WO2013143351A1 - 抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸 - Google Patents

抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸 Download PDF

Info

Publication number
WO2013143351A1
WO2013143351A1 PCT/CN2013/000370 CN2013000370W WO2013143351A1 WO 2013143351 A1 WO2013143351 A1 WO 2013143351A1 CN 2013000370 W CN2013000370 W CN 2013000370W WO 2013143351 A1 WO2013143351 A1 WO 2013143351A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
titanium dioxide
paper
coating
antibacterial coating
Prior art date
Application number
PCT/CN2013/000370
Other languages
English (en)
French (fr)
Inventor
白树华
王俊明
全吉平
冉梦怀
贺伟
Original Assignee
宁波亚洲浆纸业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波亚洲浆纸业有限公司 filed Critical 宁波亚洲浆纸业有限公司
Priority to JP2014517443A priority Critical patent/JP2014524948A/ja
Publication of WO2013143351A1 publication Critical patent/WO2013143351A1/zh
Priority to US14/093,027 priority patent/US8940086B2/en
Priority to US14/557,441 priority patent/US20150086598A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the invention relates to a production process of an antibacterial paint, a production process of an antibacterial paper and an antibacterial paper. Background technique
  • One method of making antibacterial paper is to apply an antibacterial layer containing nano titanium dioxide to the surface of the paper to impart antibacterial effect to the paper.
  • this method can never give the paper a good antibacterial effect.
  • One of the reasons is very important. The reason is that the existing antibacterial paper production process cannot fully exert the antibacterial effect of the nano titanium dioxide, resulting in an unsatisfactory antibacterial effect of the antibacterial paper. This is mainly because, due to the large specific surface energy and high polarity of nano-titanium dioxide, it is easy to cause particle agglomeration and agglomeration during the preparation and use to form secondary particles with larger particle size, while nano-titanium dioxide has The antibacterial performance depends largely on the size of the particle size.
  • An antibacterial coating production process comprising the steps of: formulating a mixed solution comprising titanium dioxide particles and a dispersing agent; mechanically stirring the mixed liquid to perform preliminary disintegration of the titanium dioxide particles in the mixed liquid to form a primary a titanium dioxide particle dispersion; ultrasonically oscillates the primary titanium dioxide particle dispersion to form a nano titanium dioxide particle dispersion having an average particle diameter of 200 nm or less; and mixing the nano titanium dihalide particle dispersion with a coating to form a uniform An antibacterial coating having nano titanium dioxide particles dispersed therein, wherein the nano titanium dioxide particles are greater than or equal to 5%.
  • An antibacterial paper production process comprising the steps of: providing a paper substrate; preparing an antibacterial coating according to the production process of the antibacterial coating as described above; and forming an antibacterial coating on at least one surface of the paper substrate by using the antibacterial coating Floor.
  • An antibacterial paper comprising a paper substrate on which an antibacterial coating is formed on at least one outer surface of the paper substrate, the antibacterial coating being formed of an antibacterial coating prepared by the production process of the antibacterial coating as described above,
  • An antibacterial paper comprising a paper substrate, an antibacterial coating layer formed on at least one outer surface of the paper substrate, the antibacterial coating layer comprising nano titanium dioxide particles uniformly distributed, the average of the nano titanium dioxide particles The particle size is less than or equal to 200 nm, and the content of the nano titanium dioxide particles in the antibacterial coating layer is 5% or more.
  • An antibacterial paper comprising a paper substrate, characterized in that: an antibacterial coating layer is formed on at least one outer surface of the paper substrate, and the antibacterial coating layer comprises nano titanium dioxide particles uniformly distributed in the antibacterial coating layer, the antibacterial paper The antibacterial rate of the coating is greater than or equal to 99%.
  • the titanium dioxide in the antibacterial coating prepared according to the production process of the antibacterial coating provided by the present invention has small particle size and uniform distribution, and can effectively exert the antibacterial effect of the nano titanium dioxide.
  • the antibacterial paper production process provided by the present invention and the antibacterial paper produced according to the antibacterial paper production process are prepared by using the antibacterial paint production process provided by the present invention.
  • the average particle diameter of the titanium dioxide particles in the antibacterial coating is 200 nm or less, the antibacterial property of the nano titanium dioxide can be sufficiently exerted, thereby imparting good antibacterial properties to the antibacterial paper, and making it resistant to bacteria.
  • the rate is greater than or equal to 99%; on the other hand, the uniformly distributed titanium dioxide particles can maintain an excellent porosity of the antibacterial coating layer of the antibacterial paper, and the excellent porosity can bring good printing performance to the antibacterial paper. Therefore, the antibacterial paper provided by the invention not only has good antibacterial properties, but also has good printing performance.
  • Figure 1 to Figure 3 are the outer surface and cross-section electron micrographs of the antibacterial coating layer formed by the antibacterial coating containing titanium dichloride particles prepared in the first group of experiments, wherein the mechanical stirring rate of Figure 1 is 5000 rpm.
  • the mechanical agitation rate of 2 was 6000 rpm, and the mechanical agitation rate of Figure 3 was 7000 rpm.
  • 4 to FIG. 6 are external photographs and cross-sectional electron micrographs of the antibacterial coating layer formed by the antibacterial coating containing titanium dioxide particles prepared in the second group of experiments, wherein the oscillation time of FIG. 4 is 3 min, and the oscillation time of FIG. For 4 min, the oscillating time of Figure 6 is 5 min.
  • Fig. 7 is an external surface and cross-sectional electron micrograph of the antibacterial coating layer formed by the antibacterial coating containing titanium oxide particles prepared in the third group of experiments under the conditions of mechanical stirring speed of 5000 r/min and ultrasonic vibration time of 3 min.
  • Embodiments of the present invention provide a process for producing an antibacterial coating comprising the steps of: (1) formulating a mixed solution comprising titanium dioxide particles and a dispersing agent;
  • the mixed liquid is prepared by first preparing a dispersant solution under alkaline conditions, and then adding titanium dioxide particles to the dispersant solution, as follows:
  • the specific steps are as follows: First, adding a basic substance to the water to adjust the pH of the water to be maintained at 9-10,
  • the kind of the dispersing agent is not limited to sodium polyacrylate, and may also be cetyltrimethylammonium bromide (CTAB), sodium hexametaphosphate (SHMP), polyethyl b.
  • CTAB cetyltrimethylammonium bromide
  • SHMP sodium hexametaphosphate
  • PMAA polymethacrylic acid
  • the alkaline substance added to the water includes an alkaline substance such as sodium hydroxide or sodium carbonate.
  • the titanium dioxide particles are commercially available titanium dioxide products directly, which may be ordinary titanium dioxide products that have not been subjected to a nano process, or titanium dioxide products that have been subjected to a nano process.
  • the titanium dioxide is a titanium dioxide product after nano-process treatment.
  • the nano-processed titanium dioxide product used in this step is purchased from a supplier as a commodity. Sales of nano-processed titanium dioxide products, however, as described in the background art, commercially available nano-processed titanium dioxide will inevitably agglomerate in storage, transportation and other logistics, so Although the papermakers purchased titanium dioxide after nano-process treatment, in fact, in the paper mill When the quotient is used, the particle size of the titanium dioxide treated by the nano-process has become larger. Generally, when the paper manufacturer uses the nano-process, the particle size of the titanium dioxide is substantially above 100 nm, which is not In the true sense, nanoscale particles obtained after nano-process treatment.
  • the pH of the mixed liquid system is preferably in the range of 9 to 10, but is not strictly limited to the above range, and the overall performance of the antibacterial coating obtained later is not produced. Under the premise of large influence, the pH value of the mixed liquid system can be appropriately adjusted according to the site conditions.
  • the degree of acid-base (ie, pH) of the mixed liquid system containing the dispersing agent and the titanium di-titanium oxide particles is not a factor that must be considered in preparing the antibacterial coating, and the embodiment
  • the reason why the mixed liquid is prepared under alkaline conditions is that the mainstream system of the papermaking paint currently used is an alkaline environment, in order to avoid the acid equipment containing the mixed liquid system of the dispersing agent and the titanium dioxide particles.
  • the degree affects the performance of the alkaline coating used later.
  • the mixture is prepared under alkaline conditions to avoid the inconsistency of the pH of the mixed liquid system and the pH of the subsequently used coating. Have an adverse effect.
  • the preparation of the mixed solution containing the titanium dioxide particles and the dispersing agent may include the following cases: (1) If the subsequently used coating system is an alkaline system, the mixed liquid may be Prepare under alkaline conditions, or firstly under neutral or acidic conditions, and then adjust the pH of the mixture system to alkaline to match the coating system before mixing the mixture with the coating; (2) If If the coating system to be used later is an acidic system, the mixture may be formulated under acidic conditions, or may be prepared under neutral or alkaline conditions, and then the pH of the mixed system before the mixture is mixed with the coating.
  • the value is adjusted to be acidic to suit the coating system; (3) if the subsequently used coating system is a neutral system, the mixture may be prepared directly under neutral conditions, or may be formulated under acidic or basic conditions. Then, before the mixture is mixed with the coating, the pH of the mixture system is adjusted to neutral to suit the coating system.
  • the amount of the dispersant added is based on the amount of titanium dioxide to be used, and preferably, in order to maintain the titanium dioxide at a subsequent stage, the dispersion effect is good.
  • the content of the dispersant is 0.3% to 0.5% of the content of the titanium dioxide particles.
  • the ratio range between the dispersant and the titanium dioxide particles in the mixed solution It is not strictly limited to the above range.
  • the ratio between the dispersant and the titanium dioxide particles added to the mixed liquid can be appropriately adjusted according to the site conditions, without affecting the dispersion effect of the entire system. .
  • the order of adding the dispersing agent and the titanium dioxide particles is not particularly limited, and in addition to the above-mentioned preparation method, it may be added to the water first.
  • the mixed solution is prepared by adding titanium dioxide and then adding a dispersing agent, or by mixing titanium dititanide with a dispersing agent simultaneously in water.
  • the main purpose of mechanically stirring the mixed liquid is to perform preliminary disintegration of the titanium oxide particles dispersed in the mixed liquid to lower the average particle diameter of the titanium oxide particles in the mixed liquid.
  • the mixed liquid is mechanically stirred using a stirring blade having a rotational speed of 5,000 to 7,000 rpm and a stirring time of 30 to 60 minutes.
  • the rotation speed and the stirring time for mechanically stirring the mixed liquid are not limited to the above-mentioned range defined by the embodiment, and the rotation speed and the stirring time for mechanically stirring the mixed liquid may be based on The particle size of the titanium dichloride raw material used is appropriately adjusted.
  • a conventional titanium dioxide product having a large particle diameter which has not been subjected to a nano process is used, a higher mechanical stirring speed and a higher mechanical speed are required.
  • the purpose of ultrasonically oscillating the primary titanium oxide particle dispersion is to secondarily disintegrate the titanium dioxide particles in the primary titanium dioxide particle dispersion to obtain nano titanium dioxide particles having a particle diameter of 200 nm or less.
  • the ultrasonic wave having ultrasonically oscillated the primary titanium oxide particle dispersion has a power of 500 W, a frequency of 10 to 100 KHZ, and an oscillation time of 3 to 5 minutes.
  • the ultrasonic vibration of the primary titanium dioxide particle dispersion is ultrasonically oscillated.
  • the rate, frequency, and oscillation time can be adjusted according to the actual situation at the production site, as long as nano titanium dioxide particles having a particle diameter of 200 nm or less can be obtained.
  • the main reason is: when the titanium dioxide particles are large, use Mechanical disintegration can quickly and effectively reduce the average particle size of the titanium dioxide particles. However, when the average particle size of the titanium dioxide particles is reduced to about 800 nm, the mechanical stirring has little effect on the shearing of the titanium dioxide particles. It is impossible to further disintegrate the titanium dioxide particles.
