WO2013147139A1 - 生分解性ポリエステル樹脂組成物 - Google Patents

生分解性ポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2013147139A1
WO2013147139A1 PCT/JP2013/059493 JP2013059493W WO2013147139A1 WO 2013147139 A1 WO2013147139 A1 WO 2013147139A1 JP 2013059493 W JP2013059493 W JP 2013059493W WO 2013147139 A1 WO2013147139 A1 WO 2013147139A1
Authority
WO
WIPO (PCT)
Prior art keywords
p3ha
resin composition
weight
film
polyester resin
Prior art date
Application number
PCT/JP2013/059493
Other languages
English (en)
French (fr)
Inventor
鈴木 紀之
中村 信雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201380016206.7A priority Critical patent/CN104204092A/zh
Priority to EP13769826.2A priority patent/EP2832796B1/en
Priority to US14/388,954 priority patent/US9371445B2/en
Priority to JP2014508084A priority patent/JP6015748B2/ja
Publication of WO2013147139A1 publication Critical patent/WO2013147139A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a biodegradable polyester resin composition and a film or sheet comprising the same.
  • biodegradable plastics which are decomposed into water and carbon dioxide by the action of microorganisms after use, are attracting attention as the realization of a recycling-oriented society on a global scale is eagerly desired.
  • biodegradable plastics include 1) microbially produced aliphatic polyesters such as polyhydroxyalkanoates (hereinafter referred to as PHA), 2) polylactic acid and polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, polybutylene. Petroleum-derived resins such as succinates, and 3) natural polymers such as starch and cellulose acetate.
  • PHBH poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, abbreviated as PHBH) produced from microorganisms as a film or sheet using a microorganism-producing aliphatic polyester
  • Patent Document 1 a sheet comprising a resin composition containing a petroleum-derived resin such as polybutylene adipate terephthalate, polybutylene succinate adipate, polybutylene succinate, polycaproclactone, and PHBH (see Patent Document 2). It is disclosed.
  • the present invention aims to improve the tear strength in the MD direction of a film or sheet formed from a resin composition containing a microorganism-producing aliphatic polyester.
  • the present inventors examined the microstructure (morphology) of the obtained molded article by a transmission electron microscope analysis-image analysis method (TEM method). It has been found that the film is stretched and oriented in the take-up direction (MD direction). Furthermore, the present inventors presume that the decrease in tear strength in the MD direction of the film or sheet is due to the stretched / orientated state of the aliphatic polyester component, and further studied to adjust the morphology of the molded product. As a result, it was found that the morphology of the resin material in the molded product of film or sheet can be controlled by using a specific amount of modified glycerin in addition to the microbially-produced aliphatic polyester and other biodegradable resin. By controlling the morphology, the first success in increasing the tear strength in the MD direction of molded articles such as films and sheets was achieved, and the present invention was completed.
  • TEM method transmission electron microscope analysis-image analysis method
  • the first of the present invention is the formula (1): [—CHR—CH 2 —CO—O—] (Wherein, R is an alkyl group represented by C n H 2n + 1, n is an integer of 1 to 15.)
  • a biodegradable polyester resin comprising 60 to 400 parts by weight of polybutylene adipate terephthalate (PBAT) and 10 to 50 parts by weight of modified glycerin with respect to 100 parts by weight of an aliphatic polyester (P3HA) having a repeating unit represented by Relates to the composition.
  • PBAT polybutylene adipate terephthalate
  • P3HA aliphatic polyester
  • Relates a repeating unit represented by Relates to the composition.
  • the biodegradable polyester resin composition is for film molding or sheet molding.
  • the aliphatic polyester (P3HA) is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly (3-hydroxybutyrate) (P3HB), poly (3 -Hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxy) Octanoate) and at least one selected from the group consisting of poly (3-hydroxybutyrate-co-3-hydroxyoctadecanoate).
  • the aliphatic polyester (P3HA) has a melt viscosity at 160 ° C.
  • the ratio of the melt viscosity of the aliphatic polyester (P3HA) to the melt viscosity of the polybutylene adipate terephthalate (PBAT) is 0.5 or more.
  • PBS polybutylene succinate
  • P3HA polybutylene succinate
  • the ratio of aliphatic polyester (P3HA) to the total amount of aliphatic polyester (P3HA), polybutylene adipate terephthalate (PBAT) and polybutylene succinate (PBS) is 45% by weight or less.
  • the modified glycerin is an acetylated monoglyceride.
  • the second of the present invention is formed by molding the biodegradable polyester resin composition
  • the present invention relates to a film or sheet in which the maximum value of the major axis of the phase composed of the aliphatic polyester (P3HA) measured by transmission electron microscope analysis-image analysis method (TEM method) is 18 ⁇ m or less and the average value is 8 ⁇ m or less.
  • the film or sheet is formed by an inflation method or a T-die extrusion method.
  • the take-up speed during molding is 30 m / min or less.
  • a biodegradable resin raw material is used, and carbon dioxide on the earth is not increased.
  • the proportion of the microbially produced aliphatic polyester that is carbon neutral is high, and the MD direction of the molded product Films and sheets having high tear strength can be provided.
  • FIG. 1 is a TEM image of the film obtained in Example 1.
  • FIG. FIG. 2 is an image obtained by processing the TEM image of FIG. 1 with image analysis software and determining the major axis of PHBH.
  • FIG. 3 is a TEM image of the film obtained in Comparative Example 1.
  • the biodegradable polyester resin composition according to the present invention has a resin component represented by the formula (1): [—CHR—CH 2 —CO—O—] (where R is an alkyl represented by C n H 2n + 1).
  • the poly (3-hydroxyalkanoate) (abbreviation: P3HA) used in the present invention is produced from a microorganism and has the formula (1): [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15.)).
  • the microorganism that produces P3HA is not particularly limited as long as it is a microorganism capable of producing P3HAs.
  • a copolymer-producing bacterium of hydroxybutyrate and other hydroxyalkanoate a copolymer having monomer units of 3-hydroxybutyrate and 3-hydroxyvalerate (hereinafter abbreviated as “PHBV”).
  • PHBH poly (3-hydroxybutyrate-co-3-hydroxyhexanoate
  • Aeromonas caviae poly (3-hydroxybutyrate-co -4-hydroxybutyrate) producing bacteria such as Alcaligenes eutrophus
  • PHBH poly (3-hydroxybutyrate-co-3-hydroxyhexanoate
  • Aeromonas caviae poly (3-hydroxybutyrate-co -4-hydroxybutyrate) producing bacteria such as Alcaligenes eutrophus
  • alkaligenes Utropha Strain AC32 Alcaligenes eutrophus AC32, FERM BP-6038
  • J. Bateriol., 179, p4821-4830 (1997) is more preferable, and these microorganisms are cultured under appropriate conditions to accumulate PHBH in the cells
  • the microbial cells that have been used are used.
  • the weight average molecular weight of P3HA used in the present invention is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,500,000 from the viewpoint of the balance between moldability and physical properties.
  • the weight average molecular weight here means what was measured from the polystyrene conversion molecular weight distribution using the gel permeation chromatography (GPC) which used chloroform eluent.
  • P3HA examples include poly (3-hydroxybutyrate) (abbreviation: P3HB), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (abbreviation: PHBH), poly (3-hydroxybutyrate) Rate-co-3-hydroxyvalerate) (abbreviation: PHBV), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (abbreviation: P3HB4HB), poly (3-hydroxybutyrate-co-3- Hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like.
  • P3HB, PHBH, PHBV, and P3HB4HB are listed as those that are industrially easy to produce.
  • n in the alkyl group (R) is 1 PHBH consisting of a unit and a repeating unit in which n is 3 is preferred.
  • Patent Document 2 A specific method for producing PHBH is described in, for example, International Publication No. 2010/013483 (Patent Document 2).
  • Patent Document 2 Kaneka Corporation "AONILEX (AONILEX)" (registered trademark) etc. are mentioned.
  • the composition ratio of PHBH repeating units is such that the composition ratio of poly (3-hydroxybutyrate) / poly (3-hydroxyhexanoate) is 80/20 to 99/1 from the viewpoint of the balance between flexibility and strength. (Mol / mol) is preferred, and 75/15 to 97/3 (mo1 / mo1) is more preferred. The reason is that 99/1 or less is preferable from the viewpoint of flexibility, and 80/20 or more is preferable in that the resin has an appropriate hardness.
  • PHBV also changes its melting point, Young's modulus, etc. depending on the ratio of the 3-hydroxybutyrate (3HB) component and the 3-hydroxyvalerate (3HV) component, but the 3HB component and the 3HV component co-crystallize.
  • the degree is as high as 50% or more, and it is more flexible than poly 3-hydroxybutyrate (P3HB), but the elongation at break tends to be as low as 50% or less.
  • the P3HA used in the present invention preferably has a melt viscosity at 160 ° C. of 900 to 3,600 Pa ⁇ s. If the melt viscosity is less than 900 Pa ⁇ s, the melt viscosity ratio with respect to polybutylene adipate terephthalate (PBAT) becomes small, and it may be difficult to control the morphology of the resin composition and the molded product such as a film or sheet obtained therefrom. If it is greater than 3,600 Pa ⁇ s, the moldability may be inferior. In the present invention, the melt viscosity can be increased by adding isocyanate to P3HA.
  • PBAT polybutylene adipate terephthalate
  • P3HA produced by microorganisms has a particularly low crystallization rate among aliphatic polyesters, it is particularly effective to use the processing method as in the present invention.
  • P3HA is excellent in biodegradability in both aerobic and anaerobic environments, and does not generate toxic gas during combustion.
