WO2013145209A1 - 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法 - Google Patents

押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2013145209A1
WO2013145209A1 PCT/JP2012/058360 JP2012058360W WO2013145209A1 WO 2013145209 A1 WO2013145209 A1 WO 2013145209A1 JP 2012058360 W JP2012058360 W JP 2012058360W WO 2013145209 A1 WO2013145209 A1 WO 2013145209A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
raw material
extrusion mold
nitride layer
extrusion
Prior art date
Application number
PCT/JP2012/058360
Other languages
English (en)
French (fr)
Inventor
聖剛 安藤
河野 秀一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2012/058360 priority Critical patent/WO2013145209A1/ja
Priority to JP2014507175A priority patent/JP5947883B2/ja
Priority to EP12873175.9A priority patent/EP2832514A4/en
Publication of WO2013145209A1 publication Critical patent/WO2013145209A1/ja
Priority to US14/499,413 priority patent/US20150017343A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • B23P15/243Honeycomb dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • B29C48/3003Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/507Screws characterised by the material or their manufacturing process
    • B29C48/509Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/693Substantially flat filters mounted at the end of an extruder screw perpendicular to the feed axis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation

Definitions

  • the present invention relates to an extrusion mold, an extrusion mold manufacturing method, an extrusion molding apparatus, and a honeycomb structure manufacturing method.
  • particulates such as soot in exhaust gas discharged from vehicles such as buses and trucks and internal combustion engines such as construction machines cause harm to the environment or the human body.
  • various particulate filters have been proposed that collect particulates in exhaust gas and purify the exhaust gas by using a honeycomb structure made of porous ceramic.
  • a honeycomb structure from the viewpoint of excellent heat resistance and strength, a prismatic honeycomb manufactured by subjecting a mixture containing a ceramic material such as silicon carbide to extrusion, degreasing, firing, and the like. A product obtained by binding a plurality of fired bodies through an adhesive layer is used.
  • a forming material is manufactured by extruding a forming raw material using an extrusion mold, thereby manufacturing a honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall therebetween. is doing.
  • an extrusion mold for manufacturing a honeycomb molded body a raw material supply unit for supplying a molding raw material and a grid connected to the raw material supply unit are provided in a lattice shape.
  • a mold having a slit groove for forming into a mold There is known.
  • an extrusion molding die (die) described in Patent Document 1 is composed of a supply part and a molding die part, a supply hole (raw material supply part) is provided in the supply part, and a die part is provided in the molding die part.
  • Forming grooves (slit grooves) are each drilled using a drill.
  • the present invention has been made in order to solve the above-mentioned problems, and is an extrusion mold that has excellent wear resistance and can improve the life of the mold, a method for producing an extrusion mold, an extrusion
  • An object is to provide a forming apparatus and a method for manufacturing a honeycomb structure.
  • a first surface, a second surface formed on the opposite side of the first surface, and the first surface a raw material supply unit having a first through hole formed from the second surface toward the second surface, and communicated with the first through hole from the second surface toward the first surface.
  • a molding part having a second through hole, wherein a nitrided layer is formed on an inner wall surface of the second through hole in the molding part.
  • the nitride layer is formed on the inner wall surface of the second through hole, the hardness of the inner wall surface of the second through hole is increased. Therefore, even if the molding raw material is repeatedly extruded, the inner wall surface of the second through hole is less likely to be worn. As a result, the life of the mold can be improved.
  • improving the life of the mold means that as the mold is used, the thickness of the cell wall of the honeycomb molded body that is extruded due to wear of the inner wall surface of the second through-hole increases. It means preventing variation in the thickness of the cell wall of the honeycomb molded body extruded by the variation in wear of the inner wall surface of the through hole.
  • the raw material supply part is further formed in a first opening formed in the first surface and a part communicating with the second through hole.
  • the width of the raw material supply unit is reduced from the first opening to the second opening. If the width of the raw material supply section is reduced from the first opening to the second opening, the molding raw material easily flows from the raw material supply section to the molding section. It becomes difficult to clog.
  • the molding part is a slit groove formed in a lattice shape by connecting the plurality of second through holes.
  • the molding part is a slit groove formed in a lattice shape by connecting a plurality of the second through-holes
  • a number of cells are formed by extruding a molding raw material using the extrusion mold.
  • a honeycomb formed body arranged in parallel in the longitudinal direction across the wall is obtained.
  • a nitride layer is also formed on the inner wall surface of the first through hole in the raw material supply unit.
  • the hardness of the inner wall surface of the first through hole is increased. Therefore, even if the molding raw material is repeatedly extruded, the inner wall surface of the first through hole is less likely to be worn. As a result, the shape of the first through hole can be maintained so that the molding raw material can easily flow from the raw material supply section to the molding section. Therefore, even if the molding raw material is repeatedly extruded, the molding raw material is clogged in the extrusion mold. It becomes difficult.
  • the nitride layer has a thickness of 5 to 1000 nm.
  • the thickness of the nitride layer is 5 to 1000 nm, the wear resistance of the inner wall surface of the second through hole can be maintained long in the molded part, and as a result, the life of the mold can be further improved.
  • the thickness of the nitride layer is less than 5 nm, the thickness of the nitride layer is too thin and may be worn away.
  • the thickness of the nitride layer exceeds 1000 nm, when the forming raw material is extruded, the stress applied to the nitride layer increases, and cracks may occur on the inner wall surface of the second through hole in the formed portion.
  • the hardness of the nitrided layer is 1200 to 3000 Hv.
  • the hardness of the nitrided layer is 1200 to 3000 Hv, even if the forming raw material is repeatedly extruded, the inner wall surface of the second through hole is less likely to be worn in the formed part. As a result, the life of the mold can be further improved. If the hardness of the nitride layer is less than 1200 Hv, the hardness of the nitride layer is not sufficient, and the effects of the present invention may not be obtained.
  • a material of the extrusion mold is a cemented carbide obtained by mixing and sintering tungsten carbide and cobalt, and the nitride layer is tungsten carbonitride. is there.
  • the material of the extrusion mold is a cemented carbide obtained by mixing and sintering tungsten carbide and cobalt, and the nitride layer is tungsten carbonitride.
  • the hardness of the wall surface becomes higher. Therefore, even if the molding raw material is repeatedly extruded, wear is less likely to occur on the inner wall surface of the second through hole in the molded portion. As a result, the life of the mold can be further improved.
  • the slit width of the slit groove is 30 to 1000 ⁇ m.
  • the slit width of the slit groove corresponds to the thickness of the cell wall or the outer peripheral wall of the honeycomb formed body to be extruded. Therefore, when the slit width is 30 to 1000 ⁇ m, a honeycomb formed body suitable for a particulate filter that collects particulates in exhaust gas and purifies the exhaust gas can be obtained.
  • the slit width is less than 30 ⁇ m, the portion (area) where the forming raw material per unit volume comes into contact with the surface of the slit groove increases, and the surface of the slit groove may be easily worn.
  • the number of intersections of the slit grooves is 100 to 500 / inch 2.
  • the number of intersections between the slit grooves is 100 to 500 / inch 2
  • a honeycomb molded body suitable for a particulate filter that collects particulates in exhaust gas and purifies the exhaust gas can be obtained.
  • the number of intersections between the slit grooves exceeds 500 / inch 2
  • the portion (area) where the forming raw material per unit volume comes into contact with the surface of the slit groove becomes large, and the surface of the slit groove tends to be worn. There is a case.
  • the forming raw material supplied to the raw material supply unit is silicon carbide. Even when silicon carbide having a high hardness is used as a forming raw material, wear on the inner wall surface of the second through-hole is less likely to occur in the formed portion, and the life of the mold can be improved.
  • the first surface, the second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • a nitride layer obtained by a nitrogen ion implantation method is formed on the inner wall surface of the second through-hole in the molding part.
  • the nitride layer is formed on the inner wall surface of the second through hole, the hardness of the inner wall surface of the second through hole is increased. Therefore, even if the molding raw material is repeatedly extruded, the inner wall surface of the second through hole is less likely to be worn. As a result, the life of the mold can be improved. In particular, even when a raw material mainly composed of silicon carbide powder or the like having high hardness is used as a forming raw material, wear on the inner wall surface of the second through hole is less likely to occur, and the life of the mold is improved. Can do.
  • a raw material supply unit having a first through hole formed toward the surface, and a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface
  • a mold part for extrusion molding comprising: a molding step for processing a mold material into a predetermined shape; and the molding part of the mold obtained by the processing step. And a nitriding treatment step of forming a nitride layer on the inner wall surface of the two through holes using a nitrogen ion implantation method.
  • the nitride layer can be formed uniformly.
  • a nitride layer can be formed uniformly.
  • the extrusion mold of the present invention can be suitably produced.
  • the hardness of the inner wall surface of the second through hole is improved by 1.2 to 2 times in the molding portion in the nitriding treatment step.
  • the hardness of the inner wall surface of the second through hole is improved by 1.2 to 2 times in the nitriding treatment step, even if the molding raw material is repeatedly extruded, the inner wall surface of the second through hole is less likely to be worn.
  • a mold can be manufactured. As a result, a mold having a long life can be manufactured. If the improvement of the hardness of the inner wall surface of the second through hole is less than 1.2 times, the hardness of the formed nitride layer is not sufficient, and the effect of the present invention may not be obtained.
  • extrusion molding apparatus wherein the drum, an extrusion mold provided at a tip portion of the drum, a screw provided inside the drum, and provided inside the drum,
  • An extrusion molding apparatus comprising a mesh provided on the tip side from a screw, wherein a nitride layer is formed on the surface of at least one member of the extrusion mold, the screw, and the mesh. It is characterized by being.
  • the member having a nitride layer formed on the surface is less likely to be worn on the surface of the member even if it contacts the forming raw material.
  • wear on the surface of the member is less likely to occur, and the life of an extrusion molding apparatus including the member is improved. Can be made.
  • a honeycomb formed body in which a number of cells are juxtaposed in a longitudinal direction with cell walls separated by extruding a forming raw material using an extrusion mold a honeycomb formed body in which a number of cells are juxtaposed in a longitudinal direction with cell walls separated by extruding a forming raw material using an extrusion mold.
  • a method for manufacturing a honeycomb structure including a step of manufacturing a honeycomb fired body by firing the honeycomb formed body, and a step of manufacturing a ceramic block using at least one honeycomb fired body
  • the extrusion mold is formed with a first surface, a second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • the molding part includes the second The inner wall surface of the through hole, characterized in that it is a die for extrusion forming of the nitride layer is formed.
  • the honeycomb structure can be preferably manufactured.
  • FIG.1 (a) is sectional drawing which shows typically an example of the metal mold
  • FIG.1 (b) is for extrusion molding shown to Fig.1 (a). It is a partially expanded view of a mold.
  • FIG. 2 is a cross-sectional view schematically showing a slit groove when a cemented carbide is used as a material for an extrusion mold according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged front view of the extrusion mold shown in FIG.
  • FIG. 4 is a perspective view schematically showing an example of a honeycomb formed body extruded by using the extrusion mold according to the first embodiment of the present invention.
  • FIG.5 (a) is a perspective view which shows typically an example of the honeycomb fired body manufactured using the die for extrusion molding which concerns on this embodiment
  • FIG.5 (b) is shown in Fig.5 (a).
  • FIG. 2 is a cross-sectional view taken along line AA of the shown honeycomb fired body.
  • FIG. 6 is a perspective view schematically showing an example of a honeycomb structure manufactured using the extrusion mold according to the present embodiment.
  • FIG. 7 is a graph showing the results of secondary ion mass spectrometry on the slit groove surface of the extrusion mold produced in Example 1.
  • FIG. 8 is a perspective view schematically showing how a honeycomb formed body is formed using an extrusion molding apparatus including the extrusion molding die according to the first embodiment of the present invention.
  • the extrusion mold according to this embodiment includes a first surface, a second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • a raw material supply part having a formed first through hole, and a molded part having a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • a nitride layer is formed on the inner wall surface of the second through hole.
  • FIG.1 (a) is sectional drawing which shows typically an example of the metal mold
  • FIG.1 (b) is for extrusion molding shown to Fig.1 (a). It is a partially expanded view of a mold.
  • Fig.1 (a) and FIG.1 (b) are sectional drawings of the metal mold
  • the direction of extruding the forming raw material is indicated by an arrow a in FIG. 1 (a) and FIG. 1 (b).
  • an extrusion mold 100 includes a first surface 10a, a second surface 10b formed on the opposite side of the first surface 10a,
  • the raw material supply part 11 which has the 1st through-hole 111 formed toward the 2nd surface 10b from the 1st surface 10a, and the 1st through-hole 111 toward the 1st surface 10a from the 2nd surface 10b.
  • the molding part 12 which has the 2nd through-hole 121 formed so that it may communicate with.
  • the molding part 12 is a slit groove formed in a lattice shape by connecting a plurality of second through holes 121.
  • the raw material supply unit 11 is formed to supply a forming raw material