  • the second disintegration of the mechanically disintegrated titanium dioxide particles by ultrasonic vibration can further reduce the particle size of the titanium dichloride particles, thereby making the titanium dioxide particles The particle size can reach below 200nm,
  • the method of using the mechanical stirring disintegration and the ultrasonic vibration pulverization in the present invention has the following advantages: First, mechanical agitation relative to ultrasonic vibration The energy consumption will be lower. Thus, in the case of a large particle size of titanium dioxide, if the ultrasonic vibration is used to pulverize the titanium dioxide particles, a large amount of energy is consumed, so that the papermaking cost is significantly increased, and the mechanical stirring is used first.
  • the nano titanium dioxide particles can be stably suspended in the solution in the form of fine particles.
  • the nano titanium dioxide particle dispersion and the coating are carried out.
  • large particles such as calcium carbonate contained in the coating can form steric hindrance between two adjacent nano-titanium dioxide particles to prevent the continued agglomeration of the nano-titanium carbide, thereby obtaining a nano-titanium dioxide Antibacterial coating of particles.
  • coatings herein are commonly used in the papermaking industry, and the types and amounts of coatings can be set according to the actual needs of different paper products.
  • the ratio of the coating to the nano-titanium dioxide dispersion can be adjusted according to the actual needs of the product.
  • the content of the nano titanium dioxide particles ranges from 5% to 15%.
  • the present invention also provides a process for producing an antibacterial paper comprising the steps of: providing a paper substrate; preparing an antibacterial coating according to the production process of the antibacterial coating as described above; using the antibacterial coating on at least one surface of the paper substrate Form an antibacterial coating on it.
  • the paper substrate is a multi-layer paper comprising a top layer, a core layer and a bottom layer, wherein the antibacterial coating is formed on the outer surface of the surface layer.
  • the antibacterial coating may be formed on the outer surface of the bottom layer or on the outer surface of the surface layer and the bottom layer according to different product designs.
  • the number of layers of the paper substrate is not particularly limited depending on the kind of the product, and it may be a single layer paper, a double layer paper or a multilayer paper.
  • the present invention also provides an antibacterial paper comprising a paper substrate on which an antibacterial coating is formed on at least one surface of the paper substrate, the antibacterial coating being prepared by the production process of the antibacterial coating as described above. Formed.
  • the antibacterial paper may be an antibacterial paperboard or other types of paper products, such as cultural paper, packaging paper, industrial use, depending on the basis weight of the paper substrate used. 1. Paper, etc., of course, the number of layers of the antibacterial paper is not particularly limited, it may be a single layer of paper, double layer paper or multi-layer paper.
  • the particle size of the nano titanium ditanide particles is less than or equal to
  • the nanometer titanium dioxide particles have a particle size ranging from 30 to 200 nm.
  • the antibacterial coating has an antibacterial rate of 99% or more.
  • the content of the nano titanium dioxide particles in the antibacterial coating is greater than or equal to 5%.
  • the content of the nano titanium dioxide particles in the antibacterial coating ranges from 5% to 15%.
  • the content of the nano titanium dioxide particles, the antibacterial rate of the antibacterial coating, and the ink absorptivity of the antibacterial coating are not limited to the above range. According to the adjustment of the production process conditions of the antibacterial coating, the content of the nano titanium dioxide particles in the antibacterial coating of the antibacterial paper, the antibacterial rate of the antibacterial coating, and the ink absorptivity of the antibacterial coating are also adjusted.
  • the antibacterial coating used is prepared by the production process of the antibacterial coating provided by the present invention, on the one hand, due to the titanium dioxide in the antibacterial coating When the average particle diameter of the particles is 200 nm or less, the antibacterial property of the nano titanium ditanide can be sufficiently exerted, thereby imparting good antibacterial properties to the antibacterial paper; on the other hand, the nanometer steric effect of the coating macron makes the nanometer
  • the titanium dioxide particles can be uniformly distributed, and these uniformly distributed titanium oxide particles can maintain an excellent porosity of the antibacterial coating layer of the antibacterial paper, and the excellent porosity can bring good printing performance to the antibacterial paper. Therefore, the antibacterial paper provided by the present invention not only has good antibacterial properties, but also has good printing properties.
  • the three parts of the titanium dioxide particle dispersion obtained at different stirring speeds are respectively mixed with the coating to form three equal amounts of the antibacterial coating;
  • the slurry used for preparing each pulp layer is sent to a paper machine by a flow feeding system for copying, and the surface layer, the lining layer, the core layer and the bottom layer which are independent of each other are prepared;
  • the ultrasonic oscillating method is used to disperse and disperse the commercially available titanium dioxide product to prepare an antibacterial coating, and then the antibacterial coating is formed on the outer surface of the paper base by using the prepared antibacterial coating to prepare antibacterial paper.
  • the ultrasonic oscillating method is used to disperse and disperse the commercially available titanium dioxide product to prepare an antibacterial coating, and then the antibacterial coating is formed on the outer surface of the paper base by using the prepared antibacterial coating to prepare antibacterial paper.
  • the three parts of the titanium dioxide particle dispersion obtained under different shaking times are uniformly mixed with the coating according to the condition that the titanium dioxide particles account for 5% of the total mass of the antibacterial coating to form three equal amounts of the antibacterial coating;
  • the slurry used for preparing each pulp layer is sent to a paper machine by a flow feeding system for copying, and the surface layer, the lining layer, the core layer and the bottom layer which are independent of each other are prepared;
  • the above mixture is mechanically stirred to initially disintegrate the titanium dioxide particles dispersed in the mixed liquid to obtain a primary titanium oxide particle dispersion, and secondly, ultrasonically oscillate the primary titanium oxide particle dispersion to The titanium dioxide particles in the primary titanium dioxide particle dispersion are subjected to secondary disintegration to obtain a nano titanium dioxide particle dispersion.
  • the mechanical stirring time is consistent with the first set of experiments, which is 30 min, the power and frequency of the ultrasonic wave.
  • the three nanometer titanium dioxide particle dispersions obtained under different treatment conditions are respectively mixed with the coating to form three equal amounts of the antibacterial coating;
  • the slurry used for preparing each pulp layer is sent to a paper machine by a flow feeding system for copying, and mutually independent surface layers, lining layers, core layers and bottom layers are prepared; Grain splitting
  • the mechanical disturbance in the presence of the dispersant is mechanically disturbed + ultrasonic dispersion, wherein the stirring time is constant, and below, the ultrasonic power and frequency mechanical stirring time are unchanged from the first group of different stirring speeds, In the case of different oscillations, the ultrasonic turbulence rate and frequency of the ultrasonically dispersed ultrasonic mechanical mechanical stirring dispersion are consistent with the second group.
  • the antibacterial property of the nano titanium dioxide largely depends on the size of the particle size, and therefore, the average particle diameter can be easily judged from the production process of the antibacterial coating provided by the present invention.
  • Antibacterial coatings have excellent antibacterial properties.
  • the particle size of the obtained titanium dioxide particles is small when oscillated for 3 min, but the agglomeration phenomenon is severe, with concussion With the extension of time, the dispersion of titanium dioxide particles also showed a gradual uniformity, but the average particle size of titanium dioxide particles increased significantly;
  • the dispersion of the titanium dioxide particles is relatively uniform, and is dispersed by simply using mechanical stirring, and simply dispersed by ultrasonic vibration.
  • the average particle diameter of the obtained titanium oxide particles is significantly smaller than the average particle diameter of the obtained titanium oxide particles.
  • the antibacterial coating prepared by the production process of the antibacterial coating according to the present invention has a small particle size and a uniform dispersion of the titanium dioxide particles.
  • 21866-2008 is to quantitatively inoculate bacteria on the antibacterial coating of the antibacterial paper to be inspected, and the bacteria are evenly contacted with the antibacterial coating of the antibacterial paper by a film method. After a certain period of cultivation, the living bacteria on the surface of the antibacterial paper are detected. Count, and calculate the "antibacterial rate" of antibacterial paper. The greater the value of the antibacterial rate, the better the antimicrobial performance.
  • Ink absorbability % is the ratio of the difference between the light reflection factor of the same coated surface of the antibacterial paper to be tested before and after the ink absorption and the light reflection factor of the coated surface of the antibacterial paper to be tested before the ink is absorbed (specifically, please Reference See GB12911), the higher the value of "% ink absorption", the better the printing performance;
  • “Ink drying speed” is to transfer the ink coated on the surface of the antibacterial paper to be tested onto the transfer paper by using a transfer paper, and to measure the ink drying speed of the antibacterial paper by measuring the density of the ink on the transfer paper. The higher the density of the ink on the transfer paper, the smaller the "ink drying speed" and the worse the printing performance;
  • the antibacterial rate of the antibacterial paper provided by the present invention is significantly higher than that of the antibacterial paper obtained by other conventional methods, which is based on specific performance parameters.
  • the antibacterial coating produced by the production process of the antibacterial coating provided according to the present invention and the antibacterial paper using the antibacterial coating have excellent antibacterial properties; in terms of ink drying speed and ink absorbability, antibacterial paper obtained by other conventional methods
  • the ink density on the transfer paper corresponding to the antibacterial paper of the present invention is the smallest, and the antibacterial paper of the present invention absorbs the most ink, and therefore, the antibacterial agent of the present invention is compared with the antibacterial paper obtained by other conventional methods. Paper has the best printing performance.
  • the antibacterial coating produced by the production process of the antibacterial coating provided by the present invention has excellent antibacterial properties as compared with the antibacterial coating obtained by the conventional dispersion method; Compared with the antibacterial paper of the antibacterial coating, the antibacterial paper provided by the invention not only has excellent antibacterial properties, but also has excellent printing properties.
  • the titanium dioxide in the antibacterial coating prepared by the production process of the antibacterial coating provided by the invention has small particle size and uniform distribution, and can effectively exert the antibacterial effect of the nano titanium dioxide, and the invention provides
  • the antibacterial paper production process and the antibacterial paper produced according to the antibacterial paper production process are prepared by using the antibacterial coating production process provided by the present invention, because:
  • the average particle diameter of the titanium dioxide particles in the antibacterial coating is 200 nm or less, so that the antibacterial property of the nano titanium dioxide can be sufficiently exerted, thereby imparting good antibacterial properties to the antibacterial paper, and the antibacterial rate is 99% or more;
  • the antibacterial coating layer of the antibacterial paper can maintain excellent porosity, and excellent porosity can bring good printing performance to the antibacterial paper.
  • the antibacterial paper provided by the present invention not only has good antibacterial properties, but also has good printing performance. Further, those skilled in the art can make other changes within the spirit of the present invention. Therefore, these are in accordance with the spirit of the present invention. Changes made are intended to be included within the scope of the invention as claimed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Paper (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

