example of the “second air-fuel ratio sensor” according to the present invention.
  • the second air-fuel ratio sensor 220 is a sensor that outputs an output voltage value Vr corresponding to the downstream air-fuel ratio A / Fout (that is, an example of the “second output value” according to the present invention). That is, the second air-fuel ratio sensor 220 has a configuration in which the downstream air-fuel ratio A / Fout is indirectly detected by a voltage value having a unique relationship with the downstream air-fuel ratio A / Fout.
  • This output voltage value Vr matches the reference output voltage value Vst when the downstream air-fuel ratio A / Fout is the stoichiometric air-fuel ratio.
  • the output voltage value Vr is lower than the reference output voltage value Vst when the downstream air-fuel ratio A / Fout is on the air-fuel ratio rich side, and when the downstream air-fuel ratio A / Fout is on the air-fuel ratio lean side. It becomes higher than the reference output voltage value Vst. That is, the output voltage value Vr continuously changes with respect to the change in the downstream air-fuel ratio A / Fout.
  • the second air-fuel ratio sensor 220 is electrically connected to the ECU 100, and the detected output voltage value Vr is referred to by the ECU 100 at a constant or indefinite period.
  • a water temperature sensor 221 that can detect a cooling water temperature Tw that is a temperature of cooling water (LLC) that is circulated and supplied to cool the engine 200 is provided in a water jacket that is installed so as to surround the cylinder block CB. It is arranged.
  • the water temperature sensor 221 is electrically connected to the ECU 100, and the detected cooling water temperature Tw is referred to by the ECU 100 at a constant or indefinite period.
  • the intake pipe 206 is provided with an air flow meter 222 capable of detecting the intake air amount Ga.
  • the airflow meter 222 is electrically connected to the ECU 100, and the detected intake air amount Ga is referred to by the ECU 100 at a constant or indefinite period.
  • the engine 200 according to the present embodiment is a non-supercharged engine using gasoline as a fuel, but the configuration of the internal combustion engine according to the present invention is not limited to the engine 200 and may be various.
  • the internal combustion engine according to the present invention has the number of cylinders, cylinder arrangement, fuel type, fuel injection mode, intake / exhaust system configuration, valve operating system configuration, combustion system, presence / absence of supercharger, supercharging mode, etc.
  • the engine 200 may be different.
  • FIG. 22 is a block diagram of the ECU 100 when the air-fuel ratio F / B control is executed.
  • the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.
  • the ECU 100 includes an upstream target A / F determination unit 101, a basic injection amount determination unit 102, an adder 103, a downstream target A / F determination unit 104, a sub F / B calculation unit 105, an adder 106, and Each control block of the main F / B calculation unit 107 is provided.
  • the upstream target A / F determination unit 101 is a control block that determines the upstream target air-fuel ratio A / Fintg, which is the target air-fuel ratio upstream of the three-way catalyst 218. It is assumed that the upstream target air-fuel ratio A / Fintg is basically the stoichiometric air-fuel ratio (14, 6) except for transient operation conditions and the like.
  • the upstream target air-fuel ratio determining unit 101 outputs an upstream target voltage value Vfref corresponding to the upstream target air-fuel ratio A / Fintg.
  • the upstream target voltage value Vfref is an example of the “first target value” according to the present invention.
  • the basic injection amount determination unit 102 is a control block that determines a basic injection amount Qbase that is a base of the fuel injection amount Qpfi.
  • the basic injection amount Qbase is the upstream target air-fuel ratio A / Fintg (which may be converted from the upstream target voltage value Vfref or may be directly acquired from the upstream target air-fuel ratio determining unit 101), and the air flow meter 222. Is determined based on the intake air amount Ga detected by.
  • the determined basic injection amount Qbase is the basic injection amount at the time when the intake air whose intake air amount Ga is detected by the air flow meter 222 reaches the intake port 208. Such arrival timing is grasped based on the crank angle of the engine 200.
  • the basic injection amount Qbase is corrected by the main F / B control and the sub F / B control.
  • the main F / B control is performed for the basic injection amount Qbase that causes the upstream air-fuel ratio A / Fin detected by the first air-fuel ratio sensor 219 to converge to the upstream target air-fuel ratio A / Fintg.
  • the sub-F / B control is a correction control, and the basic injection amount Qbase is adjusted so that the downstream air-fuel ratio A / Fout detected by the second air-fuel ratio sensor 220 converges to the downstream target air-fuel ratio A / Fouttg. Correction control.
  • the practical aspect of this type of F / B control is ambiguous, and the control of this embodiment shown below is only an example.
  • the sub F / B control is constructed by the downstream target air-fuel ratio determining unit 104, the sub F / B calculating unit 105 and the adder 106.
  • the downstream target air-fuel ratio determining unit 104 is a control block that determines the downstream target air-fuel ratio A / Fouttg, which is the target value of the air-fuel ratio of the gas downstream of the three-way catalyst 218, that is, the catalyst exhaust gas. It is assumed that the downstream target air-fuel ratio A / Foutg is basically the stoichiometric air-fuel ratio (14, 6).
  • the downstream target air-fuel ratio determining unit 104 outputs a downstream target voltage value Vrref corresponding to the downstream target air-fuel ratio A / Fouttg.
  • the downstream target voltage value Vrref is an example of the “second target value” according to the present invention.
  • the sub F / B calculation unit 105 is a control block that calculates a sub F / B control amount Vfcor that is a control amount for correcting the output voltage value Vf of the first air-fuel ratio sensor 219.
  • the sub F / B control amount Vfcor is an example of the “second F / B control amount” according to the present invention.
  • the sub F / B control amount Vfcor is the absolute value
  • of the downstream voltage deviation ⁇ Vr ( ⁇ Vr Vr ⁇ Vrref), which is the deviation between the output voltage value Vr of the second air-fuel ratio sensor 220 and the downstream target voltage value Vrref.
  • ⁇ Vr Vr ⁇ Vrref
  • ⁇ Vr Vr ⁇ Vrref
  • the sub F / B correction amount Kr1 takes a negative value when the downstream voltage deviation ⁇ Vr takes a negative value (that is, the downstream air-fuel ratio A / Fout is on the rich side with respect to the target).
  • the voltage deviation ⁇ Vr takes a positive value (that is, takes a positive value when the downstream air-fuel ratio A / Fout is on the lean side with respect to the target).
  • the sub F / B control amount Vfcor output from the sub F / B calculation unit 105 is added to the output voltage value Vf of the first air-fuel ratio sensor 219 in the adder 106, and is used as the upstream correction output voltage value Vf ′.
  • the data is output to the F / B calculation unit 107.
  • the main F / B control is constructed by the upstream target air-fuel ratio determining unit 101 and the main F / B calculating unit 107.
  • the main F / B calculation unit 107 is a control block that calculates a main F / B control amount Qcor that is a control amount for correcting the basic fuel injection amount Qbase.
  • the main F / B control amount Qcor is an example of the “first F / B control amount” according to the present invention.
  • ⁇ Vf Vf′ ⁇ Vfref
  • the main F / B control if the corrected output voltage value Vf ′ is on the rich side with respect to the target, the main F / B control amount Qcor becomes a negative value and the basic injection amount Qbase is corrected to the decreasing side. As a result, the air-fuel ratio (upstream air-fuel ratio A / Fin) of the catalyst inflow gas is corrected to the lean side. On the other hand, if the corrected output voltage value Vf ′ is leaner than the target, the main F / B control amount Qcor becomes a positive value and the basic injection amount Qbase is corrected to the increase side. As a result, the air-fuel ratio (upstream air-fuel ratio A / Fin) of the catalyst inflow gas is corrected to the rich side.
  • the sub F / B correction amount Kr1 takes a negative value
  • the sub F / B control amount Vfcor takes a negative value. Accordingly, the corrected output voltage value Vf ′ is corrected to a richer side than the output voltage value Vf of the first air-fuel ratio sensor 219. As a result, the correction to the lean side by the main F / B control amount Qcor in the main F / B control becomes stronger.
  • the sub F / B correction amount Kr1 takes a positive value
  • the sub F / B control amount Vfcor takes a positive value. Accordingly, the corrected output voltage value Vf ′ is corrected to be leaner than the output voltage value Vf of the first air-fuel ratio sensor 219. As a result, the correction to the rich side by the main F / B control amount Qcor in the main F / B control is strengthened.
  • the sub-F / B control in the present embodiment performs the first air-fuel ratio sensor in order to converge the air-fuel ratio of the catalyst exhaust gas (that is, the downstream air-fuel ratio A / Fout) to the downstream target air-fuel ratio A / Fouttg.
  • the control is to correct the output voltage value of 219.
  • the sub F / B control is incorporated as a part of the main F / B control.
  • the sub F / B control may be a control for correcting the upstream target air-fuel ratio A / Fintg instead of the control for correcting the output voltage value Vf of the first air-fuel ratio sensor 219 as in the above example.
  • Control that directly corrects the basic injection amount Qbase may be used.
  • the second air-fuel ratio sensor 220 that can detect the downstream air-fuel ratio A / Fout on the downstream side of the three-way catalyst 218, good controllability is imparted to the air-fuel ratio of the catalyst exhaust gas.
  • FIG. 3 is a flowchart of the air-fuel ratio F / B control.
  • the air-fuel ratio F / B control is executed as a subroutine of fuel injection control that the ECU 100 executes further upstream.
  • the air-fuel ratio F / B control first, it is determined whether or not the stoichiometric F / B condition is satisfied (step S101).
  • the stoichiometric F / B condition is a condition in which the upstream target air-fuel ratio A / Fintg and the downstream target air-fuel ratio A / Fouttg are the stoichiometric air-fuel ratio. Such conditions are determined in advance according to the operating conditions of the engine 200 or the vehicle on which the engine 200 is mounted.
  • step S101 NO
  • the ECU 100 shifts the process to step S103 and executes other control.
  • the other control is a generic name of a subroutine different from the air-fuel ratio F / B control, and is not touched here.
  • step S101 When the stoichiometric F / B condition is satisfied (step S101: YES), the ECU 100 executes the stoichiometric F / B control (step S102).
  • the stoichiometric F / B control is an air-fuel ratio F / B control whose control block is illustrated in FIG.
  • the sub F / B correction amount described above is set to Kr1.
  • step S102 a standard map which is one of the control maps stored in the ROM is used, and the sub F / B correction amount Kr1 is set.
  • the standard map will be described with reference to FIG. FIG. 4 is a conceptual diagram of the standard map.
  • the standard map describes that the sub F / B correction amount Kr1 has a characteristic L_Kr1 (solid line) relationship.
  • the downstream voltage deviation ⁇ Vr that is an example of the “output deviation” according to the present invention
  • the sub F / B correction amount Kr1 is taken on the vertical axis
  • the sub F / B correction is performed.
  • the amount Kr1 takes a negative value in the negative value region (that is, the air-fuel ratio rich region) on the left side with respect to the origin (that is, the state where the downstream air-fuel A / Fout is the stoichiometric air-fuel ratio), A positive value is taken in the value region (ie, the air-fuel ratio lean region).
  • the absolute value of the sub F / B correction amount Kr1 has a linear relationship with the absolute value of the downstream voltage deviation ⁇ Vr, and the sub F / B correction amount Kr1 is symmetrical between the air-fuel ratio rich side and the lean side.
  • the sub F / B correction amount Kr1 is linearly changed with respect to the downstream voltage deviation ⁇ Vr, and the larger the downstream air-fuel ratio A / Fout is far from the target, the larger the F / B is.
  • the sub F / B correction amount Kr1 may have a relationship that changes stepwise with respect to the downstream side voltage deviation ⁇ Vr, or may be a fixed value that does not change.
  • the ECU 100 determines whether or not the deviation between the upstream output voltage value Vf and the downstream output voltage value Vr takes a negative value, that is, the catalyst exhaust gas. It is determined whether or not the catalyst inflow gas is relatively rich in the air-fuel ratio (step S104). When the catalyst exhaust gas is richer in the air-fuel ratio, or when the air-fuel ratio of the catalyst inflow gas is equal to the air-fuel ratio of the catalyst exhaust gas (step S104: NO), the ECU 100 resets the counter C1 (step S106). ), The air-fuel ratio F / B control is terminated. As described above, since the air-fuel ratio F / B control is a kind of subroutine, even if it is once terminated, if the execution condition is satisfied in the main routine (not shown), it is executed again from step S101.
  • step S104 When the air-fuel ratio of the catalyst inflow gas is relatively rich (step S104: YES), the ECU 100 increments the counter C1 (step S105), and determines whether the counter C1 is equal to or greater than the imbalance determination value C0. (Step S107).
  • the imbalance determination value C0 is a value that is experimentally adapted in advance.
  • step S107: NO the ECU 100 ends the air-fuel ratio F / B control.
  • the counter C1 that is appropriately incremented is When the imbalance determination value becomes equal to or greater than C0 (step S107: YES), the ECU 100 determines that an air-fuel ratio imbalance has occurred between the plurality of cylinders of the engine 200 (step S108). That is, in this case, the ECU 100 functions as an example of the “detecting unit” according to the present invention.
  • the ECU 100 determines that the sub-F / B correction amount described above is based on the determination that a rich shift has occurred in the first air-fuel ratio sensor 219.
  • the sub F / B control amount Vfcor is corrected by changing from Kr1 to Kr2 (step S109).
  • the sub F / B correction amount Kr2 is described in the correction map stored in the ROM, and the ECU 100 switches the map for selecting the sub F / B correction amount from the previous standard map to the correction map, and the sub F / B correction amount Kr2. / B correction amount Kr2 is selected.
  • the air-fuel ratio F / B control ends.
  • FIG. 5 is a conceptual diagram of the correction map.
  • the same reference numerals are given to the same portions as those in FIG. 4, and the description thereof will be omitted as appropriate.
  • the correction map describes that the sub F / B correction amount Kr2 has a characteristic L_Kr2 (solid line) relationship.
  • the sub F / B correction amount Kr2 is the origin (that is, the downstream side air-fuel A / Fout is A negative value is taken in the negative value region on the left side (ie, the air-fuel ratio rich region) with respect to the stoichiometric air-fuel ratio), and a positive value is taken in the positive value region (ie, the air-fuel ratio lean region) on the right side with respect to the origin.
  • the absolute value of the sub F / B correction amount Kr2 has a linear relationship with the absolute value of the downstream voltage deviation ⁇ Vr.
  • the sub F / B correction amount Kr2 is asymmetric between the air-fuel ratio rich side and the lean side (see L_Kr1 (dashed line) that is symmetric). That is, the sub F / B correction amount Kr2 in the air-fuel ratio rich region on the left side of the origin has a smaller slope with respect to the downstream voltage deviation ⁇ Vr than the sub F / B correction amount Kr2 in the air-fuel ratio lean region on the right side of the origin. It has become. That is, the sensitivity to the downstream voltage deviation ⁇ Vr is dull.
  • the sub F / B correction amount Kr2 When the sub F / B correction amount Kr2 is used for the sub F / B control, the sub F / B correction amount Kr1 is set in a situation where the downstream air-fuel ratio A / Fout shows a richer value than the target.
  • the correction of the fuel injection amount to the lean side is weaker than when it is used.
  • the upstream output voltage value Vf in FIG. 2 excessively shifts to the rich side. Therefore, if no countermeasure is taken, the main F / B output from the main F / B calculation unit 107 is taken.
  • the control amount Qcor becomes an excessively lean control amount, and the air-fuel ratio of the catalyst inflow gas may stagnate on the lean side with respect to the upstream target air-fuel ratio A / Fintg, and the emission may deteriorate.
  • the catalyst exhaust gas when the catalyst exhaust gas is rich in the air-fuel ratio (that is, when the downstream output voltage value Vr is less than the downstream target voltage value Vrref), it is added to the upstream output voltage value Vf.
  • the sub F / B control amount Vfcor is corrected by the sub F / B correction amount Kr2, thereby making it difficult to correct the fuel injection amount to the air-fuel ratio lean side.
  • the output change due to the rich shift is offset with the output change portion due to the change of the sub F / B correction amount Kr2, and the deterioration of the emission can be suppressed.
  • the deviation between the upstream output voltage value Vf and the downstream output voltage value Vr is used as the “output deviation” according to the present invention.
  • the “output deviation” according to the present invention is adopted.
  • the mode to obtain is not limited to this.
  • a deviation between the peak value of the upstream output voltage value Vf in a certain period and the peak value of the downstream output voltage value Vr in a certain period may be used.
  • a deviation between the average value of the upstream output voltage value Vf in a certain period and the average value of the downstream output voltage value Vr in a certain period may be used.
  • the average value is used, a more accurate and stable imbalance determination is possible.
  • a difference in response speed between the first air-fuel ratio sensor 219 and the second air-fuel ratio sensor 220 may be used.
  • the sub F / B calculation unit 105 calculates the sub F / B control amount Vfcor
  • various known learning processes can be suitably performed.
  • the learning process is, for example, a process of storing the steady component of the sub F / B control amount as a learning value with appropriate updating.
  • This learned value is a value reflected in the sub F / B control amount as an example of the “element value” according to the present invention, and when the air-fuel ratio imbalance occurs, or the first air-fuel ratio sensor 219
  • the learned value of the sub F / B control amount is corrected to the decreasing side, the air-fuel ratio is similar to the above. Correction of the excessive fuel injection amount to the lean side can be avoided.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and the control of the internal combustion engine accompanying such a change.
  • the apparatus is also included in the technical scope of the present invention.
  • the present invention is applicable to control of the fuel injection amount in an internal combustion engine.
  • SYMBOLS 10 ... Engine system, 100 ... ECU, 200 ... Engine, CB ... Cylinder block, 201 ... Cylinder, 212 ... Intake port injector, 217 ... Exhaust pipe, 218 ... Three-way catalyst, 219 ... First air-fuel ratio sensor, 222 ... First 2 air-fuel ratio sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