  • PHBH is preferable in that it does not use petroleum-derived materials as raw materials, uses plant raw materials, and does not increase carbon dioxide on the earth, that is, has an excellent feature of being carbon neutral.
  • the present invention has an advantage that a non-biodegradable crystal nucleating agent is not added and the excellent biodegradability of P3HA is not impaired.
  • the polybutylene adipate terephthalate (PBAT) used in the present invention refers to a random copolymer of 1,4-butanediol, adipic acid and terephthalic acid, and in particular, Japanese Patent Publication No. 10-508640, etc.
  • PBAT polybutylene adipate terephthalate
  • B) is a mixture containing butanediol (provided that the molar ratio of (a) to (b) is 0.4: 1 to 1.5: PBAT obtained by the reaction of 1) is preferred.
  • Examples of commercially available PBAT include “Ecoflex” (registered trademark) manufactured by BASF.
  • the content of the PBAT in the biodegradable polyester of the present invention is preferably 60 to 400 parts by weight, more preferably 100 to 250 parts by weight with respect to 100 parts by weight of the P3HA. If the content is less than 60 parts by weight, P3HA cannot form a discontinuous layer in a dispersed state, so that the tear strength may be lowered, and if it exceeds 400 parts by weight, the moldability may be lowered.
  • the morphology of the resin composition and the molded product such as film or sheet obtained therefrom is controlled. be able to.
  • modified glycerin acetylated monoglycerides such as glycerin diacetomonolaurate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate are preferable.
  • commercially available modified glycerin include “Rikemar” (registered trademark) PL series manufactured by Riken Vitamin Co., Ltd.
  • the content of the modified glycerin with respect to the biodegradable polyester of the present invention is preferably 10 to 50 parts by weight, more preferably 20 to 40 parts by weight with respect to 100 parts by weight of the P3HA.
  • the content is less than 10 parts by weight, the maximum value and the average value of the major axis of the phase made of P3HA become too large, P3HA cannot form a discontinuous layer in a dispersed state, and the tear strength of the film or sheet is lowered.
  • it exceeds 50 parts by weight the effect will not change and may cause bleeding out.
  • the biodegradable polyester resin composition of the present invention contains polybutylene succinate (PBS) and has a function of lowering the melt viscosity of PBAT, the viscosity ratio of P3HA to PBAT is increased, and P3HA is non-peptidized. This is excellent in that a continuous phase is easily formed and the tear strength is improved.
  • PBS is an aliphatic polyester copolymer synthesized by dehydration polycondensation of 1,4-butanediol and succinic acid, and commercially available products include “Bionole” manufactured by Showa Denko KK.
  • the content of the PBS in the biodegradable polyester of the present invention is preferably 20 to 150 parts by weight, more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the P3HA, from the viewpoint of not affecting the tear strength.
  • the resin composition of the present invention includes fillers used as usual additives, colorants such as pigments and dyes, odor absorbents such as activated carbon and zeolite, vanillin, and dextrin as long as the effects of the present invention are not impaired. Fragrances such as antioxidants, antioxidants, weather resistance improvers, UV absorbers, plasticizers, lubricants, mold release agents, water repellents, antibacterial agents, slidability improvers, and other secondary additives You may add at least 1 sort.
  • the resin composition as described above and the film or sheet obtained therefrom are obtained by controlling the morphology.
  • the maximum value of the major axis of the phase composed of the P3HA measured by transmission electron microscope analysis-image analysis method (TEM method) is 18 ⁇ m or less, and the average The value is in the range of 8 ⁇ m or less, and is obtained by controlling the morphology so that P3HA forms a discontinuous layer in a dispersed state.
  • the TEM method referred to in the present invention is a ruthenium tetroxide (RuO 4) obtained by cutting a slice of about 100 nm parallel to the surface of the film or sheet from the film or sheet using a microtome so that the MD direction can be observed. ) After selectively staining P3HA with osmium tetroxide, phosphotungstic acid, etc., using a transmission electron microscope (JEM-1200EX, manufactured by JEOL Ltd.), the cut surface of the film or sheet was cut at an acceleration voltage of 80 kV.
  • RuO 4 ruthenium tetroxide
  • the phase state of P3HA when observed from the surface direction was photographed at a magnification of 10,000 times, and a binarized image analysis software for the range of about 18 ⁇ m x about 25 ⁇ m of the image (“Win Roof of Mitani Corporation”) Is a method of automatically measuring the major axis of the phase composed of P3HA and its average value. Further, the major axis of the phase composed of P3HA that cannot be discriminated by the image analysis software is obtained manually.
  • the major axis of the phase composed of P3HA indicates the longest diameter of the individual phases composed of P3HA in the microscopically observed image, and the average value indicates the major axis of the phase composed of all P3HA present in the visual field. The average value is shown.
  • three visual fields are randomly observed as the visual field to be observed.
  • the ratio of the melt viscosity of the aliphatic polyester (P3HA) to the melt viscosity of the polybutylene adipate terephthalate (PBAT) is 0.5 or more, preferably 0.7 or more.
  • the take-up speed during molding is 30 m / min or less, preferably 25 m / min or less, more preferably Examples of the method include 20 m / min or less.
  • the ratio of melt viscosity (P3HA / PBAT) of 1) is a ratio of melt viscosity at 160 ° C. of P3HA and PBAT.
  • the upper limit of the ratio of the melt viscosity of P3HA to the melt viscosity of PBAT is not particularly limited, but if it is too large, the viscosity of the resin composition becomes too high, and molding processability may be deteriorated, and P3HA tends to be finely dispersed. From the viewpoint, 2.0 or less is preferable.
  • the ratio of the melt viscosity of P3HA to the melt viscosity of PBAT refers to a value obtained by dividing the melt viscosity of P3HA by the melt viscosity of PBAT.
  • the melt viscosity was measured using a high shear viscometer capillary rheometer, with a set temperature of 160 ° C. to 170 ° C., a capillary size of ⁇ 1 mm, a length of 10 mm, a shear rate of 100 (1 / sec) to 2,000 (1). / Sec). In the examples described later, the melt viscosity is measured by this method.
  • the ratio of the aliphatic polyester (P3HA) exceeds 45% by weight, PHBH constitutes a continuous phase in the resin, and the tear strength in the MD direction in a molded product such as a molded film or sheet. May decrease too much.
  • the lower limit of the ratio of the aliphatic polyester (P3HA) is not particularly limited, but the content ratio of the aliphatic polyester (P3HA) is preferably 1% by weight or more from the viewpoint of increasing the non-petroleum degree, and the aliphatic polyester (P3HA) If the ratio is too small, the effect of increasing the blending ratio of the microorganism-producing aliphatic polyester that is carbon neutral is weakened. Therefore, the ratio of the aliphatic polyester (P3HA) is more preferably 20% by weight or more, More preferably, it is 25% by weight or more.
  • the take-up speed at the time of molding of a film or sheet exceeds 30 m / min, the major axis of the phase made of P3HA in the film or sheet becomes too long, and further in the MD direction. In some cases, the tear strength may be greatly reduced.
  • the film and sheet of the present invention in which the maximum value of the major axis of the discontinuous phase composed of P3HA is 18 ⁇ m or less and the average value is 8 ⁇ m or less can be obtained.
  • the resin composition of the present invention can be produced by a known method such as heating and melting using a single screw extruder, a twin screw extruder, or the like.
  • the film or sheet of the present invention can be produced by a known molding method such as an inflation method or a T-die extrusion method. Specific conditions may be set as appropriate.
  • the inflation method the pellet is dried by a dehumidifying dryer or the like before inflation molding until the moisture content of the pellets is 500 ppm or less, and the cylinder set temperature is 100 ° C. to 160 ° C. It is preferable to set the adapter and the die to a set temperature of 130 ° C. to 160 ° C.
  • a thickness of about 1 to 100 ⁇ m is called a film
  • a thickness of over 100 ⁇ m to about 20 mm is called a sheet.
  • the film or sheet of the present invention can be suitably used in agriculture, fishery, forestry, horticulture, medicine, hygiene, food industry, clothing, non-clothing, packaging, automobiles, building materials, and other fields. Used for applications such as agricultural multi-films, forestry fumigation sheets, tying tapes including flat yarns, rooting films for plants, diaper back sheets, packaging sheets, shopping bags, garbage bags, draining bags, and other compost bags It is done.
  • 3-Hydroxyalkanoate polymer PHBH (raw material A-1) used in this example was produced as follows. KNK-631 strain (see International Publication No. 2009/145164) was used for PHA culture production.
  • the composition of the seed medium is 1 w / v% Meat-extract, 1 w / v% Bacto-Triptone, 0.2 w / v% Yeast-extract, 0.9 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.15 w / V% KH 2 PO 4 , pH 6.8.
  • the composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1 N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O).
  • the carbon source was palm kernel oil added at a concentration of 10 g / L.
  • the composition of the PHA production medium is 0.385 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 w / v% FeCl 3 .6H 2 O in 0.1 N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 ⁇ 6H 2 O, 0.016 w / v% CuSO 4 ⁇ 5H 2 O, 0.012 w / v% NiCl 2 ⁇ 6H 2 O), 0.05 w / v% BIOSPUREX 200K (Antifoamer: manufactured by Cognis Japan).