  • the forming unit 12 is formed to form the forming raw material that has passed through the raw material supply unit 11 into the shape of a honeycomb formed body.
  • the outer frame 20 for fixing the extrusion mold 100 may be provided as necessary.
  • the inner wall surface of the second through hole 121 in the molded part 12 will be described as the surface of the slit groove 12.
  • a nitride layer 13 is formed on the surface of the slit groove 12.
  • the inner wall surface of the first through hole 111 in the raw material supply unit 11, the first surface 10a, the second surface A nitride layer 13 may be formed on the surface 10b or the like.
  • the nitride layer 13 is a layer in which a metal surface is nitrided by a nitrogen ion implantation method to form a hard nitrogen compound.
  • the nitrogen ion implantation method will be described in detail in a method for manufacturing an extrusion mold according to this embodiment described later.
  • the hardness of the nitride layer 13 is preferably 1200 to 3000 Hv, and more preferably 2000 to 2500 Hv.
  • the said hardness is the Vickers hardness measured based on JIS standard (standard number: JISZ2244).
  • the thickness of nitride layer 13 (the length indicated by double-headed arrow d in FIG. 1B) is preferably 5 to 1000 nm, and more preferably 10 to 100 nm.
  • the nitride layer 13 is preferably formed with a uniform thickness over the entire surface of the slit groove 12.
  • the thickness of the nitride layer 13 can be measured using, for example, a secondary ion mass spectrometer (SIMS). A detailed measurement method will be described in Examples described later.
  • SIMS secondary ion mass spectrometer
  • the material of the extrusion mold 100 is a cemented carbide obtained by mixing and sintering tungsten carbide and cobalt, and mixing and sintering tungsten carbide, cobalt and other trace particles (for example, TiC, TiN, etc.). Cemented carbide, tool steel, stainless steel, aluminum alloy or the like is desirable, and cemented carbide obtained by mixing and sintering tungsten carbide and cobalt is more desirable.
  • the hardness of the cemented carbide obtained by mixing and sintering tungsten carbide and cobalt is generally 1000 to 1500 Hv.
  • FIG. 2 is a cross-sectional view schematically showing a slit groove when a cemented carbide is used as a material for an extrusion mold according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the slit groove in a direction parallel to the direction of extruding the forming raw material, and the direction of extruding the forming raw material is indicated by an arrow a in FIG.
  • the cemented carbide used as the raw material for the extrusion mold has tungsten carbide particles 201 bonded together by cobalt 202 added as a binder.
  • the average particle diameter of the tungsten carbide particles 201 is preferably 0.1 to 10 ⁇ m.
  • the content of cobalt 202 is desirably 3 to 20%.
  • the surface of the tungsten carbide particles 201 is nitrided near the surface of the slit groove 12 to form tungsten carbonitride 203.
  • the nitride layer 23 shown in FIG. 2 refers to a layer in which tungsten carbonitride 203 is formed on the surface of the tungsten carbide particles 201, and the nitride layer 13 shown in FIGS. 1 (a) and 1 (b). It corresponds to.
  • the thickness of the nitride layer 23 shown in FIG. 2 (the length indicated by the double arrow e in FIG. 2) is the thickness of the nitride layer 13 shown in FIG. 1B (the double arrow d in FIG. 1B). (Corresponding length).
  • the thickness of nitride layer 23 (the length indicated by double-headed arrow e in FIG. 2) is preferably 5 to 1000 nm, and more preferably 10 to 100 nm. That is, the thickness of the nitride layer 23 is much smaller than the average particle diameter of the tungsten carbide particles 201. Therefore, as shown in FIG. 2, it is desirable that the tungsten carbonitride 203 is formed not only on the entire surface of the tungsten carbide particle 201 but only in the vicinity of the surface of the slit groove 12 in the surface of the tungsten carbide particle 201.
  • the length of the raw material supply unit 11 in a direction parallel to the direction of extruding the forming raw material is not particularly limited, but is preferably 3 to 20 mm. When the length of the raw material supply unit 11 in the direction parallel to the direction of extruding the forming raw material is within the above range, the forming raw material can be easily extruded.
  • the width of the raw material supply unit 11 (the length indicated by the double arrow b in FIG. 1B) is not particularly limited, but is preferably 1.0 to 1.5 mm. A forming raw material can be easily extruded as the width
  • variety of the raw material supply part 11 means the diameter of a circle
  • the cross-sectional shape of the raw material supply part 11 is a polygon, it means the diameter of a virtual circumscribed circle passing through each vertex of the polygon.
  • the raw material supply unit 11 further includes a first opening 112 formed in the first surface 10a and a second opening formed in a portion communicating with the second through hole 121. Part 113. And the width
  • the slit groove 12 has a slit width (a length indicated by a double arrow c in FIG. 1B) corresponding to the thickness of the cell wall or the outer peripheral wall of the honeycomb formed body.
  • the slit width is desirably 30 to 1000 ⁇ m, and more desirably 60 to 500 ⁇ m.
  • the length of the slit groove 12 in the direction parallel to the direction of extruding the forming raw material is not particularly limited, but is preferably 1 to 4 mm. When the length of the slit groove 12 in the direction parallel to the direction of extruding the forming raw material is within the above range, the forming raw material can be easily extruded.
  • FIG. 3 is an enlarged front view of the extrusion mold shown in FIG.
  • the slit grooves 12 are provided in a lattice shape so as to communicate with the raw material supply unit 11.
  • the number of the intersection 14 is preferably 100 to 500 / inch 2 and more preferably 200 to 400 / inch 2 .
  • the raw material supply unit 11 is usually provided corresponding to the position where the slit grooves 12 intersect. Specifically, as shown in FIG. 3, when the adjacent intersections of the intersections of the slit grooves 12 are 14a and 14b, the raw material supply unit 11 is provided on the intersection 14a.
  • the forming raw material include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, or titanium nitride, carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, or tungsten carbide, alumina, zirconia , Cordierite, mullite, silica, or oxide ceramics such as aluminum titanate.
  • silicon carbide is particularly desirable.
  • a method for manufacturing an extrusion mold according to this embodiment will be described.
  • a raw material supply part having a first through hole formed toward the first surface, and a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • a method for manufacturing an extrusion molding die comprising a molding part having a processing step of processing a mold material into a predetermined shape, and the molding part of the mold obtained by the processing step, wherein the second And a nitriding treatment step of forming a nitride layer on the inner wall surface of the through hole using a nitrogen ion implantation method.
  • a processing step of processing a mold material into a predetermined shape is performed. Specifically, as shown in FIGS. 1A and 1B, the first through hole 111 is cut from the first surface 10a toward the second surface 10b by cutting the material of the mold. After forming the second through hole 121, the second through hole 121 is formed so as to communicate with the first through hole 111 from the second surface 10b toward the first surface 10a.
  • the molding part 12 is a slit groove formed in a lattice shape by connecting a plurality of second through holes 121.
  • the inner wall surface of the second through hole 121 in the molded part 12 will be described as the surface of the slit groove 12. Since the shape etc. of the raw material supply part 11 and the slit groove 12 have already been described, detailed description thereof will be omitted.
  • the method for forming the raw material supply unit and the slit groove is not particularly limited, and examples thereof include machining using a blade such as a drill. Further, when the mold material is hard, such as cemented carbide, or when the shape of the mold to be manufactured is complicated, electric discharge machining or the like can be cited.
  • a nitriding treatment step is performed in which a nitride layer is formed on the surface of the slit groove using a nitrogen ion implantation method.
  • the nitrogen ion implantation method is a method for forming a nitride layer by applying a negative pulse voltage to an object to be processed placed in plasma and implanting nitrogen ions.
  • high frequency power is applied between the apparatus and the mold to generate plasma.
  • the high frequency power preferably has an output of 0.3 to 2.0 kW, a frequency of 13.56 MHz, an application time of 100 to 500 ⁇ sec, and a pause time of 50 to 300 ⁇ sec.
  • a negative high voltage pulse is applied to a mold placed in the apparatus where the plasma is generated.
  • nitrogen ions in the plasma are accelerated toward the surface of the mold, and nitrogen ions are implanted from the surface of the mold.
  • the metal near the surface of the mold reacts with the nitrogen ions and is nitrided to form a nitride layer.
  • the voltage value of the high voltage pulse is preferably ⁇ 5 to ⁇ 20 kV.
  • the thickness of the nitride layer can be changed by changing the voltage value of the high voltage pulse.
  • tungsten carbide when a cemented carbide obtained by mixing and sintering tungsten carbide (WC) and cobalt is used as a mold material, tungsten carbide (WC) reacts with nitrogen ions to form tungsten carbonitride (WCN). A nitride layer made of is formed.
  • the extrusion mold according to this embodiment can be manufactured through the above steps.
  • the hardness of the surface of the slit groove 12 is improved by 1.2 to 2 times by performing the nitriding treatment step of forming the nitride layer 13 on the surface of the slit groove 12 using the nitrogen ion implantation method.
  • a method for manufacturing a honeycomb structure comprising a step of manufacturing, a step of manufacturing a honeycomb fired body by firing the honeycomb formed body, and a step of manufacturing a ceramic block using at least one honeycomb fired body.
  • the extrusion mold is formed with a first surface, a second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • a raw material supply part having a first through hole and a molding part having a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • the second penetration The inner wall surface of the bore, characterized in that it is a die for extrusion forming of the nitride layer is formed.
  • a wet mixture (molding raw material) containing ceramic powder and a binder is prepared. Specifically, first, a wet mixture for manufacturing a honeycomb formed body is prepared by mixing ceramic powder, an organic binder, a liquid plasticizer, a lubricant, and water.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride
  • carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide
  • oxide ceramics such as alumina, zirconia, cordierite, mullite, silica, and aluminum titanate.
  • the main component of the constituent material of the honeycomb formed body non-oxide ceramics are preferable, and silicon carbide is particularly preferable. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • the main component is silicon carbide means that the ceramic powder contains 60% by weight or more of silicon carbide.
  • the main component is silicon carbide, not only silicon carbide but also silicon-bonded silicon carbide is included. The same applies to the main components of constituent materials other than silicon carbide.
  • a honeycomb formed body having a predetermined shape is manufactured by extruding the wet mixture (forming raw material). At this time, extrusion molding is performed using the extrusion mold according to the present embodiment.
  • FIG. 4 is a perspective view schematically showing an example of a honeycomb formed body extruded by using the extrusion mold according to the first embodiment of the present invention.
  • a large number of cells 501 are arranged in parallel in the longitudinal direction (in the direction of a double-headed arrow f in FIG. 4) with a cell wall 502 therebetween, and an outer peripheral wall 503 is formed around the cells.
  • an outer peripheral wall 503 is formed around the cells.
  • the honeycomb molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like, whereby a dried honeycomb molded body is obtained. Is made. Further, the dried honeycomb molded body is subjected to a degreasing process (for example, 200 to 500 ° C.) and a firing process (for example, 1400 to 2300 ° C.) under predetermined conditions. By passing through the above steps, a honeycomb fired body in which a large number of cells are juxtaposed in the longitudinal direction across the cell wall and an outer peripheral wall is formed around the cell can be manufactured. In addition, the conditions currently used when manufacturing a honeycomb fired body can be applied to the degreasing treatment and firing treatment conditions of the dried honeycomb molded body.
  • a degreasing process for example, 200 to 500 ° C.
  • a firing process for example, 1400 to 2300 ° C.
  • a honeycomb fired body in which either one end of the cells is sealed can be manufactured.
  • a predetermined amount of a sealing material paste as a sealing material is filled in a predetermined end portion of the cell of the dried body of the honeycomb formed body to seal the cell.
  • a honeycomb fired body in which either one end of the cell is sealed can be manufactured.
  • the wet mixture can be used as the sealing material paste.
  • FIG.5 (a) is a perspective view which shows typically an example of the honeycomb fired body manufactured using the die for extrusion molding which concerns on this embodiment
  • FIG.5 (b) is shown in Fig.5 (a).
  • FIG. 2 is a cross-sectional view taken along line AA of the shown honeycomb fired body.
  • a large number of cells 601 are arranged in parallel in the longitudinal direction (in the direction of arrow g in FIG. 5A) across the cell wall 602.
  • an outer peripheral wall 603 is formed around the periphery.
  • One end of the cell 601 is sealed with a sealing material 604. Therefore, the exhaust gas G (in FIG.
  • the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow in FIG. 5B) always passes through the cell wall 602 that separates the cell 601. Then, the other end surface flows out from the other cell 601 opened.
  • the exhaust gas G passes through the cell wall 602, PM and the like in the exhaust gas are collected, so that the cell wall 602 functions as a filter.
  • the honeycomb structure including the honeycomb fired body in which either one end of the cell is sealed can be suitably used as a ceramic filter.
  • a honeycomb structure including a honeycomb fired body in which neither end of the cell is sealed can be suitably used as a catalyst carrier.
  • a ceramic block is produced using at least one honeycomb fired body.
  • a method for producing a ceramic block in which a plurality of honeycomb fired bodies are bundled through an adhesive layer will be described.
  • an adhesive paste serving as an adhesive layer is applied to each predetermined side surface of the honeycomb fired body to form an adhesive paste layer, and another honeycomb fired body is sequentially placed on the adhesive paste layer.
  • the process of laminating is repeated to produce an aggregate of honeycomb fired bodies.
  • the aggregate of honeycomb fired bodies is heated to dry and solidify the adhesive paste layer to form an adhesive layer, thereby producing a ceramic block.
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the adhesive paste may further contain inorganic fibers and / or whiskers.
  • the ceramic block is cut. Specifically, a ceramic block whose outer periphery is processed into a columnar shape is manufactured by cutting the outer periphery of the ceramic block using a diamond cutter or the like.
  • an outer peripheral coating material paste is applied to the outer peripheral surface of the cylindrical ceramic block, and dried and solidified to form an outer peripheral coating layer.
  • the said adhesive paste can be used as an outer periphery coating material paste.
  • a paste having a composition different from that of the adhesive paste may be used as the outer periphery coating material paste.
  • the outer peripheral coat layer is not necessarily provided, and may be provided as necessary.
  • a honeycomb structure can be manufactured by the above process.
  • FIG. 6 is a perspective view schematically showing an example of a honeycomb structure manufactured using the extrusion mold according to the present embodiment.
  • a honeycomb structure 700 shown in FIG. 6 a plurality of honeycomb fired bodies 600 are bundled together through an adhesive layer 701 to form a ceramic block 703, and an outer peripheral coat layer 702 is formed on the outer periphery of the ceramic block 703.
  • the outer periphery coating layer should just be formed as needed.
  • Such a honeycomb structure in which a plurality of honeycomb fired bodies are bundled is also referred to as an aggregated honeycomb structure.
  • a nitride layer is formed on the surface of the slit groove.
  • the hardness of the surface of the slit groove is increased. Therefore, even if the forming raw material is repeatedly extruded, the surface of the slit groove is less likely to be worn. As a result, the life of the mold can be improved.
  • the nitride layer has a thickness of 5 to 1000 nm.
  • the wear resistance of the surface of the slit groove can be maintained long, and as a result, the life of the mold can be further improved.
  • the hardness of the nitrided layer is 1200 to 3000 Hv.
  • the surface of the slit groove is hardly worn even if the forming raw material is repeatedly extruded. As a result, the life of the mold can be further improved.
  • the material of the extrusion mold is a cemented carbide obtained by mixing and sintering tungsten carbide and cobalt, and the nitride layer is tungsten carbonitride. It is.
  • the extrusion mold is made of the above-mentioned material, the hardness of the surface of the slit groove becomes higher. Therefore, even if the forming raw material is repeatedly extruded, the surface of the slit groove is less likely to be worn. As a result, the life of the mold can be further improved.
  • the slit width of the slit groove is 30 to 1000 ⁇ m.
  • a honeycomb molded body suitable for a particulate filter that collects particulates in exhaust gas and purifies the exhaust gas can be obtained.
  • the slit grooves are provided in a lattice shape, and the number of intersections between the slit grooves is 100 to 500 / inch 2 .
  • the number of intersections between the slit grooves is within the above range, a honeycomb molded body suitable for a particulate filter that collects particulates in the exhaust gas and purifies the exhaust gas is obtained.
  • the forming raw material is silicon carbide. Even when silicon carbide having high hardness is used as a forming raw material, wear on the surface of the slit groove hardly occurs, and the life of the mold can be improved.
  • the raw material supply unit is further formed in the first opening formed in the first surface and the second communication portion formed in the portion communicating with the second through hole.
  • the raw material supply section has a width that decreases from the first opening to the second opening. If the width of the raw material supply part is reduced from the first opening part to the second opening part, the molding raw material tends to flow from the raw material supply part to the molding part, so that the molding raw material is less likely to clog in the extrusion mold. Become.
  • the manufacturing method of the extrusion mold according to the present embodiment includes a nitriding treatment step of forming a nitride layer on the surface of the slit groove using a nitrogen ion implantation method.
  • a nitride layer can be formed uniformly.
  • the extrusion mold according to this embodiment can be suitably manufactured.
  • the hardness of the surface of the slit groove is improved by 1.2 to 2 times in the nitriding step.
  • the hardness of the surface of the slit groove is improved by 1.2 to 2 times, it is possible to manufacture an extrusion mold that hardly causes wear on the surface of the slit groove even if the forming raw material is repeatedly extruded. As a result, a mold having a long life can be manufactured.
  • Example 1 the first embodiment of the present invention shown in FIGS. 1 (a), 1 (b), 2 and 3 will be described more specifically.
  • a mold material a cemented carbide was prepared by mixing and sintering tungsten carbide and cobalt. Here, the hardness of the mold material was 1200 Hv.
  • the above-mentioned mold material was processed into a shape as shown in FIG. Specifically, first, the outer peripheral portion was cut so that the second surface forming the second through hole protruded from the periphery. Next, a first through hole having a circular cross-sectional shape was formed from the first surface toward the second surface. Thereafter, a second through hole was formed so as to communicate with the first through hole from the second surface toward the first surface.
  • Blade processing was performed using a slicer (manufactured by Nagase Integrex, SPG-150). The processing conditions were blade width: 0.23 mm, rotation speed: 8150 rpm, and feed rate: 4 mm / min.
  • the formed slit groove had a slit width of 235 ⁇ m.
  • the second through holes constituting the slit grooves were provided in a lattice shape so as to communicate with the first through holes constituting the raw material supply unit, and the number of intersections between the slit grooves was 300 / inch 2 . .
  • the raw material supply section is provided on the intersection 14 a when the adjacent intersections of the slit grooves are 14 a and 14 b, respectively.
  • a nitride layer was formed on the surface of the slit groove by applying a high voltage pulse having a voltage value of ⁇ 18 kV for 60 minutes to a mold placed in an apparatus in which plasma was generated. Through the above process, an extrusion mold was produced.
  • the thickness of the nitride layer, the hardness of the slit groove surface, and the wear amount of the slit width were measured as follows. All of these measurements were performed at a point of 30 ⁇ m in the depth direction from the second surface where the second through hole was formed. In addition, all these measurements were performed by arbitrarily selecting ten locations among the slit grooves corresponding to the cell walls of the honeycomb formed body. And the average value of the value measured about these 10 places is shown in Table 1, respectively.
  • the thickness of the nitride layer formed on the surface of the slit groove was measured using a secondary ion mass spectrometer (SIMS) (ADEPT-1010 manufactured by ULVAC-PHI Co., Ltd.). The measurement conditions were such that the primary ion species was Cs + ions and the primary ion acceleration voltage was 3.0 kV.
  • SIMS secondary ion mass spectrometer
  • secondary ion mass spectrometry is to analyze the elements present on the surface of the sample by sputtering the surface of the sample with primary ions and then performing mass spectrometry on the secondary ions that have jumped out of the sample surface into the vacuum. Is the method. Since the sample surface is scraped off by sputtering, elemental analysis in the depth direction is possible.
  • FIG. 7 is a graph showing the results of secondary ion mass spectrometry on the slit groove surface of the extrusion mold produced in Example 1.
  • the horizontal axis represents the depth from the slit groove surface
  • the vertical axis represents the count number of nitrogen ions (secondary ions) released from the slit groove surface.
  • the depth from the slit groove surface at the point X where the nitrogen ion count number released from the slit groove surface almost disappeared was defined as the thickness of the nitride layer formed on the slit groove surface.
  • the hardness of the slit groove surface was measured using a Vickers hardness tester (manufactured by Mitutoyo Corporation, HM-221).
  • the hardness is calculated by the following equation from the surface area S (mm 2 ) calculated from the diagonal length d (mm) (average in two directions) of the remaining indentation and the test force F (kgf). be able to.
  • Comparative Example 1 An extrusion mold was produced in the same manner as in Example 1 except that the nitriding treatment step for forming a nitride layer on the surface of the slit groove was not performed, and the hardness of the slit groove surface and the slit The amount of wear of the width was measured. Table 1 shows the measurement results.
  • Example 1 in which the nitride layer was formed on the slit groove surface, the hardness of the slit groove surface was higher than in Comparative Example 1 in which the nitride layer was not formed on the slit groove surface, It can be seen that the wear amount of the slit width is small. Therefore, in Example 1 in which the nitride layer is formed on the slit groove surface, the life of the mold can be improved.
  • FIG. 8 is a perspective view schematically showing how a honeycomb formed body is formed using an extrusion molding apparatus including the extrusion molding die according to the first embodiment of the present invention.
  • the drum 800, the extrusion forming mold 100 provided at the tip of the drum 800, the screw 802 provided in the drum 800, and the drum 800 are provided.
  • the screw 802 is provided to extrude the forming raw material.
  • the shape of the screw 802 is not particularly limited, but it is desirable to have a blade portion 803.
  • the mesh 801 is provided for filtering coarse foreign matters contained in the forming raw material.
  • the shape of the mesh 801 is not particularly limited, but is preferably a thin sheet. Examples of the material of the screw 802 and the mesh 801 include stainless steel and hard chrome plating.
  • a nitride layer is formed on the surface of the slit groove.
  • the formation of the nitride layer is not limited to the surface of the slit groove, and it is sufficient that the nitride layer is formed on the surface of at least one member of the extrusion mold 100, the screw 802, and the mesh 801.
  • the nitride layer formed on the surface of the screw 802 and the mesh 801 can be formed by the same method as the nitriding process described in the method for manufacturing an extrusion mold according to the first embodiment of the present invention.
  • the material of the screw 802 and the mesh 801 is stainless steel, a nitride layer made of nitrided steel is formed.
  • the honeycomb structure manufactured by using the extrusion mold according to the first embodiment of the present invention is a collective honeycomb structure, but a honeycomb structure including one honeycomb fired body (integrated honeycomb structure) May be manufactured.
  • the size of the honeycomb formed body formed by extrusion is larger than the size of the honeycomb formed body described in the first embodiment of the present invention, and the outer shape thereof is different. Otherwise, the honeycomb formed body is manufactured in the same manner as in the first embodiment of the present invention. That is, a honeycomb molded body using an extrusion mold having the same configuration as that of the extrusion mold according to the first embodiment of the present invention, except that it has a cross-sectional shape corresponding to the shape of the obtained honeycomb molded body. Can be produced.
  • honeycomb structure is composed of one honeycomb fired body, it is not necessary to prepare an aggregate of honeycomb fired bodies. Moreover, when producing a columnar honeycomb molded body, it is not necessary to cut the outer periphery of the ceramic block.
  • the shape of the raw material supply portion of the mold main body is not particularly limited.
  • the cross-sectional shape parallel to the direction of extruding the forming raw material is rectangular and tapered.
  • a shape, a trapezoidal shape, etc. can be mentioned.
  • the cross-sectional shape is a taper shape in terms of easy extrusion of the forming raw material.
  • the shape of the slit groove of the mold body is not particularly limited.
  • the cross-sectional shape parallel to the direction in which the forming raw material is extruded is rectangular.
  • a taper shape etc. can be mentioned.
  • it is desirable that the cross-sectional shape is rectangular because the slit grooves can be easily formed.
  • the extrusion mold of the present invention is formed from a first surface, a second surface formed on the opposite side of the first surface, and from the first surface toward the second surface.
  • a raw material supply part having a first through hole and a molding part having a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface. It is an extrusion mold provided, and in the molding part, it is an essential component that a nitride layer is formed on the inner wall surface of the second through hole.
  • the extrusion mold according to the present invention includes a first surface, a second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • a raw material supply part having a formed first through hole, and a molded part having a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • the molding part it is an essential component that a nitride layer obtained by a nitrogen ion implantation method is formed on the inner wall surface of the second through hole in the molding part. is there.
  • the first surface, the second surface formed on the opposite side of the first surface, and the second surface to the second surface.
  • a raw material supply part having a first through hole formed toward the first surface, and a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • a method for manufacturing an extrusion molding die comprising a molding part having a processing step of processing a mold material into a predetermined shape, and the molding part of the mold obtained by the processing step, wherein the second It is an essential component to include a nitriding treatment step of forming a nitride layer on the inner wall surface of the through hole using a nitrogen ion implantation method.
  • the extrusion molding apparatus of the present invention includes a drum, an extrusion forming die provided at the tip of the drum, a screw provided inside the drum, and provided inside the drum.
  • the extrusion molding apparatus further comprises a mesh provided on the tip end side, and a nitride layer is formed on the surface of at least one member of the extrusion mold, the screw, and the mesh.
  • a nitride layer is formed on the surface of at least one member of the extrusion mold, the screw, and the mesh.
  • the method for manufacturing a honeycomb structure of the present invention includes forming a honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls separated by extruding a forming raw material using an extrusion mold.
  • a method for manufacturing a honeycomb structure comprising a step of manufacturing, a step of manufacturing a honeycomb fired body by firing the honeycomb formed body, and a step of manufacturing a ceramic block using at least one honeycomb fired body.
  • the extrusion mold is formed with a first surface, a second surface formed on the opposite side of the first surface, and the first surface toward the second surface.
  • a raw material supply part having a first through hole and a molding part having a second through hole formed so as to communicate with the first through hole from the second surface toward the first surface.
  • the second through hole in the molded part The inner wall surface is an essential component to be extruded molding die nitride layer is formed.
  • the essential components are appropriately combined with various configurations described in detail in the first embodiment of the present invention and other embodiments of the present invention (for example, the shape of the raw material supply unit, the shape of the slit grooves, etc.). Thus, a desired effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

本発明の押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されていることを特徴とする。

Description

押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法
本発明は、押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法に関する。
バス、トラック等の車両及び建設機械等の内燃機関から排出される排ガス中のスス等のパティキュレートが、環境又は人体に害を及ぼすことが近年問題となっている。そこで、多孔質セラミックからなるハニカム構造体を用いることにより、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタが種々提案されている。
このようなハニカム構造体としては、耐熱性及び強度に優れるという観点から、炭化ケイ素等のセラミック材料等を含む混合物に押出成形、脱脂、焼成等の処理を行うことによって作製される角柱形状のハニカム焼成体が接着剤層を介して複数個結束されたものが用いられている。
一般に、ハニカム構造体を製造する際には、押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を製造している。
ハニカム成形体を製造するための押出成形用金型としては、成形原料を供給するための原料供給部と、上記原料供給部に連通して格子状に設けられ、成形原料をハニカム成形体の形状に成形するためのスリット溝とを有する金型が知られている。
例えば、特許文献1に記載された押出成形用ダイス(金型)は、供給部と成形口金部とから構成され、上記供給部には供給穴(原料供給部)が、上記成形口金部には成形溝(スリット溝)が、それぞれドリルを用いて穿設されている。
特開平5-131425
しかしながら、特許文献1に記載された金型を用いて、成形原料を繰り返し押出成形すると、成形原料と金型の成形溝の表面とが接触して摩擦が生じることにより、金型の成形溝の表面に摩耗が生じ易くなる。特に、成形原料として、硬度の高い炭化ケイ素粉末等を主成分とする原料を使用した場合、金型の成形溝の表面に摩耗がより生じ易くなる。その結果、押出成形されたハニカム成形体のセル壁の厚さが厚くなり、寸法精度が低下する。そのため、金型の使用が困難となり、金型のライフが短くなるという問題があった。
本発明は、上記問題を解決するためになされたものであり、耐摩耗性に優れ、金型のライフを向上させることが可能な押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載の押出成形用金型では、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されていることを特徴とする。
上記第二貫通孔の内壁面に窒化層が形成されていると、第二貫通孔の内壁面の硬度が高くなる。
従って、成形原料を繰り返し押出成形しても、第二貫通孔の内壁面に摩耗が生じにくくなる。その結果、金型のライフを向上させることができる。
なお、金型のライフを向上させるとは、金型を使用するにつれて、第二貫通孔の内壁面の摩耗により押出成形されたハニカム成形体のセル壁の厚さが厚くなることや、第二貫通孔の内壁面の摩耗のバラツキにより押出成形されたハニカム成形体のセル壁の厚さにバラツキが生じることを防ぐことをいう。
請求項2に記載の押出成形用金型では、上記原料供給部は、さらに、上記第一の面に形成された第一開口部と、上記第二貫通孔と連通する部分に形成された第二開口部とを有し、上記原料供給部の幅は、上記第一開口部から上記第二開口部にかけて小さくなっている。
上記原料供給部の幅が、上記第一開口部から上記第二開口部にかけて小さくなっていると、成形原料が原料供給部から成形部に流れやすくなるため、成形原料が押出成形用金型内で詰まりにくくなる。
請求項3に記載の押出成形用金型では、上記成形部は、複数の上記第二貫通孔がつながって格子状に形成されたスリット溝である。
上記成形部が、複数の上記第二貫通孔がつながって格子状に形成されたスリット溝であると、上記押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体が得られる。
請求項4に記載の押出成形用金型では、さらに、上記原料供給部において、上記第一貫通孔の内壁面にも、窒化層が形成されている。
上記第一貫通孔の内壁面にも窒化層が形成されていると、第一貫通孔の内壁面の硬度が高くなる。従って、成形原料を繰り返し押出成形しても、第一貫通孔の内壁面に摩耗が生じにくくなる。その結果、第一貫通孔の形状を、成形原料が原料供給部から成形部に流れやすい形状に維持できるため、成形原料を繰り返し押出成形しても、成形原料が押出成形用金型内で詰まりにくくなる。
請求項5に記載の押出成形用金型では、上記窒化層の厚みは、5~1000nmである。
上記窒化層の厚みが5~1000nmであると、成形部において、第二貫通孔の内壁面の耐摩耗性を長く維持することができ、その結果、金型のライフをより向上させることができる。
上記窒化層の厚みが5nm未満であると、窒化層の厚みが薄すぎて、すぐに摩耗してしまう場合がある。
上記窒化層の厚みが1000nmを超えると、成形原料を押し出す際、窒化層にかかる応力が大きくなり、成形部において、第二貫通孔の内壁面にクラックが生じる場合がある。
請求項6に記載の押出成形用金型では、上記窒化層の硬度は、1200~3000Hvである。
上記窒化層の硬度が1200~3000Hvであると、成形原料を繰り返し押出成形しても、成形部において、第二貫通孔の内壁面に摩耗が生じにくくなる。その結果、金型のライフをより向上させることができる。
上記窒化層の硬度が1200Hv未満であると、硬度が充分ではないため、本発明の効果が得られにくくなる場合がある。
上記窒化層の硬度が3000Hvを超えると、成形原料を押し出す際、窒化層にかかる応力が大きくなり、成形部において、第二貫通孔の内壁面にクラックが生じる場合がある。
請求項7に記載の押出成形用金型では、上記押出成形用金型の素材は炭化タングステンとコバルトとを混合して焼結した超硬合金であり、かつ、上記窒化層は炭窒化タングステンである。
上記押出成形用金型の素材が炭化タングステンとコバルトとを混合して焼結した超硬合金であり、かつ、上記窒化層が炭窒化タングステンであると、成形部において、第二貫通孔の内壁面の硬度がより高くなる。従って、成形原料を繰り返し押出成形しても、成形部において、第二貫通孔の内壁面に摩耗が生じにくくなる。その結果、金型のライフをさらに向上させることができる。
請求項8に記載の押出成形用金型では、上記スリット溝のスリット幅は、30~1000μmである。
上記スリット溝のスリット幅は、押出成形されるハニカム成形体のセル壁又は外周壁の厚さに対応する。従って、上記スリット幅が30~1000μmであると、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタに適したハニカム成形体が得られる。
上記スリット幅が30μm未満であると、単位体積当たりの成形原料がスリット溝の表面と接触する部位(面積)が大きくなり、スリット溝の表面の摩耗が生じ易くなる場合がある。
請求項9に記載の押出成形用金型では、上記スリット溝同士の交点の数は、100~500個/inchである。
上記スリット溝同士の交点の数が100~500個/inchであると、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタに適したハニカム成形体が得られる。
上記スリット溝同士の交点の数が500個/inchを超えると、単位体積当たりの成形原料がスリット溝の表面と接触する部位(面積)が大きくなり、スリット溝の表面の摩耗が生じ易くなる場合がある。
請求項10に記載の押出成形用金型では、上記原料供給部に供給する成形原料が炭化ケイ素である。
成形原料として硬度の高い炭化ケイ素を使用した場合であっても、成形部において、第二貫通孔の内壁面に摩耗が生じにくくなり、金型のライフを向上させることができる。
請求項11に記載の押出成形用金型では、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒素イオン注入法により得られた窒化層が形成されている。
上記第二貫通孔の内壁面に窒化層が形成されていると、第二貫通孔の内壁面の硬度が高くなる。従って、成形原料を繰り返し押出成形しても、第二貫通孔の内壁面に摩耗が生じにくくなる。その結果、金型のライフを向上させることができる。
特に、成形原料として、硬度の高い炭化ケイ素粉末等を主成分とする原料を使用した場合であっても、第二貫通孔の内壁面に摩耗が生じにくくなり、金型のライフを向上させることができる。
請求項12に記載の押出成形用金型の製造方法では、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型の製造方法であって、金型の素材を所定形状に加工する加工工程と、上記加工工程により得られた金型の上記成形部において、上記第二貫通孔の内壁面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程とを含むことを特徴とする。
窒素イオン注入法を用いて窒化層を形成する窒化処理工程を含むと、均一に窒化層を形成することができる。特に、上記加工工程後の金型の形状が複雑な場合であっても、均一に窒化層を形成することができる。窒化層を均一に形成することにより、本発明の押出成形用金型を好適に製造することができる。
請求項13に記載の押出成形用金型の製造方法では、上記窒化処理工程において上記成形部において、上記第二貫通孔の内壁面の硬度が1.2~2倍向上する。
上記窒化処理工程において上記第二貫通孔の内壁面の硬度が1.2~2倍向上すると、成形原料を繰り返し押出成形しても、第二貫通孔の内壁面に摩耗が生じにくい押出成形用金型を製造することができる。その結果、ライフの長い金型を製造することができる。
上記第二貫通孔の内壁面の硬度の向上が1.2倍未満であると、形成された上記窒化層の硬度が充分ではないため、本発明の効果が得られにくくなる場合がある。
上記第二貫通孔の内壁面の硬度の向上が2倍を超えると、製造された押出成形用金型を用いて成形原料を押し出す際、形成された上記窒化層にかかる応力が大きくなり、第二貫通孔の内壁面にクラックが生じる場合がある。
請求項14に記載の押出成形装置では、ドラムと、上記ドラムの先端部に設けられた押出形成用金型と、上記ドラムの内部に設けられたスクリューと、上記ドラムの内部に設けられ、上記スクリューより上記先端部側に設けられたメッシュとからなる押出成形装置であって、上記押出成形用金型、上記スクリュー、及び、上記メッシュのうち少なくとも1つの部材の表面に窒化層が形成されていることを特徴とする。
表面に窒化層が形成された上記部材は、成形原料と接触しても、上記部材の表面に摩耗が生じにくくなる。その結果、上記部材を備える押出成形装置のライフを向上させることができる。
特に、成形原料として、硬度の高い炭化ケイ素粉末等を主成分とする原料を使用した場合であっても、上記部材の表面に摩耗が生じにくくなり、上記部材を備える押出成形装置のライフを向上させることができる。
請求項15に記載のハニカム構造体の製造方法では、押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作製する工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、上記押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備え、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されている押出成形用金型であることを特徴とする。
請求項15に記載のハニカム構造体の製造方法では、ハニカム成形体を作製する工程において、ハニカム成形体のセル壁の厚さが厚くなることや、セル壁の厚さにバラツキが生じることを防ぐことができるため、好適にハニカム構造体を製造することができる。
図1(a)は、本発明の第一実施形態に係る押出成形用金型の一例を模式的に示す断面図であり、図1(b)は、図1(a)に示す押出成形用金型の一部拡大図である。 図2は、本発明の第一実施形態に係る押出成形用金型の素材として超硬合金を用いた場合のスリット溝を模式的に示す断面図である。 図3は、図1(a)に示す押出成形用金型の正面拡大図である。 図4は、本発明の第一実施形態に係る押出成形用金型を用いて押出成形されたハニカム成形体の一例を模式的に示す斜視図である。 図5(a)は、本実施形態に係る押出成形用金型を用いて製造するハニカム焼成体の一例を模式的に示す斜視図であり、図5(b)は、図5(a)に示すハニカム焼成体のA-A線断面図である。 図6は、本実施形態に係る押出成形用金型を用いて製造するハニカム構造体の一例を模式的に示す斜視図である。 図7は、実施例1で製造した押出成形用金型のスリット溝表面における二次イオン質量分析結果を示すグラフである。 図8は、本発明の第一実施形態に係る押出成形用金型を備える押出成形装置を用いて、ハニカム成形体を成形する様子を模式的に示す斜視図である。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明の第一実施形態に係る押出成形用金型、押出成形用金型の製造方法及びハニカム構造体の製造方法の一実施形態である第一実施形態について、図面を参照しながら説明する。
まず、本実施形態に係る押出成形用金型について説明する。
本実施形態に係る押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されていることを特徴とする。
図1(a)は、本発明の第一実施形態に係る押出成形用金型の一例を模式的に示す断面図であり、図1(b)は、図1(a)に示す押出成形用金型の一部拡大図である。
図1(a)及び図1(b)は、成形原料を押し出す方向に平行な方向における押出成形用金型の断面図である。ここで、成形原料を押し出す方向は、図1(a)中及び図1(b)中に矢印aで示す。
図1(a)及び図1(b)に示すように、押出成形用金型100は、第一の面10aと、第一の面10aの反対側に形成された第二の面10bと、第一の面10aから第二の面10bに向かって形成された第一貫通孔111を有する原料供給部11と、第二の面10bから第一の面10aに向かって、第一貫通孔111と連通するように形成された第二貫通孔121を有する成形部12とを備える。成形部12は、複数の第二貫通孔121がつながって格子状に形成されたスリット溝である。
ここで、原料供給部11は、成形原料を供給するために形成され、成形部12は、原料供給部11を通過した成形原料をハニカム成形体の形状に成形するために形成されている。
なお、押出成形用金型100を固定するための外枠20は、必要に応じて備えられていればよい。
以下、成形部12において第二貫通孔121の内壁面を、スリット溝12の表面として説明する。
スリット溝12の表面には、窒化層13が形成されている。
本実施形態に係る押出成形用金型では、スリット溝12の表面に窒化層13が形成されていることを必須の構成要素としている。しかしながら、係る必須の構成要素に加えて、図1(a)及び図1(b)に示すように、原料供給部11における第一貫通孔111の内壁面、第一の面10a、第二の面10b等に窒化層13が形成されていてもよい。
窒化層13とは、窒素イオン注入法により、金属表面が窒化して、硬い窒素化合物が形成された層のことである。窒素イオン注入法については、後述する本実施形態に係る押出成形用金型の製造方法にて詳細を説明する。
窒化層13の硬度は、1200~3000Hvであることが望ましく、2000~2500Hvであることがより望ましい。なお、上記硬度は、JIS規格(規格番号:JIS Z 2244)に準拠して測定したビッカース硬度である。
窒化層13の厚み(図1(b)中、両矢印dで示す長さ)は、5~1000nmであることが望ましく、10~100nmであることがより望ましい。
また、窒化層13は、スリット溝12の表面の全体に渡って均一な厚みで形成されていることが望ましい。
窒化層13の厚みは、例えば、二次イオン質量分析装置(SIMS)を用いて測定することができる。詳細な測定方法は、後述する実施例において説明する。
押出成形用金型100の素材は、炭化タングステンとコバルトとを混合して焼結した超硬合金、炭化タングステンとコバルトとその他微量粒子(例えば、TiC、TiN等)とを混合して焼結した超硬合金、工具鋼、ステンレス鋼、又は、アルミニウム合金等であることが望ましく、炭化タングステンとコバルトとを混合して焼結した超硬合金であることがより望ましい。
ここで、炭化タングステンとコバルトとを混合して焼結した超硬合金の硬度は、一般に、1000~1500Hvである。
図2は、本発明の第一実施形態に係る押出成形用金型の素材として超硬合金を用いた場合のスリット溝を模式的に示す断面図である。
図2は、成形原料を押し出す方向に平行な方向におけるスリット溝の断面図であり、成形原料を押し出す方向は、図2中、矢印aで示す。
図2に示すように、押出成形用金型の素材として用いられる超硬合金は、炭化タングステン粒子201が、バインダーとして添加されたコバルト202によって結合されている。
ここで、炭化タングステン粒子201の平均粒子径は、0.1~10μmであることが望ましい。また、コバルト202の含有率は、3~20%であることが望ましい。
また、図2に示すように、スリット溝12の表面近傍では、炭化タングステン粒子201の表面が窒化され、炭窒化タングステン203が形成されている。
ここで、図2に示す窒化層23とは、炭化タングステン粒子201の表面に炭窒化タングステン203が形成された層のことをいい、図1(a)及び図1(b)に示す窒化層13に相当する。また、図2に示す窒化層23の厚み(図2中、両矢印eで示す長さ)は、図1(b)に示す窒化層13の厚み(図1(b)中、両矢印dで示す長さ)に相当する。
上述したように、窒化層23の厚み(図2中、両矢印eで示す長さ)は、5~1000nmであることが望ましく、10~100nmであることがより望ましい。すなわち、窒化層23の厚みは、炭化タングステン粒子201の平均粒子径に比べてはるかに小さい。従って、図2に示すように、炭窒化タングステン203は、炭化タングステン粒子201の表面全体ではなく、炭化タングステン粒子201の表面のうち、スリット溝12の表面近傍のみに形成されていることが望ましい。
成形原料を押し出す方向に平行な方向における原料供給部11の長さは、特に限定されないが、3~20mmであることが望ましい。
成形原料を押し出す方向に平行な方向における原料供給部11の長さが上記範囲内であると、成形原料を容易に押し出すことができる。
原料供給部11の幅(図1(b)中、両矢印bで示す長さ)は、特に限定されないが、1.0~1.5mmであることが望ましい。
原料供給部11の幅が上記範囲内であると、成形原料を容易に押し出すことができる。
なお、原料供給部11の幅とは、原料供給部11の断面形状が円形である場合は、円の直径を意味する。また、原料供給部11の断面形状が多角形である場合は、多角形の各頂点を通る仮想外接円の直径を意味する。
図1(b)に示すように、原料供給部11は、さらに、第一の面10aに形成された第一開口部112と、第二貫通孔121と連通する部分に形成された第二開口部113とを有する。そして、原料供給部11の幅(図1(b)中、両矢印bで示す長さ)は、第一開口部112から第二開口部113にかけて小さくなっている。
スリット溝12は、ハニカム成形体のセル壁又は外周壁の厚さに対応するスリット幅(図1(b)中、両矢印cで示す長さ)を有している。スリット幅は、30~1000μmであることが望ましく、60~500μmであることがより望ましい。
成形原料を押し出す方向に平行な方向におけるスリット溝12の長さは、特に限定されないが、1~4mmであることが望ましい。
成形原料を押し出す方向に平行な方向におけるスリット溝12の長さが上記範囲内であると、成形原料を容易に押し出すことができる。
図3は、図1(a)に示す押出成形用金型の正面拡大図である。
図3に示すように、スリット溝12は、原料供給部11と連通するように格子状に設けられている。
そして、スリット溝12同士が交わる箇所を交点14としたとき、交点14の数は、100~500個/inchであることが望ましく、200~400個/inchであることがより望ましい。
原料供給部11は、通常、スリット溝12が交差する位置に対応して設けられている。
具体的には、図3に示すように、スリット溝12同士の交点のうち隣接する交点をそれぞれ14a及び14bとしたとき、原料供給部11は交点14a上に設けられている。
成形原料は、作製するハニカム成形体(ハニカム構造体)の構成材料に応じて選択すればよい。
成形原料としては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、又は、窒化チタン等の窒化物セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、又は、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、シリカ、又は、チタン酸アルミニウム等の酸化物セラミック等を挙げることができる。その中でも特に、炭化ケイ素であることが望ましい。
次に、本実施形態に係る押出成形用金型の製造方法について説明する。
本実施形態に係る押出成形用金型の製造方法では、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型の製造方法であって、金型の素材を所定形状に加工する加工工程と、上記加工工程により得られた金型の上記成形部において、上記第二貫通孔の内壁面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程とを含むことを特徴とする。
まず、金型の素材を所定形状に加工する加工工程を行う。
具体的には、図1(a)及び図1(b)に示すように、金型の素材を切削することにより、第一の面10aから第二の面10bに向かって第一貫通孔111を形成した後、第二の面10bから第一の面10aに向かって、第一貫通孔111と連通するように第二貫通孔121を形成する。成形部12は、複数の第二貫通孔121がつながって格子状に形成されたスリット溝である。
以下、成形部12において第二貫通孔121の内壁面を、スリット溝12の表面として説明する。
原料供給部11及びスリット溝12の形状等については、既に説明したため、その詳細な説明は省略する。
原料供給部及びスリット溝を形成する方法としては、特に限定されるものではないが、例えば、ドリル等の刃物を用いたマシニング加工等が挙げられる。
また、金型の素材が超硬合金等のように硬い場合や、製造する金型の形状が複雑な場合は、放電加工等が挙げられる。
次に、スリット溝の表面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程を行う。
ここで、窒素イオン注入法とは、プラズマ中に置かれた被処理物に負のパルス電圧を印加して窒素イオンを注入し、窒化層を形成する方法である。
まず、装置と金型との間に高周波電力を印加して、プラズマを発生させる。
高周波電力は、出力が0.3~2.0kW、周波数が13.56MHz、印加時間が100~500μsec、休止時間が50~300μsecであることが望ましい。
次に、プラズマが発生した装置内に置かれた金型に、負の高電圧パルスを印加する。
これにより、プラズマ中の窒素イオンが金型の表面に向かって加速し、金型の表面から窒素イオンが注入される。このようにして、金型の表面近傍の金属が窒素イオンと反応して窒化され、窒化層が形成される。
高電圧パルスの電圧値は、-5~-20kVであることが望ましい。高電圧パルスの電圧値を変えることで、窒化層の厚みを変えることができる。
例えば、金型の素材として炭化タングステン(WC)とコバルトとを混合して焼結した超硬合金を用いた場合、炭化タングステン(WC)と窒素イオンとが反応して、炭窒化タングステン(WCN)からなる窒化層が形成される。
以上の工程によって、本実施形態に係る押出成形用金型を製造することができる。
上記窒素イオン注入法を用いて、スリット溝12の表面に窒化層13を形成する上記窒化処理工程を行うことにより、スリット溝12の表面の硬度は1.2~2倍向上することが望ましい。
最後に、本実施形態に係る押出成形用金型を用いて製造するハニカム構造体の製造方法の一例について説明する。
本実施形態に係るハニカム構造体の製造方法では、押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作製する工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、上記押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備え、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されている押出成形用金型であることを特徴とする。
(1)まず、セラミック粉末とバインダとを含む湿潤混合物(成形原料)を調製する。
具体的には、まず、セラミック粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
上記セラミック粉末は、作製するハニカム成形体(ハニカム構造体)の構成材料に応じて選択すればよい。
ハニカム成形体の構成材料の主成分としては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、シリカ、チタン酸アルミニウム等の酸化物セラミック等を挙げることができる。
ハニカム成形体の構成材料の主成分の中では、非酸化物セラミックが好ましく、炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。
本明細書において、「主成分が炭化ケイ素である」とは、セラミック粉末が炭化ケイ素を60重量%以上含有することをいう。主成分が炭化ケイ素である場合、炭化ケイ素のみならず、ケイ素結合炭化ケイ素も含まれる。また、炭化ケイ素以外の構成材料の主成分についても同様である。
(2)次に、上記湿潤混合物(成形原料)を押出成形することにより、所定の形状のハニカム成形体を作製する。
この際、本実施形態に係る押出成形用金型を用いて押出成形を行う。
図4は、本発明の第一実施形態に係る押出成形用金型を用いて押出成形されたハニカム成形体の一例を模式的に示す斜視図である。図4に示すハニカム成形体500には、多数のセル501がセル壁502を隔てて長手方向(図4中、両矢印fの方向)に並設されるとともに、その周囲に外周壁503が形成されている。
(3)その後、上記ハニカム成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させることにより、ハニカム成形体の乾燥体を作製する。
さらに、ハニカム成形体の乾燥体を、所定の条件で脱脂処理(例えば、200~500℃)、及び、焼成処理(例えば、1400~2300℃)を行う。
上記の工程を経ることにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム焼成体を作製することができる。
なお、上記ハニカム成形体の乾燥体の脱脂処理及び焼成処理の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
本実施形態に係る押出成形用金型を用いて製造するハニカム構造体の製造方法においては、セルのいずれか一方の端部が封止されたハニカム焼成体を作製することもできる。この場合、上記(3)の工程において、乾燥後、ハニカム成形体の乾燥体が有するセルの所定の端部に、封止材となる封止材ペーストを所定量充填してセルを封止する。その後、上述した脱脂処理及び焼成処理を行うことにより、セルのいずれか一方の端部が封止されたハニカム焼成体を作製することができる。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
図5(a)は、本実施形態に係る押出成形用金型を用いて製造するハニカム焼成体の一例を模式的に示す斜視図であり、図5(b)は、図5(a)に示すハニカム焼成体のA-A線断面図である。
図5(a)及び図5(b)に示すハニカム焼成体600には、多数のセル601がセル壁602を隔てて長手方向(図5(a)中、矢印gの方向)に並設されるとともに、その周囲に外周壁603が形成されている。そして、セル601のいずれかの端部は、封止材604で封止されている。
従って、一方の端面が開口したセル601に流入した排ガスG(図5(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ずセル601を隔てるセル壁602を通過した後、他方の端面が開口した他のセル601から流出するようになっている。排ガスGがセル壁602を通過する際に、排ガス中のPM等が捕集されるため、セル壁602は、フィルタとして機能する。
このように、セルのいずれか一方の端部が封止されたハニカム焼成体を含むハニカム構造体は、セラミックフィルタとして好適に使用することができる。また、セルのいずれの端部も封止されていないハニカム焼成体を含むハニカム構造体は、触媒担持体として好適に使用することができる。
(4)続いて、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する。
一例として、複数のハニカム焼成体が接着材層を介して結束されてなるセラミックブロックを作製する方法について説明する。
まず、上記ハニカム焼成体のそれぞれの所定の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着剤ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返し、ハニカム焼成体の集合体を作製する。
次に、ハニカム焼成体の集合体を加熱して接着剤ペースト層を乾燥、固化させて接着材層とすることにより、セラミックブロックを作製する。
ここで、接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記接着材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(5)その後、セラミックブロックに切削加工を施す。
具体的には、ダイヤモンドカッター等を用いてセラミックブロックの外周を切削することにより、外周が円柱状に加工されたセラミックブロックを作製する。
(6)さらに、円柱状のセラミックブロックの外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
また、外周コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。
以上の工程によって、ハニカム構造体を製造することができる。
図6は、本実施形態に係る押出成形用金型を用いて製造するハニカム構造体の一例を模式的に示す斜視図である。
図6に示すハニカム構造体700では、ハニカム焼成体600が複数個ずつ接着材層701を介して結束されてセラミックブロック703を構成し、さらに、このセラミックブロック703の外周に外周コート層702が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
このような、ハニカム焼成体が複数個結束されてなるハニカム構造体は、集合型ハニカム構造体ともいう。
以下、本実施形態に係る押出成形用金型、及び、押出成形用金型の製造方法の作用効果について列挙する。
(1)本実施形態に係る押出成形用金型では、スリット溝の表面に窒化層が形成されている。スリット溝の表面に窒化層が形成されていると、スリット溝の表面の硬度が高くなる。
従って、成形原料を繰り返し押出成形しても、スリット溝の表面に摩耗が生じにくくなる。その結果、金型のライフを向上させることができる。
(2)本実施形態に係る押出成形用金型では、窒化層の厚みが5~1000nmである。
窒化層の厚みが上記範囲内であると、スリット溝の表面の耐摩耗性を長く維持することができ、その結果、金型のライフをより向上させることができる。
(3)本実施形態に係る押出成形用金型では、窒化層の硬度が1200~3000Hvである。窒化層の硬度が上記範囲内であると、成形原料を繰り返し押出成形しても、スリット溝の表面に摩耗が生じにくくなる。その結果、金型のライフをより向上させることができる。
(4)本実施形態に係る押出成形用金型では、押出成形用金型の素材は炭化タングステンとコバルトとを混合して焼結した超硬合金であり、かつ、上記窒化層は炭窒化タングステンである。押出成形用金型が上記材質であると、スリット溝の表面の硬度がより高くなる。従って、成形原料を繰り返し押出成形しても、スリット溝の表面に摩耗が生じにくくなる。その結果、金型のライフをさらに向上させることができる。
(5)本実施形態に係る押出成形用金型では、スリット溝のスリット幅が30~1000μmである。スリット幅が上記範囲内であると、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタに適したハニカム成形体が得られる。
(6)本実施形態に係る押出成形用金型では、スリット溝は格子状に設けられ、上記スリット溝同士の交点の数が100~500個/inchである。スリット溝同士の交点の数が上記範囲内であると、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタに適したハニカム成形体が得られる。
(7)本実施形態に係る押出成形用金型では、成形原料が炭化ケイ素である。成形原料として硬度の高い炭化ケイ素を使用した場合であっても、スリット溝の表面に摩耗が生じにくくなり、金型のライフを向上させることができる。
(8)本実施形態に係る押出成形用金型では、原料供給部は、さらに、第一の面に形成された第一開口部と、第二貫通孔と連通する部分に形成された第二開口部とを有し、上記原料供給部の幅は、上記第一開口部から上記第二開口部にかけて小さくなっている。
原料供給部の幅が、第一開口部から第二開口部にかけて小さくなっていると、成形原料が原料供給部から成形部に流れやすくなるため、成形原料が押出成形用金型内で詰まりにくくなる。
(9)本実施形態に係る押出成形用金型の製造方法では、スリット溝の表面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程を含む。上記窒化処理工程を含むと、均一に窒化層を形成することができる。特に、加工工程後の金型の形状が複雑な場合であっても、均一に窒化層を形成することができる。窒化層を均一に形成することにより、本実施形態に係る押出成形用金型を好適に製造することができる。
(10)本実施形態に係る押出成形用金型の製造方法では、窒化処理工程においてスリット溝の表面の硬度が1.2~2倍向上する。スリット溝の表面の硬度が1.2~2倍向上すると、成形原料を繰り返し押出成形しても、スリット溝の表面に摩耗が生じにくい押出成形用金型を製造することができる。その結果、ライフの長い金型を製造することができる。
(実施例)
以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
実施例1では、図1(a)、図1(b)、図2及び図3に示す本発明の第一実施形態をより具体的に示す。
(実施例1)
まず、金型素材として、材質が炭化タングステンとコバルトとを混合して焼結した超硬合金を準備した。ここで、金型素材の硬度は、1200Hvであった。
次に、ブレード加工により、上記金型素材を図1(a)に示すような形状に加工した。具体的には、まず、第二貫通孔を形成する第二の面を周囲よりも突出させるように外周部を切削した。次に、第一の面から第二の面に向かって断面形状が円形の第一貫通孔を形成した。その後、第二の面から第一の面に向かって、第一貫通孔と連通するように、第二貫通孔を形成した。
ブレード加工は、スライサー((株)ナガセインテグレックス製、SPG-150)を用いて行った。なお、加工条件は、ブレード幅:0.23mm、回転数:8150rpm、送り速度:4mm/minとした。
形成されたスリット溝は、スリット幅が235μmであった。
また、スリット溝を構成する第二貫通孔は、原料供給部を構成する第一貫通孔と連通するように格子状に設けられ、スリット溝同士の交点の数は300個/inchであった。
原料供給部は、図3に示すように、スリット溝同士の交点のうち隣接する交点をそれぞれ14a及び14bとしたとき、交点14a上に設けられている。
続いて、プラズマが発生した装置内に置かれた金型に、電圧値が-18kVである高電圧パルスを60分間印加することにより、スリット溝の表面に窒化層を形成した。
以上の工程により、押出成形用金型を製造した。
実施例1で製造した押出成形用金型について、下記の通り、窒化層の厚み、スリット溝表面の硬度、及び、スリット幅の摩耗量を測定した。
これらの測定はすべて、第二貫通孔が形成された第二の面から深さ方向に30μmの地点において行った。また、これらの測定はすべて、ハニカム成形体のセル壁に対応するスリット溝のうち任意に10箇所を選んで行った。そして、これら10箇所について測定した値の平均値を、それぞれ表1に示す。
(窒化層の厚み測定)
スリット溝の表面に形成された窒化層の厚みは、二次イオン質量分析装置(SIMS)(アルバック・ファイ(株)製、ADEPT-1010)を用いて測定した。測定条件は、一次イオン種をCsイオン、一次イオン加速電圧を3.0kVとした。
ここで、二次イオン質量分析法とは、一次イオンで試料表面をスパッタリングし、そのとき試料表面から真空中に飛び出した二次イオンを質量分析することにより、試料表面に存在する元素を分析する方法である。スパッタリングにより試料表面を削り取っていくので、深さ方向の元素分析が可能である。
図7は、実施例1で製造した押出成形用金型のスリット溝表面における二次イオン質量分析結果を示すグラフである。
図7において、横軸はスリット溝表面からの深さ、縦軸はスリット溝表面から放出した窒素イオン(二次イオン)カウント数を示す。本実施例では、スリット溝表面から放出した窒素イオンカウント数にほぼ変化がなくなった地点Xでのスリット溝表面からの深さを、スリット溝表面に形成された窒化層の厚みとした。
(スリット溝表面の硬度測定)
スリット溝表面の硬度の測定は、ビッカース硬さ試験機((株)ミツトヨ製、HM-221)を用いて行った。
ビッカース硬さ試験では、まず、硬度測定を行う基材の表面に、ダイヤモンド圧子(対面角=136°)と呼ばれる先端がひし形になっている針のようなものを試験力F(kgf)で押し込む。そして、これにより残った圧痕の対角線の長さd(mm)(2方向の平均)から計算される表面積S(mm)と、試験力F(kgf)とから、下記式によって硬度を算出することができる。
硬度(Hv)=F(kgf)/S(mm)=0.1892F(kgf)/d(mm
(スリット幅摩耗量の測定)
まず、スリット溝表面の流動研磨を行った。流動研磨は、研磨材を原料供給部へ均等に導入し、スリット溝から押し出す作業を繰り返すことにより行った。研磨材としては、粒度が#320(平均粒径46.2μm)の炭化ケイ素を用いた。また、研磨圧力は6MPa、研磨温度は30°、研磨時間は24時間とした。
その後、寸法測定器((株)ミツトヨ製、UMAP302)を用いて、スリット幅の摩耗量を測定した。
(比較例1)
比較例1では、スリット溝の表面に窒化層を形成する窒化処理工程を行っていないこと以外は、実施例1と同様に押出成形用金型を製造し、スリット溝表面の硬度、及び、スリット幅の摩耗量を測定した。測定した結果を、それぞれ表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1の結果からわかるように、スリット溝表面に窒化層が形成された実施例1では、スリット溝表面に窒化層が形成されていない比較例1に比べて、スリット溝表面の硬度が高く、スリット幅の摩耗量が小さいことがわかる。従って、スリット溝表面に窒化層が形成された実施例1では、金型のライフを向上させることができる。
(その他の実施形態)
図8は、本発明の第一実施形態に係る押出成形用金型を備える押出成形装置を用いて、ハニカム成形体を成形する様子を模式的に示す斜視図である。
図8に示す押出成形装置900では、ドラム800と、ドラム800の先端部に設けられた押出形成用金型100と、ドラム800の内部に設けられたスクリュー802と、ドラム800の内部に設けられ、スクリュー802より先端部側に設けられたメッシュ801とからなる。
スクリュー802は、成形原料を押し出すために設けられている。スクリュー802の形状は、特に限定されないが、羽根部803を有することが望ましい。
また、メッシュ801は、成形原料に含まれる粗大な異物を濾過するために設けられている。メッシュ801の形状は、特に限定されないが、薄いシート状であることが望ましい。
スクリュー802及びメッシュ801の材質としては、ステンレス鋼、硬質クロムめっき等が挙げられる。
本発明の第一実施形態に係る押出成形用金型では、スリット溝の表面に窒化層が形成されている。しかしながら、窒化層が形成されるのはスリット溝の表面に限定されず、押出成形用金型100、スクリュー802、及び、メッシュ801のうち少なくとも1つの部材の表面に形成されていればよい。
スクリュー802、及び、メッシュ801の表面に形成された窒化層は、本発明の第一実施形態に係る押出成形用金型の製造方法で記載した窒化処理工程と同様の方法により形成することができる。
例えば、スクリュー802及びメッシュ801の材質がステンレス鋼である場合、窒化鋼からなる窒化層が形成される。
本発明の第一実施形態に係る押出成形用金型を用いて製造されるハニカム構造体は集合型ハニカム構造体であるが、1つのハニカム焼成体からなるハニカム構造体(一体型ハニカム構造体)を製造してもよい。
一体型ハニカム構造体を製造する場合には、押出成形により成形するハニカム成形体の大きさが、本発明の第一実施形態において説明したハニカム成形体の大きさに比べて大きく、その外形が異なる他は、本発明の第一実施形態と同様にしてハニカム成形体を作製する。
つまり、得られるハニカム成形体の形状に対応する断面形状を有する他は、本発明の第一実施形態に係る押出成形用金型と同様の構成を有する押出成形用金型を用いてハニカム成形体を作製すればよい。
その他の工程は、本発明の第一実施形態で説明したハニカム構造体の製造工程と同様である。ただし、ハニカム構造体が1つのハニカム焼成体からなるため、ハニカム焼成体の集合体を作製する必要はない。また、円柱状のハニカム成形体を作製する場合には、セラミックブロックの外周を切削する必要はない。
本発明の実施形態に係る押出成形用金型において、金型本体の原料供給部の形状は、特に限定されるものではなく、例えば、成形原料を押し出す方向に平行な断面形状が矩形状、テーパー形状、又は、台形状等を挙げることができる。
これらの中では、成形原料の押出しが容易である点で、断面形状がテーパー形状であることが望ましい。
同様に、本発明の実施形態に係る押出成形用金型において、金型本体のスリット溝の形状は、特に限定されるものではなく、例えば、成形原料を押し出す方向に平行な断面形状が矩形状、又は、テーパー形状等を挙げることができる。
これらの中では、スリット溝の形成が容易である点で、断面形状が矩形状であることが望ましい。
本発明の押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されていることが必須の構成要素である。
また、本発明の押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、上記成形部において、上記第二貫通孔の内壁面には、窒素イオン注入法により得られた窒化層が形成されていることが必須の構成要素である。
また、本発明の押出成形用金型の製造方法では、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型の製造方法であって、金型の素材を所定形状に加工する加工工程と、上記加工工程により得られた金型の上記成形部において、上記第二貫通孔の内壁面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程とを含むことが必須の構成要素である。
また、本発明の押出成形装置は、ドラムと、上記ドラムの先端部に設けられた押出形成用金型と、上記ドラムの内部に設けられたスクリューと、上記ドラムの内部に設けられ、上記スクリューより上記先端部側に設けられたメッシュとからなる押出成形装置であって、上記押出成形用金型、上記スクリュー、及び、上記メッシュのうち少なくとも1つの部材の表面に窒化層が形成されていることが必須の構成要素である。
また、本発明のハニカム構造体の製造方法は、押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作製する工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、上記押出成形用金型は、第一の面と、上記第一の面の反対側に形成された第二の面と、上記第一の面から上記第二の面に向かって形成された第一貫通孔を有する原料供給部と、上記第二の面から上記第一の面に向かって、上記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備え、上記成形部において、上記第二貫通孔の内壁面には、窒化層が形成されている押出成形用金型であることが必須の構成要素である。
係る必須の構成要素に、本発明の第一実施形態、及び、本発明のその他の実施形態で詳述した種々の構成(例えば、原料供給部の形状、スリット溝の形状等)を適宜組み合わせることにより所望の効果を得ることができる。
10a 第一の面
10b 第二の面
11 原料供給部
12 成形部(スリット溝)
13、23 窒化層
14(14a、14b) スリット溝同士の交点
100 押出成形用金型(金型)
111 第一貫通孔
112 第一開口部
113 第二開口部
121 第二貫通孔
500 ハニカム成形体
501、601 セル
502,602 セル壁
600 ハニカム焼成体
700 ハニカム構造体
703 セラミックブロック
800 ドラム
801 メッシュ
802 スクリュー
900 押出成形装置

Claims (15)

  1. 第一の面と、
    前記第一の面の反対側に形成された第二の面と、
    前記第一の面から前記第二の面に向かって形成された第一貫通孔を有する原料供給部と、
    前記第二の面から前記第一の面に向かって、前記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、
    前記成形部において、前記第二貫通孔の内壁面には、窒化層が形成されていることを特徴とする押出成形用金型。
  2. 前記原料供給部は、さらに、前記第一の面に形成された第一開口部と、前記第二貫通孔と連通する部分に形成された第二開口部とを有し、
    前記原料供給部の幅は、前記第一開口部から前記第二開口部にかけて小さくなっている請求項1に記載の押出成形用金型。
  3. 前記成形部は、複数の前記第二貫通孔がつながって格子状に形成されたスリット溝である請求項1又は2に記載の押出成形用金型。
  4. さらに、前記原料供給部において、前記第一貫通孔の内壁面にも、窒化層が形成されている請求項1~3のいずれかに記載の押出成形用金型。
  5. 前記窒化層の厚みは、5~1000nmである請求項1~4のいずれかに記載の押出成形用金型。
  6. 前記窒化層の硬度は、1200~3000Hvである請求項1~5のいずれかに記載の押出成形用金型。
  7. 前記押出成形用金型の素材は炭化タングステンとコバルトとを混合して焼結した超硬合金であり、かつ、前記窒化層は炭窒化タングステンである請求項1~6のいずれかに記載の押出成形用金型。
  8. 前記スリット溝のスリット幅は、30~1000μmである請求項3~7のいずれかに記載の押出成形用金型。
  9. 前記スリット溝同士の交点の数は、100~500個/inchである請求項3~8のいずれかに記載の押出成形用金型。
  10. 前記原料供給部に供給する成形原料は、炭化ケイ素である請求項1~9のいずれかに記載の押出成形用金型。
  11. 第一の面と、
    前記第一の面の反対側に形成された第二の面と、
    前記第一の面から前記第二の面に向かって形成された第一貫通孔を有する原料供給部と、
    前記第二の面から前記第一の面に向かって、前記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型であって、
    前記成形部において、前記第二貫通孔の内壁面には、窒素イオン注入法により得られた窒化層が形成されていることを特徴とする押出成形用金型。
  12. 第一の面と、
    前記第一の面の反対側に形成された第二の面と、
    前記第一の面から前記第二の面に向かって形成された第一貫通孔を有する原料供給部と、
    前記第二の面から前記第一の面に向かって、前記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備える押出成形用金型の製造方法であって、
    金型の素材を所定形状に加工する加工工程と、
    前記加工工程により得られた金型の前記成形部において、前記第二貫通孔の内壁面に、窒素イオン注入法を用いて窒化層を形成する窒化処理工程とを含むことを特徴とする押出成形用金型の製造方法。
  13. 前記窒化処理工程では、前記成形部において、前記第二貫通孔の内壁面の硬度が1.2~2倍向上する請求項12に記載の押出成形用金型の製造方法。
  14. ドラムと、
    前記ドラムの先端部に設けられた押出形成用金型と、
    前記ドラムの内部に設けられたスクリューと、
    前記ドラムの内部に設けられ、前記スクリューより前記先端部側に設けられたメッシュとからなる押出成形装置であって、
    前記押出成形用金型、前記スクリュー、及び、前記メッシュのうち少なくとも1つの部材の表面に窒化層が形成されていることを特徴とする押出成形装置。
  15. 押出成形用金型を用いて成形原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作製する工程と、
    前記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、
    少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、
    前記押出成形用金型は、第一の面と、
    前記第一の面の反対側に形成された第二の面と、
    前記第一の面から前記第二の面に向かって形成された第一貫通孔を有する原料供給部と、
    前記第二の面から前記第一の面に向かって、前記第一貫通孔と連通するように形成された第二貫通孔を有する成形部とを備え、
    前記成形部において、前記第二貫通孔の内壁面には、窒化層が形成されている押出成形用金型であることを特徴とするハニカム構造体の製造方法。
PCT/JP2012/058360 2012-03-29 2012-03-29 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法 WO2013145209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/058360 WO2013145209A1 (ja) 2012-03-29 2012-03-29 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法
JP2014507175A JP5947883B2 (ja) 2012-03-29 2012-03-29 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法
EP12873175.9A EP2832514A4 (en) 2012-03-29 2012-03-29 EXTRUSION MOLDING SYSTEM, METHOD FOR PRODUCING EXTRUSION LINE, EXTRUSION MOLDING DEVICE, AND METHOD FOR PRODUCING HONEYCOMB STRUCTURE
US14/499,413 US20150017343A1 (en) 2012-03-29 2014-09-29 Die for extrusion molding, method of producing die for extrusion molding, extruder, and method of producing honeycomb structured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058360 WO2013145209A1 (ja) 2012-03-29 2012-03-29 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/499,413 Continuation US20150017343A1 (en) 2012-03-29 2014-09-29 Die for extrusion molding, method of producing die for extrusion molding, extruder, and method of producing honeycomb structured body

Publications (1)

Publication Number Publication Date
WO2013145209A1 true WO2013145209A1 (ja) 2013-10-03

Family

ID=49258573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058360 WO2013145209A1 (ja) 2012-03-29 2012-03-29 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法

Country Status (4)

Country Link
US (1) US20150017343A1 (ja)
EP (1) EP2832514A4 (ja)
JP (1) JP5947883B2 (ja)
WO (1) WO2013145209A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175789A (ja) * 2015-03-19 2016-10-06 日本碍子株式会社 ハニカム構造体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131425A (ja) 1991-11-14 1993-05-28 Ibiden Co Ltd ハニカム構造体の押出成形用ダイス
JP2008188795A (ja) * 2007-02-01 2008-08-21 Denso Corp ハニカム体成形用金型の製造方法
JP2009196252A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の製造方法及び再生方法
JP2009196251A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の再生方法
JP2010024518A (ja) * 2008-07-23 2010-02-04 Ibiden Engineering Kk 金型の製造方法及び金型
JP2011194789A (ja) * 2010-03-23 2011-10-06 Ngk Insulators Ltd ハニカム構造体成形用口金の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574459A (en) * 1983-12-23 1986-03-11 Corning Glass Works Extrusion die manufacture
US4892792A (en) * 1987-10-01 1990-01-09 Gte Laboratories Incorporated A1N coated silicon nitride based cutting tools
JPH0645130B2 (ja) * 1989-03-23 1994-06-15 日本碍子株式会社 セラミックハニカム押出ダイスの製造法
JP2003136516A (ja) * 2001-11-05 2003-05-14 Ngk Insulators Ltd ハニカム押出成形用口金
JP2003285308A (ja) * 2002-03-28 2003-10-07 Ngk Insulators Ltd ハニカム成形用口金及びこれを用いたハニカム成形用口金治具
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2010024902A2 (en) * 2008-08-28 2010-03-04 Corning Incorporated Wear resistant coatings for tool dies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131425A (ja) 1991-11-14 1993-05-28 Ibiden Co Ltd ハニカム構造体の押出成形用ダイス
JP2008188795A (ja) * 2007-02-01 2008-08-21 Denso Corp ハニカム体成形用金型の製造方法
JP2009196252A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の製造方法及び再生方法
JP2009196251A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の再生方法
JP2010024518A (ja) * 2008-07-23 2010-02-04 Ibiden Engineering Kk 金型の製造方法及び金型
JP2011194789A (ja) * 2010-03-23 2011-10-06 Ngk Insulators Ltd ハニカム構造体成形用口金の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832514A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175789A (ja) * 2015-03-19 2016-10-06 日本碍子株式会社 ハニカム構造体
US10173163B2 (en) 2015-03-19 2019-01-08 Ngk Insulators, Ltd. Honeycomb structure

Also Published As

Publication number Publication date
EP2832514A4 (en) 2015-11-18
JP5947883B2 (ja) 2016-07-06
JPWO2013145209A1 (ja) 2015-08-03
US20150017343A1 (en) 2015-01-15
EP2832514A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
US8124002B2 (en) Extrusion-molding machine, extrusion-molding method, and method for manufacturing honeycomb structured body
JP5947884B2 (ja) 押出成形用金型の製造方法及びハニカム構造体の製造方法
WO2005099865A1 (ja) ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
WO2003106028A1 (ja) セラミックハニカム構造体及びその製造方法並びにその製造に用いるコート材
EP2082835B1 (en) Method of producing perforated honeycomb structure body
EP2130809A1 (en) Method for manufacturing ceramic honeycomb structure
EP2130808A1 (en) Process for producing ceramic honeycomb structure
EP2008987B1 (en) Honeycomb structure body
JP6002209B2 (ja) 押出成形用金型の製造方法
JP5947883B2 (ja) 押出成形用金型、押出成形用金型の製造方法、押出成形装置及びハニカム構造体の製造方法
JP2007253149A (ja) 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2012091535A1 (en) Zirconia-toughened-alumina ceramic inserts with the addition of nano particle metal oxides as additives
US20070096370A1 (en) Manufacturing method of producing ceramic honeycomb structure body
JP2008132752A (ja) 押出成形機、押出成形方法及びハニカム構造体の製造方法
CN112203741A (zh) 具有多区蜂窝结构的蜂窝体以及共挤出制造方法
WO2016039329A1 (ja) 押出成形用金型
WO2016039330A1 (ja) 押出成形用金型
JP2020015258A (ja) 押出成形用金型及びハニカム構造体の製造方法
EP2832513A1 (en) Method for manufacturing honeycomb structure, and extrusion die
JP5790243B2 (ja) セラミックハニカム構造体の製造方法
JP6403710B2 (ja) モノリス型基材及びその製造方法
CN116710250A (zh) 分区涂覆的挤出模头、此类模头的制造方法和陶瓷制品的制造方法
JP2008080563A (ja) 坏土改良用治具およびこれを用いたスクリュー式の押出成形機
JP2017001234A (ja) 押出成形用金型
JPWO2013145151A1 (ja) ハニカム構造体の製造方法、及び、押出成形用金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507175

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012873175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE