WO2013150973A1 - 樹脂複合材料の製造方法及び樹脂複合材料 - Google Patents

樹脂複合材料の製造方法及び樹脂複合材料 Download PDF

Info

Publication number
WO2013150973A1
WO2013150973A1 PCT/JP2013/059523 JP2013059523W WO2013150973A1 WO 2013150973 A1 WO2013150973 A1 WO 2013150973A1 JP 2013059523 W JP2013059523 W JP 2013059523W WO 2013150973 A1 WO2013150973 A1 WO 2013150973A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite material
resin composite
thermoplastic resin
carbon material
Prior art date
Application number
PCT/JP2013/059523
Other languages
English (en)
French (fr)
Inventor
和洋 沢
健輔 津村
弥 鳴田
延彦 乾
高橋 克典
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012239156A external-priority patent/JP5564090B2/ja
Priority claimed from JP2012282561A external-priority patent/JP2013233790A/ja
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020147023968A priority Critical patent/KR20140147813A/ko
Priority to US14/373,892 priority patent/US20140378599A1/en
Priority to EP13771814.4A priority patent/EP2835393A4/en
Publication of WO2013150973A1 publication Critical patent/WO2013150973A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • C08J3/2056Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase the polymer being pre-melted
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C

Definitions

  • the present invention relates to a method for producing a resin composite material having high mechanical strength and a resin composite material.
  • nanocomposites in which nanometer-order fillers are dispersed in thermoplastic resins have attracted attention.
  • a nanocomposite By forming such a nanocomposite into a molded body of various shapes such as a sheet, it is possible to enhance physical properties such as mechanical strength of the molded body or to impart flexibility to the molded body.
  • methods for dispersing inorganic fillers such as layered silicates and carbon nanotubes in thermoplastic resins have been widely studied.
  • Patent Document 1 discloses a method of obtaining a molded body in which a layered oxalate is dispersed in a thermoplastic resin by melt-kneading a thermoplastic resin and a layered silicate.
  • Patent Document 2 discloses a method of obtaining a molded body by melt-kneading a thermoplastic resin and a filler made of a carbon-based material such as carbon nanotubes, and molding the obtained melt-kneaded product.
  • the inorganic filler having a size of nanometer order shows a strong cohesive force in the thermoplastic resin.
  • an inorganic filler aggregates in a thermoplastic resin in the case of melt-kneading. Therefore, for example, as in Patent Document 1 and Patent Document 2, it is difficult to uniformly disperse the inorganic filler in the thermoplastic resin simply by melt-kneading the inorganic filler and the thermoplastic resin. Even if a resin composite material in which an inorganic filler is aggregated in a thermoplastic resin is molded, it is difficult to obtain a molded body having excellent physical properties such as mechanical strength.
  • Patent Document 3 discloses that a composite resin composition in which a filler is favorably dispersed in a resin can be obtained by precipitating the composite resin composition from a mixed solution of a resin solution and a filler dispersion. .
  • the main object of the present invention is to provide a method for producing a resin composite material having high mechanical strength.
  • the method for producing a resin composite material according to the present invention includes a step of preparing a resin composition including a carbon material having a graphene structure, a solvent, and a thermoplastic resin, and a melting point when the thermoplastic resin is crystalline. If the material is amorphous at a temperature below, the total shear strain amount, which is the product of the shear rate (s-1) and the shear time (s), is 80000 or more at a temperature near Tg. Then, a step of adding a shearing force to the solid of the resin composition and a step of kneading the resin composition at a temperature equal to or higher than the boiling point of the solvent to obtain a resin composite material are provided.
  • the shear rate refers to a value obtained from the minimum clearance between the screw and the barrel.
  • the melting point of the thermoplastic resin means an endothermic peak obtained by differential scanning calorimetry (DSC), and the temperature near Tg is ⁇ 20 ° C. from the temperature of the tan ⁇ peak when measured by a rheometer. Refers to temperature.
  • the step of preparing the resin composition includes a dispersion in which the carbon material having a graphene structure is dispersed in the solvent, and a molten state. It is carried out by mixing with a certain thermoplastic resin.
  • the carbon material having a graphene structure is at least one selected from the group consisting of graphite, exfoliated graphite, and graphene.
  • the thermoplastic resin is one resin selected from the group consisting of polyolefin resins, polyamides, and ABS resins.
  • a shear force is applied to the resin composite material under a condition that a shear rate is 15 s ⁇ 1 or less, and the resin composite material is molded.
  • a molding step for obtaining a resin composite material as a molded body is provided simultaneously or further.
  • a shear force smaller than the shear force applied in the step of adding a shear force to the solid is applied to the resin composite.
  • a shaped body is obtained.
  • the resin composite material according to the present invention includes a carbon material having a graphene structure and a thermoplastic resin, and an area ratio (%) of a carbon material having a thickness of 1 ⁇ m or more in a cross section is obtained by the following formula (1)
  • the tensile elastic modulus at 23 ° C. is 3.0 GPa or more.
  • the carbon material having a graphene structure is at least one selected from the group consisting of graphite, exfoliated graphite, and graphene.
  • thermoplastic resin is one resin selected from the group consisting of polyolefin resins, polyamides, and ABS resins.
  • a carbon material having a graphene structure is contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • a resin composite material that is a molded body and has a cross-sectional area occupied by the carbon material having a thickness of 1 ⁇ m or more of 10% or less.
  • a method for producing a resin composite material having high mechanical strength can be provided.
  • the method for producing a resin composite material according to the present invention includes a step of preparing a resin composition containing a carbon material having a graphene structure, a solvent, and a thermoplastic resin, and shearing at a temperature below the melting point of the resin composition. Adding a shearing force to the solid of the resin composition so that the total shear strain, which is the product of the speed (s-1) and the shear time (s), is 80000 or more, and the resin composition And kneading at a temperature equal to or higher than the boiling point of the solvent to obtain a resin composite material.
  • a resin composition including a carbon material having a graphene structure, a solvent, and a thermoplastic resin is prepared.
  • a dispersion liquid in which a carbon material having a graphene structure is dispersed in a solvent is prepared, and the dispersion liquid is mixed with a thermoplastic resin in a molten state.
  • the carbon material having a graphene structure is not particularly limited, and examples thereof include graphite, exfoliated graphite, and graphene.
  • the shape of the carbon material having a graphene structure is not particularly limited, but it is desirable to have a layered structure. For example, when a carbon material having a layered structure and a thermoplastic resin are combined to form a resin composite material sheet, the surface smoothness of the resin composite material sheet can be improved, and the mechanical strength such as elastic modulus can be increased. Can be increased.
  • Exfoliated graphite is preferable as the carbon material having a graphene structure. By using exfoliated graphite, mechanical strength such as elastic modulus of the resin composite material can be effectively increased. In addition, exfoliated graphite is commercially available and can be produced by a conventionally known method.
  • exfoliated graphite is a laminate of graphene sheets composed of one layer of graphene.
  • Exfoliated graphite is a laminate of graphene sheets that is thinner than the original graphite.
  • the number of graphene sheets laminated in exfoliated graphite is 2 or more, and usually 200 or less.
  • Exfoliated graphite is obtained by exfoliating graphite.
  • Exfoliated graphite is, for example, a chemical treatment method in which ions such as nitrate ions are inserted between graphite layers, a heat treatment method, a physical treatment method such as applying ultrasonic waves to graphite, and electrolysis using graphite as a working electrode. It can be obtained by a method such as an electrochemical method.
  • Exfoliated graphite has a shape with a large aspect ratio. Therefore, when the exfoliated graphite is uniformly dispersed in the resin composite material according to the present invention, the reinforcing effect against the external force applied in the direction intersecting the laminated surface of the exfoliated graphite can be effectively enhanced. In addition, when the aspect ratio of exfoliated graphite is too small, the reinforcement effect with respect to the external force applied to the direction which cross
  • the exfoliated graphite may be surface-modified.
  • Examples of the surface modification treatment include grafting a resin on the surface of exfoliated graphite and introducing a hydrophilic functional group or a hydrophobic functional group into the surface of exfoliated graphite.
  • the affinity between exfoliated graphite and the thermoplastic resin can be increased.
  • the mechanical strength of the resin composite material is increased.
  • the average particle diameter of the carbon material having a graphene structure is preferably about 1 to 5 ⁇ m, and more preferably about 3 to 5 ⁇ m. Note that the average particle diameter of the carbon material having a graphene structure is a value obtained by observation with a scanning electron microscope (SEM).
  • the solvent is not particularly limited.
  • a protic polar solvent is preferable as the solvent.
  • the protic polar solvent include alcohols such as methanol, ethanol, 1-propanol and 1-butanol, carboxylic acids such as acetic acid and formic acid, and water. Only one type of solvent may be used, or two or more types may be mixed and used.
  • the carbon material having a graphene structure in the dispersion is within a range of about 0.1% by mass to 50% by mass. It is preferable to disperse. By dispersing in such a range, the carbon material having a graphene structure can be more uniformly dispersed in the thermoplastic resin when the dispersion is mixed with the thermoplastic resin.
  • the method for dispersing the carbon material having a graphene structure in the dispersion in the solvent is not particularly limited.
  • a stirring device can be used for the dispersion.
  • a well-known thing can be used as a stirring apparatus.
  • Specific examples of the stirring device include a nanomizer, an ultrasonic irradiation device, a ball mill, a sand mill, a basket mill, a three roll mill, a planetary mixer, a bead mill, and a homogenizer.
  • an ultrasonic irradiation device is preferable.
  • thermoplastic resin can be melted by heating.
  • thermoplastic resin is not particularly limited, and a known thermoplastic resin can be used.
  • the thermoplastic resin include polyolefin, polystyrene, polyacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, and ABS resin. Further, a copolymer of at least two monomers among the monomers constituting these polymers can also be used.
  • the thermoplastic resin contained in the resin composite material may be one type or two or more types.
  • thermoplastic resin polyolefin, polyamide or ABS resin
  • polyolefin is inexpensive and easy to mold under heating. Therefore, by using polyolefin as the thermoplastic resin, the manufacturing cost of the resin composite material can be reduced, and the resin composite material can be easily molded.
  • polyamide and ABS resin itself have high mechanical properties, the mechanical properties can be further improved by dispersing nanofillers.
  • polystyrene resin examples include polyethylene, polypropylene, ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-acetic acid.
  • Polyethylene resins such as vinyl copolymers, propylene homopolymers, propylene- ⁇ -olefin copolymers, polypropylene resins such as propylene-ethylene random copolymers, propylene-ethylene block copolymers, butene homopolymers, Examples thereof include homopolymers or copolymers of conjugated dienes such as butadiene and isoprene.
  • a polypropylene resin is particularly preferable as the thermoplastic resin.
  • the carbon material having a graphene structure is preferably mixed in the range of about 1 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and in the range of about 1 to 30 parts by mass. It is more preferable to mix with. By mixing in such a range, mechanical strength such as tensile elastic modulus of the resin composite material can be increased.
  • the carbon material having a graphene structure is mixed with a dispersion liquid dispersed in a solvent and a thermoplastic resin in a molten state. It is desirable to provide a composition.
  • a resin composition containing the carbon material having the graphene structure, a solvent, and a thermoplastic resin is prepared, and shear force is applied to a solid material described later. An additional step may be performed.
  • the total shear strain which is the product of the shear rate (s-1) and the shear time (s), is 80000 or more.
  • the shearing force is applied to the solid material of the resin composition.
  • the solid material of the resin composition is obtained by cooling the resin composition obtained by mixing the dispersion and the molten thermoplastic resin. Cooling of the resin composition may be performed by natural cooling or by adjusting the temperature.
  • the method for applying such a shearing force to the solid material of the resin composition is not particularly limited.
  • the method of performing solid-phase shear extrusion with respect to the solid of a resin composition is mentioned.
  • the melting point It is preferable to apply a shearing force at a temperature lower by 50 ° C., and it is more preferable to apply a shearing force at a temperature 70 ° C. lower than the melting point.
  • thermoplastic resin is an amorphous resin
  • kneading is preferably performed at a temperature within a temperature of Tg peak within ⁇ 20 ° C, and more preferably within a temperature within ⁇ 10 ° C.
  • the total shear strain amount is preferably 120,000 or more, and more preferably 140000 or more.
  • a carbon material having a graphene structure aggregated in the resin composition can be dispersed by applying the above shearing force to the solid material of the resin composition.
  • the resin composition is kneaded at a temperature equal to or higher than the boiling point of the solvent used in the dispersion to obtain a resin composite material.
  • the solvent can be removed from the resin composition while suppressing aggregation of the carbon material in the resin composition. Therefore, a resin composite material having excellent mechanical properties such as elastic modulus and linear expansion number can be produced.
  • the temperature at which the solvent is removed is preferably higher than the melting point of the thermoplastic resin contained in the resin composition. Thereby, it can shape
  • the shearing force is further applied to the resin composite material under a condition that the shear rate is 15 s ⁇ 1 or less, and the resin composite material is obtained. It is more desirable to carry out a molding step of molding a resin to obtain a resin composite material as a molded body.
  • the shear rate is more preferably 10 s ⁇ 1 or less.
  • the molding temperature in this molding process is usually 180 ° C. or higher.
  • the molding method is not particularly limited. For example, by pressing the resin composite material at a temperature equal to or higher than the melting point of the thermoplastic resin, the resin composite material is formed into a desired shape such as a sheet shape to obtain a resin molded body such as a sheet shape. be able to.
  • the molding step when a shear force is applied to the resin composite material, it is preferable to apply a shear force smaller than the shear force applied in the step of applying the shear force to the solid matter. Thereby, the carbon material having the dispersed graphene structure can be prevented from reaggregating in the molding step.
  • the resin composite material is molded under a condition that a high shear force is not applied in the molten state. For this reason, in this invention, it is suppressed effectively that the carbon material which has a graphene structure aggregates in a resin molding. Therefore, the dispersibility of the carbon material having a graphene structure in the resin molded body is enhanced, and the mechanical strength of the resin molded body can be further increased. In addition, since an operation of applying a high shear force in the molten state when molding the resin composite material is not performed, local heat generation is unlikely to occur and the molecular chain is not easily broken. Therefore, it is excellent also in heat resistance.
  • the resin composite material according to the present invention includes the carbon material having the graphene structure and the thermoplastic resin.
  • the resin composite material according to the present invention can be manufactured, for example, by the above-described method for manufacturing a resin composite material according to the present invention.
  • the area ratio (%) of the carbon material having a thickness of 1 ⁇ m or more in the cross section of the resin composite material is [Ar] or less determined by the following formula (1).
  • [Ar] (1/5)
  • the area ratio (%) of the carbon material having a thickness of 1 ⁇ m or more in the entire cross section of the resin composite material can be measured as follows. First, the resin composite material is cut so that the cross-sectional area is 9 mm 2 or more in an arbitrary cross section. Next, an agglomerate of the carbon material having the maximum cross-sectional area that can be confirmed in the cross section enters the observation screen, and this cross section is photographed at 1000 times by a scanning electron microscope (SEM). In the SEM image of the cross section taken in this way, a carbon material having a thickness of 1 ⁇ m or more is defined as an aggregate. By dividing the area occupied by the aggregate by the entire area of the visual field of the image, the area ratio (%) occupied by the carbon material having a thickness of 1 ⁇ m or more can be calculated.
  • SEM scanning electron microscope
  • the area ratio (%) occupied by the carbon material having a thickness of 1 ⁇ m or more is equal to or less than the above [Ar]. For this reason, most of the carbon material is finely dispersed to a thickness of less than 1 ⁇ m in the cross section of the resin composite material. That is, in the resin composite material of the present invention, the carbon material is uniformly dispersed in the thermoplastic resin. Therefore, in the resin composite material according to the present invention, mechanical strength such as tensile elastic modulus is increased.
  • the tensile elastic modulus at 23 ° C. of the resin composite material is preferably 3.0 GPa or more, and more preferably 3.5 GPa or more.
  • the resin composite material can be suitably used for applications such as an automobile outer plate that requires a high tensile elastic modulus.
  • the tensile elastic modulus at 23 ° C. of the resin composite material is usually 2.3 GPa or less.
  • the resin composite material as a molded body when the molding step for molding the resin composite material is performed under the condition that the shear rate is 15 s ⁇ 1 or less, the resin composite material as a molded body can be obtained. In this case, as described above, the heat resistance is further improved.
  • the ratio (%) of the area occupied by the carbon material having a thickness of 1 ⁇ m or more in the cross section is 10% or less in the total cross-sectional area. Is desirable.
  • Example 1 Exfoliated graphite (produced by Hammers method, average thickness 30 nm, aspect ratio 170) was dispersed in water by 25% by mass to obtain a slurry dispersion.
  • a polypropylene resin manufactured by Prime Polypro, trade name: J-721GR, tensile elastic modulus determined by JIS K7113 at 23 ° C .: 1.2 GPa, melting point measured by DSC
  • the resin composition was prepared by mixing exfoliated graphite to 20 parts by mass with respect to 100 parts by mass of 170 ° C.).
  • the obtained resin composition was kneaded in a solid state with a solid-phase shear extruder so that the kneading temperature in the solid state was 90 ° C. and the total shear strain amount was 82,000.
  • melt kneading was performed at 180 ° C., and the solvent was removed to obtain a resin composite material.
  • the molten resin composite material was immediately molded by a hot press adjusted to 180 ° C. to obtain a resin sheet having a thickness of 0.5 mm.
  • Example 2 A resin sheet was obtained in the same manner as in Example 1 except that ethanol was used instead of water.
  • Example 3 A resin sheet was obtained in the same manner as in Example 1 except that the kneading temperature in the solid state was 130 ° C.
  • Example 4 A resin sheet was obtained in the same manner as in Example 1 except that the composite filler concentration was 10 phr.
  • Example 5 A resin sheet was obtained in the same manner as in Example 1 except that the total shear strain was 145000.
  • Example 6 A resin sheet was obtained in the same manner as in Example 1 except that the filler was graphite (manufactured by SEC Carbon, trade name: SNO, average thickness 900 nm).
  • Example 7 The resin was the same as in Example 1 except that the resin was HDPE (manufactured by Nippon Polyethylene Co., Ltd., trade name: HF560, tensile elastic modulus: 1.1 GPa), and the kneading temperature in the solid state was 60 ° C. A sheet was obtained.
  • HDPE manufactured by Nippon Polyethylene Co., Ltd., trade name: HF560, tensile elastic modulus: 1.1 GPa
  • the kneading temperature in the solid state was 60 ° C. A sheet was obtained.
  • Example 8 Example 1 except that the resin was PA (trade name: A-125J, manufactured by Unitika Ltd., tensile elastic modulus (at the time of water absorption): 1.0 GPa), and the kneading temperature in the solid state was 200 ° C. Similarly, a resin sheet was obtained.
  • PA trade name: A-125J, manufactured by Unitika Ltd., tensile elastic modulus (at the time of water absorption): 1.0 GPa
  • the kneading temperature in the solid state was 200 ° C.
  • a resin sheet was obtained.
  • Example 9 Resin sheet as in Example 1 except that the resin was ABS (trade name: S210B, tensile elastic modulus: 2.4 GPa) manufactured by UMGABS, and the kneading temperature in the solid state was 100 ° C. Got.
  • ABS trade name: S210B, tensile elastic modulus: 2.4 GPa
  • Comparative Example 1 A resin sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that the kneading temperature was 180 ° C. In Comparative Example 1, since the resin composition was melted at 180 ° C., the resin composition was not kneaded in the solid state.
  • the area ratio (%) occupied by exfoliated graphite having a thickness of 1 ⁇ m or more was determined as follows. It cut out from the resin sheet so that an observation cross section might become parallel to the flow direction of resin. Next, this cross section was photographed with a scanning electron microscope (SEM) at a magnification of 1000 to obtain an image of the cross section. Next, in this image, the area occupied by exfoliated graphite in the resin sheet was calculated by dividing the area occupied by exfoliated graphite having a thickness of 1 ⁇ m or more by the area of the field of view of the SEM image. The results are shown in Table 1.
  • [Ar] is calculated as 4 according to the above formula (1).
  • [Ar] in Example 4 and Comparative Example 4 is determined to be 2.
  • the dispersibility of exfoliated graphite is very good ( ⁇ ) when the area ratio (%) occupied by exfoliated graphite having a thickness of 1 ⁇ m or more is 4% or less, and is over 4% and 10% or less.
  • the case was good ( ⁇ ), and the case where it was over 10% was bad ( ⁇ ).
  • 10 phr it was very good ( ⁇ ) when it was 2% or less, and bad (x) when it was over 5%.
  • Table 1 The results are shown in Table 1.
  • Example 10 to 13 and Comparative Examples 8 to 19 The filler used for the Example and the comparative example was manufactured as follows. 2.5 g of graphite single crystal powder (manufactured by SEC Carbon Co., SNO-5) was added to 115 ml of 65% by mass concentrated sulfuric acid and stirred while cooling in a 10 ° C. water bath. Next, 15 g of potassium permanganate was gradually added to the obtained mixture and stirred, and the mixture was reacted at 35 ° C. for 30 minutes. Next, 230 g of water was gradually added to the obtained reaction mixture and reacted at 98 ° C. for 15 minutes.
  • SNO-5 graphite single crystal powder
  • MA3H tensile elastic modulus determined by JIS K7113-1995 at 23 ° C .: 1.8 GPa, density 0.9 g / cm 3 , melting point measured using DSC is 170 ° C., 100 parts by mass of
  • twin-screw extruder 1 As shown in FIG.
  • the diameter of the screw 4 was 15 mm
  • the effective length of the screw 4 / the diameter of the screw 4 was 60.
  • the temperature in each part was set so that the temperature of the supply part A was 80 to 130 ° C.
  • the temperature of the shear kneading part B was 50 to 130 ° C.
  • the temperature of the discharge part C was 150 ° C.
  • a molding step of pressing the mixture into a sheet was performed to obtain a sheet-like resin molded body having a thickness of 0.5 mm.
  • a 0.5 mm thick spacer was used, preheating was performed at 180 ° C. for 2 minutes, and then a pressure of 100 kPa was applied for 3 minutes.
  • Example 11 instead of polypropylene, polyamide (trade name “1300S” manufactured by Asahi Kasei Co., Ltd., tensile elastic modulus determined by JIS K7113-1995 at 23 ° C .: 2.7 GPa, density 1.14 g / cm 3 , linear expansion coefficient: 8 ⁇ 10 ⁇ 5 / K), and the dispersion step was performed in the same manner as in Example 10 except that the dispersion temperature was changed from 130 ° C. to 200 ° C. The temperature of each part of the twin-screw extruder in the dispersing step was 150 to 200 ° C. for the supply unit A, 130 to 200 ° C. for the shear kneading unit B, and 220 ° C. for the discharge unit C.
  • polyamide trade name “1300S” manufactured by Asahi Kasei Co., Ltd., tensile elastic modulus determined by JIS K7113-1995 at 23 ° C .: 2.7 GPa, density 1.
  • ABS resin manufactured by UMGABS, trade name: S210B, tensile elastic modulus determined by JIS K7113-1995 at 23 ° C .: 2.3 GPa, density 1.07 g
  • Example 13 Instead of polypropylene, high-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: HF560, tensile elastic modulus determined by JIS K7113-1995 at 23 ° C .: 1.1 GPa, density 0.96 g / cm 3 , using DSC
  • the temperature of each part of the twin-screw extruder in the dispersion step was 80 to 100 ° C. in the supply unit A, 70 to 100 ° C. in the shear kneading unit B, and 120 ° C. in the discharge unit C.
  • Comparative Example 9 A sheet-like resin molded body having a thickness of 0.5 mm was obtained in the same manner as in Comparative Example 8, except that the melt-kneading time was 10 minutes.
  • Comparative Example 12 A sheet-like resin molded body having a thickness of 0.5 mm was obtained in the same manner as in Comparative Example 11 except that the melt-kneading time was 10 minutes.
  • Comparative Example 15 A sheet-like resin molded body having a thickness of 0.5 mm was obtained in the same manner as in Comparative Example 14 except that the melt-kneading time was 10 minutes.
  • Comparative Example 18 A sheet-like resin molded body having a thickness of 0.5 mm was obtained in the same manner as in Comparative Example 17 except that the melt-kneading time was 10 minutes.
  • the resin molded bodies obtained in Examples 10 to 13 and Comparative Examples 8 to 19 were cut in the sheet thickness direction.
  • the obtained cut surface was photographed at 1000 times using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the area occupied by the aggregate of the filler observed was measured.
  • the aggregate was defined as having a thickness of 1 ⁇ m or more.
  • the area occupied by the aggregate having a thickness of 1 ⁇ m or more was measured.
  • the area (%) of the area occupied by the aggregate was calculated by dividing the area occupied by the aggregate by the area of the entire field of view of the SEM image. The results are shown in Table 2.
  • PP Polypropylene
  • PA Polyamide
  • ABS ABS resin
  • HDPE High density polyethylene

Abstract

 機械的強度の高い樹脂複合材料を製造する方法を提供する。 グラフェン構造を有する炭素材料と、溶媒と、熱可塑性樹脂とを含む、樹脂組成物を得る工程と、前記熱可塑性樹脂が結晶性である場合には、融点未満の温度下において、前記熱可塑性樹脂が非晶性である場合には、Tg付近の温度において、せん断速度(s-1)とせん断時間(s)との積である総せん断歪量が80000以上となるようにして、前記樹脂組成物の固形物に対してせん断力を付加する工程と、樹脂組成物を溶媒の沸点以上の温度下で混練して樹脂複合材料を得る工程とを備える。

Description

樹脂複合材料の製造方法及び樹脂複合材料
 本発明は、機械的強度の高い樹脂複合材料の製造方法、及び樹脂複合材料に関する。
 近年、ナノメートルオーダーのフィラーが熱可塑性樹脂中に分散された、いわゆるナノコンポジットが注目されている。このようなナノコンポジットをシート状などの様々な形状の成形体へと成形することにより、成形体の機械的強度などの物性を高めたり、成形体に柔軟性を付与したりすることができるとされている。このようなナノコンポジットを得るために、層状珪酸塩やカーボンナノチューブなどの無機フィラーを熱可塑性樹脂に分散する方法が広く研究されている。
 例えば、特許文献1には、熱可塑性樹脂と層状珪酸塩とを溶融混練することにより、層状硅酸塩が熱可塑性樹脂中に分散された成形体を得る方法が開示されている。また、特許文献2には、熱可塑性樹脂とカーボンナノチューブなどの炭素系材料からなるフィラーとを溶融混練し、得られた溶融混練物を成形することにより成形体を得る方法が開示されている。
 しかしながら、ナノメートルオーダーのサイズを有する無機フィラーは、熱可塑性樹脂中において強い凝集力を示す。このため、溶融混練の際に、熱可塑性樹脂中で無機フィラーが凝集するという問題がある。よって、例えば特許文献1及び特許文献2のように、無機フィラーと熱可塑性樹脂とを、単に溶融混練するだけでは、熱可塑性樹脂中において無機フィラーを均一に分散させることは困難である。熱可塑性樹脂中に無機フィラーが凝集した樹脂複合材料を成形したとしても、機械的強度などに優れた物性を有する成形体を得ることは困難である。
 特許文献3には、樹脂溶液とフィラー分散液の混合液から、複合樹脂組成物を析出させることにより、樹脂中にフィラーが良好に分散された複合樹脂組成物が得られることが開示されている。
特開2001-26724号公報 特開2008-266577号公報 特開2005-264059号公報
 しかしながら、特許文献3に記載された方法では、樹脂複合材料中に溶媒が残ってしまうことがある。樹脂複合材料中に溶媒が残っていると、樹脂複合材料の機械的強度が低くなるという問題がある。
 本発明は、機械的強度の高い樹脂複合材料を製造する方法を提供することを主な目的とする。
 本発明に係る樹脂複合材料の製造方法は、グラフェン構造を有する炭素材料と、溶媒と、熱可塑性樹脂とを含む樹脂組成物を用意する工程と、熱可塑性樹脂が結晶性である場合には融点未満の温度下において、非晶性である場合には、Tg付近の温度にて、せん断速度(s-1)とせん断時間(s)との積である総せん断歪量が80000以上となるようにして、樹脂組成物の固形物に対してせん断力を付加する工程と、樹脂組成物を溶媒の沸点以上の温度下で混練して樹脂複合材料を得る工程とを備える。なお、本発明において、せん断速度とは、スクリューとバレルの最小クリアランス部分から求めた値をいう。一方、熱可塑性樹脂の融点とは、示差走査熱量測定(DSC)によって測定得られた吸熱ピークをいい、Tg付近の温度とはレオメータによって測定したときに、tanδのピークの温度から±20℃の温度のことをいう。
 本発明に係る樹脂複合材料の製造方法のある特定の局面では、前記樹脂組成物を用意する工程が、グラフェン構造を有する前記炭素材料が前記溶媒中に分散している分散液と、溶融状態にある前記熱可塑性樹脂とを混合することにより行われる。
 本発明に係る樹脂複合材料の製造方法の他の特定の局面では、グラフェン構造を有する炭素材料が、黒鉛、薄片化黒鉛、及びグラフェンからなる群から選択された少なくとも1種である。
 本発明に係る樹脂複合材料の製造方法の他の特定の局面では、熱可塑性樹脂がポリオレフィン系樹脂、ポリアミド及びABS樹脂からなる群から選択した1種の樹脂である。
 本発明に係る樹脂複合材料の製造方法の別の特定の局面では、樹脂組成物を得る工程において、熱可塑性樹脂100質量部に対して、グラフェン構造を有する炭素材料を1質量部~50質量部の範囲で混合する。
 本発明に係る樹脂複合材料の製造方法のさらに他の特定の局面では、前記樹脂複合材料に対してせん断速度が15s-1以下となる条件でせん断力を加え、前記樹脂複合材料を成形して成形体としての樹脂複合材料を得る成形工程を同時にまたは、さらに備えられる。
 本発明に係る樹脂複合材料の製造方法のさらに他の特定の局面では、前記成形工程において、前記固形物に対してせん断力を付加する工程において加えたせん断力よりも小さいせん断力を前記樹脂複合材料に対して加えて成形体を得る。
 本発明に係る樹脂複合材料は、グラフェン構造を有する炭素材料と、熱可塑性樹脂とを含み、断面における厚み1μm以上の炭素材料の占める面積率(%)が、下記式(1)で求められる[Ar]以下である、樹脂複合材料。
[Ar]=(1/5)[X] (1)
[式中、[X]は、熱可塑性樹脂100質量部に対する炭素材料の質量部を示す。]
 本発明に係る樹脂複合材料のある特定の局面では、23℃における引張弾性率が3.0GPa以上である。
 本発明に係る樹脂複合材料の他の特定の局面では、グラフェン構造を有する炭素材料が、黒鉛、薄片化黒鉛、グラフェンからなる群から選択された少なくとも1種である。
 本発明に係る樹脂複合材料の別の特定の局面では、熱可塑性樹脂がポリオレフィン系樹脂、ポリアミド及びABS樹脂からなる群から選択した1種の樹脂である。
 本発明に係る樹脂複合材料のさらに他の特定の局面では、熱可塑性樹脂100質量部に対して、グラフェン構造を有する炭素材料が1質量部~50質量部の範囲で含有されている。
 本発明に係る樹脂複合材料のさらに別の特定の局面では、成形体であって、断面において厚み1μm以上の前記炭素材料の占める面積の割合が10%以下である、樹脂複合材料が提供される。
 本発明によれば、機械的強度の高い樹脂複合材料を製造する方法を提供することができる。
実施例及び比較例で用いた二軸押出機の模式図である。
 以下、本発明の樹脂複合材料の製造方法、及び樹脂複合材料の詳細を説明する。
 (樹脂複合材料の製造方法)
 本発明に係る樹脂複合材料の製造方法は、グラフェン構造を有する炭素材料と、溶媒と、熱可塑性樹脂とを含む樹脂組成物を用意する工程と、樹脂組成物の融点未満の温度下において、せん断速度(s-1)とせん断時間(s)との積である総せん断歪量が80000以上となるようにして、樹脂組成物の固形物に対してせん断力を付加する工程と、樹脂組成物を溶媒の沸点以上の温度下で混練して樹脂複合材料を得る工程とを備える。
 本発明においては、まず、グラフェン構造を有する炭素材料と、溶媒と、熱可塑性樹脂とを含む樹脂組成物を用意する。好ましくは、樹脂組成物を用意する工程では、グラフェン構造を有する炭素材料が溶媒中に分散した分散液を準備し、該分散液を溶融状態にある熱可塑性樹脂と混合する。
 グラフェン構造を有する炭素材料としては、特に限定されないが、例えば、黒鉛、薄片化黒鉛、グラフェンなどが挙げられる。グラフェン構造を有する炭素材料の形状は、特に限定されないが、層状構造を有することが望ましい。例えば、層状構造を有する炭素材料と熱可塑性樹脂とを複合して、樹脂複合材料のシートとした場合、樹脂複合材料のシートの表面の平滑性を高めることができ、弾性率などの機械的強度を高めることができる。
 グラフェン構造を有する炭素材料としては、薄片化黒鉛が好ましい。薄片化黒鉛を用いることにより、樹脂複合材料の弾性率などの機械的強度を効果的に高めることができる。また、薄片化黒鉛は、市販品が入手可能であり、従来公知の方法により製造することもできる。
 本発明において、薄片化黒鉛とは、1層のグラフェンにより構成されたグラフェンシートの積層体である。薄片化黒鉛は、元の黒鉛よりも薄い、グラフェンシートの積層体である。薄片化黒鉛におけるグラフェンシートの積層数は、2以上であり、通常、200以下である。薄片化黒鉛は、黒鉛を剥離処理することなどにより得られる。薄片化黒鉛は、例えば、黒鉛の層間に硝酸イオンなどのイオンを挿入した後に加熱処理する化学的処理方法、黒鉛に超音波を印加するなどの物理的処理方法、黒鉛を作用極として電気分解を行う電気化学的方法などの方法により得られる。
 薄片化黒鉛は、アスペクト比の大きい形状を有する。そのため、本発明に係る樹脂複合材料において、薄片化黒鉛が均一に分散されていると、薄片化黒鉛の積層面に交差する方向に加わる外力に対する補強効果を効果的に高められる。なお、薄片化黒鉛のアスペクト比が小さすぎると、積層面に交差する方向に加わった外力に対する補強効果が充分でないことがある。薄片化黒鉛のアスペクト比が大きすぎると、効果が飽和してそれ以上の補強効果を望めないことがある。よって、薄片化黒鉛のアスペクト比は、50以上であることが好ましく、100以上であることがより好ましい。薄片化黒鉛のアスペクト比は、500以下であることが好ましい。なお、本発明においてアスペクト比とは、薄片化黒鉛の厚みに対する薄片化黒鉛の積層面方向における最大寸法の比をいう。
 薄片化黒鉛は、表面改質処理されていてもよい。表面改質処理としては、例えば、薄片化黒鉛の表面に樹脂をグラフト化することや、薄片化黒鉛の表面に親水性官能基または疎水性官能基を導入する処理などが挙げられる。薄片化黒鉛を表面改質処理することにより、薄片化黒鉛と熱可塑性樹脂との親和性を高めることができる。薄片化黒鉛と熱可塑性樹脂との親和性を高められると、樹脂複合材料の力学強度が高められる。
 樹脂複合材料の機械的強度を高めるためには、グラフェン構造を有する炭素材料の平均粒子径は、1~5μm程度であることが好ましく、3~5μm程度であることがより好ましい。なお、グラフェン構造を有する炭素材料の平均粒子径は、走査型電子顕微鏡(SEM)によって観測して求めた値である。
 上記溶媒は、特に限定されない。グラフェン構造を有する炭素材料を溶媒中において均一に分散させるためには、溶媒としては、例えば、プロトン性極性溶媒などが好ましい。プロトン性極性溶媒としては、例えば、メタノール、エタノール、1-プロパノール、1-ブタノールなどのアルコール、酢酸、ギ酸などのカルボン酸、水などが挙げられる。溶媒は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
 最初に、グラフェン構造を有する炭素材料を上記溶媒に分散させて分散液を得る場合には、分散液中において、グラフェン構造を有する炭素材料は、0.1質量%~50質量%程度の範囲で分散させることが好ましい。このような範囲で分散させることにより、分散液を熱可塑性樹脂と混合した際に、グラフェン構造を有する炭素材料を熱可塑性樹脂中に、より一層均一に分散させやすくなる。
 分散液中において、グラフェン構造を有する炭素材料を溶媒に分散させる方法は、特に限定されない。分散には、例えば、撹拌装置などを用いることができる。撹拌装置としては、公知のものが使用できる。攪拌装置の具体例としては、ナノマイザー、超音波照射装置、ボールミル、サンドミル、バスケットミル、三本ロールミル、プラネタリーミキサー、ビーズミル、ホモジナイザーなどが挙げられる。グラフェン構造を有する炭素材料を溶媒中において均一に分散させるためには、これらの中でも、超音波照射装置が好ましい。
 次に、上記の分散液と溶融した熱可塑性樹脂とを混合して樹脂組成物を得ることが好ましい。熱可塑性樹脂は、加熱することにより溶融させることができる。
 熱可塑性樹脂としては、特に限定されず、公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂の具体例としては、ポリオレフィン、ポリスチレン、ポリアクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン、ABS樹脂などが得られる。また、これらのポリマーを構成しているモノマーのうち少なくとも2種のモノマーの共重合体も用い得る。樹脂複合材料に含まれる熱可塑性樹脂は、1種類であってもよいし、2種類以上であってもよい。
 熱可塑性樹脂としては、ポリオレフィン、ポリアミドまたはABS樹脂が好ましい。ポリオレフィンは安価であり、加熱下の成形が容易である。そのため、熱可塑性樹脂としてポリオレフィンを用いることにより、樹脂複合材料の製造コストを低減でき、樹脂複合材料を容易に成形することができる。また、ポリアミド、ABS樹脂はそれ自体力学物性が高いので、ナノフィラーを分散させることにより、さらに力学物性を向上させることができる。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、エチレン単独重合体、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂、プロピレン単独重合体、プロピレン-α-オレフィン共重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体などのポリプロピレン系樹脂、ブテン単独重合体、ブタジエン、イソプレンなどの共役ジエンの単独重合体または共重合体などが挙げられる。樹脂複合材料の製造コストを低減し、樹脂複合材料を容易に成形するためには、熱可塑性樹脂としては、ポリプロピレン系樹脂が特に好ましい。
 樹脂組成物中において、グラフェン構造を有する炭素材料は、熱可塑性樹脂100質量部に対して1質量部~50質量部程度の範囲で混合することが好ましく、1質量部~30質量部程度の範囲で混合することがより好ましい。このような範囲で混合することにより、樹脂複合材料の引張弾性率などの機械的強度を高めることができる。
 上記のように、樹脂組成物を用意する工程においては、好ましくは、グラフェン構造を有する炭素材料は溶媒中に分散している分散液と、溶融状態にある熱可塑性樹脂とを混合することにより樹脂組成物を用意することが望ましい。もっとも、本発明においては、分散工程を実施することなく、上記グラフェン構造を有する炭素材料と、溶媒と、熱可塑性樹脂とを含む樹脂組成物を用意し、後述の固形物に対してせん断力を付加する工程を実施してもよい。
 次に、樹脂組成物に含まれる熱可塑性樹脂の融点未満の温度下において、せん断速度(s-1)とせん断時間(s)との積である総せん断歪量が80000以上となるようにして、樹脂組成物の固形物に対してせん断力を付加する。樹脂組成物の固形物は、分散液と溶融した熱可塑性樹脂とを混合して得た樹脂組成物を冷却することにより得られる。樹脂組成物の冷却は、自然冷却によって行ってもよいし、温度調節して行ってもよい。
 樹脂組成物の固形物に対して、このようなせん断力を付加する方法は、特に限定されない。例えば、樹脂組成物の固形物に対して、固相せん断押出を行う方法などが挙げられる。樹脂組成物中において凝集しているグラフェン構造を有する炭素材料をより均一に分散させるためには、樹脂組成物の固形物に対して、熱可塑性樹脂が結晶性の樹脂である場合には、融点より50℃低い温度下でせん断力を付加することが好ましく、融点より70℃低い温度でせん断力を付加することがより好ましい。熱可塑性樹脂が非晶性樹脂の場合には、Tgピークの温度±20℃以内の温度で混練するのが好ましく、±10℃以内の温度で混練するのがより好ましい。また、総せん断歪量は、120000以上であることが好ましく、140000以上であることがより好ましい。
 樹脂組成物の固形物に対して、以上のようなせん断力を付加することにより、樹脂組成物中において凝集しているグラフェン構造を有する炭素材料を分散させることができる。
 次に、樹脂組成物を、上記の分散液に用いた溶媒の沸点以上の温度下で混練して樹脂複合材料を得る。これにより、樹脂組成物中における炭素材料の凝集を抑制しつつ、樹脂組成物から溶媒を除去することができる。よって、弾性率、線膨張数などの機械的特性に優れた樹脂複合材料を製造することができる。
 溶媒を除去するときの温度は、樹脂組成物に含まれる熱可塑性樹脂の融点よりも高い温度とすることが好ましい。これにより、樹脂組成物から溶媒を除去しながら、所望の形状を有する樹脂複合材料に成形することができる。
 好ましくは、上記のように固形物に対してせん断力を付加する工程と同時にまたは後に、樹脂複合材料に対して、せん断速度が15s-1以下となる条件でせん断力をさらに加え、樹脂複合材料を成形して成形体としての樹脂複合材料を得る成形工程を実施することがさらに望ましい。この場合、グラフェン構造を有する炭素材料が、再凝集することを抑制するためには、せん断速度は10s-1以下であることがさらに望ましい。この成形工程における成形温度は、通常、180℃以上である。
 成形方法は、特に限定されない。例えば、熱可塑性樹脂の融点以上の温度において、樹脂複合材料に対してプレス加工などを施すことにより、樹脂複合材料をシート状などの所望の形状に成形し、シート状などの樹脂成形体とすることができる。
 成形工程において、樹脂複合材料に対してせん断力を加える場合、上記固形物に対してせん断力を加える工程において加えたせん断力よりも小さいせん断力を加えることが好ましい。それによって、分散されていたグラフェン構造を有する炭素材料が、成形工程において再凝集することを抑制することができる。
 せん断速度が15s-1以下となる条件で樹脂複合材料を成形することが好ましい。この場合には、溶融状態で高いせん断力が加わらない条件で樹脂複合材料が成形される。このため、本発明では、樹脂成形体において、グラフェン構造を有する炭素材料が凝集することが効果的に抑制される。よって、樹脂成形体中のグラフェン構造を有する炭素材料の分散性が高められ、樹脂成形体の機械的強度をより一層高めることができる。また、樹脂複合材料を成形する際の溶融状態で高いせん断力を加える操作を行わないため、局所的な発熱が生じ難く、分子鎖が切断されにくい。よって、耐熱性においても優れている。
 (樹脂複合材料)
 本発明に係る樹脂複合材料は、上記のグラフェン構造を有する炭素材料と、上記の熱可塑性樹脂とを含む。本発明に係る樹脂複合材料は、例えば、上記の本発明に係る樹脂複合材料の製造方法によって製造することができる。
 本発明に係る樹脂複合材料は、樹脂複合材料の断面における厚み1μm以上の炭素材料の占める面積率(%)が、下記式(1)で求められる[Ar]以下である。
[Ar]=(1/5)[X] (1)
[式中、[X]は、熱可塑性樹脂100質量部に対する炭素材料の質量部を示す。]
 樹脂複合材料の全断面中における、厚み1μm以上の炭素材料の占める面積率(%)は、以下のようにして測定することができる。まず、樹脂複合材料を任意の断面において、断面積が9mm以上になるように切断する。次に、この断面中において確認できる最大の断面積を有する炭素材料の凝集体が観察画面に入るようにして、この断面を走査型電子顕微鏡(SEM)により1000倍で撮影する。このようにして撮影された断面のSEM画像において、厚みが1μm以上ある炭素材料を凝集体と定義する。この凝集体の占める面積を、上記画像の視野の面積全体で除することによって、厚み1μm以上の炭素材料の占める面積率(%)を算出することができる。
 本発明に係る樹脂複合材料は、厚み1μm以上の炭素材料の占める面積率(%)が、上記の[Ar]以下である。このため、炭素材料の多くが、樹脂複合材料の断面において厚み1μm未満となる程度に細かく分散している。すなわち、本発明の樹脂複合材料では、炭素材料が熱可塑性樹脂中に均一に分散されている。従って、本発明に係る樹脂複合材料においては、引張弾性率などの機械的強度が高められている。
 樹脂複合材料の23℃における引張弾性率は、3.0GPa以上であることが好ましく、3.5GPa以上であることがより好ましい。樹脂複合材料の23℃における引張弾性率が3.0GPa以上であることによって、高い引張弾性率が求められる自動車用外板などの用途に樹脂複合材料を好適に使用することができる。なお、樹脂複合材料の23℃における引張弾性率は、通常、2.3GPa以下である。
 なお、本発明において、前述したように、せん断速度が15s-1以下となる条件で樹脂複合材料を成形する成形工程を実施した場合には、成形体としての樹脂複合材料を得ることができる。この場合、前述したように耐熱性がより一層高められる。そして、このようにして得られた成形体としての樹脂複合材料では、好ましくは、断面において、厚み1μm以上の炭素材料の占める面積の割合(%)が、全断面積中10%以下であることが望ましい。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されず、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 〔実施例1~9及び比較例1~7〕
 (実施例1)
 水に対して薄片化黒鉛(Hammers法にて作製、平均厚さ30nm、アスペクト比170)を25質量%分散させ、スラリー状の分散液を得た。この分散液を、180℃に溶融させたポリプロピレン系樹脂(プライムポリプロ社製、商品名:J‐721GR、23℃におけるJIS K7113により求められた引張弾性率:1.2GPa、DSCにより測定された融点170℃)100質量部に対して、薄片化黒鉛が20質量部になるように混合して、樹脂組成物とした。次に、得られた樹脂組成物を固相せん断押出機にて、固体状態における混練温度が90℃、総せん断歪量が82000となるようにして固体状態で混練した。次に、180℃で溶融混練し、溶媒を除して樹脂複合材料を得た。次に、溶融状態の樹脂複合材料を、180℃に温度調節された熱プレス装置により直ちに成形し、肉厚が0.5mmの樹脂シートを得た。
 (実施例2)
 水の代わりにエタノールを用いたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例3)
 固体状態における混練温度を130℃にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例4)
 コンポジットのフィラー濃度を10phrにしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例5)
 総せん断ひずみ量を145000にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例6)
 フィラーを黒鉛(SECカーボン社製、商品名:SNO、平均厚さ900nm)にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例7)
 樹脂をHDPE(日本ポリエチレン社製、商品名:HF560、引張弾性率:1.1GPa)にしたこと、及び固体状態における混練温度を60℃にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例8)
 樹脂をPA(ユニチカ社製、商品名:A-125J、引張弾性率(吸水時):1.0GPa)にしたこと、及び固体状態における混練温度を200℃にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (実施例9)
 樹脂をABS(UMGABS社製、商品名:S210B、引張弾性率:2.4GPa)にしたこと、及び固体状態における混練温度を100℃にしたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (比較例1)
 混練温度を180℃にしたこと以外は、実施例1と同様にして、肉厚が0.5mmの樹脂シートを得た。なお、比較例1においては、180℃において樹脂組成物が溶融していたため、樹脂組成物を固体状態においては混練していない。
 (比較例2)
 総せん断歪量を50000としたこと以外は、実施例1と同様にして、樹脂シートを得た。
 (比較例3)
 固体状態における混練温度を180℃にしたこと以外は、実施例4と同様にして、樹脂シートを得た。
 (比較例4)
 固体状態における混練温度を180℃にしたこと以外は、実施例6と同様にして、樹脂シートを得た。
 (比較例5)
 固体状態における混練温度を160℃にしたこと以外は、実施例7と同様にして、樹脂シートを得た。
 (比較例6)
 固体状態における混練温度を270℃にしたこと以外は、実施例8と同様にして、樹脂シートを得た。
 (比較例7)
 固体状態における混練温度を140℃にしたこと以外は、実施例9と同様にして、樹脂シートを得た。
 〔実施例及び比較例の評価〕
 実施例1~9及び比較例1~7で得られた各樹脂シートについて、それぞれ、以下の評価を行った。
 (1)薄片化黒鉛の分散性の評価
 樹脂シート中において、厚さが1μm以上の薄片化黒鉛の占める面積率(%)を、以下のようにして求めた。樹脂シートから観察断面が樹脂の流動方向と平行になるように切り出した。次に、この断面を走査型電子顕微鏡(SEM)により1000倍で撮影して、断面の画像を得た。次に、この画像において、厚さが1μm以上の薄片化黒鉛の占める面積をSEM画像の視野の面積で除すことによって、樹脂シート中における薄片化黒鉛の占める面積率を算出した。結果を表1に示す。なお、実施例1~3、5~9及び比較例1~3、5~7の樹脂シートでは、上記の式(1)により、[Ar]は、4と求められる。実施例4、比較例4の[Ar]は2と求められる。薄片化黒鉛の分散性は、厚さが1μm以上の薄片化黒鉛の占める面積率(%)が、4%以下である場合に、非常に良い(◎)とし、4%越10%以下である場合に良い(〇)とし、10%越である場合に悪い(×)とした。同様に、10phrの場合は、2%以下である場合に非常に良い(◎)とし、5%越の場合に悪い(×)とした。結果を表1に示す。
 (2)引張弾性率の評価
 JIS K7113に従い、実施例1~9及び比較例1~7で得られた樹脂シートの常温下における引張弾性率(GPa)をそれぞれ測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 〔実施例10~13及び比較例8~19〕
 (フィラーの合成例)
 実施例及び比較例に用いたフィラーは、以下のようにして製造した。黒鉛単結晶粉末(SECカーボン社製、SNO-5)2.5gを65質量%の濃硫酸115mlに加え、10℃の水浴で冷却しながら撹拌した。次に、得られた混合物に、過マンガン酸カリウム15gを徐々に加えながら撹拌し、混合物を35℃で30分間反応させた。次に、得られた反応混合物に水230gを徐々に加えて、98℃で15分間反応させた。その後、反応混合物に水700gと30質量%の過酸化水素水45gを加えて反応を停止させた。次に、反応混合物を14000rpmの回転速度にて30分間、遠心分離した。次に、分離された酸化黒鉛を5質量%の希塩酸及び水を用いて充分に洗浄した後、乾燥させた。得られた酸化黒鉛の乾燥物を2mg/mlの含有量となるように水中に分散させた。この分散液に超音波を照射し、酸化黒鉛をその層界面間において剥離して断片化し、層面が酸化された薄片化黒鉛を得た。なお、超音波の照射には、45kHz、600Wの条件とした超音波洗浄機を用いた。次に、層面が酸化された薄片化黒鉛にヒドラジンを添加して、10分間還元した。次に、孔サイズが100μm、50μm、20μm、10μmのフィルター(いずれもADVANTEC社製)を、孔サイズが大きい順に用いて、還元された薄片化黒鉛を分級した。その後、分級された薄片化黒鉛を乾燥させて、実施例及び比較例で使用したフィラー(薄片化黒鉛)を得た。
 (実施例10)
 ポリプロピレン(日本ポリプロ社製、商品名:MA3H、23℃におけるJIS K7113-1995により求められた引張弾性率:1.8GPa、密度0.9g/cm、DSCを用いて測定した融点が170℃、MFR=10g/分)100質量部と、上記で得られたフィラー(薄膜化黒鉛、グラフェン層の層面の面方向における平均寸法5μm、グラフェンの積層数:90層、アスペクト比:180)20質量部との混合物を、図1に示されるような二軸押出機1を用いて、130℃の温度下で5分間せん断混練部にて混練することによりフィラーを分散させる分散工程を行った。なお、二軸押出機1において、スクリュー4の径は15mm、スクリュー4の有効長さ/スクリュー4の径は、60であった。各部分における温度は、供給部Aの温度が80~130℃、せん断混練部Bの温度が50~130℃、吐出部Cの温度が150℃となるように設定した。
 次に、混合物をプレスしてシート化する成形工程を行い、肉厚が0.5mmのシート状の樹脂成形体を得た。なお、プレスにおいては、0.5mm肉厚のスペーサを用い、180℃にて2分間余熱を行い、続いて3分間100kPaの圧力を加えた。
 (実施例11)
 ポリプロピレンに代えて、ポリアミド(旭化成社製 商品名「1300S」、23℃におけるJIS K7113-1995により求められた引張弾性率:2.7GPa、密度1.14g/cm、線膨張係数:8×10-5/K)を用いたこと、分散温度を130℃から200℃に変更したことを除いては、実施例10と同様にして分散工程を行った。なお、分散工程における二軸押出機の各部分の温度は、供給部Aの温度を150~200℃、せん断混練部Bの温度を130~200℃、吐出部Cの温度を220℃とした。
 次に、実施例10と同様にして、ただし成形温度を180℃から270℃に変更して、厚み0.5mmのシート状の樹脂成形体を得た。
 (実施例12)
 ポリプロピレンに代えて、ABS樹脂(UMGABS社製、商品名:S210B、23℃におけるJIS K7113-1995により求められた引張弾性率:2.3GPa、密度1.07g/cm、線膨張係数:8.5×10-5/K、MFR=25g/分)を用いたこと、分散温度を130℃から100℃に変更したことを除いては、実施例10と同様にして分散工程を行った。なお、分散工程における二軸押出機の各部分の温度は、供給部Aの温度を80~100℃、せん断混練部Bの温度を70~100℃、吐出部Cの温度を120℃とした。
 次に、実施例10と同様にして、ただし成形温度を180℃から150℃に変更して、厚み0.5mmのシート状の樹脂成形体を得た。
 (実施例13)
 ポリプロピレンに代えて、高密度ポリエチレン(日本ポリエチレン社製、商品名:HF560、23℃におけるJIS K7113-1995により求められた引張弾性率:1.1GPa、密度0.96g/cm、DSCを用いて測定した融点が134℃、MFR=7.0g/分)を用いたこと、分散温度を130℃から100℃に変更したことを除いては、実施例10と同様にして分散工程を行った。なお、分散工程における二軸押出機の各部分の温度は、供給部Aの温度を80~100℃、せん断混練部Bの温度を70~100℃、吐出部Cの温度を120℃とした。
 次に、実施例10と同様にして、ただし成形温度を180℃から160℃に変更して、厚み0.5mmのシート状の樹脂成形体を得た。
 (比較例8)
 分散工程の後、混合物を200℃に加熱して溶融し、プラストミルによりせん断速度約90秒-1の条件で5分間溶融混練する工程を加えたこと以外は、実施例10と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例9)
 溶融混練の時間を10分間としたこと以外は、比較例8と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例10)
 樹脂組成物が溶融状態とならない条件でのフィラーを分散させる分散工程は行わず、ポリプロピレン系樹脂とフィラーとの混合物をプラストミルにより200℃、せん断速度約90秒-1の条件で5分間溶融混練した。その後、実施例10と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例11)
 分散工程のあと、プレス成形に先立ち、混合物を270℃の温度に加熱して溶融し、プラストミルによりせん断速度約90秒-1の条件で5分間溶融混練したこと以外は、実施例11と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例12)
 溶融混練の時間を10分間としたこと以外は、比較例11と同様にして、肉厚0.5mmのシート状の樹脂成形体を得た。
 (比較例13)
 分散工程を行わずに、比較例11と同様にして溶融混練工程を行った後、プレス成形し、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例14)
 分散工程のあと、プレス成形に先立ち、混合物を150℃の温度に加熱して溶融し、プラストミルによりせん断速度約90秒-1の条件で5分間溶融混練したこと以外は、実施例12と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例15)
 溶融混練の時間を10分間としたこと以外は、比較例14と同様にして、肉厚0.5mmのシート状の樹脂成形体を得た。
 (比較例16)
 分散工程を行わずに、比較例14と同様にして溶融混練工程を行った後、プレス成形し、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例17)
 分散工程のあと、プレス成形に先立ち、混合物を160℃の温度に加熱して溶融し、プラストミルによりせん断速度約90秒-1の条件で5分間溶融混練したこと以外は、実施例13と同様にして、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (比較例18)
 溶融混練の時間を10分間としたこと以外は、比較例17と同様にして、肉厚0.5mmのシート状の樹脂成形体を得た。
 (比較例19)
 分散工程を行わずに、比較例17と同様にして溶融混練工程を行った後、プレス成形し、肉厚が0.5mmのシート状の樹脂成形体を得た。
 (引張弾性率の測定)
 JIS K7113-1995に従い、実施例10~13及び比較例8~19で得られた樹脂成形体の引張弾性率を測定した。結果を表2に示す。
 (凝集体の占める面積率の測定)
 実施例10~13及び比較例8~19で得られた樹脂成形体をシート肉厚方向に切断した。得られた切断面を、走査型電子顕微鏡(SEM)を用いて1000倍で撮影した。撮影された断面のSEM画像において、観察されるフィラーの凝集体の占める面積を測定した。このとき、凝集体は、肉厚が1μm以上のものと定義した。断面のSEM画像において、肉厚が1μm以上の凝集体の占める面積を測定した。次に、凝集体の占める面積をSEM画像の視野全体の面積で除して、凝集体の占める面積の割合(%)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2中の樹脂の略語の意味は以下のとおりである。
 PP:ポリプロピレン、PA:ポリアミド、ABS:ABS樹脂、HDPE:高密度ポリエチレン。
 1…二軸押出機
 2…原料ホッパー
 3…サイドフィーダー
 4…スクリュー
 5…ベント
 6…ゲートバルブ
 A…供給部
 B…せん断混練部
 C…吐出部

Claims (13)

  1.  グラフェン構造を有する炭素材料と、熱可塑性樹脂と、溶媒とを含む樹脂組成物を用意する工程と、
     前記熱可塑性樹脂が結晶性である場合には融点未満の温度下において、前期熱可塑性樹脂が非晶性である場合には、Tg付近の温度において、せん断速度(s-1)とせん断時間(s)との積である総せん断歪量が80000以上となるようにして、前記樹脂組成物の固形物に対してせん断力を付加する工程と、
     前記樹脂組成物を前記溶媒の沸点以上の温度下で混練して樹脂複合材料を得る工程と、を備える樹脂複合材料の製造方法。
  2.  前記樹脂組成物を用意する工程が、グラフェン構造を有する前記炭素材料が、前記溶媒中に分散している分散液と、溶融状態にある前記熱可塑性樹脂とを混合することにより行われる請求項1に記載の樹脂複合材料の製造方法。
  3.  前記グラフェン構造を有する炭素材料が、黒鉛、薄片化黒鉛、及びグラフェンからなる群から選択された少なくとも1種である、請求項1に記載の樹脂複合材料の製造方法。
  4.  前記熱可塑性樹脂がポリオレフィン系樹脂、ポリアミド及びABS樹脂からなる群から選択した1種の樹脂である、請求項1~3のいずれか1項に記載の樹脂複合材料の製造方法。
  5.  前記樹脂組成物を用意する工程において、前記熱可塑性樹脂100質量部に対して、グラフェン構造を有する炭素材料を1質量部~50質量部の範囲で混合する、請求項1~4のいずれか1項に記載の樹脂複合材料の製造方法。
  6.  前記樹脂複合材料に対してせん断速度が15s-1以下となる条件でせん断力を加え、前記樹脂複合材料を成形して成形体としての樹脂複合材料を得る成形工程とをさらに備える、請求項1~5のいずれか1項に記載の樹脂複合材料の製造方法。
  7.  前記成形工程において、前記固形物に対してせん断力を付加する工程において加えたせん断力よりも小さいせん断力を前記樹脂複合材料に対して加えて成形体を得る、請求項6に記載の樹脂複合材料の製造方法。
  8.  グラフェン構造を有する炭素材料と、熱可塑性樹脂とを含み、断面における厚み1μm以上の前記炭素材料の占める面積率(%)が、下記式(1)で求められる[Ar]以下である、樹脂複合材料。
    [Ar]=(1/5)[X] (1)
    [式中、[X]は、熱可塑性樹脂100質量部に対する炭素材料の質量部を示す。]
  9.  23℃における引張弾性率が3.0GPa以上である、請求項8に記載の樹脂複合材料。
  10.  前記グラフェン構造を有する炭素材料が、黒鉛、薄片化黒鉛、グラフェンからなる群から選択された少なくとも1種である、請求項8または9に記載の樹脂複合材料。
  11.  前記熱可塑性樹脂がポリオレフィン系樹脂、ポリアミド及びABS樹脂からなる群から選択した1種の樹脂である、請求項8~10のいずれか1項に記載の樹脂複合材料。
  12.  前記熱可塑性樹脂100質量部に対して、前記グラフェン構造を有する炭素材料が1質量部~50質量部の範囲で含有されている、請求項8~11のいずれか1項に記載の樹脂複合材料。
  13.  断面において、厚み1μm以上の前記炭素材料の占める面積の割合が10%以下である成形体とされている、請求項8~12のいずれか1項に記載の樹脂複合材料。
PCT/JP2013/059523 2012-04-04 2013-03-29 樹脂複合材料の製造方法及び樹脂複合材料 WO2013150973A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147023968A KR20140147813A (ko) 2012-04-04 2013-03-29 수지 복합 재료의 제조 방법 및 수지 복합 재료
US14/373,892 US20140378599A1 (en) 2012-04-04 2013-03-29 Process for manufacturing resin composite material, and resin composite material
EP13771814.4A EP2835393A4 (en) 2012-04-04 2013-03-29 PROCESS FOR PRODUCING RESIN COMPOSITE MATERIAL, AND MATERIAL THUS OBTAINED