  • a glycerol stock (50 ⁇ L) of KNK-631 strain was inoculated into a seed medium (10 mL) and cultured for 24 hours to perform seed culture.
  • 1.0 v / v% of the seed mother culture solution was inoculated into a 3 L jar fermenter (MDL-300 type, manufactured by Maruhishi Bioengine) containing 1.8 L of a preculture medium.
  • the operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8.
  • a 14% aqueous ammonium hydroxide solution was used for pH control.
  • 1.0 V / v% of the preculture solution was inoculated into a 10 L jar fermenter (MDS-1000, manufactured by Maruhishi Bioengine) containing 6 L of production medium.
  • the operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 6.0 L / min, and a pH controlled between 6.7 and 6.8.
  • a 14% aqueous ammonium hydroxide solution was used for pH control. Palm kernel olein oil was used as the carbon source. Culturing was performed for 64 hours, and after completion of the cultivation, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the weight of the dried cells was measured.
  • the gas chromatograph used was Shimadzu GC-17A, and the capillary column used was GL Science's Neutra Bond-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m). He was used as the carrier gas, the column inlet pressure was set to 100 kPa, and 1 ⁇ L of the sample was injected. As temperature conditions, the temperature was raised from the initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at the rate of 30 ° C./min. As a result of analysis under the above conditions, it was PHA as shown in the chemical formula (1), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the 3HH composition was 11.2 mol%.
  • PHBH was obtained from the culture solution according to the method described in International Publication No. 2010/066753.
  • the weight average molecular weight measured by GPC was 570,000.
  • the melt viscosity of PHBH at 160 ° C. was measured and found to be 1,150 Pa ⁇ s.
  • the raw material A-1 was obtained by hydrolysis for 72 hours at 80 ° C. and a relative humidity of 95%.
  • Raw material A-4 100 parts by weight of raw material A-1 2 parts by weight of an isocyanate compound (manufactured by Nippon Polyurethane Industry Co., Ltd., Millionate MR200) was set by a twin-screw extruder at a set temperature of 100 to 130 ° C. and a screw rotation speed of 100 rpm.
  • the raw material A-4 was obtained by melting and kneading at The melt viscosity of the obtained raw material A-4 was 2,350 Pa ⁇ s.
  • the raw material A-1 was obtained by hydrolysis for 36 hours at 80 ° C. and a relative humidity of 95%.
  • the KNK-005 strain was used in place of the KNK-631 strain, and was obtained in the same manner as in Production Example 1.
  • Raw material B-1 PBAT having a melt viscosity of 1,800 Pa ⁇ s at 160 ° C. (manufactured by BASF, “Ecoflex (registered trademark)”).
  • Raw material B-2 PBS (manufactured by Showa Denko KK, “Bionore (registered trademark)”). ⁇ Modified glycerin compound>
  • Raw material C-1 Acetylated monoglyceride (Riken Vitamin Co., Ltd., “Riquemar (registered trademark)” PL012).
  • polyester B-1 (PBAT), 50 parts by weight of polyester B-2 (PBS), modified glycerin compound C-1 (acetyl) with respect to 100 parts by weight of 3-hydroxyalkanoate polymer (raw material A-1)
  • the polyester resin composition containing PHBH is obtained by melting and kneading 25 parts by weight of a monoglyceride) with a twin screw extruder (manufactured by Nippon Steel Co., Ltd .: TEX30) at a set temperature of 100 to 130 ° C. and a screw rotation speed of 100 rpm. It was.
  • FIG. 1 shows a TEM image of the film obtained in Example 1.
  • the vertical direction is the take-up direction (MD direction).
  • FIG. 2 shows a state of an image in which the major axis of PHBH is discriminated by the image analysis software.
  • Example 3 The resin composition obtained in Example 1 was formed into a sheet, and the tear strength and the maximum major axis and average major axis of the phase composed of PHBH were measured in the same manner as in Example 1.
  • Example 1 Example 1 was used except that 100 parts by weight of 3-hydroxyalkanoate polymer (raw material A-2) having a low melt viscosity was used instead of 100 parts by weight of 3-hydroxyalkanoate polymer (starting material A-1).
  • a resin composition was produced, a film was formed in the same manner as in Example 2, and the tear strength of the film, the maximum major axis and the average major axis of the PHBH phase were calculated.
  • FIG. 3 shows a TEM image of the film obtained in Comparative Example 1. In the figure, the vertical direction is the MD direction.
  • Comparative Example 2 Using the resin composition obtained in Comparative Example 1, a sheet was molded in the same manner as in Example 3, and the tear strength and the maximum major axis and average major axis of the PHBH phase were measured for the obtained sheet.
  • the PHBH phase (white portion in the figure) in the sheet obtained in Example 1 has an elliptical shape slightly stretched in the MD direction as shown in FIG. 1, but is randomly distributed and arranged. As shown in Table 1, the maximum major axis of these PHBH phases was less than 18 ⁇ m, and the average major axis was less than 8 ⁇ m. Further, the PHBH phase of the film obtained in Example 2 and the sheet obtained in Example 3 also formed the same dispersed phase as in Example 1, and the maximum major axis of each PHBH phase was less than 18 ⁇ m. The average major axis was less than 8 ⁇ m. Further, the tear strength in the MD direction was 40 mN / ⁇ m or more in all of Examples 1 to 3, indicating a high value.
  • Polyester B-1 80 parts by weight
  • polyester B-2 25 parts by weight
  • modified glycerin compound C-1 with respect to 100 parts by weight of 3-hydroxyalkanoate polymer raw material A-3)
  • Acylated monoglyceride 25 parts by weight
  • Example 4 is a method similar to Example 1
  • Example 5 is a film formed by the same method as Example 2. For the obtained film, the tear strength, the maximum major axis of PHBH and the average major axis are calculated. The same operation as in Example 1 was performed.
  • Example 6 The resin composition obtained in Example 4 was formed into a sheet by the same method as in Example 3, and the tear strength, the maximum major axis of the PHBH phase, and the average major axis were measured for the obtained sheet.
  • Example 7 A polyester resin composition was obtained in the same manner as in Example 4 except that the raw material A-4 was used instead of the raw material A-3.
  • the obtained polyester resin composition was formed into a sheet by the same method as in Example 3, and the tear strength, the maximum major axis and the average major axis of the PHBH phase were measured for the obtained sheet.
  • Comparative Example 4 The resin composition obtained in Comparative Example 3 was formed into a sheet by the same method as in Example 6, and the tear strength, the maximum major axis of the PHBH phase, and the average major axis were measured for the obtained sheet.
  • Table 2 shows the results of Examples 4 to 7 and Comparative Examples 3 and 4 described above.
  • the PHBH (raw material A-3) in the films obtained in Examples 4 and 5 and the sheet obtained in Example 6 has a high molecular weight and thus has a melt viscosity of 1,910 Pa ⁇ s and is Ecoflex. It was higher than (raw material B-1) ((P3HA / PBAT) was 1.0 or more). Therefore, even if the composition ratio of PHBH exceeded 45% by weight of the total resin and approached 50% by weight, the phase composed of PHBH could form a dispersed state. Furthermore, since the maximum major axis of the PHBH phase in the films and sheets obtained in Examples 4 to 7 was less than 18 ⁇ m and the average major axis was less than 8 ⁇ m, the tear strength in the MD direction was high. showed that. On the other hand, in Comparative Examples 3 and 4, since the polyester raw material A-2 formed a continuous phase and did not form an island phase (dispersed phase), the maximum major axis and the average major axis could not be calculated.
  • Examples 8 to 12 A polyester resin composition was produced in the same manner as in Example 1 with the formulation described in Table 3, and a film was molded in the same manner as in Example 1 except that the take-up speed shown in Table 3 was adjusted. With respect to the obtained film, the tear strength, the maximum major axis and the average major axis of the PHBH phase were calculated. The results are shown in Table 3.
  • Example 5 A resin composition was produced in the same manner as in Example 2 except that the modified glycerin compound C-1 was not used. A film was formed from this resin composition, and the obtained film had a tear strength, a maximum major axis of PHBH and The average major axis was calculated. The results are shown in Table 4.
  • Comparative Example 5 the maximum major axis and the average major axis are both larger than those in Example 2, and the tear strength is low. From this, without the modified glycerin compound C-1, the discontinuous phase composed of PHBH in the resin composition is not as fine as in Example 1 because its maximum major axis and average major axis are long, and as a result The tear strength is considered to be low.
  • Example 7 The same procedure as in Example 1 was conducted except that 100 parts by weight of the 3-hydroxyalkanoate polymer (raw material A-2) having a low melt viscosity was used instead of 100 parts by weight of the 3-hydroxyalkanoate polymer (starting material A-1). A resin composition was manufactured, and a film was formed in the same manner as in Example 1 except that the take-up speed was 15 m / min. The maximum major axis and the average major axis of the PHBH phase were calculated from the tear strength and the TEM image. The results are shown in Table 1. As in Comparative Example 5, the maximum major axis and the average major axis were both larger than those in Example 2, and the tear strength was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 微生物生産系脂肪族ポリエステルを含む樹脂組成物から成形されるフィルムやシートの引き裂き強度の改善を目的とする発明であり、式(1):[-CHR-CH2-CO-O-](但し、RはCn2n+1で表されるアルキル基であり、nは1以上15以下の整数である。)で示される繰り返し単位を有する脂肪族ポリエステル(P3HA)100重量部に対し、ポリブチレンアジペートテレフタレート(PBAT)を60~400重量部および変性グリセリンを10~50重量部含有してなる生分解性ポリエステル樹脂組成物、並びに該生分解性ポリエステル樹脂組成物を成形してなり、透過型電子顕微鏡分析-画像解析法(TEM法)によって測定される前記脂肪族ポリエステル(P3HA)からなる相の長径の最大値が18μm以下であり、平均値が8μm以下であるフィルムまたはシート。

Description

生分解性ポリエステル樹脂組成物
 本発明は、生分解性ポリエステル樹脂組成物およびそれからなるフィルム、シートに関するものである。
 近年、廃棄プラスチックが引き起こす環境問題がクローズアップされ、地球規模での循環型社会の実現が切望される中で、使用後、微生物の働きによって水と二酸化炭素に分解される生分解性プラスチックが注目を集めている。生分解性プラスチックとしては、1)ポリヒドロキシアルカノエート(以下、PHAと記す。)といった微生物生産系脂肪族ポリエステル、2)ポリ乳酸やポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートなどの石油由来系樹脂、3)澱粉や酢酸セルロース等の天然高分子物などがある。しかし、石油由来系脂肪族ポリエステルのなかでもポリ乳酸、ポリカプロラクトンは耐熱性に問題があり、また、天然高分子物は非熱可塑性であることや耐水性に劣るといった問題がある。さらに、炭酸ガス排出量削減の観点からは、バイオマス度の高い非石油由来系樹脂を使用することが望まれる社会となってきている。そこで、植物原料を使用しており、地球上の二酸化炭素を増大させない、つまりカーボンニュートラルである微生物生産系脂肪族ポリエステルの配合割合を高めた生分解性樹脂の使用が望まれている。
 従来、微生物生産系脂肪族ポリエステルを用いたフィルムやシートとして、微生物から生産される、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート、略称:PHBH)からなるフィルム(特許文献1参照。)、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリカプロクラクトンなどの石油由来系樹脂とPHBHとを含有する樹脂組成物からなるシート(特許文献2参照。)などが開示されている。
 しかしながら、PHBHなどの微生物生産系脂肪族ポリエステルやそれを含む樹脂組成物をインフレーション法やTダイ押出し法でフィルムやシートに成形した場合、得られたフィルムやシートのMD方向(成形時の引取り方向)における引き裂き強度が不充分であった。
特開2006-45365号公報 国際公開第2010/013483号
 本発明は、上記の点に鑑み、微生物生産系脂肪族ポリエステルを含む樹脂組成物から成形されるフィルムやシートのMD方向における引き裂き強度の改善を目的とするものである。
 本発明者らは、上記課題を解決すべく、得られる成形品の微細組織(モルホロジー)を透過型電子顕微鏡分析-画像解析法(TEM法)によって調べたところ、脂肪族ポリエステル成分が成形時の引取り方向(MD方向)に延伸・配向している状態となっていることを見出した。さらに、本発明者らは前記フィルムやシートのMD方向における引き裂き強度の低下が前記脂肪族ポリエステル成分の延伸・配向状態に原因があると推定し、前記成形品のモルホロジーを調整すべくさらに検討した結果、微生物生産系脂肪族ポリエステルと他の生分解性樹脂に加えて特定量の変性グリセリンを併用することで、フィルムやシートの成形品における樹脂材料のモルホロジーを制御できることを見出し、これにより成形品のモルホロジーを制御することで、フィルムやシートなどの成形品のMD方向における引き裂き強度を高めることに初めて成功し、本発明を完成するに至った。
 即ち、本発明の第一は、式(1):[-CHR-CH2-CO-O-]
(但し、RはCn2n+1で表されるアルキル基であり、nは1以上15以下の整数である。)
で示される繰り返し単位を有する脂肪族ポリエステル(P3HA)100重量部に対し、ポリブチレンアジペートテレフタレート(PBAT)を60~400重量部および変性グリセリンを10~50重量部含有してなる生分解性ポリエステル樹脂組成物に関する。
 好ましい実施態様では、前記生分解性ポリエステル樹脂組成物は、フィルム成形用またはシート成形用である。
 好ましい実施態様では、前記脂肪族ポリエステル(P3HA)は、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種である。
 好ましい実施態様では、脂肪族ポリエステル(P3HA)の160℃における溶融粘度が900~3,600Pa・sである。
 好ましい実施態様では、前記ポリブチレンアジペートテレフタレート(PBAT)の溶融粘度に対する脂肪族ポリエステル(P3HA)の溶融粘度の比(P3HA/PBAT)が0.5以上である。
 好ましい実施態様では、脂肪族ポリエステル(P3HA)100重量部に対し、さらにポリブチレンサクシネート(PBS)を20~150重量部含有してなる。
 好ましい実施態様では、脂肪族ポリエステル(P3HA)、ポリブチレンアジペートテレフタレート(PBAT)およびポリブチレンサクシネート(PBS)の合計量に対する脂肪族ポリエステル(P3HA)の比率が45重量%以下である。
 好ましい実施態様では、変性グリセリンが、アセチル化モノグリセライドである。
 本発明の第二は、前記生分解性ポリエステル樹脂組成物を成形してなり、
 透過型電子顕微鏡分析-画像解析法(TEM法)によって測定される前記脂肪族ポリエステル(P3HA)からなる相の長径の最大値が18μm以下であり、平均値が8μm以下であるフィルムまたはシートに関する。
 好ましい実施態様では、前記フィルムまたはシートはインフレーション法またはTダイ押出法により成形される。
 好ましい実施態様では、成形時の引き取り速度が30m/分以下である。
 本発明によれば、生分解性の樹脂原料を使用しており、地球上の二酸化炭素を増大させない、つまりカーボンニュートラルである微生物生産系脂肪族ポリエステルの配合割合が高く、しかも成形品のMD方向における引き裂き強度の高いフィルムおよびシートを提供することができる。
図1は、実施例1で得られたフィルムのTEM画像である。 図2は、図1のTEM画像を画像解析ソフトで処理し、PHBHの長径を判別した画像である。 図3は、比較例1で得られたフィルムのTEM画像である。
 本発明に係る生分解性ポリエステル樹脂組成物は、樹脂成分として、式(1):[-CHR-CH2-CO-O-](但し、RはCn2n+1で表されるアルキル基であり、nは1以上15以下の整数である。)で示される繰り返し単位を有する脂肪族ポリエステル(P3HA)およびポリブチレンアジペートテレフタレート(PBAT)を併用し、更に変性グリセリンを含有してなる。
 本発明に用いられるポリ(3-ヒドロキシアルカノエート)(略称:P3HA)は、微生物から生産されるものであり、式(1):[-CHR-CH2-CO-O-](式中、RはCn2n+1で表されるアルキル基で、nは1~15の整数である。)で示される繰り返し単位を有する脂肪族ポリエステル系重合体である。
 P3HAを生産する微生物としては、P3HA類生産能を有する微生物であれば特に限定されない。例えば、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体生産菌としては、3-ヒドロキシブチレートと3-ヒドロキシバリレートをモノマーユニットとする共重合体(以下、「PHBV」と略称する。)およびポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート(以下、「PHBH」と略称する。)生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutropbus)などが知られている。特に、PHBHに関し、PHBHの生産性を上げるために、PHA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(J.Bateriol.,179,p4821-4830(1997))などがより好ましく、これらの微生物を適切な条件で培養して菌体内にPHBHを蓄積させた微生物菌体が用いられる。
 本発明で使用するP3HAの重量平均分子量としては、成形性と物性のバランス観点から50,000~3,000,000が好ましく、100,000~1,500,000がより好ましい。なお、ここでの重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。
 本発明で使用するP3HAとしては、前記式(1)において、アルキル基(R)のnが1で示される繰り返し単位からなるもの、またはnが1で示される繰り返し単位とnが2、3、5および7の少なくとも1種で示される繰り返し単位からなるものが好ましく、nが1で示される繰り返し単位およびnが3で示される繰り返し単位からなるものがより好ましい。P3HAの具体例としては、ポリ(3-ヒドロキシブチレート)(略称:P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(略称:PHBH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(略称:PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(略称:P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)などが挙げられる。これらなかでも、工業的に生産が容易であるものとして、P3HB、PHBH、PHBV、P3HB4HBが挙げられる。
 このうち、繰り返し単位の組成比を変えることで、融点、結晶化度を変化させ、ヤング率、耐熱性などの物性を変化させることができ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、また上記したように工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、前記式(1)において、アルキル基(R)のnが1である繰り返し単位とnが3である繰り返し単位とからなる、PHBHが好ましい。PHBHの具体的な製造方法は、例えば、国際公開第2010/013483号(特許文献2)に記載されている。また、PHBHの市販品としては、株式会社カネカ「アオニレックス(AONILEX)」(登録商標)などが挙げられる。
 また、PHBHの繰り返し単位の組成比は、柔軟性と強度のバランスの観点から、ポリ(3-ヒドロキシブチレート)/ポリ(3-ヒドロキシヘキサノエート)の組成比が80/20~99/1(mol/mol)であることが好ましく、75/15~97/3(mo1/mo1)であることがより好ましい。その理由は、柔軟性の点から99/1以下が好ましく、また樹脂が適度な硬度を有する点で80/20以上が好ましいからである。
 また、PHBVは、3-ヒドロキシブチレート(3HB)成分と3-ヒドロキシバリレート(3HV)成分の比率によって融点、ヤング率などが変化するが、3HB成分と3HV成分が共結晶化するため結晶化度は50%以上と高く、ポリ3-ヒドロキシブチレート(P3HB)に比べれば柔軟ではあるが、破壊伸びは50%以下と低い傾向にある。
 また、本発明で使用するP3HAは、160℃における溶融粘度が900~3,600Pa・sが好ましい。前記溶融粘度が900Pa・s未満では、ポリブチレンアジペートテレフタレート(PBAT)に対する溶融粘度比が小さくなり、樹脂組成物さらにはそれから得られるフィルムやシートなどの成形品におけるモルホロジーの制御が困難になる場合があり、3,600Pa・sより大きいと成形加工性が劣る場合がある。なお、本発明では、P3HAにイソシアネートを添加することで、溶融粘度を高めることもできる。
 微生物が生産するP3HAは、脂肪族ポリエステルの中でも特に結晶化速度が遅いため、本発明のような加工法を用いることがとりわけ有効である。また、P3HAは、好気性、嫌気性何れの環境下での生分解性にも優れ、燃焼時には有毒ガスを発生しない。とりわけ、PHBHは、原料として石油由来のものを使用せず、植物原料を使用しており、地球上の二酸化炭素を増大させない、つまりカーボンニュートラルであるという優れた特徴を有している点でも好ましい。また、本発明は、非生分解性の結晶核剤を添加することがなく、P3HAの優れた生分解性を損ねないという利点がある。
 本発明で使用するポリブチレンアジペートテレフタレート(PBAT)とは、1,4-ブタンジオールとアジピン酸とテレフタル酸のランダム共重合体のことをいい、なかでも、特表平10-508640号公報などに記載されているような、(a)主としてアジピン酸もしくはそのエステル形成性誘導体またはこれらの混合物35~95モル%、テレフタル酸もしくはそのエステル形成性誘導体またはこれらの混合物5~65モル%(個々のモル%の合計は100モル%である)よりなる混合物に、(b)ブタンジオールが含まれている混合物(ただし(a)と(b)とのモル比が0.4:1~1.5:1)の反応により得られるPBATが好ましい。PBATの市販品としてはBASF社製「エコフレックス」(登録商標)などが挙げられる。
 本発明の生分解性ポリエステルにおける前記PBATの含有量は、前記P3HA100重量部に対して60~400重量部が好ましく、100~250重量部がより好ましい。前記含有量が60重量部未満では、P3HAが分散状態の非連続層を形成できなくなるので引き裂き強度が低くなる場合があり、また、400重量部を超えると、成形性が低下する場合がある。
 本発明の生分解性ポリエステル樹脂組成物には、上記のような樹脂成分に、更に変性グリセリンを配合することで、樹脂組成物さらにはそれから得られるフィルムやシートなどの成形品におけるモルホロジーを制御することができる。
 変性グリセリンとしては、グリセリンジアセトモノラウレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエートなどのアセチル化モノグリセライドが好ましい。変性グリセリンの市販品としては、理研ビタミン株式会社の「リケマール」(登録商標)PLシリーズなどが挙げられる。
 本発明の生分解性ポリエステルに対する前記変性グリセリンの含有量は、前記P3HA100重量部に対して10~50重量部が好ましく、20~40重量部がより好ましい。前記含有量が10重量部未満では、P3HAからなる相の長径の最大値と平均値が大きくなりすぎてしまい、P3HAが分散状態の非連続層を形成できず、フィルムやシートの引き裂き強度が低下する場合があり、また、50重量部を超えるとそれ以上は効果が変わらない上にブリードアウトの原因になる場合がある。
 また、本発明の生分解性ポリエステル樹脂組成物では、ポリブチレンサクシネート(PBS)を含有することで、PBATの溶融粘度を下げる働きがあるので、PBATに対するP3HAの粘度比が高まり、P3HAが非連続相を形成し易くなり、引き裂き強度が向上するという点で優れたものとなる。PBSは、1,4-ブタンジオールとコハク酸との脱水重縮合により合成される脂肪族ポリエステル共重合体であり、市販品としては、昭和電工社製「ビオノーレ」などが挙げられる。
 本発明の生分解性ポリエステルにおける前記PBSの含有量は、引き裂き強度に影響を与えないという観点から、前記P3HA100重量部に対して20~150重量部が好ましく、40~120重量部がより好ましい。
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、通常の添加剤として使用される充填剤、顔料,染料などの着色剤、活性炭,ゼオライトなどの臭気吸収剤、バニリン,デキストリンなどの香料、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、可塑剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤、その他の副次的添加剤を少なくとも1種添加してもよい。
 本発明においては、上記のような樹脂組成物およびそれから得られるフィルムやシートはモルホロジーを制御して得られることを特徴としている。具体的には、樹脂組成物から得られるフィルムやシートにおいて、透過型電子顕微鏡分析-画像解析法(TEM法)によって測定される前記P3HAからなる相の長径の最大値が18μm以下であり、平均値が8μm以下の範囲となり、P3HAが分散状態の非連続層を形成するようにモルホロジーを制御して得られる。
 本発明でいう前記TEM法とは、前記フィルムやシートから、ミクロトームを用い、MD方向が観察できるようにフィルムまたはシートの表面に対して平行に約100nm厚に切り出した切片を四酸化ルテニウム(RuO4)、4酸化オスミウム、りんタングステン酸などによりP3HAを選択的に染色した後、透過型電子顕微鏡(日本電子社製、JEM-1200EX)を用い、加速電圧80kVで、前記フィルムやシートの切断面を面方向から観察したときのP3HAからなる相の状態を1万倍の倍率で撮影し、その画像の約18μm×約25μmの範囲を2値化画像解析ソフト(三谷商事社製「Win Roof」)により、P3HAからなる相の長径およびその平均値を自動的に測定する方法をいう。また、前記画像解析ソフトで判別できないP3HAからなる相は手作業で長径を求める。
 なお、P3HAからなる相の長径とは顕微鏡観察した画像内にあるP3HAからなる個々の相における最も長い径を示し、また、平均値とは前記視野内に存在する全てのP3HAからなる相の長径の平均値を示す。前記長径を測定する場合、観察する視野としてはランダムに3個の視野を観察する。
 前記モルホロジーの制御の方法としては、1)ポリブチレンアジペートテレフタレート(PBAT)の溶融粘度に対する脂肪族ポリエステル(P3HA)の溶融粘度の比(P3HA/PBAT)を0.5以上、好ましくは0.7以上、更に好ましくは1.0以上とする方法、2)脂肪族ポリエステル(P3HA)、ポリブチレンアジペートテレフタレート(PBAT)およびポリブチレンサクシネート(PBS)の合計量に対する脂肪族ポリエステル(P3HA)量の比率を45重量%以下、好ましくは40重量%以下とする方法、さらに、フィルムやシートなどの成形品においては、3)成形時の引き取り速度が30m/分以下、好ましくは25m/分以下、より好ましくは20m/分以下とする方法が挙げられる。
 前記1)の溶融粘度の比(P3HA/PBAT)は、P3HAとPBATの160℃における溶融粘度の比である。この溶融粘度の比が0.5未満であると、樹脂中でPHBHが連続相を構成し、成形されたフィルムやシートなどの成形品におけるMD方向の引き裂き強度が低下し過ぎる場合がある。PBATの溶融粘度に対するP3HAの溶融粘度の比の上限は特に限定はないが、大きすぎると樹脂組成物の粘度が高くなりすぎ、成形加工性が低下する場合があり、またP3HAが微分散化し易い観点から、2.0以下が好ましい。ここで、「PBATの溶融粘度に対するP3HAの溶融粘度の比(P3HA/PBAT)」とは、P3HAの溶融粘度をPBATの溶融粘度で除した値をいう。
 なお、前記溶融粘度の測定方法は、高剪断粘度計キャピラリーレオメーターを用いて、設定温度160℃~170℃、キャピラリーサイズφ1mm、10mm長、剪断速度100(1/sec)~2,000(1/sec)で測定する方法が挙げられる。後述の実施例ではこの方法で溶融粘度を測定している。
 前記2)の方法において、脂肪族ポリエステル(P3HA)の比率が45重量%を超えると、樹脂中でPHBHが連続相を構成し、成形されたフィルムやシートなどの成形品におけるMD方向の引き裂き強度が低下し過ぎる場合がある。脂肪族ポリエステル(P3HA)の比率の下限は特に限定はないが、脂肪族ポリエステル(P3HA)の含有量の比率は非石油度が大きくなる観点から1重量%以上が好ましく、脂肪族ポリエステル(P3HA)の比率が小さすぎると、カーボンニュートラルである微生物生産系脂肪族ポリエステルの配合割合を高めるという効果が薄れることから、脂肪族ポリエステル(P3HA)の比率は、20重量%以上とすることがより好ましく、更に好ましくは25重量%以上である。
 更に、前記3)の方法において、フィルムやシートなどの成形時の引き取り速度が30m/分を超えると、フィルムやシートなどにおけるP3HAからなる相の長径が長くなりすぎ、更にはMD方向に連続した相となり、引き裂き強度が大きく低下する場合がある。
 上記1)~3)の方法により、P3HAからなる不連続相の長径の最大値が18μm以下であり、平均値が8μm以下である本発明のフィルムおよびシートを得ることができる。
 本発明の樹脂組成物は、単軸押出機、2軸押出機などを用いて加熱溶融して混合するなどの公知の方法により作製することができる。また、本発明のフィルムまたはシートは、インフレーション法やTダイ押出法などの公知の成形加工方法により製造することができる。具体的な条件については適宜設定すればよいが、例えば、インフレーション法では、インフレーション成形前に除湿乾燥機などでペレットの水分率が500ppm以下になるまで乾燥し、シリンダー設定温度100℃~160℃、アダプターおよびダイスの設定温度130℃~160℃にすることが好ましい。
 フィルムまたはシートの厚みについて厳格な規定はないが、一般に厚み1~100μm程度をフィルム、厚み100μmを越えて20mm程度までをシートと呼ぶ。
 本発明のフィルムまたはシートは、農業、漁業、林業、園芸、医学、衛生品、食品産業、衣料、非衣料、包装、自動車、建材、その他の分野に好適に用いることができる。例えば農業用マルチフィルム、林業用燻蒸シート、フラットヤーンなどを含む結束テープ、植木の根巻フィルム、おむつのバックシート、包装用シート、ショッピングバック、ゴミ袋、水切り袋、その他コンポストバックなどの用途に用いられる。
 以下に実施例、比較例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<製造例1> 3-ヒドロキシアルカノエート重合体
 本実施例で使用するPHBH(原料A-1)は、以下のようにして作製した。
 PHAの培養生産にはKNK-631株(国際公開第2009/145164号参照)を用いた。
 種母培地の組成は1w/v% Meat-extract、1w/v% Bacto-Tryptone、0.2w/v% Yeast-extract、0.9w/v% Na2HPO4・12H2O、0.15w/v% KH2PO4、pH6.8とした。
 前培養培地の組成は1.1w/v% Na2HPO4・12H2O、0.19w/v% KH2PO4、1.29w/v% (NH42SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)とした。また、炭素源はパーム核油を10g/Lの濃度で一括添加した。
 PHA生産培地の組成は0.385w/v% Na2HPO4・12H2O、0.067w/v% KH2PO4、0.291w/v% (NH42SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N 塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)、0.05w/v% BIOSPUREX200K(消泡剤:コグニスジャパン社製)とした。
 まず、KNK-631株のグリセロールストック(50μL)を種母培地(10mL)に接種して24時間培養し種母培養を行なった。次に種母培養液を1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL-300型)に1.0v/v%接種した。運転条件は、培養温度33℃、攪拌速度500rpm、通気量1.8L/minとし、pHは6.7~6.8の間でコントロールしながら28時間培養し、前培養を行なった。pHコントロールには14%水酸化アンモニウム水溶液を使用した。
 次に、前培養液を6Lの生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDS-1000型)に1.0v/v%接種した。運転条件は、培養温度28℃、攪拌速度400rpm、通気量6.0L/minとし、pHは6.7から6.8の間でコントロールした。pHコントロールには14%水酸化アンモニウム水溶液を使用した。炭素源としてパーム核オレイン油を使用した。培養は64時間行い、培養終了後、遠心分離によって菌体を回収し、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
 得られた乾燥菌体1gに100mLのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のPHAを抽出した。菌体残渣をろ別後、エバポレーターで総容量が30mLになるまで濃縮後、90mLのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したPHAをろ別後、50℃で3時間真空乾燥し、PHAを得た。得られたPHAの3-ヒドロキシヘキサノエート(3HH)組成分析は以下のようにガスクロマトグラフィーによって測定した。乾燥PHA20mgに2mLの硫酸-メタノール混液(容積比率15:85)と2mLのクロロホルムを添加して密栓し、100℃で140分間加熱して、PHA分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mLのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のポリエステル分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所GC-17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μLを注入した。温度条件は、初発温度100~200℃まで8℃/分の速度で昇温、さらに200~290℃まで30℃/分の速度で昇温した。上記条件にて分析した結果、前記化学式(1)に示すようなPHA、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)であった。3HH組成は11.2モル%であった。培養後、培養液から国際公開第2010/067543号に記載の方法に準じてPHBHを得た。GPCで測定した重量平均分子量は57万であった。また、PHBHの160℃の溶融粘度を測定したところ、1,150Pa・sであった。
 以下の実施例および比較例においては、以下の原料も用いた。
<3-ヒドロキシアルカノエート重合体>
 原料A-2:Mw32万、3HH=11.2モル%、160℃の溶融粘度=510Pa・sのPHBH(カネカ社製)。原料A-1を80℃、相対湿度95%で72時間加水分解して得た。
 原料A-3:Mw79万、3HH=10.4モル%、160℃の溶融粘度=1,910Pa・sのPHBH。培養時間を96時間にした以外は、製造例1と同様にして得た。
 原料A-4:原料A-1 100重量部に対して2重量部のイソシアネート化合物(日本ポリウレタン工業社製、ミリオネートMR200)を、2軸押出機により、設定温度100~130℃、スクリュー回転数100rpmで溶融混錬して、原料A-4を得た。得られた原料A-4の溶融粘度は2,350Pa・sであった。
 原料A-5:Mw48万、3HH=11.2モル%、160℃の溶融粘度940Pa・sのPHBH(カネカ社製)。原料A-1を80℃、相対湿度95%で36時間加水分解して得た。
 原料A-6:Mw62万、3HH=5.4モル%、160℃の溶融粘度=1,240Pa・sのPHBH(カネカ社製)。KNK-631株のかわりにKNK-005株を用い、製造例1と同様にして得た。
<ポリエステル>
 原料B-1:160℃の溶融粘度1,800Pa・sのPBAT(BASF社製、「エコフレックス(登録商標)」)。
 原料B-2:PBS(昭和電工社製、「ビオノーレ(登録商標)」)。
<変性グリセリン化合物>
 原料C-1:アセチル化モノグリセライド(理研ビタミン社製、「リケマール(登録商標)」PL012)。
<実施例1および2>
(樹脂組成物の製造)
 3-ヒドロキシアルカノエート重合体(原料A-1)100重量部に対して、ポリエステルB-1(PBAT)100重量部、ポリエステルB-2(PBS)50重量部、変性グリセリン化合物C-1(アセチル化モノグリセライド)25重量部を、2軸押出機(日本製鋼社製:TEX30)で、設定温度100~130℃、スクリュー回転数100rpmで溶融混錬して、PHBHを含有するポリエステル樹脂組成物を得た。
(フィルムの製造)
 得られた樹脂組成物はインフレーションフィルム成形機(北進産業社製)を用い、円形ダイスリップ厚=1mm、円形ダイスリップ直径=100mm、設定温度=120~140℃、表1に記載した引き取り速度でフィルムを成形した。
(MD方向の引き裂き強度の測定)
 得られたフィルム成形品またはシート成形品は、エルメンドルフ引き裂き強度測定器(熊谷理器工業社製)を用い、JIS 8116に準拠して引き裂き強度を測定した。
 (PHBHの分散状態の観察)
 得られたフィルムまたはシート成形品から、ミクロトームを用い、MD方向が観察できるようにフィルムまたはシートの表面に平行に約100nm厚の薄片サンプルを切り取り、RuO4で染色した後、透過型電子顕微鏡(TEM)(日本電子社製、JEM-1200EX)を用い、加速電圧80kVでPHBHの分散状態を観察した。図1に実施例1で得られたフィルムのTEM画像を示す。なお、図中、上下方向が引取り方向(MD方向)である。
(長径の計算)
 画像解析ソフト(三谷商事社製「Win Roof」)を用いて最大長径と平均長径を算出した。値は、1万倍の倍率で撮影したTEM画像の約18μm×約25μmの範囲で算出した。
 前記画像はRuO4染色でコントラストをつけているが、このコントラストがはっきりしないと解析ソフトで2値化処理によるPHBHからなる相の判別が困難な場合がある。そのような場合は、TEM写真から手作業で長径を求めた。図2に前記画像解析ソフトでPHBHの長径を判別した画像の様子を示す。
<実施例3>
 実施例1で得られた樹脂組成物をシート成形して、実施例1と同様に引き裂き強度およびPHBHからなる相の最大長径と平均長径とを測定した。
(シートの成形)
 得られた樹脂組成物はTダイシート成形機(東洋精機製作所社製:ラボプラストミル)を用い、ダイスリップ厚=250μm、ダイスリップ幅=150mm、シリンダー設定温度=120~140℃、ダイス設定温度=150~160℃、表1に記載した引き取り速度でシートを成形した。
(比較例1)
 3-ヒドロキシアルカノエート重合体(原料A-1)100重量部の代わりに溶融粘度が低い3-ヒドロキシアルカノエート重合体(原料A-2)100重量部を用いた以外は実施例1と同様に樹脂組成物を製造し、実施例2と同様の方法でフィルムを成形し、そのフィルムの引き裂き強度、PHBHの相の最大長径と平均長径を算出した。図3に比較例1で得られたフィルムのTEM画像を示す。図中、上下方向がMD方向である。
(比較例2)
 比較例1で得られた樹脂組成物を用いて実施例3と同様の方法でシートを成形し、得られたシートについて、引き裂き強度、PHBHの相の最大長径と平均長径を測定した。
 以上の実施例1~3および比較例1、2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1で得られたシートにおけるPHBHの相(図中の白い部分)は、図1に示すようにMD方向にやや延伸した楕円形状となっているものの、ランダムに分散して配置されており、表1に示すように、これらのPHBHの相の最大長径は18μm未満であり、平均長径は8μm未満であった。
 また、実施例2で得られたフィルムおよび実施例3で得られたシートのPHBHの相も、実施例1と同様の分散相を形成しており、それぞれのPHBHの相の最大長径は18μm未満であり、平均長径は8μm未満であった。また、MD方向の引き裂き強度は実施例1~3いずれも40mN/μm以上であり、高い値を示した。
 これに対し、比較例1および比較例2で使用した原料A-2は分子量が低いので溶融粘度が低く、実施例1または2と同じ条件で樹脂組成物およびフィルムあるいはシート成形しても、図3に示すように、PHBH(図中の白い部分)はDM方向に大きく延伸・配向し、最大長径が18μmより大きく、平均長径が8μmより大きくなり、長径が非常に大きな層状の相になった。そのため、引き裂き強度は実施例1、2に比べて低い値であった。
<実施例4および5>
(樹脂組成物の製造)
 3-ヒドロキシアルカノエート重合体(原料A-3)100重量部に対して、ポリエステルB-1(PBAT)=80重量部、ポリエステルB-2(PBS)=25重量部、変性グリセリン化合物C-1(アセチル化モノグリセライド)=25重量部を、2軸押出機で、設定温度100~130℃、スクリュー回転数100rpmで溶融混錬して、PHBHを含有するポリエステル樹脂組成物を得た。
 実施例4は実施例1と同様の方法、実施例5は実施例2と同様の方法でフィルムを成形し、得られたフィルムについて、引き裂き強度、PHBHの相の最大長径および平均長径の算出を実施例1と同様に実施した。
<実施例6>
 実施例4で得られた樹脂組成物を、実施例3と同様の方法でシート成形し、得られたシートについて、引き裂き強度、PHBHの相の最大長径および平均長径を測定した。
<実施例7>
 原料A-3の代わりに原料A-4を用いた以外は、実施例4と同様の方法でポリエステル樹脂組成物を得た。
 得られたポリエステル樹脂組成物を実施例3と同様の方法でシート成形し、得られたシートについて、引き裂き強度、PHBHの相の最大長径および平均長径を測定した。
<比較例3>
 原料A-3=100重量部の代わりに原料A-2=100重量部を用いた以外は実施例5と同様にポリエステル樹脂組成物を製造した。
 得られたポリエステル樹脂組成物を実施例5と同様の方法でフィルムを成形し、得られたフィルムについて、引き裂き強度、PHBHの相の最大長径および平均長径を算出した。
<比較例4>
 比較例3で得られた樹脂組成物を、実施例6と同様の方法でシート成形し、得られたシートについて、引き裂き強度、PHBHの相の最大長径および平均長径を測定した。
 以上の実施例4~7および比較例3、4の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例4および5で得られたフィルムおよび実施例6で得られたシートにおけるPHBH(原料A-3)は分子量が高いので溶融粘度が1,910Pa・sでありエコフレックス(原料B-1)よりも高かった((P3HA/PBAT)が1.0以上。)。そのため、PHBHの組成比が樹脂全量の45重量%を超えて50重量%近くになってもPHBHからなる相は分散状態を形成できた。さらに実施例4~7で得られたフィルムおよびシートにおけるPHBHの相の最大長径はいずれも18μm未満であり、また平均長径はいずれも8μm未満であったため、MD方向の引き裂き強度はいずれも高い値を示した。一方、比較例3、4では、ポリエステル原料A-2が連続相を形成してしまい、島相(分散相)を形成しなかったため、最大長径と平均長径の算出はできなかった。
<実施例8~12>
 表3に記載した配合で実施例1と同様にしてポリエステル樹脂組成物を製造し、表3に示す引き取り速度に調整した以外は実施例1と同様の方法でフィルムを成形した。得られたフィルムについて、引き裂き強度、PHBHの相の最大長径および平均長径を算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、実施例8~12で得られたフィルムにおける最大長径はそれぞれ18μm未満であり、平均長径はそれぞれ8μm未満であったため、MD方向の引き裂き強度は高い値を示した。
<比較例5>
 変性グリセリン化合物C-1を用いない以外は実施例2と同様に樹脂組成物を製造し、この樹脂組成物からフィルムを成形し、得られたフィルムについて、引き裂き強度、PHBHの相の最大長径および平均長径を算出した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 比較例5では、最大長径、平均長径がいずれも実施例2のものと比べて大きく、引き裂き強度は逆に低くなっている。このことから、変性グリセリン化合物C-1がないと、樹脂組成物中のPHBHからなる非連続相はその最大長径や平均長径が長くなってしまって実施例1のように細かくならず、その結果、引き裂き強度が低くなると考える。
<比較例6>
 変性グリセリン化合物C-1の代わりに、変性グリセリンに類似の化合物としてヒマシ油脂肪酸(伊藤製油社製)を用いた以外は実施例1と同様の配合で樹脂組成物の製造を試みた(表4に組成を記載する)。しかし、原料A-1、原料B-1、B-2のような樹脂と混練しても相溶せずにブリードアウトしてしまい、樹脂組成物を得ることができなった。
<比較例7>
 3-ヒドロキシアルカノエート重合体(原料A-1)100重量部の代わりに溶融粘度が低い3-ヒドロキシアルカノエート重合体(原料A-2)100重量部を用いた以外は実施例1と同様にして樹脂組成物を製造し、引き取り速度を15m/分にした以外は実施例1と同様にしてフィルムを成形し、引き裂き強度とTEM画像からPHBH相の最大長径と平均長径を算出した。結果を表1に示すが、比較例5と同様に、最大長径、平均長径がいずれも実施例2のものと比べて大きく、引き裂き強度は逆に低くなっていた。
<比較例8>
 原料A-3=100重量部の代わりに原料A-2=100重量部を用いた以外は実施例4と同様にして樹脂組成物を製造し、引き取り速度を15m/分にした以外は実施例1と同様にしてフィルムを成形した。得られたフィルムのTEM画像を確認したところ、PHBH相が連続相を形成していたため、最大長径と平均長径の算出はできなかった。また、引っ張り強度を測定したところ、5.9mN/μmと非常に低いものであった。これらの結果を表2に示す。