一种抗菌涂料的生产工艺,其包括如下步骤:配制包含有二氧化钛颗粒与分散剂的混合液;对该混合液进行机械搅拌以对该混合液中的二氧化钛颗粒进行初步碎解以形成初级二氧化钛颗粒分散液;对该初级二氧化钛颗粒分散液进行超声震荡以形成平均粒径小于等于200nm的纳米二氧化钛粒子分散液;以及将该纳米二氧化钛粒子分散液与涂料进行混合以形成均匀分散有纳米二氧化钛粒子的抗菌涂料,在该抗菌涂料中,纳米二氧化钛粒子的含量大于等于5%。依据该生产工艺所制得的抗菌涂料中所含的二氧化钛颗粒的粒径小且分布均匀。还涉及抗菌纸生产工艺及抗菌纸。

Description

说 明 书 抗菌涂料的生产工艺、 抗菌纸的生产工艺及抗菌纸 技术领域
本发明涉及一种抗菌涂料的生产工艺、 抗菌纸的生产工艺及抗菌纸。 背景技术
在科技越来越发达、 生活质量越来越高的今天, 不论是生活用纸还是工 业用纸, 在很多场合不仅要求纸张无菌, 更要求纸张具有抗菌的效果.
制作抗菌纸的一种做法是在纸张表面涂布包含有纳米二氧化钛的抗菌层 来赋予纸张以抗菌效果.然而,这种方式始终无法赋予纸张良好的抗菌效果. 究其原因, 其中一个很重要的原因是现有的抗菌纸生产工艺无法充分发挥纳 米二氧化钛的抗菌效果,从而导致抗菌纸的抗菌效果不理想。这主要是因为, 由于纳米二氧化钛的比表面能很大、 极性较强, 在制备和使用过程中极易发 生粒子凝并、 团聚而形成粒径较大的二次粒子, 而纳米二氧化钛所具有的抗 菌性能很大程度上取决于粒径的大小, 现有的抗菌纸生产工艺在制备抗菌涂 料的过程中, 造纸厂商是直接使用供应商所提供的纳米二氧化钛成品, 由于 纳米二氧化钛粒子具有很强烈的聚集倾向, 因此, 供应商所提供的纳米二氧 化钛成品在存储、 运送等物流环节中会发生团聚、 结块而导致纳米二氧化^ 颗粒的粒径变大, 从而影响了纳米二氧化钛的抗菌效果. 发明内容
有鉴于此, 提供一种能够解决上述问题的抗菌涂料的生产工艺、 抗菌纸 的生产工艺及抗菌纸实为必要。
一种抗菌涂料的生产工艺, 其包括如下步骤: 配制包含有二氧化钛颗粒 与分散剂的混合液; 对所述混合液进行机械搅拌以对所述混合液中的二氧化 钛颗粒进行初步碎解以形成初级二氧化钛颗粒分散液; 对所述初级二氧化钛 颗粒分散液进行超声震荡以形成平均粒径小于等于 200nm 的纳米二氧化钛 粒子分散液; 以及将所述纳米二氡化钛粒子分散液与涂料进行混合以形成均 匀分散有纳米二氧化钛粒子的抗菌涂料, 在所述抗菌涂料中, 所述纳米二氧 化钛粒子的含量大于等于 5%.
一种抗菌纸的生产工艺, 其包括如下步骤: 提供纸基体; 依照如上所述 的抗菌涂料的生产工艺制备抗菌涂料; 以及利用所述抗菌涂料在所述纸基体 的至少一个表面上形成抗菌涂层。
一种抗菌纸, 其包括纸基体, 在所述纸基体的至少一个外表面上形成有 抗菌涂层, 所述抗菌涂层由如上所述的抗菌涂料的生产工艺制备的抗菌涂料 所形成,
一种抗菌纸, 其包括纸基体, 在所述纸基体的至少一个外表面上形成有 抗菌涂层, 所述抗菌涂层内包含有均勾分布的纳米二氧化钛粒子, 所述纳米 二氧化钛粒子的平均粒径小于等于 200nm, 所述抗菌涂层中的纳米二氧化钛 粒子的含量大于等于 5%。
一种抗菌纸, 其包括纸基体, 其特征在于: 在所述纸基体的至少一个外 表面上形成有抗菌涂层, 所述抗菌涂层内包含有均勾分布的纳米二氧化钛粒 子, 所述抗菌涂层的抗细菌率大于等于 99%。
与现有技术相比, 依据本发明所提供的抗菌涂料的生产工艺所制备出来 的抗菌涂料中的二氧化钛粒径小且分布均勾, 能够很好的发挥纳米二氧化钛 的抗菌效果。 本发明所提供的所述抗菌纸生产工艺以及依据所述抗菌纸生产 工艺所生产的抗菌纸, 由于其所使用的抗菌涂料是利用本发明所提供的抗菌 涂料的生产工艺制备而成的, 因此: 一方面, 由于抗菌涂料中的二氡化钛粒 子的平均粒径在 200nm以下,可以使得纳米二氧化钛的抗菌性能得到充分的 发挥,从而赋予了所述抗菌纸良好的抗菌性能,使其抗细菌率大于等于 99%; 另一方面, 均勾分布的二氧化钛粒子能够使得抗菌纸的抗菌涂料层保持优良 的孔隙率, 而优良的孔隙率能够带给所述抗菌纸良好的印刷性能。 因此, 本 发明所提供的所述抗菌纸不但具有良好的抗菌性能,还具有良好的印刷性能. 附图说明
图 1〜图 3是第一组实验所制得的含有二氡化钛粒子的抗菌涂料所形成的 抗菌涂料层的外表面及横截面电镜照片, 其中, 图 1 的机械搅拌速率为 5000rpm,图 2的机械搅拌速率为 6000rpm,图 3的机械搅拌速率为 7000rpm。 图 4〜图 6是第二组实验所制得的含有二氧化钛粒子的抗菌涂料所形成的 抗菌涂料层的外表面及橫截面电镜照片, 其中, 图 4的震荡时间为 3min, 图 5的震荡时间为 4min, 图 6的震荡时间为 5min。
图 7是第三组实验中, 机械搅拌速度为 5000r/min, 超声震荡时间为 3min 的条件下所制得的含有二氧化钛粒子的抗菌涂料所形成的抗菌涂料层 的外表面及横截面电镜照片。 具体实施方式 本发明实施方式提供了一种抗菌涂料的生产工艺, 其包括如下步骤: (一) 配制包含有二氧化钛颗粒与分散剂的混合液;
在本实施方式中,所述混合液是采用先在碱性条件配制分散剂溶液,之后 再向分散剂溶液中添加二氧化钛颗粒的方式来配制所述混合液, 具体如下:
( a )以水为溶剂、以聚丙烯酸钠( PAAS )为溶质来配制所述分散剂溶液, 具体步骤为: 首先, 向水中加入碱性物质以调节水的 PH值保持在 9~10, 之 可以理解的, 在本发明中, 所述分散剂的种类并不限于聚丙烯酸钠, 其 还可以是十六烷基三甲基溴化铵(CTAB )、 六偏磷酸钠(SHMP )、 聚乙二醇 -2000 ( PEG ) 以及聚甲基丙烯酸(PMAA )等本领域所常用的分散剂。
可以理解的, 在本发明中, 向水中加入的碱性物质包括氢氧化钠、 碳酸 钠等碱性物质。
( b ) 向所述分散剂溶液中添加二氧化钛颗粒以形成混合液;
在本发明中, 所述二氧化钛颗粒是直接从市面上采购的二氧化钛成品, 其可以是未经过纳米工艺处理的普通二氧化钛产品, 也可以是经过纳米工艺 处理的二氧化钛产品。
在本实施方式中,所述二氡化钛是经过纳米工艺处理后的二氧化钛产品 . 需要说明的是, 此步骤中所使用的经过纳米工艺处理的二氧化钛产品是 从供应商处购买来的作为商品销售的经过纳米工艺处理后的二氧化钛产品, 但是, 正如背景技术中所描述的, 市面上销售的经过纳米工艺处理后的二氧 化钛在存储、 运送等物流环节不可避免的会 现团聚结块现象, 因此, 虽然 造纸厂商购买的是经过纳米工艺处理后的二氧化钛, 但是实际上, 在造纸厂 商进行使用时, 所述经过纳米工艺处理后的二氧化钛的粒径已经变得较大, 通常情况下, 造纸厂商在使用时, 经过纳米工艺处理后的二氧化钛的粒径基 本处于 lOOOnm以上, 已经不是真正意义上的经过纳米工艺处理后得到的纳 米级粒子了。
可以理解的, 在本实施方式中, 所述混合液体系的 PH值以 9~10的范围 为最佳, 但并不严格局限于上述范围, 在以不对后续得到的抗菌涂料的整体 性能产生较大影响的前提下, 可以根据现场状况对混合液体系的 PH值进行 适当调节。
需要说明的是, 本发明中, 所述包含有分散剂与二氣化钛颗粒的混合液 体系的酸碱程度(即 PH值) 并不是制备所述抗菌涂料所必须考虑的因素, 本实施方式中之所以采用在碱性条件下配制所述混合液, 其主要原因是目前 所使用的造纸用涂料的主流体系为碱性环境, 为了避免包含有分散剂与二氧 化钛颗粒的混合液体系的酸械度影响到后续使用的碱性涂料的性能, 本实施 方式才采用在碱性条件下来配制所述混合液以避免混合液体系的 PH值与后 续使用的涂料的 PH值不一致而对涂料的整体性能产生不利影响。
因此, 在本发明中, 所述包含有二氧化钛颗粒与分散剂的混合液的配制 可以包含如下几种情况: (1 ) 若后续使用的涂料体系为碱性体系, 则, 所述 混合液可以在碱性条件下进行配制,或者先在中性或者酸性条件下进行配制, 然后在混合液与涂料混合之前, 将混合液体系的 PH值调节到碱性以与涂料 体系相适应; (2 )若后续使用的涂料体系为酸性体系, 则, 所述混合液可以 在酸性条件下进行配制, 或者先在中性或者碱性条件下配制, 然后在混合液 与涂料混合之前, 将混合液体系的 PH值调节到酸性以与涂料体系相适应; ( 3 )若后续使用的涂料体系为中性体系, 则, 所述混合液可以直接在中性条 件下配制, 或者先在酸性或者碱性条件下配制, 然后在混合液与涂料混合之 前, 将混合液体系的 PH值调节到中性以与涂料体系相适应 .
在本发明中, 在所述混合液中, 所述分散剂的添加量以所要使用的二氧 化钛的添加量为标准, 优选的, 为了能够保持二氧化钛在后续阶段具有良好 的分散效果, 在本实施方式中, 在所迷混合液中, 所述分散剂的含量为二氧 化钛颗粒含量的 0.3%~0.5%。
可以理解的, 在所述混合液中, 分散剂与二氧化钛颗粒之间的比例范围 并不严格局限于上述范围, 在具体实施过程中, 以不影响整个体系的分散效 果为限, 可以根据现场状况对加入到所述混合液中的分散剂与二氧化钛颗粒 之间的比例进行适当调节。
可以理解的, 在本发明中, 在配制所述混合液的过程中, 对所述分散剂 与二氧化钛颗粒的添加顺序并没有特别的限制, 除上述配制方式之外, 还可 以采用先向水中加入二氧化钛然后再加入分散剂的方式来配制所述混合液, 或者采用将二氡化钛与分散剂同时加入水中的方式来配制所述混合液。
(二) 对所述混合液进行机械搅拌以对所述混合液中的二氧化钛颗粒进 行初步碎解以形成初级二氧化钛颗粒分散液;
在本发明中,对所述混合液进行机械搅拌的主要目的是对分散在所述混合 液中的二氧化钛颗粒进行初步碎解以降低所述混合液中的二氧化钛颗粒的平 均粒径。
在本实施方式中,使用搅拌桨来对所述混合液进行机械搅拌,所述搅拌桨 的转速为 5000~7000转 /分钟, 搅拌时间为 30~60分钟。
可以理解的,在本发明中,对所述混合液进行机械搅拌的转速及搅拌时间 并不限于本实施方式所限定的上述范围, 对所述混合液进行机械搅拌的转速 及搅拌时间可以根据所使用的二氡化钛原料的粒径大小进行适当调整.例如, 当使用的是未经过纳米工艺处理的具有较大粒径的普通二氧化钛产品,此时, 就需要较高的机械搅拌转速以及较长的搅拌时间, 以尽可能降低所述混合液 中的二氧化钛颗粒的平均粒径, 而当使用的二氧化钛产品的粒径较小时, 此 时可以适当的降低机械搅拌的转速以及较少搅拌的时间, 以在降低所述混合 液中的二氧化钛颗粒的平均粒径的同时达到节能减排的目的.
(三)对所述初级二氧化钛颗粒分散液进行超声震荡以形成平均粒径在 200nm以下的纳米二氧化钛粒子分散液;
在本发明中,对所述初级二氧化钛颗粒分散液进行超声震荡的目的是对所 述初级二氧化钛颗粒分散液中的二氧化钛颗粒进行二次碎解, 以得到粒径在 200nm以下的纳米二氧化钛粒子。
在本实施方式中,对所述初级二氧化钛颗粒分散液进行超声震荡的超声波 的功率为 500W,频率为 10~100KHZ, 振荡时间为 3〜5分钟。
可以理解的,对所述初级二氧化钛颗粒分散液进行超声震荡的超声波的功 率、 频率及振荡时间都可以根据生产现场的实际情况进行调整, 只要能够得 到粒径在 200nm以下的纳米二氧化钛粒子即可。
在本发明中,之所以要先利用机械搅拌对二氧化钛颗粒进行初次碎解,之 后再利用超声震荡对二氡化钛颗粒进行二次碎解, 主要的原因是: 在二氧化 钛颗粒较大时,利用机械碎解能够快速有效的降低二氣化钛颗粒的平均粒径, 但是, 当二氡化钛颗粒的平均粒径降低到大约 800nm后, 机械搅拌对二氧化 钛颗粒的剪切作用已经不大, 从而无法对二氧化钛颗粒进行进一步的碎解, 此时, 再利用超声震荡对经过机械碎解后的二氧化钛颗粒进行二次碎解, 就 能够进一步的降低二氡化钛颗粒的粒径, 从而使二氧化钛颗粒的粒径能够达 到 200nm以下,
相对于单纯使用超声震荡来对二氧化钛颗粒进行碎解的方式相比,本发明 利用机械搅拌碎解与超声震荡碎解相结合的方式具有如下优点: 首先, 相对 于超声震 来讲, 机械搅拌的能耗会较低, 这样, 在二氧化钛粒径较大的情 况下, 如果单纯利用超声震荡对二氧化钛颗粒进行碎解会消耗大量的能量, 从而使得造纸成本显著上升, 而先利用机械搅拌碎解来将大粒径的二氧化钛 颗粒碎解为小粒径的二氧化钛颗粒, 之后再利用超声震荡将小粒径的二氣化 钛颗粒碎解为纳米级的二氡化钛颗粒, 能够有效的降低碎解能耗, 从而节省 成本; 其次, 由于超声震荡主要是利用超声空化作用产生的冲击波来使二氧 化钛颗粒相互剧烈碰撞以达到碎解的目的, 然而, 在二氧化钛颗粒的粒径较 大的情况下,超声空化作用产生的冲击波对二氧化钛颗粒的冲击力影响有限, 不能够对大粒径的二氧化钛颗粒进行有效碎解, 无法使二氧化钛颗粒的平均 粒径达到能够良好发挥抗菌效果的纳米级别,进而影响抗菌涂料的抗菌效果, 而采用机械搅拌碎解与超声震荡碎解相结合的方式, 利用机械碎解来将大粒 径的二氧化钛颗粒碎解为小粒径的二氧化钛颗粒, 之后再利用超声震荡来对 小粒径的二氧化钛颗粒进行进一步碎解, 这样就能够充分发挥超声空化作用 产生的沖击波的作用, 以得到纳米二氧化钛粒子分散液。
(四)将所述纳米二氧化钛粒子分散液与涂料进行混合以形成均勾分散有 纳米二氧化钛粒子的抗菌涂料, 在所述抗菌涂料中, 所述纳米二氧化钛粒子 的含量大于等于 5%。
经过上述机械搅拌及超声震荡的碎解作用之后,在体系中所含有的分散剂 的帮助下, 在所得到的纳米二氡化钛粒子分散液中, 所述纳米二氧化钛粒子 能够以微小粒子的形式稳定的悬浮在溶液当中. 此时, 将所述纳米二氧化钛 粒子分散液与涂料进行混合之后, 涂料中所含有的碳酸钙等大颗粒物质能够 在相邻两个纳米二氧化钛粒子之间形成空间位阻来阻止纳米二氣化钛的继续 团聚, 从而得到一种均勾分散有纳米二氧化钛粒子的抗菌涂料。
可以理解的是,此处的涂料为造纸行业所常规使用的涂料, 涂料的类型及 用量可以根据不同的纸张产品的实际需求进行设定。 另外, 涂料跟纳米二氧 化钛分散液的添加比例也是可以 4艮据产品实际需要进行调整。
优选的, 在本实施方式中, 在所述抗菌涂料中, 所述纳米二氧化钛粒子的 含量范围为 5%~15%.
本发明还提供了一种抗菌纸的生产工艺, 其包括如下步骤: 提供纸基体; 依照如上所述的抗菌涂料的生产工艺制备抗菌涂料; 利用所述抗菌涂料在所 述纸基体的至少一个表面上形成抗菌涂层.
在本实施方式中, 所述纸基体为多层纸, 其包括面层、 芯层和底层, 其中 所述抗菌涂层形成在所述面层的外表面上.
可以理解的,根据不同的产品设计,所述抗菌涂层还可以形成在所述底层 的外表面上或者在所述面层及底层的外表面上均形成有所述抗菌涂层,
可以理解的, 在本发明中, 据产品的种类不同, 所述纸基体的层数并没 有特殊的限定, 其可以是单层纸、 双层纸或者多层纸。
本发明还提供了一种抗菌纸,其包括纸基体,在所述纸基体的至少一个表 面上形成有抗菌涂层, 所述抗菌涂层由如上所述的抗菌涂料的生产工艺制备 的抗菌涂料所形成。
可以理解的, 在本发明中,根据所使用的纸基体的克重的不同, 所述抗菌 纸可以是抗菌纸板, 也可以是其他类型的纸产品, 比如文化用纸, 包装用纸, 工业用纸等, 当然, 所述抗菌纸的层数也并没有特殊的限定, 其可以是单层 纸、 双层纸或者多层纸.
在所述抗菌纸的抗菌涂层中, 所述纳米二氡化钛粒子的粒径小于等于
200賺。
进一步的,在所述抗菌纸的抗菌涂层中,所述纳米二氧化钛粒子的粒径范 围为 30~200nm。 在所述抗菌纸中, 所述抗菌涂层的抗细菌率大于等于 99%.
在所述抗菌纸的抗菌涂层中,所述抗菌涂层中的纳米二氧化钛粒子的含量 大于等于 5%.
在所述抗菌纸的抗菌涂层中,所述抗菌涂层中的纳米二氧化钛粒子的含量 范围为 5%~15%。
可以理解的, 在本发明中, 在所述抗菌纸的抗菌涂层中, 所述纳米二氧化 钛粒子的含量、 抗菌涂层的抗细菌率以及抗菌涂层的油墨吸收性%并不限于 上述范围, 根据所述抗菌涂料的生产工艺条件的调整, 所述抗菌纸的抗菌涂 层中的纳米二氧化钛粒子的含量、 抗菌涂层的抗细菌率以及抗菌涂层的油墨 吸收性%也会有所调整。
在本发明所提供的所述抗菌纸中,由于其所使用的抗菌涂料是利用本发明 所提供的抗菌涂料的生产工艺制备而成的, 因此: 一方面, 由于抗菌涂料中 的二氣化钛粒子的平均粒径在 200nm以下,可以使得纳米二氡化钛的抗菌性 能得到充分的发挥, 从而赋予了所述抗菌纸良好的抗菌性能; 另一方面, 因 为涂料大分子的位阻效应使纳米二氧化钛粒子能够均勾分布, 这些均勾分布 的二氧化钛粒子能够使得抗菌纸的抗菌涂料层保持优良的孔隙率, 而优良的 孔隙率能够带给所述抗菌纸良好的印刷性能。 因此, 本发明所提供的所述抗 菌纸不但具有良好的抗菌性能, 还具有良好的印刷性能。
为了进一步验证本发明所提供的所述抗菌纸的抗菌性能以及印刷性能,以 生产抗菌纸板为例分别作了如下三组对比实验, 其中, 第一组及第二组为现 有工艺, 笫三组为本发明, 在上述三组实验中, 除了对市售的二氡化钛产品 进行碎解分散的方式不同之外, 其它的药品使用以及实验工艺条件均不变, 具体如下。 对比试验 第一组实验:只采用机械搅拌的方式来对市售的二氧化钛产品进行碎解分 散以制备抗菌涂料, 之后利用制得的抗菌涂料在纸基体外表面形成抗菌涂层 以制备抗菌纸, 具体步骤包括:
( 1 )、 通过碎解、 筛选、 净化、 浮选、 热分散、 漂白以及磨浆处理制备出 面层、 衬层、 芯层和底层所需的浆料; ( 2 )、 制备出涂布层所需的涂料;
( 3 )、在有分散剂存在的环境下,利用机械搅拌的方式制备二氧化钛颗粒 分散液, 具体制备过程为:
( a )、 在搅拌机中加入水, 并在水中加入氢氧化钠, 调节水的 PH值 为 9, 然后对水进行搅拌, 同时往水中加入分散剂, 控制分散剂的含量 为二氧化钛颗粒含量的 0.3%, 并以 500r/min的转速搅拌均勾, 以配制 分散剂溶液;
( b )、向上述分散剂溶液中加入市售的经过纳米工艺处理后的二氧化 钛颗粒, 控制二氧化钛颗粒在所述分散剂溶液中的固含量为 20%, 以得 到混合液;
( c )对所述混合液进行机械搅拌以得到二氧化钛颗粒分散液, 在此 步骤中, 取三份等质量的混合液并以 5000r/min、 6000r/min及 7000r/min 的搅拌速度下分别对上述三份混合液搅袢 30min, 以得到三份二氧化钛 颗粒分散液, 对在不同搅拌速度下得到的所述三份二氧化钛颗粒分散液 取样以测试上述三种分散液中的二氡化钛颗粒的平均粒径, 具体如表 1 所示;
( 4 )、 按照二氧化钛粒子占抗菌涂料总质量 5%的条件, 将在不同搅拌速 度下得到的所述三份二氧化钛颗粒分散液分别与涂料均勾混合以形成三份等 量的抗菌涂料;
( 5 )、将用于制备各纸浆层的浆料用流送系统送至纸机进行抄造成型,制 备出相互独立的面层、 衬层、 芯层和底层;
( 6 )、将各纸浆层之间进行压榨脱水复合形成纸板, 并对纸板进行干燥处 理;
( 7 )取上述三块纸板, 将上述三份抗菌涂料分别涂布在不同的紙板面层 上以形成抗菌涂料层, 分别对所述三块纸板的抗菌涂料层的外表面、 横截面 拍摄电镜照片, 以观察二氧化钛颗粒在抗菌涂料层中的分布情况, 具体如图 1〜图 3。 第二组实验:只采用超声震荡的方式来对市售的二氧化钛产品进行碎解分 散以制备抗菌涂料, 之后利用制得的抗菌涂料在纸基体外表面形成抗菌涂层 以制备抗菌纸, 具体步骤包括: (1)、 通过碎解、 筛选、 净化、 浮选、 热分散、 漂白以及磨浆处理制备出 面层、 村层、 芯层和底层所需的浆料;
(2)、 制备出涂布层所需的涂料;
(3)、在有分散剂存在的环境下,利用超声震荡的方式制备二氧化钛颗粒 分散液, 具体制备过程为:
(a)、 在搅拌机中加入水, 并在水中加入氢氧化钠, 调节水的 PH值 为 9, 然后对水进行搅拌, 同时往水中加入分散剂, 控制分散剂的含量 为二氧化钛颗粒含量的 0.3%, 并以 500r/min的转速搅拌均勾, 以配制 分散剂溶液;
(b)、向上述分散剂溶液中加入市售的经过纳米工艺处理后的二氧化 钛颗粒, 控制二氧化钛颗粒在所述分散剂溶液中的固含量为 20%, 以得 到混合液;
(c)、对所述混合液进行超声震荡以得到二氧化钛颗粒分散液,在此 步骤中,取三份等质量的混合液,在超声波的功率为 500w、频率为 20 HZ 的条件下, 分别设定震荡时间为 3min、 4min、 5min来对所述三份混合 液进行超声震荡, 以得到三份二氧化钛颗粒分散液, 对在不同震荡时间 下得到的所述三份二氧化钛颗粒分散液取样以测试上述三种分散液中的 二氧化钛颗粒的平均粒径, 具体如表 1所示;
(4)、 按照二氧化钛粒子占抗菌涂料总质量 5%的条件, 将在不同震荡时 间下得到的所述三份二氧化钛颗粒分散液分别与涂料均匀混合以形成三份等 量的抗菌涂料;
(5)、将用于制备各纸浆层的浆料用流送系统送至纸机进行抄造成型,制 备出相互独立的面层、 衬层、 芯层和底层;
(6)、将各纸浆层之间进行压榨脱水复合形成纸板, 并对纸板进行干燥处 理;
(7)、取上述三块纸板,将上述三份抗菌涂料分别涂布在不同的纸板面层 上以形成抗菌涂料层, 分别对所述三块纸板的抗菌涂料层的外表面、 横截面 拍摄电镜照片, 以观察二氧化钛颗粒在抗菌涂料层中的分布情况, 具体如图 4〜6' 第三组实验:依照本发明所提供的抗菌涂料的生产工艺,先利用机械搅拌 对市售的二氡化钛产品进行初步碎解分散, 之后再利用超声震荡的方式对二 氧化钛粒子进行二次碎解分散来制备抗菌涂料, 之后利用所制得的抗菌涂料 在纸基体外表面形成抗菌涂层以制备抗菌纸, 具体步骤包括:
( 1 )、 通过碎解、 筛选、 净化、 浮选、 热分散、 漂白以及磨浆处理制备出 面层、 衬层、 芯层和底层所需的浆料;
( 2 )、 制备出涂布层所需的涂料;
( 3 )、 加工纳米二氧化钛分散液:
( a )、 在搅拌机中加入水, 并在水中加入氢氧化钠, 调节水的 PH值 为 9, 然后对水进行搅拌, 同时往水中加入分散剂, 控制分散剂的含量 为二氧化钛颗粒含量的 0.3。/。, 并以 500r/min的转速搅拌均句, 以配制 分散剂溶液;
( b )、向上述分散剂溶液中加入市售的经过纳米工艺处理后的二氧化 钛颗粒, 控制二氧化钛颗粒在所述分散剂溶液中的固含量为 20%, 以得 到混合液;
( c )、首先, 上述混合液进行机械搅拌以对分散在所述混合液中的二 氧化钛颗粒进行初步碎解, 得到初级二氧化钛颗粒分散液, 其次, 对所 述初级二氧化钛颗粒分散液进行超声震荡以对所述初级二氧化钛颗粒分 散液中的二氧化钛颗粒进行二次碎解, 得到纳米二氧化钛粒子分散液, 在此步骤中, 机械搅拌的时间与第一组实验保持一致, 为 30min, 超声 波的功率、 频率与第二组实验保持一致, 为 500w、 20 HZ, 在上述前提 下, 分别取三份等质量的混合液, 分别以搅拌速度 5000r/min+超声震荡 3min、搅拌速度 6000r/min+超声震荡 4min、搅拌速度 7000r/min+超声震 荡 5min三种处理条件对所述三份混合液进行分散处理, 得到三份纳米 二氧化钛粒子分散液, 对此三份纳米二氧化钛颗粒分散液取样以测试上 述三种分散液中的二氧化钛颗粒的平均粒径, 具体如表 1所示;
( 4 )、 按照二氧化钛粒子占抗菌涂料总质量 5%的条件, 将在不同处理条 件下得到的所述三份纳米二氧化钛粒子分散液分别与涂料均勾混合以形成三 份等量的抗菌涂料;
( 5 )、将用于制备各纸浆层的浆料用流送系统送至纸机进行抄造成型, 制 备出相互独立的面层、 衬层、 芯层和底层; 粒平分方
径散均式 ( 6 )、将各纸浆层之间进行压榨脱水复合形成纸板, 并对纸板进行干燥处 化二厂商的,
,,钛粒氧到品
( 7 )、取上述纸板,将在机械搅拌速度为 5000r/min,超声震荡时间为 3min 的条件下所制得的含有二氧化钛粒子的抗菌涂料涂布在上述纸板的面层上以 形成抗菌涂料层,对所述纸板的抗菌涂料层的外表面、横截面拍摄电镜照片, 以观察二氧化钛颗粒在抗菌涂料层中的分布情况, 具体如图 7. 实验结果 一、 不同分散方式下得到分散液中的二氧化钛颗粒的平均粒径分布情况 表 1为上述三组实验中所制备的二氧化钛分散液中的二氟化钛颗粒的平 均粒径与市售的经过纳米工艺处理后的二氧化钛商品的到厂实际平均粒径的 具体对比情况:
表 1 在不同情况下的二氡化钛瀕粒的平均粒径
第一组 笫二组 本发明
在分散剂存在的环境 在分散剂存在的环境 机械扰拌 +超声分散, 其中 下,搅拌时间不变, 以 下,超声波功率及频率 机械搅拌时间与第一组一 不同的搅拌速度进行 不变,以不同的震荡时 致, 超声分散的超声波功 机械搅拌分散 间进行超声宸荡 率及頻率与第二組一致
5000 6000 7000
5000r 6000r 7000r r/min+ r/min+ r/min+
>nun 4min min
/min /min /min 超声 超声 超声
3min 4min 5min
1092 624 541 427 409 327 243 91 90.97 90.58 nm nm nm nm nm nm nm ητη nm nm 由表 1中的数据可以明显的看出,本发明所提供的抗菌涂料的生产工艺所 采用的分散方式得到的二氧化钛粒子的平均粒径已经达到了真正的纳米级 别, 其不但远远小于市售的经过纳米工艺处理后的二氧化钛商品的到厂实际 平均粒径, 而且还明显小于其它常规的分散方式所得到的二氧化钛的平均粒 径。
正如背景技术所述,纳米二氧化钛所具有的抗菌性能很大程度上取决于粒 径的大小, 因此, 从平均粒径上可以简单的判断出来依照本发明所提供的抗 菌涂料的生产工艺所得到的抗菌涂料具有优良的抗菌性能。 二、 纳米二氧化钛在抗菌涂层中的分散均勾性 通过对比笫一、 第二、 第三组制备出来的抗菌纸的抗菌涂层的外表面、横 截面的电镜照片, 可以得出如下结论:
如图 1〜图 3所示, 单纯利用机械搅拌方式分散所得到的抗菌涂料形成的 抗菌涂料层中, 随着搅拌速度的增加, 二氧化钛粒子的分散逐渐趋于均匀, 但, 二氧化钛粒子的平均粒径较大, 并且也存在明显的团聚现象;
如图 4〜图 6所示, 单纯利用超声震荡方式分散所得到的抗菌涂料形成的 抗菌涂料层中, 震荡 3min时, 所得到的二氧化钛颗粒的粒径较小, 但团聚 现象严重, 随着震荡时间的延长, 二氧化钛粒子的分散也呈现出逐渐均匀的 趋势, 但, 二氧化钛粒子的平均粒径却出现明显的增大;
如图 7所示,本发明所提供的抗菌涂料生产工艺所得到的抗菌涂料形成的 抗菌涂料层中, 二氧化钛粒子的分散相当均勾, 并且与单纯利用机械搅拌方 式分散、单纯利用超声震荡方式分散所得到的二氧化钛粒子的平均粒径相比, 本发明所得到的二氧化钛粒子的平均粒径明显较小。
因此,从电镜照片的对比结果可知,依照本发明所提供的抗菌涂料的生产 工艺所制备的抗菌涂料, 其二氧化钛粒子的粒径较小且分散均勾。 三、 抗菌性能及印刷性能 实验性能参数:
抗菌性能方面
采用"抗细菌率"来进行表征, 大致测试方法 (具体请参见 GB/T
21866-2008 )是通过定量接种细菌于待检验的抗菌纸的抗菌涂层上, 用贴膜 的方法使细菌均匀接触抗菌纸的抗菌涂层, 经过一定时间的培养后, 检测抗 菌纸表面的活菌数, 并计算出抗菌纸的"抗细菌率"。 抗细菌率的值越大, 代 表抗菌性能越好。
印刷性能方面
采用"油墨吸收性%,,、 " 油墨干燥速度"以及"纳米二氧化钛在抗菌涂层中 的分散均匀性 "来表征, 其中:
"油墨吸收性% "是待测抗菌纸的同一涂布面在吸收油墨前、 后的光反射因 素之差与待测抗菌纸的涂布面在吸收油墨前的光反射因数的比值(具体请参 见 GB12911 ), "油墨吸收性% "的值越高说明印刷性能越好;
"油墨干燥速度 "是利用转印纸将涂覆在待测抗菌纸表面的油墨转印到转 印纸上, 通过测量转印纸上的油墨密度来对待测抗菌纸的油墨干燥速度进行 评估, 转印纸上的油墨密度越大, 说明"油墨干燥速度"越小, 印刷性能越差;
表 2 不同情况下得到的抗苗紙的抗苗性能及印刷性能
Figure imgf000016_0001
由表 2的数据可以看出: 在抗细菌率方面, 本发明所提供的抗菌纸的抗 细菌率明显高于其它常规方式所得到的抗菌纸的抗细菌率, 这就从具体的性 能参数上进一步说明了依照本发明提供的抗菌涂料的生产工艺生产的抗菌涂 料以及使用所述抗菌涂料的抗菌纸具有优良的抗菌性能; 在油墨干燥速度与 油墨吸收性方面, 与其它常规方式得到的抗菌纸相比, 与本发明的抗菌纸相 对应的转印纸上的油墨密度最小, 本发明的抗菌纸所吸收的油墨量最多, 因 此, 与其它常规方式得到的抗菌纸相比, 本发明的抗菌纸的印刷性能最好。
从表 2的数据对比结果可以得出如下结论: 与常规分散方式所得到的抗 菌涂料相比, 本发明所提供的抗菌涂料的生产工艺生产的抗菌涂料具有优良 的抗菌性能; 与使用常规方式得到的抗菌涂料的抗菌纸相比, 本发明所提供 的抗菌纸不但具有优良的抗菌性能, 而且还具有优良的印刷性能。 与现有技术相比, 依据本发明所提供的抗菌涂料的生产工艺所制备出来 的抗菌涂料中的二氧化钛粒径小且分布均匀, 能够很好的发挥纳米二氧化钛 的抗菌效果, 本发明所提供的所述抗菌纸生产工艺以及依据所述抗菌纸生产 工艺所生产的抗菌纸, 由于其所使用的抗菌涂料是利用本发明所提供的抗菌 涂料的生产工艺制备而成的, 因此: 一方面, 由于抗菌涂料中的二氧化钛粒 子的平均粒径在 200nm以下,可以使得纳米二氧化钛的抗菌性能得到充分的 发挥,从而赋予了所述抗菌纸良好的抗菌性能,使其抗细菌率大于等于 99%; 另一方面, 均匀分布的二氧化钛粒子能够使得抗菌纸的抗菌涂料层保持优良 的孔隙率, 而优良的孔隙率能够带给所述抗菌纸良好的印刷性能。 因此, 本 发明所提供的所述抗菌纸不但具有良好的抗菌性能,还具有良好的印刷性能. 另外, 本领域技术人员还可在本发明精神内做其它变化. 故, 这些依据 本发明精神所做的变化, 都应包含在本发明所要求保护的范围之内。

Claims

权 利 要 求 书
1.一种抗菌涂料的生产工艺, 其包括如下步骤:
配制包含有二氧化钛颗粒与分散剂的混合液;
对所述混合液进行机械搅拌以对所述混合液中的二氧化钛颗粒进行初步 碎解以形成初级二氧化钛颗粒分散液;
对所述初级二氧化钛颗粒分散液进行超声震荡以形成平均粒径小于等于 200nm的纳米二氧化钛粒子分散液; 以及
将所述纳米二氧化钛粒子分散液与涂料进行混合以形成均勾分散有纳米 二氧化钛粒子的抗菌涂料, 在所述抗菌涂料中, 所述纳米二氧化钛粒子的含 量大于等于 5%。
2. 如权利要求 1所述的抗菌涂料的生产工艺, 其特征在于: 利用机械搅 拌对所述混合液中的二氧化钛颗粒进行初步碎解时, 机械搅拌的搅拌转速为 5000~7000r/min、 搅拌时间为 30~60min。
3. 如权利要求 1所述的抗菌涂料的生产工艺, 其特征在于: 对所述初级 二氧化钛颗粒分散液进行超声震荡以形成纳米二氧化钛粒子分散液的过程 中, 超声波的功率为 500w、 频率为 10~100KHZ、 震荡时间为 3~5min。
4. 如权利要求 1所述的抗菌涂料的生产工艺, 其特征在于: 在所述抗菌 涂料中, 所述纳米二氧化钛粒子的含量范围为 5%~15%。
5. 如权利要求 1所述的抗菌涂料的生产工艺, 其特征在于: 在所述混合 液中, 分散剂的含量为二氧化钛颗粒含量的 0.3%~0.5%。
6. 如权利要求 1所述的抗菌涂料的生产工艺, 其特征在于: 在所述纳米 二氧化钛粒子分散液与涂料进行混合之前, 还进一步包括调节所述纳米二氧 化钛粒子分散液的 PH值以使其与所述涂料体系的 PH值保持一致的步骤。
7. —种抗菌纸的生产工艺, 其包括如下步骤:
提供纸基体;
依照如权利要求 1至 6任一项所述的抗菌涂料的生产工艺制备抗菌涂料; 以及
利用所述抗菌涂料在所述紙基体的至少一个表面上形成抗菌涂层。
8. 如权利要求 7所述的抗菌纸生产工艺, 其特征在于: 所述纸基体包括 面层、 芯层以及底层, 其中, 所述抗菌涂层形成在所述纸基体的面层及 /或底 层上。
9. 一种抗菌纸, 其包括纸基体, 其特征在于: 在所述纸基体的至少一个 外表面上形成有抗菌涂层, 所述抗菌涂层由如权利要求 1至 6任一项所述的 抗菌涂料的生产工艺制备的抗菌涂料所形成。
10. 如权利要求 9所述的抗菌纸, 其特征在于: 所述抗菌涂层的所述抗 菌涂层的抗细菌率大于等于 99%。
11. 一种抗菌纸, 其包括纸基体, 其特征在于: 在所述纸基体的至少一 个外表面上形成有抗菌涂层, 所述抗菌涂层内包含有均勾分布的纳米二氧化 钛粒子, 所述纳米二氧化钛粒子的平均粒径小于等于 200nm, 所述抗菌涂层 中的纳米二氧化钛粒子的含量大于等于 5%。
12. 如权利要求 11所述的抗菌纸, 其特征在于: 所述抗菌涂层的抗细菌 率大于等于 99°/。。
13. 如权利要求 11所述的抗菌纸, 其特征在于: 所述抗菌涂层中的纳米 二氧化钛粒子的含量范围为 5%~15%。
14. 一种抗菌纸, 其包括纸基体, 其特征在于: 在所述纸基体的至少一 个外表面上形成有抗菌涂层, 所述抗菌涂层内包含有均勾分布的纳米二氧化 钛粒子, 所述抗菌涂层的抗细菌率大于等于 99%。
15. 如权利要求 14所述的抗菌纸, 其特征在于: 所述抗菌涂层中的纳米 二氧化钛粒子的平均粒径小于等于 200nm,
16. 如权利要求 14所述的抗菌纸, 其特征在于: 所述抗菌涂层中的纳米 二氧化钛粒子的含量大于等于 5%。
17. 如权利要求 14所述的抗菌纸, 其特征在于: 所述抗菌涂层中的纳米 二氧化钛粒子的含量范围为 5%〜15%。
PCT/CN2013/000370 2012-03-31 2013-03-31 抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸 WO2013143351A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014517443A JP2014524948A (ja) 2012-03-31 2013-03-31 抗菌性塗料の製造方法、抗菌性紙及びその製造方法
US14/093,027 US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper
US14/557,441 US20150086598A1 (en) 2012-03-31 2014-12-01 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100951489A CN102635038A (zh) 2012-03-31 2012-03-31 一种抗菌纸板的生产方法
CN201210095148.9 2012-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/093,027 Continuation US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Publications (1)

Publication Number Publication Date
WO2013143351A1 true WO2013143351A1 (zh) 2013-10-03

Family

ID=46619605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000370 WO2013143351A1 (zh) 2012-03-31 2013-03-31 抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸

Country Status (4)

Country Link
US (2) US8940086B2 (zh)
JP (1) JP2014524948A (zh)
CN (2) CN102635038A (zh)
WO (1) WO2013143351A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780585A (zh) * 2016-03-27 2016-07-20 张耀忠 一种纸张防霉剂及其制备方法
CN114223672A (zh) * 2021-12-31 2022-03-25 广东粤港澳大湾区国家纳米科技创新研究院 复合抗菌防霉材料及应用与复合粉末涂料及制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635038A (zh) * 2012-03-31 2012-08-15 宁波亚洲浆纸业有限公司 一种抗菌纸板的生产方法
CN103306164B (zh) * 2013-05-21 2015-04-15 洛阳惠尔纳米科技有限公司 一种防水防油抗菌纸及其制备方法
CN104389240A (zh) * 2014-10-17 2015-03-04 广西大学 一种纸张纳米抗菌剂的制备方法
CN105256640A (zh) * 2015-10-14 2016-01-20 泉州华祥纸业有限公司 一种工业特种纸的制备方法
CN106283878A (zh) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 一种抗菌防静电瓦楞纸板的制备方法
CN106337316A (zh) * 2016-08-29 2017-01-18 佛山市高明区尚润盈科技有限公司 一种抗菌防辐射瓦楞纸板的制备方法
CN106283857A (zh) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 一种多功能瓦楞纸板的制备方法
CN106283858A (zh) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 一种光致变色瓦楞纸板的制备方法
CN108385446A (zh) * 2018-04-04 2018-08-10 黄智慧 一种高温稳定型离型纸的制备方法
CN109082941A (zh) * 2018-07-25 2018-12-25 宜兴市华法纸业有限公司 一种自带杀菌抗菌功能的纸板
CN109096943B (zh) * 2018-08-06 2019-12-13 瑞安市赛维进出口贸易有限公司 一种带胶导电布
PL435843A1 (pl) 2020-11-01 2022-05-02 Arctic Paper Kostrzyn Spółka Akcyjna Powłoka biobójcza papieru
CN113718557A (zh) * 2021-08-20 2021-11-30 乔永恒 一种环保新型无污染负离子装饰纸
CN114717876B (zh) * 2022-04-06 2023-05-12 金东纸业(江苏)股份有限公司 一种抗菌纸的制备方法以及抗菌纸
CN114960273A (zh) * 2022-06-07 2022-08-30 万国纸业太阳白卡纸有限公司 一种抗菌纸及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199240A (zh) * 1997-05-06 1998-11-18 三星电管株式会社 具有抗菌涂层膜的布劳恩管及其制造方法
CN101153137A (zh) * 2006-09-25 2008-04-02 天津市振东涂料有限公司 超强光催化降解抗菌环保涂料制备方法
DE102010041290A1 (de) * 2009-09-29 2011-05-19 Ekopak - Plus Pappe mit Biozid-Eigenschaften sowie Art und Weise der Erzeugung von Pappe mit Biozid-Eigenschaften
CN102329552A (zh) * 2011-05-27 2012-01-25 安徽美佳新材料股份有限公司 一种多功能复合涂料的制备方法
CN102635038A (zh) * 2012-03-31 2012-08-15 宁波亚洲浆纸业有限公司 一种抗菌纸板的生产方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292967A (ja) * 1988-09-30 1990-04-03 Titan Kogyo Kk 脱臭性塗料組成物
CA2018392C (en) * 1989-06-06 1997-04-22 Matthias Buri Highly concentrated aqueous suspension of minerals and/or fillers and/or pigments
CA2083068C (en) * 1991-11-18 2002-08-20 Pentti Rissanen Wallpaper
JPH08157315A (ja) * 1994-10-05 1996-06-18 Daiso Co Ltd 防黴・抗菌性組成物及びその用途
US5935717A (en) * 1996-06-28 1999-08-10 Hitachi, Ltd. Functional film having inorganic thin on surface of organic film article using the same and process for producing the same
JP2963657B2 (ja) * 1996-07-05 1999-10-18 株式会社信州セラミックス 被着処理剤
JP2000011921A (ja) * 1997-05-06 2000-01-14 Samsung Display Devices Co Ltd 抗菌性コーティング膜を具備したブラウン管及び該製造方法
JP2922505B1 (ja) * 1998-07-03 1999-07-26 阿波製紙株式会社 光触媒酸化チタン含有紙
JP2002053812A (ja) * 2000-08-09 2002-02-19 Mizuno Tomofumi 塗 料
JP3874600B2 (ja) * 2000-11-08 2007-01-31 日鉄鉱業株式会社 触媒粉体、塗料組成物および塗布物
JP2002178626A (ja) * 2000-12-12 2002-06-26 Mitsubishi Paper Mills Ltd インクジェット記録材料
CN1195120C (zh) * 2002-05-14 2005-03-30 常德卷烟厂 一种抗菌水松纸的制造方法
JP2004100110A (ja) * 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp 光触媒担持紙
JP2004276363A (ja) * 2003-03-14 2004-10-07 Konica Minolta Holdings Inc インクジェット記録用紙の製造方法及びインクジェット記録用紙
EP1635771A2 (en) * 2003-04-18 2006-03-22 MERCK PATENT GmbH Cosmetic formulations comprising antimicrobial pigments
ES2583982T3 (es) * 2003-06-17 2016-09-23 Henkel Ag & Co. Kgaa Agentes contra microorganismos que contienen aceite de pachuli, alcohol de pachuli y/o sus derivados
US7452416B2 (en) * 2004-05-17 2008-11-18 Cpm Industries Cationic titanium dioxide pigments
US20050282946A1 (en) * 2004-06-21 2005-12-22 Tyau-Jeen Lin Titanium dioxide slurries for ink applications
CN1257946C (zh) * 2004-08-05 2006-05-31 复旦大学 一种高稳定、高透明性的金红石型纳米二氧化钛浆及其分散制备方法
US7482054B2 (en) * 2004-08-09 2009-01-27 Behr Process Corporation Pigment spacing
JP5047458B2 (ja) * 2004-12-02 2012-10-10 日本製紙株式会社 印刷用塗工紙
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
KR100666528B1 (ko) * 2005-07-18 2007-01-19 한솔제지주식회사 항균성 식품 포장용 종이 및 그의 제조방법
CN101153138A (zh) * 2006-09-25 2008-04-02 天津市振东涂料有限公司 超强光催化降解抗菌环保涂料制备方法
JP4916832B2 (ja) * 2006-09-29 2012-04-18 大王製紙株式会社 衛生用紙
CN1958950A (zh) * 2006-11-20 2007-05-09 狄华明 一种环保型新闻纸
CN100535063C (zh) * 2007-06-14 2009-09-02 济南大学 一种纳米生态涂料
US8636974B2 (en) * 2007-09-12 2014-01-28 M. Technique Co., Ltd. Titanium dioxide superfine particles and method for producing the same
JP4599476B2 (ja) * 2009-06-08 2010-12-15 香川県 抗菌機能を有する紙
CN101928496A (zh) * 2010-08-18 2010-12-29 南昌兴达涂料有限公司 高性能可见光催化内墙抗菌涂料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199240A (zh) * 1997-05-06 1998-11-18 三星电管株式会社 具有抗菌涂层膜的布劳恩管及其制造方法
CN101153137A (zh) * 2006-09-25 2008-04-02 天津市振东涂料有限公司 超强光催化降解抗菌环保涂料制备方法
DE102010041290A1 (de) * 2009-09-29 2011-05-19 Ekopak - Plus Pappe mit Biozid-Eigenschaften sowie Art und Weise der Erzeugung von Pappe mit Biozid-Eigenschaften
CN102329552A (zh) * 2011-05-27 2012-01-25 安徽美佳新材料股份有限公司 一种多功能复合涂料的制备方法
CN102635038A (zh) * 2012-03-31 2012-08-15 宁波亚洲浆纸业有限公司 一种抗菌纸板的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, HENG ET AL.: "Preparation Method of Paper Coating with Nanometer Particle", PAPER SCIENCE & TECHNOLOGY, vol. 23, no. 3, June 2004 (2004-06-01), pages 16 - 19 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780585A (zh) * 2016-03-27 2016-07-20 张耀忠 一种纸张防霉剂及其制备方法
CN114223672A (zh) * 2021-12-31 2022-03-25 广东粤港澳大湾区国家纳米科技创新研究院 复合抗菌防霉材料及应用与复合粉末涂料及制备方法

Also Published As

Publication number Publication date
CN103194935A (zh) 2013-07-10
US8940086B2 (en) 2015-01-27
US20140083635A1 (en) 2014-03-27
JP2014524948A (ja) 2014-09-25
US20150086598A1 (en) 2015-03-26
CN102635038A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2013143351A1 (zh) 抗菌涂料的生产工艺、抗菌纸的生产工艺及抗菌纸
JP6994514B2 (ja) 増強された特性を有するミクロフィブリル化セルロースおよびその製造方法
RU2365696C2 (ru) Изготовление бумаги с использованием латекса с агломерированными полыми частицами
TWI645089B (zh) Composite of calcium carbonate microparticles and fibers, and manufacturing method thereof
JP5341518B2 (ja) 紙塗工液の製造方法及びその方法で得た紙塗工液を塗被した塗工紙
JP2018197186A (ja) 繊維複合体およびその製造方法
RU2415986C1 (ru) Суспензии обработанного латексом наполнителя для использования в бумажном производстве
JP2019510890A (ja) 紙および板紙製品
JP5905025B2 (ja) 廃コーティング塗料の再生利用
TW201038788A (en) Process for the production of nano-fibrillar cellulose suspensions
JP2017078145A (ja) セルロースナノファイバー乾燥体の製造方法
WO2018047749A1 (ja) 無機炭酸塩の製造方法
JP6276888B1 (ja) セルロースナノファイバー乾燥体の製造方法
JP2015199654A (ja) 炭酸カルシウムの製造方法
JP2007501337A (ja) 繊維材料懸濁液に充填するための方法および該方法を実施するための装置
CA3068941A1 (en) Dosing of nanocellulose suspension in gel phase
JP2017002138A (ja) セルロースナノファイバー含有乾燥体及びその製造方法並びにセルロースナノファイバー分散液の製造方法
WO2023037161A1 (en) Mobile dispersion system and methods for the resuspension of partially-dried microfibrillated cellulose
JP2013112907A (ja) 耐油紙および耐油紙の製造方法
JP2005219945A (ja) 軽質炭酸カルシウム−シリカ複合物
JPH07197398A (ja) 凝集炭酸カルシウム及び製紙用顔料
CN105544289B (zh) 一种改性硫酸钙晶须及其应用
JP5036750B2 (ja) 塗工紙
US20230092526A1 (en) Mobile dispersion system and methods for the resuspension of partially-dried microfibrillated cellulose
TW201142108A (en) Paper filler composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014517443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767508

Country of ref document: EP

Kind code of ref document: A1