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012085274 2012-04-04
JP2012-085274 2012-04-04
JP2012-090254 2012-04-11
JP2012090254 2012-04-11
JP2012239156A JP5564090B2 (ja) 2012-04-04 2012-10-30 樹脂複合材料の製造方法及び樹脂複合材料
JP2012-239156 2012-10-30
JP2012-282561 2012-12-26
JP2012282561A JP2013233790A (ja) 2012-04-11 2012-12-26 樹脂成形体の製造方法及び樹脂成形体

Publications (1)

Publication Number Publication Date
WO2013150973A1 true WO2013150973A1 (ja) 2013-10-10

Family

ID=52111424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059523 WO2013150973A1 (ja) 2012-04-04 2013-03-29 樹脂複合材料の製造方法及び樹脂複合材料

Country Status (4)

Country Link
US (1) US20140378599A1 (ja)
EP (1) EP2835393A4 (ja)
KR (1) KR20140147813A (ja)
WO (1) WO2013150973A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002317A4 (en) * 2014-09-09 2016-04-06 Graphene Platform Corp COMPOSITE REINFORCING MATERIAL AND SHAPING MATERIAL
WO2017131018A1 (ja) * 2016-01-29 2017-08-03 株式会社クラレ 成形品及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146213A1 (ja) * 2012-03-27 2013-10-03 積水化学工業株式会社 樹脂複合材料
WO2015125916A1 (ja) 2014-02-24 2015-08-27 積水化学工業株式会社 炭素材料、樹脂複合材料及びそれらの製造方法
US9404058B2 (en) 2014-09-09 2016-08-02 Graphene Platform Corporation Method for producing a composite lubricating material
CN113881185B (zh) * 2021-11-17 2023-04-11 航天特种材料及工艺技术研究所 一种石墨烯改性酚醛树脂及其制备方法和在制备复合材料中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026724A (ja) 1999-07-16 2001-01-30 Sekisui Chem Co Ltd 熱可塑性樹脂複合材料及びその製造方法
JP2002347020A (ja) * 2001-05-29 2002-12-04 Kck Oyo Gijutsu Kenkyusho:Kk 超微粉体と樹脂との混練方法および混練装置
JP2004155078A (ja) * 2002-11-07 2004-06-03 Nihon Tetra Pak Kk 食品包装用樹脂組成物の製造法及び包装用積層体
JP2005264059A (ja) 2004-03-19 2005-09-29 Calp Corp 複合樹脂組成物の製造方法、複合樹脂組成物及び複合樹脂成形体
JP2008266577A (ja) 2007-03-23 2008-11-06 National Institute Of Advanced Industrial & Technology 溶融混練物、樹脂成形物及びその製造方法
JP2008307863A (ja) * 2007-06-18 2008-12-25 Kck Oyo Gijutsu Kenkyusho:Kk 超微粉体を樹脂に混練分散する方法および混練装置
JP2011213987A (ja) * 2010-03-18 2011-10-27 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2012062453A (ja) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd 成形体及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029946A1 (ja) * 2010-09-03 2012-03-08 積水化学工業株式会社 樹脂複合材料及び樹脂複合材料の製造方法
WO2013058181A1 (ja) * 2011-10-18 2013-04-25 積水化学工業株式会社 樹脂複合材料の製造方法及び樹脂複合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026724A (ja) 1999-07-16 2001-01-30 Sekisui Chem Co Ltd 熱可塑性樹脂複合材料及びその製造方法
JP2002347020A (ja) * 2001-05-29 2002-12-04 Kck Oyo Gijutsu Kenkyusho:Kk 超微粉体と樹脂との混練方法および混練装置
JP2004155078A (ja) * 2002-11-07 2004-06-03 Nihon Tetra Pak Kk 食品包装用樹脂組成物の製造法及び包装用積層体
JP2005264059A (ja) 2004-03-19 2005-09-29 Calp Corp 複合樹脂組成物の製造方法、複合樹脂組成物及び複合樹脂成形体
JP2008266577A (ja) 2007-03-23 2008-11-06 National Institute Of Advanced Industrial & Technology 溶融混練物、樹脂成形物及びその製造方法
JP2008307863A (ja) * 2007-06-18 2008-12-25 Kck Oyo Gijutsu Kenkyusho:Kk 超微粉体を樹脂に混練分散する方法および混練装置
JP2011213987A (ja) * 2010-03-18 2011-10-27 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2012062453A (ja) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd 成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835393A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002317A4 (en) * 2014-09-09 2016-04-06 Graphene Platform Corp COMPOSITE REINFORCING MATERIAL AND SHAPING MATERIAL
WO2017131018A1 (ja) * 2016-01-29 2017-08-03 株式会社クラレ 成形品及びその製造方法

Also Published As

Publication number Publication date
EP2835393A4 (en) 2015-11-25
US20140378599A1 (en) 2014-12-25
KR20140147813A (ko) 2014-12-30
EP2835393A1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP2013233790A (ja) 樹脂成形体の製造方法及び樹脂成形体
WO2013150973A1 (ja) 樹脂複合材料の製造方法及び樹脂複合材料
JP5007371B1 (ja) 樹脂複合材料及び樹脂複合材料の製造方法
Shao et al. PVA/polyethyleneimine-functionalized graphene composites with optimized properties
US8734696B1 (en) Polymer-graphite nanocomposites via solid-state shear pulverization
WO2013058181A1 (ja) 樹脂複合材料の製造方法及び樹脂複合材料
JP5176001B1 (ja) 樹脂複合材料
Scaffaro et al. Processing–morphology–property relationships of polyamide 6/polyethylene blend–clay nanocomposites.
JP2007534801A5 (ja)
US8961846B2 (en) Solid-state shear pulverization/melt-mixing methods and related polymer-carbon nanotube composites
JP2010024400A (ja) ゴム組成物
Li et al. Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance
Menbari et al. Simultaneous improvement in the strength and toughness of polypropylene by incorporating hybrid graphene/CaCO3 reinforcement
JP6705881B2 (ja) 導電性樹脂組成物およびその製造方法
JP7287944B2 (ja) カーボンナノ粒子のインターカレーションを使用したナノ構造材料の製造方法
Lee et al. Optimization of dispersion of nanosilica particles in a PP matrix and their effect on foaming
Supri et al. Low density polyethylene-nanoclay composites: the effect of poly (acrylic acid) on mechanical properties, XRD, morphology properties and water absorption
Hari et al. Influence of graphene oxide on the morphological and mechanical behaviour of compatibilized low density polyethylene nanocomposites
JP7055871B2 (ja) 伝導性濃縮樹脂組成物、伝導性ポリアミド樹脂組成物、その製造方法及び成形品
JP5564090B2 (ja) 樹脂複合材料の製造方法及び樹脂複合材料
WO2011158907A1 (ja) ポリオレフィン系樹脂組成物及びその製造方法
Natarajan et al. Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene
JP2012062453A (ja) 成形体及びその製造方法
JP5588810B2 (ja) 熱可塑性樹脂複合材料及びその製造方法
EP2428597B1 (en) All-polymer fibrillar nanocomposites and method for manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14373892

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013771814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013771814

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147023968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE