WO2013150885A1 - 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム - Google Patents

制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム Download PDF

Info

Publication number
WO2013150885A1
WO2013150885A1 PCT/JP2013/057584 JP2013057584W WO2013150885A1 WO 2013150885 A1 WO2013150885 A1 WO 2013150885A1 JP 2013057584 W JP2013057584 W JP 2013057584W WO 2013150885 A1 WO2013150885 A1 WO 2013150885A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
groups
group
thermo
indoor unit
Prior art date
Application number
PCT/JP2013/057584
Other languages
English (en)
French (fr)
Inventor
隆博 加藤
恵介 三苫
篤 塩谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380007117.6A priority Critical patent/CN104081131B/zh
Priority to EP13772647.7A priority patent/EP2835595A4/en
Publication of WO2013150885A1 publication Critical patent/WO2013150885A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays

Definitions

  • the present invention relates to a control device, a method, a program, and a multi-type air conditioning system including the same.
  • a multi-type air conditioning system used for air conditioning of a building or the like is configured such that a plurality of indoor units are connected to one outdoor unit.
  • start / stop of operation is controlled for each indoor unit, and thermo-on / off is controlled depending on whether the room temperature reaches the set temperature range.
  • the heating operation when the indoor temperature reaches the set temperature range and the thermostat is turned off, the heating capacity is unnecessary in the indoor unit, but other indoor units connected to the common outdoor unit are operating Since the compressor of the outdoor unit continues to operate, the system is in a state where the refrigerant continuously flows. Therefore, for indoor units that have been thermo-off or that have been shut down, do not close the indoor unit expansion valve, leave them slightly open to allow the refrigerant to flow, and prevent the refrigerant from accumulating. Yes.
  • the indoor unit temperature sensor is appropriate for the warm air in the indoor unit, even though the room temperature is outside the set temperature range and the thermo unit should be turned on to resume heating. It is assumed that it will fall into a situation where the thermo-on cannot be performed. In order to avoid such a situation, even in the thermo-off state, an operation is performed in which the indoor temperature of the indoor unit is appropriately turned on and off to detect the indoor temperature.
  • Patent Document 1 the number of indoor fans of an indoor unit that is driven at the same time among a plurality of indoor units in a thermo-off state is limited, and the temperature of the blowout temperature from the indoor unit is shifted by shifting the drive timing of the indoor fan. A technique for suppressing a rapid drop is disclosed.
  • Patent Document 1 it is inevitable that the refrigerant in the indoor unit is condensed by operating the indoor fan of the indoor unit during the thermo-off, and the amount of refrigerant necessary for the system is increased. Therefore, there is a problem that the difference between the maximum value and the minimum value of the necessary refrigerant amount increases, and accordingly, the receiver capacity increases.
  • the present invention has been made in view of such circumstances, and a control apparatus and method for intermittently operating an indoor fan of an indoor unit in a thermo-off state while reducing a necessary refrigerant amount and suppressing an increase in receiver capacity.
  • An object is to provide a program and a multi-type air conditioning system including the program.
  • a first aspect of the present invention is a control device for controlling the operation of a multi-type air conditioning system in which a plurality of indoor units are connected to an outdoor unit, and the indoor fan of the indoor unit when the thermo-off is performed during heating
  • a plurality of groups that are the indoor unit groups that match the timing of the intermittent operation are configured, and the timing of the intermittent operation between the groups is set.
  • the control device controls the allocation of the indoor units to the group so that the total model capacity of the indoor units in the thermo-off state included in each group is substantially equal.
  • the indoor unit group that matches the timing of the intermittent operation
  • Multiple groups are configured, the timing of intermittent operation between groups is shifted, and the allocation of indoor units to groups is controlled so that the total model capacity of thermo-off indoor units included in each group is approximately equal Is done.
  • indoor units are allocated so that the total model capacity is equalized, so that when the indoor fan is on during the heating-off period of heating, the indoor units accumulate in the heat exchanger of the indoor unit.
  • the amount of refrigerant to be charged is averaged, and the required amount of refrigerant can be minimized. Therefore, the required amount of refrigerant can be reduced, and as a result, the receiver capacity can also be reduced.
  • Said 1st aspect WHEREIN It is preferable that the timing of an ON period differs in the said intermittent operation so that an ON period does not overlap between the said groups.
  • Different indoor groups are operated intermittently with different indoor fan on periods, so that the amount of refrigerant that accumulates in the indoor unit heat exchanger during the indoor fan on period can be suppressed, and the required amount of refrigerant can be reliably reduced. it can.
  • the indoor unit that has transitioned from the thermo-on state to the thermo-off state is assigned to the group having the smallest total model capacity of the indoor units among the plurality of groups.
  • the total when there is the group in which the total model capacity of the indoor units is equal to or greater than a predetermined ratio with respect to the total model capacity of all the groups, the total is equal to or greater than the predetermined ratio.
  • the indoor unit having the smallest model capacity in the group is preferably assigned to the group having the smallest total model capacity. Thereby, the total of the model capacity of each group can be equalized.
  • the model capacity of one indoor unit when the model capacity of one indoor unit is equal to or greater than a predetermined ratio with respect to the total model capacity of all the groups, the model capacity of the model capacity that is equal to or greater than the predetermined ratio. It is preferable that the indoor units other than the indoor units are assigned to the group different from the group including the indoor units having a model capacity of the predetermined ratio or more. As a result, it is possible to prevent a situation where the total model capacity is increased only by a specific group, and an increase in the amount of necessary refrigerant can be suppressed.
  • a second aspect of the present invention is a multi-type air conditioning system including any of the control devices described above.
  • a third aspect of the present invention is a control method for controlling the operation of a multi-type air conditioning system in which a plurality of indoor units are connected to an outdoor unit, wherein the indoor fan of the indoor unit is at the time of thermo-off during heating.
  • a plurality of groups that are the indoor unit groups that match the timing of the intermittent operation are configured, and the timing of the intermittent operation between the groups is set.
  • This is a control method for controlling the allocation of the indoor units to the groups so that the total model capacity of the indoor units in the thermo-off state included in each group is substantially equal.
  • a control program for controlling operation of a multi-type air conditioning system in which a plurality of indoor units are connected to an outdoor unit.
  • intermittent operation that repeats an on / off operation that stops for a predetermined time after rotating for a predetermined time
  • a plurality of groups that are the indoor unit groups that match the timing of the intermittent operation are configured, and the timing of the intermittent operation between the groups is set.
  • a control program for causing a computer to control allocation of the indoor units to the group so that the total model capacity of the indoor units in the thermo-off state included in each group is substantially equal. is there.
  • the present invention produces an effect that the indoor fan of the indoor unit in the thermo-off state can be intermittently operated while reducing the amount of necessary refrigerant and suppressing an increase in the receiver capacity.
  • the schematic block diagram containing the refrigerant cycle of the multi type air conditioning system 1 provided with the control apparatus of this embodiment is shown by FIG.
  • the multi-type air conditioning system 1 includes one outdoor unit 2, a gas side pipe 4 and a liquid side pipe 5 led out from the outdoor unit 2, and a branching device 6 between the gas side pipe 4 and the liquid side pipe 5. And a plurality of indoor units 7 connected in parallel.
  • two indoor units 7A and 7B are illustrated as the indoor unit 7, but in the present embodiment, it will be described as including a third indoor unit 7C (not shown).
  • the indoor unit will be described as the indoor unit 7 unless otherwise specified.
  • the outdoor unit 2 heats an inverter-driven compressor 21 that compresses refrigerant, an oil separator 22 that separates refrigeration oil from refrigerant gas, a four-way switching valve 23 that switches a refrigerant circulation direction, and refrigerant and outside air.
  • An accumulator 30 that separates the liquid component from the gas and causes the compressor 21 to suck only the gas component, a gas-side operation valve 31, and a liquid-side operation valve 32 are provided.
  • the respective devices on the outdoor unit 2 side are connected in a known manner via refrigerant pipes such as a discharge pipe 33A, a gas pipe 33B, a liquid pipe 33C, a gas pipe 33D, a suction pipe 33E, and a subcooling branch pipe 33F.
  • the outdoor refrigerant circuit 34 is configured.
  • the outdoor unit 2 is provided with an outdoor fan 35 that blows outside air to the outdoor heat exchanger 24.
  • a refrigerating machine oil separated from the discharged refrigerant gas in the oil separator 22 is returned to the compressor 21 side by a predetermined amount.
  • a parallel circuit of a first oil return circuit 37 having a fixed throttle (throttle) 36 and a second oil return circuit 40 having a fixed throttle (throttle) 39 such as an electromagnetic valve 38 and a capillary tube is connected.
  • the gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 31 and the liquid side operation valve 32 of the outdoor unit 2, and are connected to the outdoor unit 2 and to it during installation on site.
  • the length is set according to the distance between the indoor units 7A and 7B.
  • An appropriate number of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 7 ⁇ / b> A and 7 ⁇ / b> B are connected via the branching devices 6. Thereby, one sealed refrigeration cycle 3 is configured.
  • the indoor units 7A and 7B are configured so that the indoor air is passed through the indoor heat exchanger 71 that exchanges heat between the refrigerant and room air for indoor air conditioning, the indoor electric expansion valve (EEVC) 72 for cooling, and the indoor heat exchanger 71.
  • the indoor fan 73 is circulated, and is connected to the branching device 6 through the branch gas pipe 4A and the branch liquid pipe 5A on the indoor side.
  • the cooling operation is performed as follows.
  • the high-temperature and high-pressure refrigerant gas compressed by the compressor 21 is discharged to the discharge pipe 33A, and the oil separator 22 separates the refrigerating machine oil contained in the refrigerant.
  • the refrigerant gas is circulated to the gas pipe 33B side through the four-way switching valve 23, and is heat-exchanged with the outside air blown by the outdoor fan 35 in the outdoor heat exchanger 24 to be condensed and liquefied.
  • the liquid refrigerant is further cooled by the supercooling coil 25, passes through the outdoor electric expansion valve 26, and is temporarily stored in the receiver 27.
  • the liquid refrigerant whose circulation amount is adjusted by the receiver 27 is partly divided into the subcooling branch pipe 33F in the process of being circulated through the supercooling heat exchanger 28 via the liquid pipe 33C, and the supercooling electric expansion is performed. Heat is exchanged with the refrigerant adiabatically expanded by the valve (EEVSC) 29 to give a degree of supercooling.
  • EVSC valve
  • This liquid refrigerant is led out from the outdoor unit 2 to the liquid side pipe 5 via the liquid side operation valve 32, and the liquid refrigerant led out to the liquid side pipe 5 is further branched into the indoor units 7A and 7B by the branching device 6. The flow is diverted to the liquid pipes 5A and 5B.
  • the liquid refrigerant divided into the branch liquid pipes 5A and 5B flows into the indoor units 7A and 7B, is adiabatically expanded by the indoor electric expansion valve (EEVC) 72, becomes a gas-liquid two-phase flow, and the indoor heat exchanger 71. Is flowed into.
  • the indoor heat exchanger 71 the indoor air circulated by the indoor fan 73 and the refrigerant are heat-exchanged, and the indoor air is cooled and provided for indoor cooling.
  • the refrigerant is gasified, reaches the branching device 6 through the branch gas pipes 4A and 4B, and merges with the refrigerant gas from the other indoor units in the gas side pipe 4.
  • the refrigerant gas merged in the gas side pipe 4 is returned to the outdoor unit 2 side, reaches the suction pipe 33E via the gas side operation valve 31, the gas pipe 33D, and the four-way switching valve 23, and the refrigerant gas from the branch pipe 33F. After being merged, it is introduced into the accumulator 30. In the accumulator 30, the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 21. This refrigerant is compressed again in the compressor 21, and the cooling operation is performed by repeating the above cycle.
  • the heating operation is performed as follows.
  • the high-temperature and high-pressure refrigerant gas compressed by the compressor 21 is discharged to the discharge pipe 33A, and after the refrigerating machine oil contained in the refrigerant is separated by the oil separator 22, the four-way switching valve 23 causes the gas pipe 33D side. It is circulated to.
  • the refrigerant is led out from the outdoor unit 2 through the gas side operation valve 31 and the gas side pipe 4, and is further introduced into the indoor units 7A and 7B through the branching unit 6 and the branch gas pipes 4A and 4B on the indoor side.
  • the high-temperature and high-pressure refrigerant gas introduced into the indoor units 7A and 7B is heat-exchanged with the indoor air circulated by the indoor fan 73 in the indoor heat exchanger 71, and the indoor air is heated and used for room heating.
  • the liquid refrigerant condensed and liquefied in the indoor heat exchanger 71 reaches the branching device 6 through the indoor electric expansion valve (EEVC) 72 and the branch liquid pipings 5A and 5B, and is merged with the refrigerant from other indoor units. It returns to the outdoor unit 2 through the liquid side pipe 5.
  • EEVC indoor electric expansion valve
  • the refrigerant that has returned to the outdoor unit 2 reaches the supercooling heat exchanger 28 via the liquid side operation valve 32 and the liquid pipe 33C, and is given supercooling as in the case of cooling, and then flows into the receiver 27. Once stored, the amount of circulation is adjusted.
  • This liquid refrigerant is supplied to the outdoor electric expansion valve (EEVH) 26 through the liquid pipe 33C, and is adiabatically expanded there, and then flows into the outdoor heat exchanger 24 through the supercooling coil 25.
  • EEVH outdoor electric expansion valve
  • the refrigerant absorbs heat from the outside air and is evaporated and gasified.
  • This refrigerant is merged with the refrigerant from the subcooling branch pipe 33F from the outdoor heat exchanger 24 via the gas pipe 33B, the four-way switching valve 23, and the suction pipe 33E, and is introduced into the accumulator 30.
  • the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 21.
  • This refrigerant is compressed again by the compressor 21, and the heating operation is performed by repeating the above cycle.
  • the refrigerating machine oil separated from the discharged refrigerant gas in the oil separator 22 has a first oil return circuit 37 having a fixed throttle 36 connected in parallel to each other, a solenoid valve 38 and a fixed. It is returned to the compressor 21 side through a second oil return circuit 40 having a throttle 39. As a result, a certain amount of refrigerating machine oil is secured in the compressor 21 and the sliding portion in the compressor 21 is lubricated.
  • the solenoid valve 38 provided in the second oil return circuit 40 is opened and closed at an appropriate timing during the normal cooling operation and the heating operation, so that the compressor 21 of the oil separated by the oil separator 22 is operated. The return amount to the side can be adjusted.
  • the controller 41 performs an intermittent operation that repeats an on / off operation of stopping for a predetermined time after the indoor fan 73 of the indoor unit 7 has rotated for a predetermined time when the air suction temperature at the time of heating reaches the target temperature and the thermo-off does not circulate the refrigerant.
  • a plurality of groups which are indoor unit groups that match the timing of intermittent operation, are configured, the timing of intermittent operation between groups is shifted, and the total model capacity of thermo-off indoor units 7 included in each group is abbreviated
  • the assignment of the indoor units 7 to the groups is controlled so as to be even.
  • the control unit 41 varies the timing of the on period between the groups in the intermittent operation so that the on periods of the indoor fans 73 do not overlap.
  • the timing of the on / off operation of the intermittent operation of the indoor fan 73 of the indoor unit 7 in each group is determined for each group in the control unit 41.
  • the control part 41 since the control part 41 has memorize
  • control part 41 presets the ON period and the OFF period of the indoor fan 73, and controls the ON / OFF intermittent operation of the indoor fan 73 in the set period.
  • description will be made on the assumption that intermittent operation is performed for an on period of 3 minutes and an off period of 5 minutes, but the times of the on period and the off period are not particularly limited.
  • FIG. 2 shows the amount of refrigerant estimated according to the thermo-on / off state ( ⁇ ) of the three indoor units 7, the on-off state ( ⁇ ) of the indoor fan 73, and the thermo-on / off state in the conventional control method.
  • the change of ( ⁇ ) is shown.
  • the three indoor units will be described as a first indoor unit 7A, a second indoor unit 7B, and a third indoor unit 7C, respectively.
  • the refrigerant amount shown here is an approximate value of the amount of refrigerant accumulated in the heat exchanger of the indoor unit 7.
  • 2A shows the change in the refrigerant amount of the first indoor unit 7A
  • FIG. 2B shows the change in the refrigerant amount of the second indoor unit 7B
  • FIG. 2C shows the third indoor unit 7A.
  • the transition of the refrigerant amount of the machine 7C is shown.
  • FIG. 2D shows the transition of the total refrigerant amount of all the indoor units 7A, 7B, 7C.
  • thermo on / off state and the on / off state of the indoor fan 73 are shown superimposed on a graph showing the transition of the refrigerant amount, the position where the refrigerant amount is 0% is the thermo off state, the position where the refrigerant amount is 10% is the thermo on state, and the refrigerant The position where the amount is 20% will be described as an off state where the rotation of the indoor fan 73 is stopped, and the position where the amount of refrigerant is 30% will be an on state where the indoor fan 73 rotates.
  • the remote controllers of the first to third indoor units 7A, 7B, and 7C are operated, and the operation of each indoor unit 7 is started.
  • the thermo-on state is continued, and the indoor fan 73 of the indoor unit 7A is also turned on.
  • the refrigerant amount of the indoor unit 7A is stable at about 40%.
  • thermo-ON When it reaches, the thermo-ON is switched to the thermo-OFF state, but the indoor fan 73 continues to rotate, so that the refrigerant amount increases.
  • the second indoor unit is configured to perform intermittent operation based on the preset ON period and OFF period, and to shift to the thermo-on state of the indoor fan 73 during thermo-off in order to assume the worst condition.
  • 7B and the third indoor unit 7C are simultaneously performed.
  • the increase / decrease in the amount of refrigerant similarly changes in each indoor unit 7, so the refrigerant amount required on all indoor units 7 side changes as shown in FIG. 2 (d), and the total value is calculated.
  • the maximum value of the required refrigerant amount is about 240% when the required refrigerant amount of one indoor unit is 100%.
  • the refrigerant is estimated in accordance with the thermo-on / off state ( ⁇ 3) of the three indoor units 7, the on-off state of the indoor fan 73 ( ⁇ mark), the thermo-on / off state, and the on / off state of the indoor fan 73.
  • the change in quantity (marked with ⁇ ) is shown.
  • 3 shows the transition of the refrigerant amount of the first indoor unit 7A in FIG. 3 (a)
  • FIG. 3 (b) shows the transition of the refrigerant amount of the second indoor unit 7B, as in FIG.
  • the transition of the refrigerant amount of the third indoor unit 7C is shown in c).