Claims (11)

  1.  式(1):[-CHR-CH2-CO-O-]
    (但し、RはCn2n+1で表されるアルキル基であり、nは1以上15以下の整数である。)
    で示される繰り返し単位を有する脂肪族ポリエステル(P3HA)100重量部に対し、ポリブチレンアジペートテレフタレート(PBAT)を60~400重量部および変性グリセリンを10~50重量部含有してなる生分解性ポリエステル樹脂組成物。
  2.  フィルム成形用またはシート成形用である請求項1に記載の生分解性ポリエステル樹脂組成物。
  3.  脂肪族ポリエステル(P3HA)が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種である請求項1または2に記載の生分解性ポリエステル樹脂組成物。
  4.  脂肪族ポリエステル(P3HA)の160℃における溶融粘度が900~3,600Pa・sである請求項1~3のいずれかに記載の生分解性ポリエステル樹脂組成物。
  5.  ポリブチレンアジペートテレフタレート(PBAT)の溶融粘度に対する脂肪族ポリエステル(P3HA)の溶融粘度の比(P3HA/PBAT)が0.5以上である請求項1~4のいずれかに記載の生分解性ポリエステル樹脂組成物。
  6.  脂肪族ポリエステル(P3HA)100重量部に対し、さらにポリブチレンサクシネート(PBS)を20~150重量部含有してなる請求項1~5のいずれかに記載の生分解性ポリエステル樹脂組成物。
  7.  脂肪族ポリエステル(P3HA)、ポリブチレンアジペートテレフタレート(PBAT)およびポリブチレンサクシネート(PBS)の合計量に対する脂肪族ポリエステル(P3HA)の比率が45重量%以下である請求項6に記載の生分解性ポリエステル樹脂組成物。
  8.  変性グリセリンが、アセチル化モノグリセライドである請求項1~7のいずれかに記載の生分解性ポリエステル樹脂組成物。
  9.  請求項1~8のいずれかに記載の生分解性ポリエステル樹脂組成物を成形してなり、
     透過型電子顕微鏡分析-画像解析法(TEM法)によって測定される前記脂肪族ポリエステル(P3HA)からなる相の長径の最大値が18μm以下であり、平均値が8μm以下であるフィルムまたはシート。
  10.  インフレーション法またはTダイ押出法により成形される請求項9に記載のフィルムまたはシート。
  11.  成形時の引き取り速度が30m/分以下である請求項9または10に記載のフィルムまたはシート。
PCT/JP2013/059493 2012-03-30 2013-03-29 生分解性ポリエステル樹脂組成物 WO2013147139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380016206.7A CN104204092A (zh) 2012-03-30 2013-03-29 生物降解性聚酯树脂组合物
EP13769826.2A EP2832796B1 (en) 2012-03-30 2013-03-29 Biodegradable polyester resin composition
US14/388,954 US9371445B2 (en) 2012-03-30 2013-03-29 Biodegradable polyester resin composition
JP2014508084A JP6015748B2 (ja) 2012-03-30 2013-03-29 生分解性ポリエステル樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082310 2012-03-30
JP2012-082310 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147139A1 true WO2013147139A1 (ja) 2013-10-03

Family

ID=49260381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059493 WO2013147139A1 (ja) 2012-03-30 2013-03-29 生分解性ポリエステル樹脂組成物

Country Status (5)

Country Link
US (1) US9371445B2 (ja)
EP (1) EP2832796B1 (ja)
JP (1) JP6015748B2 (ja)
CN (1) CN104204092A (ja)
WO (1) WO2013147139A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012583A1 (ja) 2016-07-14 2018-01-18 株式会社カネカ 脂肪族ポリエステル樹脂組成物の製造方法
WO2018181500A1 (ja) 2017-03-29 2018-10-04 株式会社カネカ 生分解性ポリエステルフィルムの製造方法
WO2019022008A1 (ja) 2017-07-24 2019-01-31 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)樹脂組成物
WO2019146555A1 (ja) 2018-01-26 2019-08-01 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2019189367A1 (ja) * 2018-03-30 2019-10-03 三菱ケミカル株式会社 成形体、シート及び容器、並びに管状体、ストロー、綿棒及び風船用スティック
JP2019178206A (ja) * 2018-03-30 2019-10-17 三菱ケミカル株式会社 成形体、シート及び容器
WO2019239913A1 (ja) * 2018-06-14 2019-12-19 株式会社カネカ 生分解性積層体の製造方法
JP2020516712A (ja) * 2017-04-05 2020-06-11 バイオ−テック ビオローギッシュ ナチューフェアパックンゲン ゲーエムベーハー ウント コンパニ カーゲー 生分解性フィルム
WO2020195550A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ ポリヒドロキシアルカノエート系樹脂組成物、その成形体及びフィルム又はシート
WO2020202813A1 (ja) * 2019-03-29 2020-10-08 株式会社カネカ ポリエステル系樹脂組成物、その製造方法及び成形体
WO2021002092A1 (ja) 2019-07-02 2021-01-07 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2022009717A1 (ja) 2020-07-07 2022-01-13 株式会社カネカ 樹脂チューブ
WO2022044836A1 (ja) 2020-08-25 2022-03-03 株式会社カネカ 樹脂フィルム、及び、該樹脂フィルムから形成される袋、手袋、結束材
WO2022065182A1 (ja) 2020-09-28 2022-03-31 株式会社カネカ 射出成形用樹脂組成物および射出成形体
WO2022075233A1 (ja) 2020-10-07 2022-04-14 株式会社カネカ 多層フィルム、および包材
WO2022264944A1 (ja) 2021-06-16 2022-12-22 株式会社カネカ 生分解性積層体及び、その製造方法
WO2023054388A1 (ja) 2021-09-29 2023-04-06 株式会社カネカ ブロー成形体およびその製造方法
WO2023085375A1 (ja) 2021-11-12 2023-05-19 株式会社カネカ 積層体、およびその利用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015338664B2 (en) * 2014-10-27 2019-11-14 Tipa Corp. Ltd Biodegradable sheets
CN109535667A (zh) * 2018-11-01 2019-03-29 刘辉 一种生物基降解餐具

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974148A (ja) * 1983-09-05 1984-04-26 Japan Crown Cork Co Ltd 軟質樹脂組成物
JPH10508640A (ja) 1994-11-15 1998-08-25 ビーエーエスエフ アクチェンゲゼルシャフト 生分解可能なポリマー、その製造及び生分解可能な成形体の製造のためのその使用
JP2006045365A (ja) 2004-08-05 2006-02-16 Kaneka Corp ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)からなるフィルム
JP2006525136A (ja) * 2003-05-08 2006-11-09 ザ プロクター アンド ギャンブル カンパニー ポリヒドロキシアルカノエートコポリマー及び環境分解性である熱可塑性ポリマーを含む成形又は押出成形物品
JP2007145423A (ja) * 2005-10-27 2007-06-14 Yoshino Kogyosho Co Ltd 生分解性樹脂製ヒンジキャップ
JP2009073498A (ja) * 2007-09-19 2009-04-09 Asahi Kasei Home Products Kk 溶断シール袋及びその製造方法
JP2009227882A (ja) * 2008-03-25 2009-10-08 Campo Tecnico:Kk 相溶性を高めることにより、柔軟性と強度を兼ね備えた生分解性フィルムの製造方法とその組成物
WO2009145164A1 (ja) 2008-05-26 2009-12-03 株式会社カネカ 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法
WO2010013483A1 (ja) 2008-08-01 2010-02-04 株式会社カネカ 樹脂組成物及びシート
WO2010067543A1 (ja) 2008-12-09 2010-06-17 株式会社カネカ ポリ-3-ヒドロキシアルカン酸の製造方法およびその凝集体
WO2011080623A2 (en) * 2009-12-31 2011-07-07 Kimberly-Clark Worldwide, Inc. Natural biopolymer thermoplastic films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832647A (ja) * 1981-08-21 1983-02-25 Riken Vitamin Co Ltd 熱可塑性樹脂組成物
US8053491B2 (en) * 2006-08-10 2011-11-08 Kaneka Corporation Biodegradable resin composition and molded article of the same
CN102056985B (zh) * 2008-05-06 2014-02-19 梅塔玻利克斯公司 生物可降解聚酯掺合物
EP2417179B1 (en) * 2009-04-06 2014-07-02 Metabolix, Inc. Method of improving film processing and injection molding of polyhydroxyalkanoate polymers
SE534029C2 (sv) * 2009-07-10 2011-04-05 Billeruds Ab Biologiskt nedbrytbar vidhäftande film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974148A (ja) * 1983-09-05 1984-04-26 Japan Crown Cork Co Ltd 軟質樹脂組成物
JPH10508640A (ja) 1994-11-15 1998-08-25 ビーエーエスエフ アクチェンゲゼルシャフト 生分解可能なポリマー、その製造及び生分解可能な成形体の製造のためのその使用
JP2006525136A (ja) * 2003-05-08 2006-11-09 ザ プロクター アンド ギャンブル カンパニー ポリヒドロキシアルカノエートコポリマー及び環境分解性である熱可塑性ポリマーを含む成形又は押出成形物品
JP2006045365A (ja) 2004-08-05 2006-02-16 Kaneka Corp ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)からなるフィルム
JP2007145423A (ja) * 2005-10-27 2007-06-14 Yoshino Kogyosho Co Ltd 生分解性樹脂製ヒンジキャップ
JP2009073498A (ja) * 2007-09-19 2009-04-09 Asahi Kasei Home Products Kk 溶断シール袋及びその製造方法
JP2009227882A (ja) * 2008-03-25 2009-10-08 Campo Tecnico:Kk 相溶性を高めることにより、柔軟性と強度を兼ね備えた生分解性フィルムの製造方法とその組成物
WO2009145164A1 (ja) 2008-05-26 2009-12-03 株式会社カネカ 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法
WO2010013483A1 (ja) 2008-08-01 2010-02-04 株式会社カネカ 樹脂組成物及びシート
WO2010067543A1 (ja) 2008-12-09 2010-06-17 株式会社カネカ ポリ-3-ヒドロキシアルカン酸の製造方法およびその凝集体
WO2011080623A2 (en) * 2009-12-31 2011-07-07 Kimberly-Clark Worldwide, Inc. Natural biopolymer thermoplastic films

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Raw material C-1: Acetylated monoglyceride", RIKEN VITAMIN CO., LTD., article "RIKEMAL"
J. BATERIOL., vol. 179, 1997, pages 4821 - 4830

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012583A1 (ja) 2016-07-14 2018-01-18 株式会社カネカ 脂肪族ポリエステル樹脂組成物の製造方法
WO2018181500A1 (ja) 2017-03-29 2018-10-04 株式会社カネカ 生分解性ポリエステルフィルムの製造方法
JP2020516712A (ja) * 2017-04-05 2020-06-11 バイオ−テック ビオローギッシュ ナチューフェアパックンゲン ゲーエムベーハー ウント コンパニ カーゲー 生分解性フィルム
JP7139351B2 (ja) 2017-04-05 2022-09-20 バイオ-テック ビオローギッシュ ナチューフェアパックンゲン ゲーエムベーハー ウント コンパニ カーゲー 生分解性フィルム
WO2019022008A1 (ja) 2017-07-24 2019-01-31 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)樹脂組成物
WO2019146555A1 (ja) 2018-01-26 2019-08-01 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2019189367A1 (ja) * 2018-03-30 2019-10-03 三菱ケミカル株式会社 成形体、シート及び容器、並びに管状体、ストロー、綿棒及び風船用スティック
JP2019178206A (ja) * 2018-03-30 2019-10-17 三菱ケミカル株式会社 成形体、シート及び容器
JP7106936B2 (ja) 2018-03-30 2022-07-27 三菱ケミカル株式会社 成形体、シート及び容器
WO2019239913A1 (ja) * 2018-06-14 2019-12-19 株式会社カネカ 生分解性積層体の製造方法
JPWO2019239913A1 (ja) * 2018-06-14 2021-07-08 株式会社カネカ 生分解性積層体の製造方法
JP7353280B2 (ja) 2018-06-14 2023-09-29 株式会社カネカ 生分解性積層体の製造方法
WO2020195550A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ ポリヒドロキシアルカノエート系樹脂組成物、その成形体及びフィルム又はシート
WO2020202813A1 (ja) * 2019-03-29 2020-10-08 株式会社カネカ ポリエステル系樹脂組成物、その製造方法及び成形体
JP7360450B2 (ja) 2019-03-29 2023-10-12 株式会社カネカ ポリエステル系樹脂組成物の製造方法
WO2021002092A1 (ja) 2019-07-02 2021-01-07 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2022009717A1 (ja) 2020-07-07 2022-01-13 株式会社カネカ 樹脂チューブ
WO2022044836A1 (ja) 2020-08-25 2022-03-03 株式会社カネカ 樹脂フィルム、及び、該樹脂フィルムから形成される袋、手袋、結束材
WO2022065182A1 (ja) 2020-09-28 2022-03-31 株式会社カネカ 射出成形用樹脂組成物および射出成形体
WO2022075233A1 (ja) 2020-10-07 2022-04-14 株式会社カネカ 多層フィルム、および包材
WO2022264944A1 (ja) 2021-06-16 2022-12-22 株式会社カネカ 生分解性積層体及び、その製造方法
WO2023054388A1 (ja) 2021-09-29 2023-04-06 株式会社カネカ ブロー成形体およびその製造方法
WO2023085375A1 (ja) 2021-11-12 2023-05-19 株式会社カネカ 積層体、およびその利用

Also Published As

Publication number Publication date
JPWO2013147139A1 (ja) 2015-12-14
EP2832796A4 (en) 2015-11-11
US20150073079A1 (en) 2015-03-12
US9371445B2 (en) 2016-06-21
CN104204092A (zh) 2014-12-10
EP2832796A1 (en) 2015-02-04
EP2832796B1 (en) 2019-10-30
JP6015748B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6015748B2 (ja) 生分解性ポリエステル樹脂組成物
Rajan et al. Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability
Yu et al. Polymer blends and composites from renewable resources
Popa et al. Polyhydroxybutyrate blends: A solution for biodegradable packaging?
CN111801385B (zh) 成形体、片材及容器,以及管状体、吸管、棉签及气球用杆
JP6220340B2 (ja) ポリエステル樹脂組成物およびその製造方法
Nesic et al. Bio-based packaging materials
Garcia-Garcia et al. Innovative solutions and challenges to increase the use of Poly (3-hydroxybutyrate) in food packaging and disposables
JP6291488B2 (ja) ポリエステル樹脂組成物および該樹脂組成物を含む成形体
Kushwah et al. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use
JP6666328B2 (ja) ポリエステル樹脂組成物及び成形体の製造方法、並びにポリエステル樹脂組成物及び成形体
Arrieta Influence of plasticizers on the compostability of polylactic acid
US10093799B2 (en) Polyester resin composition and polyester resin formed article
EP4271745A1 (en) A polymer composition having inorganic additive and production method thereof
JP3984440B2 (ja) 樹脂組成物、フィルム及び廃棄方法
JP2015052045A (ja) ポリエステル樹脂組成物、ポリエステル樹脂発泡体及びその製造方法
JP6172795B2 (ja) ポリエステル樹脂組成物およびその製造方法、並びに該樹脂組成物から形成される成形体
JP2016094547A (ja) 樹脂組成物および成型体
Lu Processing and characterization of bio-based composites
Maikrang et al. Preparation and characterization of enzymatically-treated granular cassava starch and poly (butylene adipate-co-terephthalate) blends
JPWO2016114127A1 (ja) ポリエステル樹脂組成物およびポリエステル樹脂成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508084

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013769826

Country of ref document: EP