気筒間に空燃比のインバランスが生じた場合のエミッションの悪化を抑制する。 触媒の上流側に設置された第1空燃比センサと、触媒の下流側に設置された第2空燃比センサとを備えた内燃機関を制御する装置(100)は、第1空燃比センサの出力値と目標値との偏差に応じて第1F/B制御量を決定する第1決定手段と、第2空燃比センサの出力値と目標値との偏差に応じて第2F/B制御量を決定する第2決定手段と、第1F/B制御量及び第2F/B制御量に基づいて燃料噴射量を制御する制御手段と、気筒相互間における空燃比のインバランスを検出する検出手段と、空燃比のインバランスが検出された場合に、第1空燃比センサと第2空燃比センサとの出力偏差に応じて、燃料噴射量の空燃比リーン側へ変化が生じ難くなる方向へ第2F/B制御量を補正する補正手段とを具備する。

Description

内燃機関の制御装置
 本発明は、排気浄化用の触媒を備えた内燃機関における、気筒相互間の空燃比のインバランスによるエミッション悪化を抑制するための内燃機関の制御装置の技術分野に関する。
 この種の装置として、排気系に設置された触媒の上流に、触媒層の無い第1の空燃比センサと触媒層がある第2の空燃比センサとを搭載した排気システムを利用したものがある(特許文献1参照)。特許文献1に開示された、多気筒内燃機関の気筒間空燃比ばらつき異常検出装置によれば、当該システムにおいて、気筒間の空燃比のばらつき(即ち、空燃比のインバランス)により発生した水素による、第1の空燃比センサの出力値の空燃比リッチ側へのずれが、上記2本のセンサの出力差に基づいて判断される。従って、ノイズの影響を受け難く、気筒間空燃比ばらつき異常を精度良く検出することが出来るとされている。
 また、当該文献には、第1の空燃比センサと第2の空燃比センサとの出力ピークに基づいて第1の空燃比センサの出力が補正される構成についても開示されている。
 尚、触媒上流と下流の空燃比を取得可能なセンサを搭載し、気筒間インバランス発生時には、下流センサによるF/B補正量がガード範囲外になることを許容しつつ、下流空燃比目標とセンサ出力の差に基づいて補正量を設定する装置も提案されている(例えば、特許文献2参照)。
特開2009-281328号公報 特開2011-117341号公報
 気筒間に空燃比のインバランスが生じると、空燃比リッチ側の気筒において水素(H)が発生する。この水素は、排気中の他のガス要素と較べて拡散速度が速いため、A/F(空燃比)センサは、検出対象とするガスの空燃比を、実際の空燃比よりもリッチ側の(即ち、低い)値として検出し易い。
 上記特許文献1に開示された装置によれば、第2の空燃比センサが触媒層を備えており、この触媒層における反応により水素が消費されるため、第2の空燃比センサの出力値が水素の影響を受けないとされる。従って、2本のセンサの出力差により、第1の空燃比センサにおける検出値と実際の空燃比との乖離の度合いを推定することが出来るとの論理である。
 しかしながら、上記特許文献1に開示された装置には、以下の問題点がある。即ち、第2の空燃比センサが備える触媒層とは、排気浄化機能を有するとは言ってもセンサ付設の極小規模且つ簡易な触媒であって、内燃機関の排気経路に通常備わり得る三元触媒等の所謂排気浄化用の触媒とは、その排気浄化性能において差がある。
 従って、当該触媒層により理論的には水素が幾らかなり浄化されるとは言っても、第2の空燃比センサにより排気の空燃比を正確に検出することは非常に困難である。即ち、第2の空燃比センサの出力値は、第1の空燃比センサの出力値を補正するにあたってのリファレンス値として不十分である。
 また、このような問題に加え、特許文献1に開示された装置では、これら2本の空燃比センサの下流側に位置する排気浄化用の触媒を通過した後のガス(触媒排出ガス)の空燃比状態については、理論空燃比を境に出力値が反転する、所謂Z特性を有する酸素濃度センサにより検出される。この種の酸素濃度センサは、理論空燃比近傍でしか空燃比を検出することが出来ないため、その出力値を、水素の影響を受ける触媒上流の空燃比センサの出力値の補正に利用することが難しい。
 更に、係る構成においては、同様の理由から、触媒内部の空燃比を、目標とする空燃比に正確に維持することも難しい。従って、実際の空燃比に対する、触媒上流の空燃比センサの出力値のリッチ側への乖離(以下、適宜「リッチずれ」と表現する)を補正し難いことと併せ、排気浄化システム全体に望ましい排気浄化特性を与えることが非常に困難である。このような問題は、特許文献2に開示された装置においても同様に生じ得る。
 このように、上記先行技術文献に開示されたものを含む従来技術では、気筒間に空燃比のインバランスが生じた場合に、排気浄化システムの排気浄化性能が乱れ、内燃機関のエミッションが悪化しかねないという懸念がある。
 本発明は上述した懸念に鑑みてなされたものであり、気筒間に空燃比のインバランスが生じた場合のエミッションの悪化を抑制し得る内燃機関の制御装置を提供することを課題とする。
 上述した課題を解決するため、本発明に係る内燃機関の制御装置は、排気経路に設置された排気浄化用の触媒と、前記触媒の上流側に設置され、触媒流入ガスの空燃比に応じた第1出力値を出力する第1空燃比センサと、前記触媒の下流側に設置され、触媒排出ガスの空燃比に応じた第2出力値を出力可能な第2空燃比センサとを備えた内燃機関を制御する、内燃機関の制御装置であって、前記第1出力値と第1目標値との偏差たる第1偏差に応じて、前記第1出力値を前記第1目標値に収束させるための第1F/B制御量を決定する第1決定手段と、前記第2出力値と第2目標値との偏差たる第2偏差に応じて、前記第2出力値を前記第2目標値に収束させるための第2F/B制御量を決定する第2決定手段と、前記決定された第1F/B制御量及び前記決定された第2F/B制御量に基づいて前記内燃機関の燃料噴射量を制御する制御手段と、前記内燃機関の複数の気筒相互間における空燃比のインバランスを検出する検出手段と、前記空燃比のインバランスが検出された場合に、前記第1空燃比センサと前記第2空燃比センサとの出力偏差に応じて、前記燃料噴射量の空燃比リーン側へ変化が生じ難くなる方向へ前記第2F/B制御量を補正する補正手段とを具備することを特徴とする(第1項)。
 本発明に係る第1及び第2空燃比センサは、各々、理論空燃比よりもリッチ側及びリーン側の空燃比を含む広範囲の空燃比領域において実践上十分な空燃比検出能を有する、例えばリニア空燃比センサとして構成される。即ち、触媒下流側の第2空燃比センサは、空燃比が理論空燃比に対してリッチ側(低い側)にあるかリーン側(高い側)にあるかを二値的に判定することしか出来ない、所謂Z特性を有する酸素濃度センサとは異なる。但し、本発明における、これらセンサの「出力値」とは、センサの構成に応じて多様であってよい。例えば、この出力値は、空燃比の高低に応じて夫々高低に変化する電圧値であってもよいし、空燃比の高低に応じて夫々低高に変化する電圧値であってもよい。また、出力値が必ずしも電圧値である必要もない。
 本発明に係る内燃機関の制御装置によれば、第1決定手段により決定される第1F/B制御量と、第2決定手段により決定される第2F/B制御量とに基づいて、制御手段により燃料噴射量が制御される。
 第1F/B制御量とは、第1空燃比センサの出力値(第1出力値)とその目標値(第1目標値)との偏差(第1偏差)に応じてなされる、当該第1出力値を当該第1目標値に収束させるための各種F/B(フィードバック)制御(例えば、PID制御、PI制御等)の制御量を包括する概念である。例えば、第1F/B制御量とは、当該第1偏差に所定のF/Bゲインを乗じる等して得られる、基本となる燃料噴射量との各種演算(例えば、加減乗除演算)に供される制御量であってもよい。
 第2F/B制御量とは、第2空燃比センサの出力値(第2出力値)とその目標値(第2目標値)との偏差(第2偏差)に応じてなされる、当該第2出力値を当該第2目標値に収束させるための各種F/B(フィードバック)制御(例えば、PID制御、PI制御等)の制御量を包括する概念である。例えば、第2F/B制御量とは、当該第2偏差に所定のF/Bゲインを乗じる等して得られる、基本となる燃料噴射量との各種演算(例えば、加減乗除演算)に供される制御量であってもよい。
 或いは、第2F/B制御量とは、上記第1F/B制御量の補正に供される制御量であってもよい。例えば、第2F/B制御量とは、第1F/B制御量を規定する第1空燃比センサの出力値(第1出力値)を、空燃比リーン側又は空燃比リッチ側に補正する補正量であってもよいし、第1F/B制御量そのものを補正する補正量であってもよい。このように第1出力値或いは第1F/B制御量を補正してしまえば、第1F/B制御量が、第2出力値を第2目標値へ収束させるための要素を含んで決定されることになり、結果として燃料噴射量を望ましいものとすることが出来る。
 尚、これ以降、第1F/B制御量に基づいた燃料噴射量の補正に係る制御を適宜に「第1F/B制御」と表現し、第2F/B制御量に基づいた直接的な又は間接的な燃料噴射量の補正に係る制御を適宜に「第2F/B制御」と表現することとする。第1及び第2F/B制御は、本発明に係る制御手段の作用に含まれる。これらF/B制御の詳細な態様は多義的であるが、定性的には、センサ出力値が目標値よりも空燃比リッチ側(即ち、空燃比が低い側)であれば燃料噴射量が減少する側(即ち、空燃比リーン側)へ、また、センサ出力値が目標値よりも空燃比リーン側(即ち、空燃比が高い側)であれば燃料噴射量が増加する側(即ち、空燃比リッチ側)へ、直接的に又は間接的に、基本となる燃料噴射量が補正される。
 尚、本発明に係る内燃機関の制御装置では特に、触媒下流側の第2空燃比センサは、理論空燃比を含む広範な空燃比領域においてリニアな検出能を有する、従来の酸素濃度センサとは異なるセンサである。また、触媒が一種のバッファとして機能することにより、第2空燃比センサが検出対象とする排気のガス状態は触媒上流側と較べて、流速及び均一性の両面で安定している。これらの点から、第2空燃比センサにより検出される触媒下流側の空燃比は高い信頼性を有する。本発明では、この高い信頼を背景として第2F/B制御量が決定されることから、触媒内部の空燃比を正確に制御し得る点において有益である。
 ところで、何らかの理由により、制御手段により決定される最終的な燃料噴射量よりも多く燃料が噴射される気筒が存在する場合、排気経路における空燃比はリッチとなる。本来、このような気筒相互間における空燃比のインバランスによる空燃比の変化は、第1F/B制御により燃料噴射量が全体的に空燃比リーン側へ補正されることにより抑制される。
 ところが、現実的には、このような排気空燃比をリッチ側へ誘うインバランスが生じた場合、第1空燃比センサでは、空燃比リッチの気筒において発生する水素が必要以上に感知される傾向があり、第1出力値は、実際の空燃比よりもリッチ側に乖離し易い。即ち、第1空燃比センサに第1出力値のリッチずれが生じ易い。リッチずれが生じると、第1F/B制御が空燃比リーン側に過剰にシフトすることになり、排気経路の空燃比が目標空燃比から乖離してエミッションが悪化する可能性がある。
 このような問題を解決するため、本発明に係る内燃機関の制御装置では、補正手段により第2F/B制御量が補正される構成となっている。即ち、補正手段は、検出手段により気筒相互間における空燃比のインバランスが検出された場合に、第1空燃比センサと第2空燃比センサとの出力偏差に応じて、燃料噴射量の空燃比リーン側への変化が生じ難くなる方向へ第2F/B制御量を二値的に、段階的に又は連続的に補正する。尚、「出力偏差」とは、単に出力値の偏差に留まらない趣旨であり、出力値から派生的に得られる、同一次元の各種指標値の偏差を包括する概念である。
 尚、「燃料噴射量の空燃比リーン側への変化」とは、即ち、空気に対する燃料の比率を減少させる側への変化を意味し、同一の空気量であれば燃料噴射量が減少する側への変化を、同一の燃料量であれば空気量が増加する側への変化を、夫々意味する。従って、「燃料噴射量の空燃比リーン側への変化が生じ難くなる方向」へなされる第2F/B制御量の補正とは、空気に対する燃料の比率の減少幅を縮小させるための、或いは、空気に対する燃料の比率を増加させるための補正を意味する。
 上述したように、第2F/B制御では、触媒下流側の雰囲気が目標空燃比に対してリッチ側(燃料過剰側)であればリーン側(燃料過剰率が減少する側)へ、リーン側(空気過剰側)であればリッチ側(空気過剰率が減少する側)へ、夫々直接的に又は間接的に燃料噴射量の補正がなされる。
 従って、空燃比のインバランスにより生じた空燃比リッチの排気により、触媒下流側の空燃比がリッチになると、第2F/B制御は、空燃比リーン側へ燃料噴射量を補正すべく作用する。この第2F/B制御による空燃比リーン側への燃料噴射量の補正作用が、上述したリッチずれに起因した第1F/B制御による過剰なリーン側への燃料噴射量の補正作用と重複すると、排気は過剰にリーン雰囲気となってエミッションが悪化する可能性がある。
 補正手段は、係る点を見越した上で、本来第2F/B制御により生じる空燃比リーン側への燃料噴射量の補正分を、リッチずれに起因した第1F/B制御による空燃比リーン側への過剰な燃料噴射量の補正分によって賄う構成となっているのである。
 従って、本発明に係る内燃機関の制御装置によれば、触媒下流側の空燃比を常に目標値に維持することが可能となり、エミッションの悪化を好適に抑制することが出来るのである。
 尚、空燃比のインバランスにより100%リッチずれが生じる保証は無いが、リッチずれは空燃比のインバランスにより発生した水素により惹起される現象である。従って、空燃比のインバランスの検出をもってリッチずれの検出に代替しても影響は少ない。
 検出手段がインバランスを検出するにあたっての実践的態様は各種あり、本発明は、その手法についての限定を要しない。例えば、気筒相互間の空燃比のインバランスは、簡易な手法として第1出力値の時間推移により判定可能である。例えば、ある特定の気筒からの排気の空燃比が他の気筒のそれと異なっている場合に、気筒相互間に空燃比のインバランスが生じているとの判定を行うことが可能である。
 また、より具体的には、空燃比のインバランスは、その度合いとして事前に定められ得るインバランス度等の指標値に基づいて検出されてもよい。ここで「空燃比のインバランス度」とは、複数の気筒相互間の空燃比のインバランスの度合いを意味する定量的な指標であり、その実践的態様は、係る概念の範囲において多義的である。空燃比のインバランス度は、実践上の定義に応じて、内燃機関に対し一つ定められる値であってもよいし、各気筒について定められる値であってもよい。例えば、「空燃比のインバランス度」は、下記(1)~(4)に定義されるものを含み得る。尚、下記の「相当する値」とは、対象値と一義的な関係を有し得る制御量、物理量又は指標値を包括する概念である。
(1)全気筒の空燃比の平均値に対する各気筒の空燃比の割合に相当する値
(2)特定の気筒の空燃比の、残余の気筒の空燃比に対する割合に相当する値
(3)目標空燃比に対する、目標空燃比と各気筒の空燃比との偏差の割合に相当する値
(4)目標空燃比に対する、各気筒の空燃比の割合に相当する値
 本発明に係る内燃機関の制御装置の一の態様では、前記補正手段は、補正がなされない場合と較べて前記燃料噴射量が増加するように前記第2F/B制御量を補正する(第2項)。
 この態様によれば、補正手段が、第2F/B制御量の補正がなされない場合と較べて燃料噴射量が増加するように第2F/B制御量を補正する。従って、第1空燃比センサのリッチずれの影響を好適に緩和することが出来る。
 尚、第2F/B制御量は、先に述べたように、燃料噴射量を直接補正する制御量であってもよいし、第1空燃比センサにより検出される第1空燃比を補正することによって間接的に燃料噴射量を補正する制御量であってもよいし、第1F/B制御量を補正することによって間接的に燃料噴射量を補正する制御量であってもよい。このような補正態様の変化に合わせて、実際の第2F/B制御量の採り得る形態も多様であってよい。
 本発明に係る内燃機関の制御装置の他の態様では、前記検出手段は、前記出力偏差に基づいて前記空燃比のインバランスを検出する(第3項)。
 排気浄化用の触媒には、OSC(Oxygen Storage Capacity:酸素吸蔵能)があり、OSA(Oxygen Storage Amount:酸素吸蔵量)がこのOSCにより規定される最大値を超えると、吸蔵しきれない酸素が触媒下流側に吹き抜けることから下流側の空燃比がリーンとなる。また、OSAがOSCにより規定される最小値を下回ると、触媒での酸化反応が進行し難くなることから下流側の空燃比がリッチとなる。一方で、触媒のOSCの範囲で生じるリーン/リッチの変化は、基本的には、触媒下流側の空燃比に直接影響しない。
 従って、空燃比のインバランスに起因して触媒上流側で検出される空燃比が変化しても、触媒下流側の空燃比は相応の期間において変化しない。従って、第1空燃比センサと第2空燃比センサとの出力偏差は、空燃比のインバランスを検出するための参照値として有効である。例えば、制御目標空燃比が理論空燃比である場合、気筒間で空燃比のインバランスが生じていない場合には、触媒上下流の空燃比は、上記第1及び第2F/B制御により理想的には理論空燃比に維持される。一方、空燃比のインバランスにより、触媒上流側で検出される空燃比がある程度の量或いは時間でリッチ側に変化しても、触媒下流側の空燃比は大きく変化しないから、このような場合には、出力偏差がその定義の如何によらず変化する。即ち、出力偏差の取り扱いに適当な判断基準を設けておけば、第1空燃比センサのリッチずれを誘う気筒相互間における空燃比のインバランスの発生を好適に検出することができる。
 また、このように触媒下流側の空燃比が変化するまでには時間差があるから、実際に触媒下流の空燃比が変化した時点で、補正手段による補正作用は既にアクティブであり、空燃比リーン側への過剰なF/Bを抑制することが出来る。
 本発明に係る内燃機関の制御装置の他の態様では、前記補正手段は、前記第2F/B制御量を構成する要素値を補正することにより前記第2F/B制御量を補正し、前記要素値は、各々が前記第2偏差に対応付けられた、前記第1出力値が前記実際の空燃比に対し空燃比リッチ側へ乖離していない場合に対応する標準マップと、前記第1出力値が前記実際の空燃比に対し空燃比リッチ側へ乖離している場合に対応する補正用マップとに記憶されており、前記第2決定手段は、前記標準用マップから前記第2偏差に対応する要素値を選択することにより前記第2F/B制御量を決定し、前記補正手段は、前記補正用マップから前記第2偏差に対応する要素値を選択することにより前記第2F/B制御量を補正する(第4項)。
 この態様によれば、第2F/B制御量の要素値が、予めリッチずれが生じていない正常時に使用されるべき標準マップと、リッチずれが生じている異常時に使用されるべき補正用マップとに記述されている。これらマップは、例えばROM等の各種記憶装置に記憶させることが可能な制御用マップであり、補正手段及び第2決定手段が、夫々適宜参照可能なマップである。
 尚、要素値とは、第2F/B制御量を構成する値を包括する概念であり、その変化が第2F/B制御量の変化を促し得る限りにおいて何ら限定されない値である。但し、第2F/B制御がF/B制御であることに鑑みれば、要素値とは、好適には、F/Bゲインの補正係数や、第2F/B制御量の学習値の補正係数等を含み得る。学習値とは、学習処理により適宜に更新される値であって、例えば、F/B制御がPID制御やPI制御等として実行される場合には、I項(積分項)等から派生的に演算される定常成分に相当する値であってもよい。
 この態様によれば、第2決定手段は、正常時において標準マップを選択し、当該標準マップから要素値を選択して第2F/B制御量を決定することが出来る。また、補正手段は、異常時において補正用マップを選択し、当該補正用マップから要素値を選択して、正常時に適用されるべき第2F/B制御量を置き換える。即ち、補正手段の作用としては、補正用マップから該当値を選択して第2決定手段と同等の処理を行えばよく、第2F/B制御量の補正に係る負荷が軽減される。
 尚、この補正用マップは、一のマップであってもよいし、出力偏差に応じて段階的に切り替えられるべき複数のマップであってもよい。
 第2F/B制御量の補正にマップが使用される本発明に係る内燃機関の制御装置の一の態様では、前記標準用マップにおいて、前記第2偏差が基準値に対して空燃比リッチ側の領域にある場合の前記要素値と、前記第2偏差が前記基準値に対して空燃比リーン側の領域にある場合の前記要素値とは、符号が異なる対称関係にあり、前記補正用マップは、前記標準用マップにおいて、前記第2偏差が前記基準値に対して空燃比リッチ側の領域にある場合の前記要素値を前記第2偏差に対する感度が低下する方向へ変更することによって、前記第2偏差が前記基準値に対して空燃比リッチ側の領域にある場合の前記要素値と、前記第2偏差が前記基準値に対して空燃比リーン側の領域にある場合の前記要素値とを非対称関係としたマップである(第5項)。
 この態様によれば、通常マップにおいて、第2偏差に対する要素値は符号が異なる対称値であって、リーン側への補正もリッチ側への補正も同等に行われる構成となっている。一方、補正用マップにおいて、第2偏差に対する要素値は符号が異なると共に、リッチ側とリーン側とで非対称とされる。具体的には、補正用マップは、第2偏差が基準値(通常、理論空燃比相当値)に対して空燃比リッチ側にある場合について、第2偏差に対する要素値の感度を低下させた(例えば、縦軸に要素値を、横軸に第2偏差を夫々採る場合に、傾きを小さく、或いは高さを低くしたものに相当する)マップである。
 このような構成とすれば、空燃比のインバランスに起因する水素により惹起された第1空燃比センサのリッチずれの影響を緩和することが出来る。
 本発明に係る内燃機関の制御装置の他の態様では、前記第1及び第2目標値は、夫々理論空燃比に相当する値である(第6項)。
 この態様によれば、触媒の下流側を理論空燃比に可及的に維持することが出来る。
 本発明に係る内燃機関の制御装置の他の態様では、前記補正手段は、前記出力偏差により前記第1出力値が前記第2出力値に対して所定以上空燃比リッチ側にある旨が示される場合に、前記燃料噴射量の空燃比リーン側への変化が抑制される方向へ前記第2F/B制御量を補正する(第7項)。
 この態様によれば、出力偏差に適当な閾値を設けることにより、第1空燃比センサのリッチずれを簡便に検出可能である。尚、「所定以上空燃比リッチ側にある」とは、「触媒上流側の空燃比から触媒下流側の空燃比を減算した値が負値である」ことを含むが、有効数字その他の実践的勘案事項は、特に限定されず弾力的であってよい。
 本発明に係る内燃機関の制御装置の他の態様では、前記出力偏差は、(1)前記第1出力値と前記第2出力値との偏差、(2)前記第1出力値のピーク値と前記第2出力値のピーク値との偏差、(3)前記第1出力値の平均値と前記第2出力値の平均値との偏差、及び(4)前記第1空燃比センサの応答速度と前記第2空燃比センサの応答速度との偏差のうちいずれか一つを含む(第8項)。
 これらは、出力偏差の有する実践的態様として妥当であり且つ適当である。
 例えば、(1)の場合、出力値が直接比較されることにより、実現象に忠実な制御が期待される。また(2)の場合、ピーク値(当然ながら、ある設定期間におけるピーク値である)同士の比較により安全側に振った効果が期待される。また(3)の場合、ノイズやガスの均質性の影響が排除された高い信頼性が期待される。また(4)の場合、出力値に頼らない補正が可能である。
 本発明に係る内燃機関の制御装置の他の態様では、前記補正手段は、前記第2偏差に乗じられるべきゲイン又は前記第2制御量の学習値を補正する(第9項)。
 この種のゲインや学習値は、F/B制御量である第2F/B制御量を構成する要素(上記要素値と同等である)として妥当であり、補正手段の補正対象として妥当である。
 本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。
本発明の一実施形態に係るエンジンシステムの構成を概念的に表してなる概略構成図である。 空燃比F/B制御を実行する際のECUのブロック図である。 図2の空燃比F/B制御のフローチャートである。 図2の空燃比F/B制御において参照される標準マップの概念図である。 図2の空燃比F/B制御において参照される補正マップの概念図である。
 <発明の実施形態>
 以下、図面を参照して、本発明の実施形態について説明する。
 <実施形態の構成>
 始めに、図1を参照し、本発明の一実施形態に係るエンジンシステム10の構成について説明する。ここに、図1は、エンジンシステム10の構成を概念的に表してなる概略構成図である。
 図1において、エンジンシステム10は、図示せぬ車両に搭載され、ECU100及びエンジン200を備える。
 ECU100は、CPU、ROM及びRAM等を備え、エンジンシステム10の動作を制御可能に構成された電子制御ユニットであり、本発明に係る「内燃機関の制御装置」の一例である。ECU100は、ROMに格納された制御プログラムに従って、後述する空燃比F/B制御を実行可能に構成されている。
 尚、ECU100は、本発明に係る「第1決定手段」、「第2決定手段」、「制御手段」、「検出手段」及び「補正手段」の夫々一例として機能し得る一体の電子制御ユニットであるが、本発明に係るこれら各手段の物理的、機械的及び電気的な構成はこれに限定されるものではなく、これら各手段は、例えば複数のECU、各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等として構成されていてもよい。
 エンジン200は、本発明に係る「内燃機関」の一例たる多気筒ガソリンエンジンである。
 図1において、エンジン200は、シリンダブロックCBに収容される複数の気筒201を備える。尚、図1において、気筒201は紙面奥行き方向に配列しており、図1においては一の気筒201のみが示されている。
 エンジン200において、気筒201の内部に形成された燃焼室には、混合気の燃焼に伴う爆発力に応じて図示上下方向に往復運動を生じるピストン202を備える。ピストン202の往復運動は、コネクティングロッド203を介してクランクシャフト204の回転運動に変換され、エンジン200を搭載する車両の動力として利用される構成となっている。
 クランクシャフト204の近傍には、クランクシャフト204の回転位置(即ち、クランク角)を検出可能なクランクポジションセンサ205が設置されている。このクランクポジションセンサ205は、ECU100と電気的に接続されており、検出されたクランク角は、一定又は不定の周期でECU100に参照され、例えば、エンジン回転数NEの算出や、その他の制御に供される構成となっている。
 エンジン200において、外部から吸入された空気は、図示せぬクリーナにより浄化された後、各気筒について共通の吸気管206に導かれる。吸気管206には、この吸入空気の量である吸入空気量を調節可能なスロットルバルブ207が配設されている。このスロットルバルブ207は、ECU100と電気的に接続された不図示のスロットルバルブモータによってその駆動状態が制御される、一種の電子制御式スロットルバルブとして構成されている。
 ECU100は、基本的には不図示のアクセルポジションセンサにより検出されるアクセル開度Taに応じたスロットル開度が得られるようにスロットルバルブモータを駆動制御する。但し、ECU100は、スロットルバルブモータの動作制御を介してドライバの意思を介在させることなくスロットル開度を調整することも可能である。
 スロットルバルブ207により適宜調量された吸入空気は、気筒201の各々に対応する吸気ポート208を経由して、吸気弁209の開弁時に気筒内部に吸入される。吸気弁209は、図示するように断面視略楕円形状を有するカム210のカムプロファイルに応じてその開閉時期が定まる構成となっている。
 一方、このカム210は、例えばカムスプロケットやタイミングチェーン等の動力伝達手段を介してクランクシャフト204に連結された吸気カム軸(符号省略)に固定されている。従って、吸気弁209の開閉位相は、クランクシャフト204の回転位相(即ち、クランク角)と、一の固定状態において一義的な関係にある。
 ここで、この吸気カム210と吸気カム軸との固定状態は、油圧駆動装置211により供給される制御油の油圧により変化する。より具体的には、吸気カム210は、ベーンと呼ばれる翼状部材を介して吸気カム軸に連結されており、このベーンと吸気カム軸との回転位相は、油圧駆動装置211が有する油圧室に印加される油圧に応じて変化する構成となっている。従って、ベーンに固定された吸気カム210と吸気カム軸との回転位相もまた、当該油圧に応じて変化する。油圧駆動装置211は、ECU100と電気的に接続された状態にあり、ECU100は、油圧駆動装置211の制御を介して、吸気弁209の開閉時期を変化させることが出来る。
 吸気ポート208に導かれた吸入空気は、吸気ポート208に噴射弁の一部が露出してなる吸気ポートインジェクタ212から噴射された燃料(本実施形態ではガソリンである)と混合されて前述の混合気となる。燃料たるガソリンは、図示せぬ燃料タンクに貯留されており、図示せぬ低圧フィードポンプの作用により、図示せぬデリバリパイプを介して吸気ポートインジェクタ212に供給されている。吸気ポートインジェクタ212において、噴射弁を駆動する不図示の駆動装置は、ECU100と電気的に接続されており、吸気ポートインジェクタ212は、ECU100がこの駆動装置を介して噴射弁の開弁期間を制御することによって、この開弁期間に応じた量の燃料噴霧を吸気ポート208に供給することが出来る。
 エンジン200の燃焼室には火花点火装置である点火装置213の点火プラグ(符号省略)の一部が露出している。エンジン200の圧縮行程において圧縮された混合気は、この点火プラグの点火動作により着火し燃焼する仕組みとなっている。点火装置213は、ECU100と電気的に接続されており、点火装置213の点火時期は、ECU100により制御される構成となっている。
 一方、燃焼室において燃焼反応を生じた混合気は、燃焼行程に引き続く排気行程において、クランクシャフト204と間接的に連結された排気カム214のカムプロファイルに応じて定まる開閉時期に従って開閉駆動される排気弁215の開弁時に、排気ポート216に排出される。
 各気筒の排気ポート216には、図示せぬ排気マニホールドを介して排気管217が連結されている。排気管217は、本発明に係る「排気経路」の一例である。
 排気管217には、本発明に係る「排気浄化用の触媒」の一例たる三元触媒218が設置される。三元触媒218は、触媒担体に白金等の貴金属が担持された公知の触媒装置であり、HC及びCOの酸化燃焼反応と、窒素酸化物NOxの還元反応とを略同時に進行させることによって排気を浄化可能に構成される。
 排気管217における三元触媒218の上流側には、三元触媒218に流入する触媒流入ガスの空燃比である上流側空燃比A/Finを検出可能な第1空燃比センサ219が設置されている。第1空燃比センサ219は、例えば、拡散抵抗層を備えた限界電流式広域空燃比センサであり、本発明に係る「第1空燃比センサ」の一例である。
 第1空燃比センサ219は、上流側空燃比A/Finに応じた出力電圧値Vf(即ち、本発明に係る「第1出力値」の一例)を出力するセンサである。即ち、第1空燃比センサ219は、上流側空燃比A/Finと一義的な関係を有する電圧値により間接的に入力側空燃比A/Finを検出する構成を採る。
 この出力電圧値Vfは、上流側空燃比A/Finが理論空燃比である時に基準出力電圧値Vstに一致する。また、この出力電圧値Vfは、上流側空燃比A/Finが空燃比リッチ側にある場合に基準出力電圧値Vstより低くなり、上流側空燃比A/Finが空燃比リーン側にある場合に基準出力電圧値Vstより高くなる。即ち、出力電圧値Vfは、上流側空燃比A/Finの変化に対して連続的に変化する。第1空燃比センサ219は、ECU100と電気的に接続されており、検出された出力電圧値Vfは、ECU100により一定又は不定の周期で参照される構成となっている。
 排気管217における三元触媒218の下流側には、三元触媒218から排出された触媒排出ガスの空燃比である下流側空燃比A/Foutを検出可能な第2空燃比センサ220が設置されている。第2空燃比センサ220は、例えば、拡散抵抗層を備えた限界電流式広域空燃比センサであり、本発明に係る「第2空燃比センサ」の一例である。
 第2空燃比センサ220は、下流側空燃比A/Foutに応じた出力電圧値Vr(即ち、本発明に係る「第2出力値」の一例)を出力するセンサである。即ち、第2空燃比センサ220は、下流側空燃比A/Foutと一義的な関係を有する電圧値により間接的に下流側空燃比A/Foutを検出する構成を採る。
 この出力電圧値Vrは、下流側空燃比A/Foutが理論空燃比である時に基準出力電圧値Vstに一致する。また、この出力電圧値Vrは、下流側空燃比A/Foutが空燃比リッチ側にある場合に基準出力電圧値Vstより低くなり、下流側空燃比A/Foutが空燃比リーン側にある場合に基準出力電圧値Vstより高くなる。即ち、出力電圧値Vrは、下流側空燃比A/Foutの変化に対して連続的に変化する。第2空燃比センサ220は、ECU100と電気的に接続されており、検出された出力電圧値Vrは、ECU100により一定又は不定の周期で参照される構成となっている。
 エンジン200において、シリンダブロックCBを取り囲むように設置されたウォータジャケットには、エンジン200を冷却するために循環供給される冷却水(LLC)の温度である冷却水温Twを検出可能な水温センサ221が配設されている。水温センサ221は、ECU100と電気的に接続されており、検出された冷却水温Twは、ECU100により一定又は不定の周期で参照される構成となっている。
 また、エンジン200において、吸気管206には、吸入空気量Gaを検出可能なエアフローメータ222が配設されている。エアフローメータ222は、ECU100と電気的に接続されており、検出された吸入空気量Gaは、ECU100により一定又は不定の周期で参照される構成となっている。
 尚、本実施形態に係るエンジン200は、ガソリンを燃料とする無過給エンジンであるが、本発明に係る内燃機関の構成は、エンジン200に限定されず多様であってよい。例えば、本発明に係る内燃機関は、気筒数、気筒配列、燃料種別、燃料の噴射態様、吸排気系の構成、動弁系の構成、燃焼方式、過給器の有無及び過給態様等が、エンジン200と異なっていてもよい。
 <実施形態の動作>
 <空燃比F/B制御の概要>
 エンジン200において、吸気ポートインジェクタ212の燃料噴射量Qpfiは、ECU100により、エンジン200の稼動期間について常時実行される空燃比F/B制御により制御される。
 ここで、図2を参照し、空燃比F/B制御の論理構成について説明する。ここに、図22は、空燃比F/B制御を実行する際のECU100のブロック図である。尚、同図において、図1と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図2において、ECU100は、上流側目標A/F決定部101、基本噴射量決定部102、加算器103、下流側目標A/F決定部104、サブF/B演算部105、加算器106及びメインF/B演算部107の各制御ブロックを備える。
 上流側目標A/F決定部101は、三元触媒218の上流側の目標空燃比である上流側目標空燃比A/Fintgを決定する制御ブロックである。上流側目標空燃比A/Fintgは、過渡運転条件等を除いて基本的に理論空燃比(14,6)であるとする。上流側目標空燃比決定部101からは、上流側目標空燃比A/Fintgに相当する上流側目標電圧値Vfrefが出力される。上流側目標電圧値Vfrefは、本発明に係る「第1目標値」の一例である。
 基本噴射量決定部102は、燃料噴射量Qpfiのベースとなる基本噴射量Qbaseを決定する制御ブロックである。基本噴射量Qbaseは、上流側目標空燃比A/Fintg(上流側目標電圧値Vfrefから換算されてもよいし、上流側目標空燃比決定部101から直接取得されてもよい)と、エアフローメータ222により検出される吸入空気量Gaとに基づいて決定される。尚、決定される基本噴射量Qbaseは、エアフローメータ222により吸入空気量Gaが検出された吸入空気が、吸気ポート208に到達した時点における基本噴射量である。係る到達タイミングは、エンジン200のクランク角に基づいて把握されている。
 ここで、この基本噴射量Qbaseは、メインF/B制御とサブF/B制御とにより補正される。具体的には、メインF/B制御は、第1空燃比センサ219により検出される上流側空燃比A/Finが上流側目標空燃比A/Fintgに収束するようになされる基本噴射量Qbaseの補正制御であり、サブF/B制御は、第2空燃比センサ220により検出される下流側空燃比A/Foutが下流側目標空燃比A/Fouttgに収束するようになされる基本噴射量Qbaseの補正制御である。尚、この種のF/B制御の実践的態様は多義的であり、下記に示す本実施形態の制御は一例に過ぎない。
 先ず、サブF/B制御について説明する。サブF/B制御は、下流側目標空燃比決定部104、サブF/B演算部105及び加算器106により構築される。
 下流側目標空燃比決定部104は、三元触媒218の下流側のガス、即ち、触媒排出ガスの空燃比の目標値である下流側目標空燃比A/Fouttgを決定する制御ブロックである。下流側目標空燃比A/Foutgは、基本的に理論空燃比(14,6)であるとする。尚、下流側目標空燃比決定部104は、下流側目標空燃比A/Fouttgに相当する下流側目標電圧値Vrrefを出力する。下流側目標電圧値Vrrefは、本発明に係る「第2目標値」の一例である。
 サブF/B演算部105は、第1空燃比センサ219の出力電圧値Vfを補正するための制御量であるサブF/B制御量Vfcorを演算する制御ブロックである。サブF/B制御量Vfcorは、本発明に係る「第2F/B制御量」の一例である。
 サブF/B制御量Vfcorは、第2空燃比センサ220の出力電圧値Vrと下流側目標電圧値Vrrefとの偏差である下流側電圧偏差ΔVr(ΔVr=Vr-Vrref)の絶対値|ΔVr|に対し、サブF/BゲインGfbr(Gfbr>0)とサブF/B補正量Kr1とを乗じた値である。サブF/BゲインGfbrは、本発明に係る「要素値」の一例である。
 尚、サブF/B補正量Kr1は、下流側電圧偏差ΔVrが負値を採る(即ち、下流側空燃比A/Foutが目標に対してリッチ側にある)場合に負値を採り、下流側電圧偏差ΔVrが正値を採る(即ち、下流側空燃比A/Foutが目標に対してリーン側にある)場合に正値を採る。
 サブF/B演算部105から出力されるサブF/B制御量Vfcorは、加算器106において、第1空燃比センサ219の出力電圧値Vfと加算され、上流側補正出力電圧値Vf’としてメインF/B演算部107に出力される。
 次に、メインF/B制御について説明する。メインF/B制御は、上流側目標空燃比決定部101及びメインF/B演算部107により構築される。
 メインF/B演算部107は、基本燃料噴射量Qbaseを補正するための制御量であるメインF/B制御量Qcorを演算する制御ブロックである。メインF/B制御量Qcorは、本発明に係る「第1F/B制御量」の一例である。
 メインF/B制御量Qcorは、加算器106から出力される上流側補正出力電圧値Vf’と上流側目標電圧値Vfrefとの偏差である上流側電圧偏差ΔVf(ΔVf=Vf’-Vfref)の絶対値|ΔVf|に対し、メインF/BゲインGfbf(Gfbf>0)とメインF/B補正量Kf1とを乗じた値である。
 メインF/B制御によれば、補正出力電圧値Vf’が目標よりもリッチ側にあれば、メインF/B制御量Qcorが負値となって基本噴射量Qbaseが減量側に補正される。その結果、触媒流入ガスの空燃比(上流側空燃比A/Fin)がリーン側に補正される。一方、補正出力電圧値Vf’が目標よりもリーン側にあれば、メインF/B制御量Qcorが正値となって基本噴射量Qbaseが増量側に補正される。その結果、触媒流入ガスの空燃比(上流側空燃比A/Fin)がリッチ側に補正される。
 ここで、補正出力電圧値Vf’について簡単に説明する。
 下流側空燃比A/Foutが目標よりもリッチ側にある場合、サブF/B補正量Kr1は負値を採るため、サブF/B制御量Vfcorは負値を採る。従って、補正出力電圧値Vf’は、第1空燃比センサ219の出力電圧値Vfよりもリッチ側に補正される。その結果、上記メインF/B制御におけるメインF/B制御量Qcorによるリーン側への補正が強くなる。
 一方、下流側空燃比A/Foutが目標よりもリーン側にある場合、サブF/B補正量Kr1は正値を採るため、サブF/B制御量Vfcorは正値を採る。従って、補正出力電圧値Vf’は、第1空燃比センサ219の出力電圧値Vfよりもリーン側に補正される。その結果、上記メインF/B制御におけるメインF/B制御量Qcorによるリッチ側への補正が強くなる。
 即ち、本実施形態におけるサブF/B制御は、触媒排出ガスの空燃比(即ち、下流側空燃比A/Fout)を下流側目標空燃比A/Fouttgに収束させるために、第1空燃比センサ219の出力電圧値を補正する制御となっている。別言すれば、サブF/B制御がメインF/B制御の一部として組み込まれている。
 尚、このようなメインF/B制御及びサブF/B制御の実践的態様は、上述したように多義的である。例えば、サブF/B制御は、上記例の如く第1空燃比センサ219の出力電圧値Vfを補正する制御ではなく、上流側目標空燃比A/Fintgを補正する制御であってもよいし、基本噴射量Qbaseを直接補正する制御であってもよい。いずれにせよ、三元触媒218の下流側に下流側空燃比A/Foutをリニアに検出可能な第2空燃比センサ220を備えることにより、触媒排出ガスの空燃比に良好な制御性が付与される。
 <空燃比F/B制御の詳細>
 次に、図3を参照し、空燃比F/B制御の詳細について説明する。ここに、図3は、空燃比F/B制御のフローチャートである。
 図3において、空燃比F/B制御は、ECU100がより上流において実行する燃料噴射制御の一サブルーチンとして実行される。
 空燃比F/B制御においては、先ず、ストイキF/B条件が成立するか否かが判定される(ステップS101)。ストイキF/B条件とは、上流側目標空燃比A/Fintg及び下流側目標空燃比A/Fouttgを夫々理論空燃比とする条件である。このような条件は、予めエンジン200或いはエンジン200を搭載する車両の運転条件に応じて定められている。
 ストイキF/B条件が成立しない場合(ステップS101:NO)、ECU100は、処理をステップS103に移行させ、他の制御を実行する。他の制御とは、空燃比F/B制御とは異なるサブルーチンの総称であり、ここでは触れないこととする。
 ストイキF/B条件が成立する場合(ステップS101:YES)、ECU100は、ストイキF/B制御を実行する(ステップS102)。ストイキF/B制御とは、図2に制御ブロックを例示した空燃比F/B制御である。ストイキF/B制御では、上述したサブF/B補正量がKr1に設定される。
 ステップS102では、ROMに格納された制御マップの一つである標準マップが使用され、サブF/B補正量Kr1が設定される。ここで、図4を参照し、標準マップについて説明する。ここに、図4は、標準マップの概念図である。
 図4において、標準マップには、サブF/B補正量Kr1が、特性L_Kr1(実線)の関係を有するように記述されている。
 具体的には、下流側電圧偏差ΔVr(即ち、本発明に係る「出力偏差」の一例である)を横軸に、サブF/B補正量Kr1を縦軸に採ると、サブF/B補正量Kr1は、原点(即ち、下流側空燃A/Foutが理論空燃比である状態)に対し左側の負値領域(即ち、空燃比リッチ領域)において負値を採り、原点に対し右側の正値の領域(即ち、空燃比リーン領域)において正値を採る。サブF/B補正量Kr1の絶対値は、下流側電圧偏差ΔVrの絶対値に対しリニアな関係にあり、空燃比リッチ側とリーン側とでサブF/B補正量Kr1は対称である。
 尚、ここでは、サブF/B補正量Kr1が、下流側電圧偏差ΔVrに対し線形変化する関係であり、下流側空燃比A/Foutが目標から大きく乖離している程、より大きなF/Bが掛かる構成となっているが、これは一例である。例えば、サブF/B補正量Kr1は、下流側電圧偏差ΔVrに対して段階的に変化する関係であってもよいし、不変の固定値であってもよい。
 図3に戻り、ストイキF/B制御が実行される過程において、ECU100は、上流側出力電圧値Vfと下流側出力電圧値Vrとの偏差が負値を採るか否か、即ち、触媒排出ガスよりも触媒流入ガスの方が相対的に空燃比リッチであるか否かを判定する(ステップS104)。触媒排出ガスの方が空燃比リッチであるか、又は触媒流入ガスの空燃比と触媒排出ガスの空燃比とが等しい場合(ステップS104:NO)、ECU100は、カウンタC1をリセットして(ステップS106)、空燃比F/B制御を終了する。尚、先述したように、空燃比F/B制御は、一種のサブルーチンであるから、一旦終了しても、図示せぬメインルーチンにおいて実行条件が満たされると再びステップS101から実行される。
 触媒流入ガスの空燃比が相対的にリッチである場合(ステップS104:YES)、ECU100は、カウンタC1をインクリメントし(ステップS105)、カウンタC1がインバランス判定値C0以上であるか否かを判定する(ステップS107)。尚、インバランス判定値C0は予め実験的に適合された値である。カウンタC1がインバランス判定値C0未満である場合(ステップS107:NO)、ECU100は、空燃比F/B制御を終了する。
 一方、上流側空燃比A/Finが下流側空燃比A/Foutよりも小さい(即ち、触媒流入ガスが相対的に空燃比リッチである)状態が継続する過程で、適宜インクリメントされるカウンタC1がインバランス判定値C0以上となると(ステップS107:YES)、ECU100は、エンジン200の複数の気筒相互間に空燃比のインバランスが発生していると判定する(ステップS108)。即ち、この場合、ECU100は、本発明に係る「検出手段」の一例として機能する。
 空燃比のインバランスが発生していると判定されると、ECU100は、第1空燃比センサ219にリッチずれが発生しているとの判断の下、先に述べたサブF/B補正量をKr1からKr2に変更して、サブF/B制御量Vfcorを補正する(ステップS109)。サブF/B補正量Kr2は、ROMに格納された補正マップに記述されており、ECU100は、サブF/B補正量を選択するマップを先の標準マップから係る補正マップに切り替えて、サブF/B補正量Kr2を選択する。サブF/B補正量が変更されると、空燃比F/B制御は終了する。
 ここで、図5を参照し、補正マップについて説明する。ここに、図5は、補正マップの概念図である。尚、同図において、図4と重複する箇所には、同一の符号を付してその説明を適宜省略することとする。
 図5において、補正マップには、サブF/B補正量Kr2が、特性L_Kr2(実線)の関係を有するように記述されている。
 具体的には、下流側電圧偏差ΔVrを横軸に、サブF/B補正量Kr2を縦軸に採ると、サブF/B補正量Kr2は、原点(即ち、下流側空燃A/Foutが理論空燃比である状態)に対し左側の負値領域(即ち、空燃比リッチ領域)において負値を採り、原点に対し右側の正値の領域(即ち、空燃比リーン領域)において正値を採る。また、サブF/B補正量Kr2の絶対値は、下流側電圧偏差ΔVrの絶対値に対しリニアな関係にある。これらの点については、図4に例示した標準マップと同等である。
 一方、補正マップでは、空燃比リッチ側とリーン側とでサブF/B補正量Kr2が非対称である(対称であるL_Kr1(破線)を参照)。即ち、原点よりも左側の空燃比リッチ領域におけるサブF/B補正量Kr2は、原点よりも右側の空燃比リーン領域におけるサブF/B補正量Kr2よりも、下流側電圧偏差ΔVrに対する傾きが小さくなっている。即ち、下流側電圧偏差ΔVrに対する感度が鈍くなっている。
 このサブF/B補正量Kr2がサブF/B制御に使用された場合、下流側空燃比A/Foutが目標よりもリッチ側の値を示している状況において、サブF/B補正量Kr1が使用される場合と較べて燃料噴射量のリーン側への補正が弱くなる。
 ここで、気筒間に空燃比のインバランスが生じると、空燃比リッチの気筒から水素が発生する。この水素は、粒子が小さく拡散速度が速いため、第1空燃比センサ219の検出端子は、この水素に覆われ易い。その結果、第1空燃比センサ219により検出される上流側空燃比A/Finは、触媒流入ガスの平均的な空燃比に対してリッチ側にズレ易い。即ち、第1空燃比センサ219にリッチずれが生じ易い。
 リッチずれが生じると、図2における上流側出力電圧値Vfが過剰にリッチ側に振れるため、何らの対策も講じられることがなければ、メインF/B演算部107から出力されるメインF/B制御量Qcorは、過剰にリーン側の制御量となり、触媒流入ガスの空燃比が、上流側目標空燃比A/Fintgに対してリーン側に停滞してエミッションが悪化する可能性がある。
 そこで、本実施形態では、触媒排出ガスが空燃比リッチである場合(即ち、下流側出力電圧値Vrが下流側目標電圧値Vrref未満である場合)に、上流側出力電圧値Vfと加算されるサブF/B制御量VfcorをサブF/B補正量Kr2により補正し、燃料噴射量の空燃比リーン側への補正を生じ難くする。その結果、リッチずれによる出力変化分が、サブF/B補正量Kr2の変更による出力変化部と相殺され、エミッションの悪化を抑制することが出来るのである。
 尚、本実施形態では、本発明に係る「出力偏差」として、上流側出力電圧値Vfと下流側出力電圧値Vrとの偏差が使用されているが、本発明に係る「出力偏差」の採り得る態様はこれに限定されない。
 例えば、ある期間における上流側出力電圧値Vfのピーク値と、ある期間における下流側出力電圧値Vrのピーク値との偏差が使用されてもよい。或いは、ある期間における上流側出力電圧値Vfの平均値と、ある期間における下流側出力電圧値Vrの平均値との偏差が使用されてもよい。平均値が使用される場合、より正確で安定したインバランス判定が可能となる。また、このような各ガスの空燃比相当値に代えて、第1空燃比センサ219と第2空燃比センサ220との応答速度の差が使用されてもよい。空燃比のインバランスに起因して生じる水素は、三元触媒218を通過する際に触媒反応により消滅するため、その影響は、第1空燃比センサ219でのみ現れる。従って、必然的に両センサの応答速度には検出可能な差が生じるのである。
 尚、本実施形態では、本発明に係る補正手段の作用として、サブF/BゲインGfbrの補正係数であるサブF/B補正量が、Kr1からKr2へと補正される例が示されたが、これは本発明に係る補正手段の作用の一例である。
 例えば、サブF/B演算部105が、サブF/B制御量Vfcorを演算するにあたっては、公知の各種学習処理が好適に行われ得る。学習処理は、例えば、サブF/B制御量の定常成分を、適宜更新を伴いつつ学習値として記憶する処理である。この学習値は、本発明に係る「要素値」の一例としてサブF/B制御量に反映される値であり、空燃比のインバランスが生じている場合、或いは、第1空燃比センサ219にリッチずれが生じている場合において、下流側電圧偏差ΔVrがリッチ側にシフトしている場合に、このサブF/B制御量の学習値を減少側へと補正すれば、上記と同様に空燃比リーン側への過剰な燃料噴射量の補正を回避することが出来る。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う内燃機関の制御装置もまた本発明の技術的範囲に含まれるものである。
 本発明は、内燃機関における燃料噴射量の制御に適用可能である。
 10…エンジンシステム、100…ECU、200…エンジン、CB…シリンダブロック、201…気筒、212…吸気ポートインジェクタ、217…排気管、218…三元触媒、219…第1空燃比センサ、222…第2空燃比センサ。

Claims (9)

  1.  排気経路に設置された排気浄化用の触媒と、
     前記触媒の上流側に設置され、触媒流入ガスの空燃比に応じた第1出力値を出力する第1空燃比センサと、
     前記触媒の下流側に設置され、触媒排出ガスの空燃比に応じた第2出力値を出力可能な第2空燃比センサと
     を備えた内燃機関を制御する、内燃機関の制御装置であって、
     前記第1出力値と第1目標値との偏差たる第1偏差に応じて、前記第1出力値を前記第1目標値に収束させるための第1F/B制御量を決定する第1決定手段と、
     前記第2出力値と第2目標値との偏差たる第2偏差に応じて、前記第2出力値を前記第2目標値に収束させるための第2F/B制御量を決定する第2決定手段と、
     前記決定された第1F/B制御量及び前記決定された第2F/B制御量に基づいて前記内燃機関の燃料噴射量を制御する制御手段と、
     前記内燃機関の複数の気筒相互間における空燃比のインバランスを検出する検出手段と、
     前記空燃比のインバランスが検出された場合に、前記第1空燃比センサと前記第2空燃比センサとの出力偏差に応じて、前記燃料噴射量の空燃比リーン側へ変化が生じ難くなる方向へ前記第2F/B制御量を補正する補正手段と
     を具備することを特徴とする内燃機関の制御装置。
  2.  前記補正手段は、補正がなされない場合と較べて前記燃料噴射量が増加するように前記第2F/B制御量を補正する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  3.  前記検出手段は、前記出力偏差に基づいて前記空燃比のインバランスを検出する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  4.  前記補正手段は、前記第2F/B制御量を構成する要素値を補正することにより前記第2F/B制御量を補正し、
     前記要素値は、各々が前記第2偏差に対応付けられた、前記第1出力値が前記実際の空燃比に対し空燃比リッチ側へ乖離していない場合に対応する標準マップと、前記第1出力値が前記実際の空燃比に対し空燃比リッチ側へ乖離している場合に対応する補正用マップとに記憶されており、
     前記第2決定手段は、前記標準用マップから前記第2偏差に対応する要素値を選択することにより前記第2F/B制御量を決定し、
     前記補正手段は、前記補正用マップから前記第2偏差に対応する要素値を選択することにより前記第2F/B制御量を補正する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  5.  前記標準用マップにおいて、前記第2偏差が基準値に対して空燃比リッチ側の領域にある場合の前記要素値と、前記第2偏差が前記基準値に対して空燃比リーン側の領域にある場合の前記要素値とは、符号が異なる対称関係にあり、
     前記補正用マップは、前記標準用マップにおいて、前記第2偏差が前記基準値に対して空燃比リッチ側の領域にある場合の前記要素値を前記第2偏差に対する感度が低下する方向へ変更することによって、前記第2偏差が前記基準値に対して空燃比リッチ側の領域にある場合の前記要素値と、前記第2偏差が前記基準値に対して空燃比リーン側の領域にある場合の前記要素値とを非対称関係としたマップである
     ことを特徴とする請求の範囲第5項に記載の内燃機関の制御装置。
  6.  前記第1及び第2目標値は、夫々理論空燃比に相当する値である
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  7.  前記補正手段は、前記出力偏差により前記第1出力値が前記第2出力値に対して所定以上空燃比リッチ側にある旨が示される場合に、前記燃料噴射量の空燃比リーン側への変化が抑制される方向へ前記第2F/B制御量を補正する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  8.  前記出力偏差は、(1)前記第1出力値と前記第2出力値との偏差、(2)前記第1出力値のピーク値と前記第2出力値のピーク値との偏差、(3)前記第1出力値の平均値と前記第2出力値の平均値との偏差、及び(4)前記第1空燃比センサの応答速度と前記第2空燃比センサの応答速度との偏差のうちいずれか一つを含む
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
  9.  前記補正手段は、前記第2偏差に乗じられるべきゲイン又は前記第2制御量の学習値を補正する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
PCT/JP2012/059812 2012-04-10 2012-04-10 内燃機関の制御装置 WO2013153626A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014509940A JP5787033B2 (ja) 2012-04-10 2012-04-10 内燃機関の制御装置
DE112012006224.8T DE112012006224B4 (de) 2012-04-10 2012-04-10 Steuerungsgerät für Brennkraftmaschine
CN201280072308.6A CN104220735B (zh) 2012-04-10 2012-04-10 内燃机的控制装置
PCT/JP2012/059812 WO2013153626A1 (ja) 2012-04-10 2012-04-10 内燃機関の制御装置
US14/390,234 US9885307B2 (en) 2012-04-10 2012-04-10 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059812 WO2013153626A1 (ja) 2012-04-10 2012-04-10 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013153626A1 true WO2013153626A1 (ja) 2013-10-17

Family

ID=49327233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059812 WO2013153626A1 (ja) 2012-04-10 2012-04-10 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9885307B2 (ja)
JP (1) JP5787033B2 (ja)
CN (1) CN104220735B (ja)
DE (1) DE112012006224B4 (ja)
WO (1) WO2013153626A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614050C1 (ru) * 2015-01-14 2017-03-22 Тойота Дзидося Кабусики Кайся Устройство управления для двигателя внутреннего сгорания
WO2023209848A1 (ja) * 2022-04-27 2023-11-02 本田技研工業株式会社 内燃機関の空燃比センサ出力値補正装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507824B2 (ja) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 エンジンの制御装置
KR102237560B1 (ko) * 2017-03-14 2021-04-07 현대자동차주식회사 차량 엔진의 연료 분사량 보상 장치 및 그 방법
CN112081677B (zh) * 2020-08-28 2021-12-28 奇瑞汽车股份有限公司 空燃比控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281328A (ja) * 2008-05-23 2009-12-03 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2010180746A (ja) * 2009-02-04 2010-08-19 Toyota Motor Corp 内燃機関の空燃比気筒間インバランス判定装置
JP2012031777A (ja) * 2010-07-30 2012-02-16 Toyota Motor Corp 多気筒内燃機関の燃料噴射量制御装置
JP2012057480A (ja) * 2010-09-06 2012-03-22 Toyota Motor Corp 多気筒内燃機関の空燃比気筒間インバランス判定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543219B1 (en) 2001-10-29 2003-04-08 Ford Global Technologies, Inc. Engine fueling control for catalyst desulfurization
JP4836021B2 (ja) 2007-07-24 2011-12-14 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置及びその方法
WO2010064331A1 (ja) 2008-12-05 2010-06-10 トヨタ自動車株式会社 多気筒内燃機関の空燃比気筒間インバランス判定装置
EP2392811B1 (en) 2009-01-28 2015-11-11 Toyota Jidosha Kabushiki Kaisha Monitoring device for multicylindered internal-combustion engine
US8370043B2 (en) 2009-02-03 2013-02-05 Toyota Jidosha Kabushiki Kaisha Apparatus for determining an air-fuel ratio imbalance among cylinders of an internal combustion engine
WO2011024324A1 (ja) * 2009-08-28 2011-03-03 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP2011117341A (ja) 2009-12-02 2011-06-16 Toyota Motor Corp 内燃機関装置、それを備えた車両および内燃機関装置の制御方法
JP5331753B2 (ja) * 2010-06-04 2013-10-30 日立オートモティブシステムズ株式会社 エンジンの制御装置
US9145804B2 (en) * 2011-11-17 2015-09-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281328A (ja) * 2008-05-23 2009-12-03 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2010180746A (ja) * 2009-02-04 2010-08-19 Toyota Motor Corp 内燃機関の空燃比気筒間インバランス判定装置
JP2012031777A (ja) * 2010-07-30 2012-02-16 Toyota Motor Corp 多気筒内燃機関の燃料噴射量制御装置
JP2012057480A (ja) * 2010-09-06 2012-03-22 Toyota Motor Corp 多気筒内燃機関の空燃比気筒間インバランス判定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614050C1 (ru) * 2015-01-14 2017-03-22 Тойота Дзидося Кабусики Кайся Устройство управления для двигателя внутреннего сгорания
WO2023209848A1 (ja) * 2022-04-27 2023-11-02 本田技研工業株式会社 内燃機関の空燃比センサ出力値補正装置

Also Published As

Publication number Publication date
DE112012006224B4 (de) 2021-08-26
DE112012006224T5 (de) 2015-01-15
JPWO2013153626A1 (ja) 2015-12-17
CN104220735B (zh) 2016-10-26
US20150120170A1 (en) 2015-04-30
CN104220735A (zh) 2014-12-17
JP5787033B2 (ja) 2015-09-30
US9885307B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
JP4832068B2 (ja) 空燃比制御装置
US7597091B2 (en) Air-fuel ratio control apparatus and method for an internal combustion engine
JP4643550B2 (ja) 空燃比制御装置
US20090056686A1 (en) Air-fuel ratio control apparatus and method for an internal combustion engine
JP5447558B2 (ja) 空燃比ばらつき異常検出装置
JP5787033B2 (ja) 内燃機関の制御装置
JP2013060927A (ja) 内燃機関の制御装置
WO2013073036A1 (ja) 内燃機関の制御装置
US7874143B2 (en) Air-fuel ratio control apparatus of internal combustion engine and control method thereof
JP4182833B2 (ja) 内燃機関の空燃比制御装置
JP5586733B1 (ja) 内燃機関の燃料噴射量制御装置および内燃機関の燃料噴射量制御方法
JP4429336B2 (ja) 空燃比制御装置
JP5295177B2 (ja) エンジンの制御装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009150264A (ja) 内燃機関の空燃比制御装置
JP2009144574A (ja) 内燃機関の空燃比制御装置
JP5077768B2 (ja) 内燃機関の燃料噴射制御装置
JP2006258025A (ja) 内燃機関の制御装置
JP5273224B2 (ja) 内燃機関の空燃比制御装置
JP4232710B2 (ja) 水素添加内燃機関の制御装置
JP7567600B2 (ja) 内燃機関の空燃比制御装置
JP5610979B2 (ja) 内燃機関の制御装置
JP4883000B2 (ja) 内燃機関の空燃比制御装置
JP4258733B2 (ja) 内燃機関の空燃比制御装置
JP3879596B2 (ja) 空燃比センサ状態判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509940

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390234

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012006224

Country of ref document: DE

Ref document number: 1120120062248

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874165

Country of ref document: EP

Kind code of ref document: A1