  • FIG. 3D shows the transition of the total refrigerant amount of all the indoor units 7A, 7B, 7C.
  • thermo on / off state and the on / off state of the indoor fan 73 are superimposed on the graph showing the transition of the refrigerant amount, as shown in FIG.
  • the operation of the multi-type air conditioning system 1 according to the present embodiment will be described with reference to FIGS. 1 to 3 by taking as an example the case where the on / off intermittent operation period is an on period 3 minutes and an off period 5 minutes.
  • the remote controllers of the first to third indoor units 7A, 7B, and 7C are operated, and the operation of each indoor unit 7 is started.
  • the indoor air suction temperature has not reached the set target temperature, so that the thermo-on state is continued, and the indoor fan 73 of the first indoor unit 7A.
  • the refrigerant amount of the first indoor unit 7A is stable at about 40%.
  • thermo-off When there is an indoor unit in which the indoor air suction temperature reaches the target set temperature and is in a thermo-off state (for example, the second indoor unit 7B and the third indoor unit 7C), “the second indoor unit 7B is thermo-off” A signal indicating “is in a state” and “the third indoor unit 7C is in a thermo-off state” is output to the control unit 41.
  • the control unit 41 When the control unit 41 detects that there is an indoor unit 7 that is in the thermo-off state, the control unit 41 reads information on the model capacity of the indoor unit 7 that is in the thermo-off state, and appropriately assigns the information to groups.
  • the control unit 41 defines two groups.
  • the first group When it is detected that the first indoor unit 7 is in the thermo-off state, the first group continues the rotation of the indoor fan 73 for a predetermined period, and then stops the rotation of the indoor fan 73 for a predetermined period.
  • the second group detects that the first indoor unit 7 is in the thermo-off state, the second group stops the rotation of the indoor fans 73 for a predetermined period, and after the rotation (on period) of the indoor fans 73 of other groups ends.
  • the indoor fan 73 is rotated for a predetermined period.
  • Each group is configured such that the total model capacity of the indoor units 7 in the thermo-off state in the group is substantially equal.
  • the control unit 41 outputs a command to turn on the rotation of the indoor fan 73 to the second indoor unit 7B assigned to the first group.
  • the second indoor unit 7B turns on the indoor fan 73 based on the command.
  • the control unit 41 outputs a command to turn off the rotation of the indoor fan 73 to the third indoor unit 7C assigned to the second group.
  • the third indoor unit 7C turns off the indoor fan 73 based on the command.
  • the control unit 41 stops the rotation of the indoor fan 73 with respect to the second indoor unit 7B in which the rotation of the indoor fan 73 is on.
  • a command to turn off the fan 73 is output.
  • the second indoor unit 7B acquires the command, the second indoor unit 7B switches the indoor fan 73 from the on state to the off state. If it does so, since the indoor fan 73 will also be in an OFF state in a thermo-off state, the refrigerant
  • the control unit 41 turns on the indoor fan 73 for the third indoor unit 7C in the second group.
  • Command to output When the third indoor unit 7C acquires the command, the third indoor unit 7C switches the indoor fan 73 from the off state to the on state. Then, in the third indoor unit 7C, the amount of refrigerant increases because the indoor fan 73 is on in the thermo-off state.
  • the control unit 41 instructs the third indoor unit 7C in which the rotation of the indoor fan 73 is on to turn the indoor fan 73 off. Output.
  • the third indoor unit 7C obtains the command
  • the third indoor unit 7C switches the indoor fan 73 from the on state to the off state. Then, since the indoor fan 73 is also turned off in the thermo-off state, the refrigerant amount of the third indoor unit 7C gradually decreases, and the refrigerant amount settles around 40%.
  • the control unit 41 turns the indoor fan 73 on with respect to the second indoor unit 7B of the first group because the indoor fan 73 of the third indoor unit 7C of the second group is off. Command to output.
  • the second indoor unit 7B acquires the command, the second indoor unit 7B switches the indoor fan 73 from the off state to the on state. If it does so, the refrigerant
  • the controller 41 performs on / off control so that the on periods of the indoor fans 73 of the indoor units 7 belonging to each group do not overlap.
  • the indoor units 7 (for example, the indoor unit 7A) that are sequentially in the thermo-off state are allocated to the group having a small total model capacity of the indoor units 7 that are in the thermo-off state included in the first group or the second group. Thereby, it can distribute so that the sum total of the model capacity of the indoor unit of the thermo-off state included in each group may become substantially equal.
  • the group to be allocated is determined based on the total model capacity of each group at that time (regardless of the previous group information). The In other words, the indoor unit 7 that is in the thermo-off state will eventually be switched to the thermo-on state, and since there is an indoor unit 7 that is sequentially withdrawn from the group, the total capacity changes each time, so the case is shifted to the next thermo-off state In this case, the total model capacity at that time is calculated, and the group to be allocated is determined.
  • the indoor units 7 are assigned to a plurality of groups that vary the timing of the on / off operation of the indoor fan 73, and the change in the increase or decrease in the refrigerant amount is made different. The required amount of refrigerant can be suppressed.
  • At least one of the first group and the second group is an average value obtained by dividing the total capacity (that is, 100%) of the indoor unit capacity connected to the same outdoor unit 2 by the number of groups (for example, 2 groups).
  • groups for example, 2 groups.
  • the entire indoor unit It is preferable to divide into a group to which one indoor unit 7 that exceeds 50% of the capacity is assigned and a group to which other indoor units 7 other than this indoor unit 7 are assigned a thermo-off state.
  • control unit 41 has been described as defining the on / off switching timing of the intermittent operation of the indoor fans 73 of each group.
  • the present invention is not limited to this.
  • the on / off timing of each group may be appropriately changed through the above.
  • control part 41 of embodiment mentioned above it is good also as a structure which processes separately using software in all or one part of said process.
  • the control unit 41 stores a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a program (for example, a control program) for realizing all or part of the above processing.
  • a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a program (for example, a control program) for realizing all or part of the above processing.
  • a program for example, a control program for realizing all or part of the above processing.
  • a computer-readable recording medium Then, the CPU reads out the program recorded in the storage medium and executes information processing and calculation processing, thereby realizing the same processing as the control unit 41 described above.
  • the computer-readable recording medium includes a magnetic disk, a magneto-optical disk, a CD (Compact Disk) -ROM (Read Only Memory), a DVD (Digital Versatile Disk) -ROM, a semiconductor memory, and the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the indoor fan of the indoor unit 7 when the thermo is turned off during heating when the thermo is turned off during heating.
  • 73 performs intermittent operation, a plurality of groups that are groups of indoor units that match the timing of intermittent operation are configured, the timing of intermittent operation between the groups is shifted, and the types of indoor units in the thermo-off state included in each group
  • the allocation of indoor units to groups is controlled so that the total capacity is substantially equal.
  • indoor units are allocated so that the total model capacity is equalized.
  • the indoor fan 73 when the indoor fan 73 is on during the thermo-off during heating, The amount of refrigerant that accumulates is averaged, and the required amount of refrigerant can be minimized. Therefore, the required amount of refrigerant can be reduced, and as a result, the receiver capacity can also be reduced.
  • the number of groups is not limited to this, Three or more groups may be sufficient.
  • the operation of the multi-type air conditioning system 1 when three groups of the first group, the second group, and the third group are provided will be described below with reference to FIG.
  • the indoor fan 73 will be described as performing intermittent operation for an on period of 3 minutes and an off period of 6 minutes.
  • the remote control corresponding to each of the three indoor units 7 is operated, and the operation of each indoor unit 7 is started.
  • the indoor unit 7 in which the indoor air suction temperature reaches the target set temperature and is initially in the thermo-off state is assigned to the first group, and the indoor fan 73 is turned on for 3 minutes. At this time, the indoor fans 73 of the indoor units 7 belonging to the second group and the indoor units 7 belonging to the third group are turned off. Next, the indoor unit 7 that is in the thermo-off state is assigned to the second group, and the indoor unit 7 that is next in the thermo-off state is assigned to the third group.
  • the indoor units 7 that are sequentially in the thermo-off state are the total models of the indoor units 7 that are in the thermo-off state included in each of the three groups of the first group, the second group, and the third group. Allocated to a group with less capacity.
  • the indoor units 7 belonging to the first group to the third group are controlled so that the on-off states of the indoor fans 73 are switched as described above and the on-periods in which the indoor fans 73 are on do
  • At least one of the first group, the second group, and the third group has the total indoor unit capacity (that is, 100%) connected to the same outdoor unit 2 as the number of groups (for example, When the average value (for example, 33%) divided by (3 groups) is exceeded, it is preferable to move the indoor unit 7 having the smallest model capacity to another group in the group in which the indoor unit capacity exceeds 33%. Thereby, the total of the model capacity in each group can be made to approach substantially evenly.
  • the entire indoor unit It is preferable to divide into a group to which one indoor unit 7 that exceeds 33% of the capacity is assigned and a group to which other indoor units 7 other than the indoor unit 7 are assigned a thermo-off state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

必要冷媒量を削減し、レシーバ容量の増加を抑制しつつ、サーモオフ状態の室内機の室内ファンを間欠運転させること。室外機(2)に対して複数の室内機(7)が接続されるマルチ型空気調和システム(1)の運転を制御する制御部(41)であって、暖房時のサーモオフ時に、室内機(7A,7B)の室内ファン(73)が所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、間欠運転のタイミングを一致させる室内機群であるグループを複数構成し、グループ間の間欠運転のタイミングをずらし、各グループに含まれるサーモオフ状態の室内機(7A,7B)の機種容量の合計が略均等になるように、グループへの室内機(7A,7B)の割り当てを制御する。

Description

制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム
 本発明は、制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システムに関する。
 ビル等の空調に用いられるマルチ型空気調和システムは、1台の室外機に対して複数台の室内機が接続される構成とされている。このようなマルチ型空気調和システムは、室内機毎に運転の開始停止が制御され、室内温度が設定温度範囲に達するか否かに応じてサーモオンオフが制御される。
 暖房運転において、室内温度が設定温度範囲に達したことによりサーモオフされた場合には当該室内機において暖房能力は不要となるが、共通の室外機に接続される他の室内機が運転中の場合には、室外機の圧縮機が運転を継続していることから、システムとしては冷媒が継続して流れた状態となっている。そのため、サーモオフされた室内機、或いは、運転停止された室内機は、室内機膨張弁を閉状態にせず、僅かに開状態にして冷媒が流れる状態にしておき、冷媒の溜まり込みを防止している。
 暖房運転のサーモオフ状態となった室内機においては、室内温度が設定温度範囲外となりサーモオンさせて暖房を再開させるべきにも関わらず、室内機側の温度センサでは、室内機内に篭った暖気により適切にサーモオンできないという状況に陥ることが想定される。こうした状況を避けるべく、サーモオフ状態であっても室内機の室内ファンを適宜オンオフさせる間欠運転をさせ、室内温度が検出できるような運用がなされている。
 例えば、特許文献1には、サーモオフ状態の複数の室内機のうち、同時に駆動される室内機の室内ファンの台数を制限し、室内ファンの駆動タイミングをずらすことにより、室内機からの吹き出し温度の急激な低下を抑制する技術が開示されている。
特許第3778117号公報
 しかしながら、上記の特許文献1では、サーモオフ中に室内機の室内ファンを運転させることで室内機において冷媒が凝縮し、システムとしての必要冷媒量が増大してしまうことは避けられない。そのため、必要冷媒量の最大値と最小値との差が大きくなり、これに伴ってレシーバ容量が増加してしまうという問題があった。
 本発明は、このような事情に鑑みてなされたものであって、必要冷媒量を削減し、レシーバ容量の増加を抑制しつつ、サーモオフ状態の室内機の室内ファンを間欠運転させる制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システムを提供することを目的とする。
 
 本発明の第1の態様は、室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御装置であって、暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御する制御装置である。
 第1の態様によれば、暖房時のサーモオフ時に、室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、間欠運転のタイミングを一致させる室内機群であるグループが複数構成され、グループ間の間欠運転のタイミングがずらされ、各グループに含まれるサーモオフ状態の室内機の機種容量の合計が略均等になるようにグループへの室内機の割り当てが制御される。
 このように間欠運転のタイミングが異なる各グループにおいて、機種容量の合計が均等になるように室内機が割り当てられるので、暖房時のサーモオフ時に室内ファンのオン期間中に室内機の熱交換器に溜まり込む冷媒量が平均化され、必要冷媒量を最小化できる。従って、冷媒の所要量を減らすことができ、結果としてレシーバ容量をも減らすことができる。
 上記の第1の態様において、前記間欠運転は、前記グループ間でオン期間が重ならないようにオン期間のタイミングを異ならせることが好ましい。
 異なるグループ間で室内ファンのオン期間を異ならせてそれぞれ間欠運転させるので、室内ファンのオン期間中に室内機の熱交換器に溜まり込む冷媒量を抑制でき、必要冷媒量を確実に減らすことができる。
 上記の第1の態様において、サーモオン状態からサーモオフ状態に移行した前記室内機は、複数の前記グループのうち、前記室内機の機種容量の合計が最も小さい前記グループに割り当てられることが好ましい。
 新たにサーモオフ状態になった室内機を、機種容量の合計が最も小さいグループに割り当てることにより、特定のグループの機種容量の合計が大きくなることを防ぎ、各グループ間の機種容量を均等に近づけさせることができる。
 上記の第1の態様において、前記室内機の機種容量の合計が、全ての前記グループの機種容量の合計に対して所定割合以上となる前記グループがある場合には、前記所定割合以上となった前記グループ内の最も機種容量が小さい前記室内機を、前記機種容量の合計が最も小さい前記グループに割り当てることが好ましい。
 これにより、各グループの機種容量の合計を均等化させることができる。
 上記の第1の態様において、1台の前記室内機の機種容量が、全ての前記グループの機種容量の合計に対して所定割合以上となる場合には、前記所定割合以上となる機種容量の前記室内機以外の他の前記室内機を、前記所定割合以上となる機種容量の前記室内機を含む前記グループと異なる前記グループに割り当てることが好ましい。
 これにより、機種容量の合計が、特定のグループだけ大きくなる事態を防ぐことができ、必要冷媒量の増加を抑制できる。
 本発明の第2の態様は、上記のいずれかに記載の制御装置を備えたマルチ型空気調和システムである。
 本発明の第3の態様は、室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御方法であって、暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御する制御方法である。
 本発明の第4の態様は、室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御プログラムであって、暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御することをコンピュータに実行させるための制御プログラムである。
 本発明は、必要冷媒量を削減し、レシーバ容量の増加を抑制しつつ、サーモオフ状態の室内機の室内ファンを間欠運転できるという効果を奏する。
本発明の一実施形態に係る空気調和装置の冷媒回路の概略構成を示した図である。 従来の制御方法に係る室内ファンのオンオフ状態とサーモオンオフ状態とに応じた(a)第1室内機の冷媒量の推移を示した図、(b)第2室内機の冷媒量の推移を示した図、(c)第3室内機の冷媒量の推移を示した図、(d)第1室内機から第3室内機の合計冷媒量の推移を示した図である。 本発明の一実施形態に係る室内ファンのオンオフ状態とサーモオンオフ状態とに応じた(a)第1室内機の冷媒量の推移を示した図、(b)第2室内機の冷媒量の推移を示した図、(c)第3室内機の冷媒量の推移を示した図、(d)第1室内機から第3室内機の合計冷媒量の推移を示した図である。 本発明の一実施形態の変形例に係る3つのグループの室内ファンの間欠運転のオンオフ状態の一例を示した図である。
 以下に、本発明の制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システムの一実施形態について、図面を参照して説明する。
 図1には、本実施形態の制御装置を備えたマルチ型空気調和システム1の冷媒サイクルを含む概略構成図が示されている。
 マルチ型空気調和システム1は、1台の室外機2と、室外機2から導出されるガス側配管4および液側配管5と、このガス側配管4および液側配管5間に分岐器6を介して並列に接続されている複数台の室内機7とを備えている。図1では、室内機7は、室内機7A,7Bの2台を図示しているが、本実施形態においては、図示しない3台目の室内機7Cを備えていることとして説明する。以下、特に明記しない場合には室内機は室内機7として説明する。
 室外機2は、冷媒を圧縮するインバータ駆動の圧縮機21と、冷媒ガス中から冷凍機油を分離する油分離器22と、冷媒の循環方向を切り換える四方切換弁23と、冷媒と外気とを熱交換させる室外熱交換器24と、室外熱交換器24と一体的に構成されている過冷却コイル25と、暖房用の室外電動膨張弁(EEVH)26と、液冷媒を貯留するレシーバ27と、液冷媒に過冷却を与える過冷却熱交換器28と、過冷却熱交換器28に分流される冷媒量を制御する過冷却用電動膨張弁(EEVSC)29と、圧縮機21に吸入される冷媒ガス中から液分を分離し、ガス分のみを圧縮機21に吸入させるアキュームレータ30と、ガス側操作弁31と、液側操作弁32と、を備えている。
 室外機2側の上記各機器は、吐出配管33A、ガス配管33B、液配管33C、ガス配管33D、吸入配管33E、および過冷却用の分岐配管33F等の冷媒配管を介して公知の如く接続され、室外側冷媒回路34を構成している。また、室外機2には、室外熱交換器24に対して外気を送風する室外ファン35が設けられている。
 さらに、油分離器22と圧縮機21の吸入配管33Eとの間には、油分離器22内で吐出冷媒ガスから分離された冷凍機油を所定量ずつ圧縮機21側に戻すため、キャピラリチューブ等の固定絞り(絞り)36を有する第1油戻し回路37と、電磁弁38およびキャピラリチューブ等の固定絞り(絞り)39を有する第2油戻し回路40との並列回路が接続されている。
 ガス側配管4および液側配管5は、室外機2のガス側操作弁31および液側操作弁32に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される室内機7A,7Bとの間の距離に応じてその長さが設定されるようになっている。ガス側配管4および液側配管5の途中には、適宜数の分岐器6が設けられ、この分岐器6を介してそれぞれ適宜台数の室内機7A,7Bが接続されている。これによって、密閉された1系統の冷凍サイクル3が構成されている。
 室内機7A,7Bは、冷媒と室内空気とを熱交換させて室内の空調に供する室内熱交換器71と、冷房用の室内電動膨張弁(EEVC)72と、室内熱交換器71を通して室内空気を循環させる室内ファン73と、を備えており、室内側の分岐ガス配管4Aおよび分岐液配管5Aを介して分岐器6に接続されている。
 上述したマルチタイプの空気調和機1において、冷房運転は、以下により行われる。
 圧縮機21で圧縮された高温高圧の冷媒ガスは、吐出配管33Aに吐出され、油分離器22で冷媒中に含まれている冷凍機油が分離される。その後、冷媒ガスは、四方切換弁23を介してガス配管33B側に循環され、室外熱交換器24で室外ファン35により送風される外気と熱交換されて凝縮液化される。この液冷媒は、過冷却コイル25で更に冷却された後、室外電動膨張弁26を通過し、レシーバ27にいったん貯留される。
 レシーバ27で循環量が調整された液冷媒は、液配管33Cを介して過冷却熱交換器28を流通される過程で、過冷却用分岐配管33Fに一部が分流され、過冷却用電動膨張弁(EEVSC)29で断熱膨張された冷媒と熱交換されて過冷却度が付与される。この液冷媒は、液側操作弁32を経て室外機2から液側配管5へと導出され、更に液側配管5に導出された液冷媒は、分岐器6により各室内機7A,7Bの分岐液配管5A,5Bへと分流される。
 分岐液配管5A,5Bに分流された液冷媒は、各室内機7A,7Bに流入し、室内電動膨張弁(EEVC)72で断熱膨張され、気液二相流となって室内熱交換器71に流入される。室内熱交換器71では、室内ファン73により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。
 ガス側配管4で合流された冷媒ガスは、室外機2側に戻され、ガス側操作弁31、ガス配管33D、四方切換弁23を経て吸入配管33Eに至り、分岐配管33Fからの冷媒ガスと合流された後、アキュームレータ30に導入される。アキュームレータ30では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機21へと吸入される。この冷媒は、圧縮機21において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。
 一方、暖房運転は、以下により行われる。
 圧縮機21により圧縮された高温高圧の冷媒ガスは、吐出配管33Aに吐出され、油分離器22で冷媒中に含まれている冷凍機油が分離された後、四方切換弁23によりガス配管33D側に循環される。この冷媒は、ガス側操作弁31、ガス側配管4を経て室外機2から導出され、更に分岐器6、室内側の分岐ガス配管4A,4Bを経て室内機7A,7Bへと導入される。
 室内機7A,7Bに導入された高温高圧の冷媒ガスは、室内熱交換器71で室内ファン73によって循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。室内熱交換器71で凝縮液化された液冷媒は、室内電動膨張弁(EEVC)72、分岐液配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流された後、液側配管5を経て室外機2に戻される。
 室外機2に戻った冷媒は、液側操作弁32、液配管33Cを経て過冷却熱交換器28に至り、冷房時の場合と同様に過冷却が付与された後、レシーバ27に流入され、いったん貯留されることにより循環量が調整される。この液冷媒は、液配管33Cを介して室外電動膨張弁(EEVH)26に供給され、そこで断熱膨張された後、過冷却コイル25を経て室外熱交換器24へと流入される。
 室外熱交換器24では、室外ファン35から送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。この冷媒は、室外熱交換器24からガス配管33B、四方切換弁23、吸入配管33Eを経て過冷却用分岐配管33Fからの冷媒と合流され、アキュームレータ30に導入される。アキュームレータ30では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機21へと吸入される。この冷媒は、圧縮機21で再び圧縮され、以上のサイクルを繰り返すことにより暖房運転が行われる。
 上述した冷房運転および暖房運転の間、油分離器22において吐出冷媒ガスから分離された冷凍機油は、互いに並列に接続されている固定絞り36を有する第1油戻し回路37および電磁弁38および固定絞り39を有する第2油戻し回路40を介して圧縮機21側に戻される。これによって、圧縮機21内に一定量の冷凍機油が確保され、圧縮機21内の摺動箇所が潤滑されることになる。第2油戻し回路40に設けられている電磁弁38は、定常の冷房運転時および暖房運転時は適宜のタイミングで開閉動作されることにより、油分離器22で分離された油の圧縮機21側への戻し量を調整可能に構成されている。
 制御部41は、暖房時の、空気の吸込温度が目標温度に達し、冷媒を循環させないサーモオフ時に、室内機7の室内ファン73が所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、間欠運転のタイミングを一致させる室内機群であるグループを複数構成し、グループ間の間欠運転のタイミングをずらし、各グループに含まれるサーモオフ状態の室内機7の機種容量の合計が略均等になるように、グループへの室内機7の割り当てを制御する。
 好ましくは、制御部41は、間欠運転においてグループ間で、室内ファン73のオン期間が重ならないようにオン期間のタイミングを異ならせる。なお、制御部41には、各グループ内の室内機7の室内ファン73の間欠運転のオンオフ動作のタイミングが、グループ毎にそれぞれ定められている。
 また、制御部41は、各室内機7の機種容量の情報をそれぞれ記憶しているので、サーモオン状態からサーモオフ状態に移行した室内機7がある場合には、各グループに含まれる室内機7の機種容量の合計を算出し、機種容量の合計が最も小さいグループに割り当てる。
 以下に、制御部41によるグループの構成と、間欠運転の制御方法について具体例を示し、従来の制御方法と比較して説明する。また、制御部41は、室内ファン73のオン期間とオフ期間とを予め設定しており、設定された期間で室内ファン73のオンオフの間欠運転を制御している。本実施形態においては、オン期間3分およびオフ期間5分の間欠運転をすることとして説明するが、オン期間およびオフ期間の時間は特に限定されない。
 図2には、従来の制御方法における、3台の室内機7のサーモオンオフ状態(▲印)と、室内ファン73のオンオフ状態(●印)と、サーモオンオフ状態に応じて推定される冷媒量(◆印)の推移が示されている。3台の室内機は、それぞれ第1室内機7A,第2室内機7B,第3室内機7Cとして説明する。また、ここで示される冷媒量とは、室内機7の熱交換器に占める冷媒の溜まり込み量の概算値である。図2(a)は、第1室内機7Aの冷媒量の推移を示し、図2(b)は、第2室内機7Bの冷媒量の推移を示し、図2(c)は、第3室内機7Cの冷媒量の推移を示している。図2(d)は、全室内機7A,7B,7Cの合計冷媒量の推移を示している。
 また、サーモオンオフ状態および室内ファン73のオンオフ状態は、冷媒量の推移を示すグラフ上に重ねて示しており、冷媒量0%の位置をサーモオフ状態、冷媒量10%の位置をサーモオン状態、冷媒量20%の位置を室内ファン73の回転が停止するオフ状態、冷媒量30%の位置を室内ファン73が回転するオン状態であることとして説明する。
 第1から第3の室内機7A,7B,7Cのリモコン等が操作され、各室内機7の運転が開始される。図2(a)に示されるように、第1室内機7Aは、室内の空気の吸込温度が設定目標温度に到達していないので、サーモオン状態が継続され、室内機7Aの室内ファン73もオン状態となっており、室内機7Aの冷媒量は、40%程度で安定している。
 図2(b)および図2(c)に示されるように、第2室内機7Bおよび第3室内機7Cは、時刻t=2(分)において、室内の空気の吸込温度が設定目標温度に達すると、サーモオンからサーモオフ状態に切り替わるが、室内ファン73は回転を継続するので冷媒量が増大する。サーモオフ状態となってから3分後の時刻t=5では、室内ファン73がオン状態からオフ状態に切り替えられるので、冷媒量が減少していく。室内ファン73がオフ状態となってから5分後の時刻t=10では、室内ファン73がオフ状態からオン状態に切り替えられるので、冷媒量が再び増大し、室内ファン73がオン状態となってから3分後の時刻t=13において室内ファン73がオフ状態に切り替えられると冷媒量が減少し、40%程度で安定する。
 このように、従来は、予め設定されるオン期間とオフ期間とに基づいて間欠運転をし、最悪条件を想定するためサーモオフ中の室内ファン73のサーモオン状態に移行するタイミングを、第2室内機7Bと第3室内機7Cとにおいて同時にしている。これにより、冷媒量の増減は各室内機7で同様に推移するため、全ての室内機7側で必要とされる冷媒量は図2(d)に示されるような推移となり、合算値を算出すると必要冷媒量の最大値は、1つの室内機の必要冷媒量を100%とすると、240%程度となる。
 図3には、3台の室内機7のサーモオンオフ状態(▲印)と、室内ファン73のオンオフ状態(●印)と、サーモオンオフ状態と室内ファン73のオンオフ状態に応じて推定される冷媒量の推移(◆印)とが示されている。図3は、図2と同様に図3(a)に第1室内機7Aの冷媒量の推移を示し、図3(b)に第2室内機7Bの冷媒量の推移を示し、図3(c)に第3室内機7Cの冷媒量の推移を示している。図3(d)は全室内機7A,7B,7Cの合計冷媒量の推移を示している。また、サーモオンオフ状態および室内ファン73のオンオフ状態は、図2に示したのと同様に、冷媒量の推移を示すグラフ上に重ねて示している。オンオフの間欠運転の期間は、オン期間3分およびオフ期間5分である場合を例として、本実施形態に係るマルチ型空気調和システム1の作用について図1から図3を用いて説明する。
 第1から第3の室内機7A,7B,7Cのリモコン等が操作され、各室内機7の運転が開始される。図3(a)に示されるように、第1室内機7Aは、室内の空気の吸込温度が設定目標温度に到達していないので、サーモオン状態が継続され、第1室内機7Aの室内ファン73もオン状態となっており、第1室内機7Aの冷媒量は、40%程度で安定している。
 室内の空気の吸込温度が目標設定温度に到達し、サーモオフ状態になった室内機がある場合(例えば、第2室内機7Bおよび第3室内機7C)には、「第2室内機7Bがサーモオフ状態である」、「第3室内機7Cがサーモオフ状態である」旨の信号が制御部41に出力される。
 制御部41は、サーモオフ状態になった室内機7があることを検出すると、サーモオフ状態になった室内機7の機種容量の情報を読み出し、適宜グループに振り分ける。ここでは、制御部41は、2つのグループを定めていることとする。第1グループは、最初の室内機7がサーモオフ状態となったことを検出した場合に、室内ファン73の回転を所定期間継続させ、その後所定期間、室内ファン73の回転を停止させる。第2グループは、最初の室内機7がサーモオフ状態となったことを検出した場合に、室内ファン73の回転を所定期間停止させ、他のグループの室内ファン73の回転(オン期間)の終了後に所定期間、室内ファン73を回転させる。
 各グループは、グループ内のサーモオフ状態の室内機7の機種容量の合計が略均等になるように構成される。図3に示されるように、時刻t=2(分)のタイミングでサーモオフ状態になった室内機が第2室内機7Bおよび第3室内機7Cの2台ある場合には、制御部41は、第2室内機7Bを第1グループに割り振り、第3室内機7Cを第2グループに割り振ることに決定し、同時にサーモオフ状態となった2つの室内機7をそれぞれ別のグループに割り当てる。
 時刻t=2において、制御部41は、第1グループに割り振られた第2室内機7Bに対し、室内ファン73の回転をオン状態にする指令を出力する。第2室内機7Bは、指令に基づいて室内ファン73をオン状態とする。そうすると、第2室内機7Bは、サーモオフ状態で室内ファン73がオン状態となっているので、冷媒量が増大する。また、制御部41は、第2グループに割り振られた第3室内機7Cに対し、室内ファン73の回転をオフ状態にする指令を出力する。第3室内機7Cは、指令に基づいて室内ファン73をオフ状態とする。
 所定期間(例えば、3分間)経過後の時刻t=5において、制御部41は、室内ファン73の回転がオン状態である第2室内機7Bに対し、室内ファン73の回転を停止させる、室内ファン73をオフ状態にさせる指令を出力する。第2室内機7Bは、指令を取得すると、室内ファン73をオン状態からオフ状態に切り替える。そうすると、サーモオフ状態で室内ファン73もオフ状態となるので、第2室内機7Bの冷媒量が次第に減少し、冷媒量が40%付近で落ち着く。
 時刻t=6において、第1グループの第2室内機7Bの室内ファン73はオフ状態であるので、制御部41は、第2グループの第3室内機7Cに対し、室内ファン73をオン状態にさせる指令を出力する。第3室内機7Cは、指令を取得すると室内ファン73をオフ状態からオン状態に切り替える。そうすると、第3室内機7Cは、サーモオフ状態で室内ファン73がオン状態となっているので冷媒量が増大する。
 所定期間(例えば、3分間)経過後の時刻t=9において、制御部41は、室内ファン73の回転がオン状態である第3室内機7Cに対し、室内ファン73をオフ状態にさせる指令を出力する。第3室内機7Cは、指令を取得すると、室内ファン73をオン状態からオフ状態に切り替える。そうすると、サーモオフ状態で室内ファン73もオフ状態となるので、第3室内機7Cの冷媒量が次第に減少し、冷媒量が40%付近で落ち着く。
 時刻t=10において、制御部41は、第2グループの第3室内機7Cの室内ファン73がオフ状態であるので、第1グループの第2室内機7Bに対し、室内ファン73をオン状態にさせる指令を出力する。第2室内機7Bは、指令を取得すると室内ファン73をオフ状態からオン状態に切り替える。そうすると、第2室内機7Bの冷媒量が次第に増大する。以降同様に、制御部41によって、各グループ間に属する室内機7の室内ファン73のオン期間が重ならないようにオンオフ制御される。
 以降、順次サーモオフ状態になる室内機7(例えば、室内機7A)は、第1グループ或いは第2グループに含まれるサーモオフ状態となっている室内機7の合計の機種容量が少ないグループに割り振られる。これにより、各グループに含まれるサーモオフ状態の室内機の機種容量の合計が略均等になるように振り分けることができる。
 なお、一度グループに割り振られた室内機7であっても、サーモオフ状態からサーモオン状態に移行すると、割り振られていたグループ情報は維持されないこととする。つまり、一度サーモオフ状態からサーモオン状態となり、次回サーモオフ状態に移行される場合には、その時点での各グループの合計の機種容量に基づいて(前回のグループ情報は無関係に)割り振られるグループが決定される。換言すると、サーモオフ状態になっている室内機7は、いずれサーモオン状態に切り替わり、順次グループから抜ける室内機7があるため、都度合計容量が変化していることから、次回サーモオフ状態に移行される場合には、その時点での合計の機種容量を算出して、割り振り先のグループを決定する。
 このように、制御部41によって、サーモオフ状態になった室内機7を異なるグループに振り分け、各グループで室内ファン73をオン期間とするタイミングを異ならせるので、図3(b)および図3(c)に示すように、冷媒量の推移のピークは異なるタイミングとなる。これにより、室内機7A,7B,7Cで必要とされる冷媒量は、図3(d)に示されるような推移となり、合算値を算出すると最大でも180%(=第1室内機7A40%+第2室内機7B60%+第3室内機7C80%)程度となる。
 同時にサーモオフ状態になった室内機7が複数ある場合であっても、室内ファン73のオンオフ動作のタイミングを異ならせる複数のグループに室内機7を割り当て、冷媒量の増減の変化を異ならせるので、必要冷媒量を抑制できる。
 なお、第1グループ或いは第2グループの少なくともどちらか一方が、同一の室外機2に接続される室内機容量の合計(つまり、100%)をグループ数(例えば、2グループ)で除算した平均値(例えば、50%)を超える場合には、室内機容量が50%を超えるグループ内において最も機種容量の小さい室内機7を他方のグループに移行させることが好ましい。これにより、各グループ内の機種容量の合計を略均等に近づけさせることができる。
 或いは、1台の室内機7で、全体の室内機容量(つまり、100%)をグループ数(例えば、2グループ)で除算した平均値(例えば、50%)を超える場合には、全体の室内機容量の50%を超えてしまう1台の室内機7を割り当てるグループと、この室内機7以外の他のサーモオフ状態となっている室内機7を割り当てるグループとに分けることが好ましい。
 なお、本実施形態においては、制御部41に各グループの室内ファン73の間欠運転のオンオフ切り替えタイミングを規定しているものとして説明していたが、これに限定されず、例えば、外部から入力装置等を介して、各グループのオンオフのタイミングを適宜変更することとしてもよい。
 上述した実施形態の制御部41においては、上記の処理の全て或いは一部において別途ソフトウェアを用いて処理する構成としてもよい。この場合、制御部41は、CPU(Central Processing Unit)、RAM(Random Access Memory)等の主記憶装置、および上記処理の全て或いは一部を実現させるためのプログラム(例えば、制御プログラム)が記録されたコンピュータ読み取り可能な記録媒体を備えている。そして、CPUが上記の記憶媒体に記録されているプログラムを読み出して、情報の加工、演算処理を実行することにより、上述した制御部41と同様の処理を実現させる。
 ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD(Conpact Disk)-ROM(Read Only Memory)、DVD(Digital Versatile Disk)-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 以上説明してきたように、本実施形態に係る制御部(制御装置)41および方法並びにプログラム、それを備えたマルチ型空気調和システム1によれば、暖房時のサーモオフ時に、室内機7の室内ファン73が間欠運転を行う場合に、間欠運転のタイミングを一致させる室内機群であるグループが複数構成され、グループ間の間欠運転のタイミングがずらされ、各グループに含まれるサーモオフ状態の室内機の機種容量の合計が略均等になるようにグループへの室内機の割り当てが制御される。
 このように間欠運転のタイミングが異なる各グループにおいて、機種容量の合計が均等になるように室内機が割り当てられるので、暖房時のサーモオフ時に室内ファン73のオン期間中に室内機の熱交換器に溜まり込む冷媒量が平均化され、必要冷媒量を最小化できる。従って、冷媒の所要量を減らすことができ、結果としてレシーバ容量をも減らすことができる。
〔変形例〕
 上記実施形態においては、室内ファン73の間欠運転をするグループを2つ設定することとして説明していたが、グループ数はこれに限定されず、3つ以上のグループであってもよい。以下に第1グループ、第2グループ、および第3グループの3つのグループを設けた場合のマルチ型空気調和システム1の作用について図4を用いて説明する。ここでは、室内ファン73はオン期間3分およびオフ期間6分の間欠運転をすることとして説明する。
 3台の室内機7のそれぞれに対応するリモコン等が操作され、各室内機7の運転が開始される。室内の空気の吸込温度が目標設定温度に到達し、最初にサーモオフ状態になった室内機7は、第1グループに割り振られ、3分間は室内ファン73がオン状態とされる。このとき、第2グループに属する室内機7および第3グループに属する室内機7のそれぞれの室内ファン73はオフ状態にされる。次にサーモオフ状態になった室内機7は、第2グループに割り振られ、さらに次にサーモオフ状態になった室内機7は、第3グループに割り振られる。以降、順次サーモオフ状態になる室内機7は、第1グループ、第2グループ、および第3グループの3つのグループのうち、各グループ内に含まれるサーモオフ状態となっている室内機7の合計の機種容量が少ないグループに割り振られる。
 第1グループの室内機7の室内ファン73は、時刻t=3(分)においてオン状態からオフ状態に切り替えられると、その後6分間(つまり、時刻t=9(分)まで)はオフ状態が継続される。第2グループの室内機7の室内ファン73は、時刻t=3においてオフ状態からオン状態に切り替えられ、時刻t=6までオン状態が継続され、t=6においてオフ状態にされる。第3グループの室内機7の室内ファン73は、第1グループおよび第2グループの室内機7の室内ファン73が共にオフ状態になった時刻t=6においてオフ状態からオン状態に切り替えられ、時刻t=9までオン状態が継続され、時刻t=9においてオフ状態に切り替えられる。
 以後、第1グループから第3グループに属する室内機7は、それぞれ室内ファン73が上記のようにオンオフ状態が切り替えられ、室内ファン73がオン状態となるオン期間が重ならないように制御される。
 また、第1グループ、第2グループ、及び第3グループのうち少なくともいずれか1つのグループが、同一の室外機2に接続される室内機容量の合計(つまり、100%)をグループ数(例えば、3グループ)で除算した平均値(例えば、33%)を超える場合には、室内機容量が33%を超えるグループ内において最も機種容量の小さい室内機7を他のグループに移行させることが好ましい。これにより、各グループ内の機種容量の合計を略均等に近づけさせることができる。
 或いは、1台の室内機7で、全体の室内機容量(つまり、100%)をグループ数(例えば、3グループ)で除算した平均値(例えば、33%)を超える場合には、全体の室内機容量の33%を超えてしまう1台の室内機7を割り当てるグループと、この室内機7以外の他のサーモオフ状態となっている室内機7を割り当てるグループとに分けることが好ましい。
1 マルチ型空気調和システム
2 室外機
7、7A、7B 室内機
27 レシーバ
41 制御部(制御装置)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (8)

  1.  室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御装置であって、
     暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御する制御装置。
  2.  前記間欠運転は、前記グループ間でオン期間が重ならないようにオン期間のタイミングを異ならせる請求項1に記載の制御装置。
  3.  サーモオン状態からサーモオフ状態に移行した前記室内機は、複数の前記グループのうち、前記室内機の機種容量の合計が最も小さい前記グループに割り当てられる請求項1または請求項2に記載の制御装置。
  4.  前記室内機の機種容量の合計が、全ての前記グループの機種容量の合計に対して所定割合以上となる前記グループがある場合には、前記所定割合以上となった前記グループ内の最も機種容量が小さい前記室内機を、前記機種容量の合計が最も小さい前記グループに割り当てる請求項1から請求項3のいずれかに記載の制御装置。
  5.  1台の前記室内機の機種容量が、全ての前記グループの機種容量の合計に対して所定割合以上となる場合には、前記所定割合以上となる機種容量の前記室内機以外の他の前記室内機を、前記所定割合以上となる機種容量の前記室内機を含む前記グループと異なる前記グループに割り当てる請求項1から請求項4のいずれかに記載の制御装置。
  6.  請求項1から請求項5のいずれかに記載の制御装置を備えたマルチ型空気調和システム。
  7.  室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御方法であって、
     暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御する制御方法。
  8.  室外機に対して複数の室内機が接続されるマルチ型空気調和システムの運転を制御する制御プログラムであって、
     暖房時のサーモオフ時に、前記室内機の室内ファンが所定時間回転した後に所定時間停止するオンオフ動作を繰り返す間欠運転を行う場合に、該間欠運転のタイミングを一致させる前記室内機群であるグループを複数構成し、前記グループ間の間欠運転のタイミングをずらし、各前記グループに含まれるサーモオフ状態の前記室内機の機種容量の合計が略均等になるように、前記グループへの前記室内機の割り当てを制御することをコンピュータに実行させるための制御プログラム。
     
     
     
     
     
PCT/JP2013/057584 2012-04-06 2013-03-18 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム WO2013150885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380007117.6A CN104081131B (zh) 2012-04-06 2013-03-18 控制装置及方法以及程序、包括该控制装置的多联空调系统
EP13772647.7A EP2835595A4 (en) 2012-04-06 2013-03-18 CONTROL DEVICE, METHOD AND PROGRAM, AND MULTI-TYPE AIR CONDITIONING SYSTEM COMPRISING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087322A JP5916489B2 (ja) 2012-04-06 2012-04-06 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム
JP2012-087322 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013150885A1 true WO2013150885A1 (ja) 2013-10-10

Family

ID=49300379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057584 WO2013150885A1 (ja) 2012-04-06 2013-03-18 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム

Country Status (4)

Country Link
EP (1) EP2835595A4 (ja)
JP (1) JP5916489B2 (ja)
CN (1) CN104081131B (ja)
WO (1) WO2013150885A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102437291B1 (ko) 2016-01-06 2022-08-30 삼성전자 주식회사 온도 자동 제어 방법 및 장치
CN108779949B (zh) * 2016-03-23 2020-11-03 三菱电机株式会社 制冷循环装置
CN106196724B (zh) * 2016-07-28 2018-09-28 广东芬尼克兹节能设备有限公司 多组机组错开进入预设状态的控制方法
JP6727312B2 (ja) * 2016-08-30 2020-07-22 三菱電機株式会社 空気調和装置
JPWO2020059077A1 (ja) * 2018-09-20 2021-08-30 東芝キヤリア株式会社 空気調和機及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346258A (ja) * 1992-03-16 1993-12-27 Toshiba Corp 空気調和機
JP2005049022A (ja) * 2003-07-29 2005-02-24 Hitachi Ltd 空気調和装置
JP2006029693A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンのデマンド制御システム
JP3778117B2 (ja) 2002-03-28 2006-05-24 ダイキン工業株式会社 空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412455C (zh) * 2005-01-26 2008-08-20 海尔集团公司 多联机空调器的子机制热启动控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346258A (ja) * 1992-03-16 1993-12-27 Toshiba Corp 空気調和機
JP3778117B2 (ja) 2002-03-28 2006-05-24 ダイキン工業株式会社 空気調和機
JP2005049022A (ja) * 2003-07-29 2005-02-24 Hitachi Ltd 空気調和装置
JP2006029693A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンのデマンド制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835595A4

Also Published As

Publication number Publication date
CN104081131B (zh) 2016-11-16
JP5916489B2 (ja) 2016-05-11
CN104081131A (zh) 2014-10-01
JP2013217550A (ja) 2013-10-24
EP2835595A4 (en) 2015-12-30
EP2835595A1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5916488B2 (ja) 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム
AU2007218821B2 (en) Air conditioner and heat source unit
WO2018123361A1 (ja) マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
WO2013150885A1 (ja) 制御装置および方法並びにプログラム、それを備えたマルチ型空気調和システム
JP2008185292A (ja) 冷凍装置
JP5418622B2 (ja) 冷凍装置
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JP2019086251A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
EP3260792A1 (en) Air conditioning system control device, air conditioning system, air conditioning control program, and air conditioning system control method
JP2009068744A (ja) 電動膨張弁の開弁パルス設定方法およびマルチ形空気調和機
JP2018204896A (ja) マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
JP6172702B2 (ja) マルチ形空気調和システム
WO2014132433A1 (ja) 空気調和装置
JP2010216761A (ja) マルチ形空気調和機
WO2018221052A1 (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
KR102290031B1 (ko) 공기 조화기 및 그 제어방법
JP5506433B2 (ja) マルチ型空気調和機
JP2009144939A (ja) マルチ空気調和システム
JP5582838B2 (ja) マルチ形空気調和装置
JP2019128109A (ja) マルチ型空気調和装置及びマルチ型空気調和装置の設定方法
JP5138292B2 (ja) 空気調和装置
JP5645453B2 (ja) 空気調和装置
US20220128275A1 (en) Refrigeration apparatus
JP2011242097A (ja) 冷凍装置
KR20190081837A (ko) 공기조화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013772647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE