US20150086598A1 - Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper - Google Patents

Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper Download PDF

Info

Publication number
US20150086598A1
US20150086598A1 US14/557,441 US201414557441A US2015086598A1 US 20150086598 A1 US20150086598 A1 US 20150086598A1 US 201414557441 A US201414557441 A US 201414557441A US 2015086598 A1 US2015086598 A1 US 2015086598A1
Authority
US
United States
Prior art keywords
antibacterial
titanium dioxide
dioxide particles
paper
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/557,441
Inventor
Shu-Hua Bai
Jun-Ming Wang
Ji-Ping Quan
Meng-Huai Ran
Wei He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Asia Pulp and Paper Co Ltd
Original Assignee
Ningbo Asia Pulp and Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Asia Pulp and Paper Co Ltd filed Critical Ningbo Asia Pulp and Paper Co Ltd
Priority to US14/557,441 priority Critical patent/US20150086598A1/en
Assigned to NINGBO ASIA PULP & PAPER CO., LTD. reassignment NINGBO ASIA PULP & PAPER CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAI, Shu-hua, HE, WEI, QUAN, Ji-ping, RAN, MENG-HUAI, WANG, JUN-MING
Publication of US20150086598A1 publication Critical patent/US20150086598A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present disclosure relates to a process for making an antibacterial coating, and a process for making an antibacterial paper having the antibacterial coating.
  • a conventional process of making an antibacterial paper involves coating an antibacterial layer containing nanometer-sized titanium dioxide particles on a paper surface, to make the paper have antibacterial capability.
  • the antibacterial effect of the antibacterial paper made by this method is not as good as it would ideally be. The main reason is that the method cannot fully employ the antibacterial capability of the nanometer-sized titanium dioxide particles.
  • the nanometer-sized titanium dioxide particles used in the antibacterial layer are supplied by a supplier. It is well known that the antibacterial capability of the nanometer-sized titanium dioxide particles depends on the average particle size of the particles. In particular, the smaller the average particle size of the titanium dioxide particles is, the better antibacterial capability the titanium dioxide particles have. However, as the particle size of the titanium dioxide particles becomes smaller, the specific surface energy of the titanium dioxide particles becomes larger. The large specific surface energy causes nanometer-sized titanium dioxide particles to aggregate during storage or transportation. The aggregation of the titanium dioxide particles greatly increases the average size of the titanium dioxide particles. As a result, the antibacterial capability of the nanometer-sized titanium dioxide particles is reduced.
  • FIG. 1A and FIG. 1B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 5000 rpm (revolutions per minute) in a comparative example 1 of the present disclosure.
  • FIG. 2A and FIG. 2B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 6000 rpm in the comparative example 1 of the present disclosure.
  • FIG. 3A and FIG. 3B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 7000 rpm in the comparative example 1 of the present disclosure.
  • FIG. 4A and FIG. 4B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 3 mins (minutes) in a comparative example 2 of the present disclosure.
  • FIG. 5A and FIG. 5B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 4 mins in the comparative example 2 of the present disclosure.
  • FIG. 6A and FIG. 6B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 5 mins in the comparative example 2 of the present disclosure.
  • FIG. 7A and FIG. 7B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 5000 rpm and by ultrasonic agitation for 3 mins in a comparative example 3 of the present disclosure.
  • the present disclosure provides a process of making an antibacterial coating.
  • a “coating” includes a reference to a substance used for coating. The process includes the following steps:
  • Step 1 preparing a mixed solution containing titanium dioxide particles and a dispersant.
  • the mixed solution is prepared by the following steps: (a) adjusting the pH value of water to be greater than 7; (b) adding the dispersant into the water while stirring to obtain a dispersant solution; and (c) adding the titanium dioxide particles into the dispersant solution to obtain the mixed solution.
  • the pH value can be maintained in the range of from about 9 to about 10 by adding an alkaline substance.
  • the alkaline substance can be sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), or other alkaline substance commonly used in the art.
  • the dispersant can be a sodium polyacrylate (PAAS), a cetyltrimethylammonium bromide (CTAB), a sodium hexametaphosphate (SHMP), a polyethylene glycol-2000 (PEG-2000, wherein the relative molecular mass of the PEG is about 2000), a polymethacrylic acid (PMAA), or other dispersant commonly used in the art.
  • PAAS sodium polyacrylate
  • CTAB cetyltrimethylammonium bromide
  • SHMP sodium hexametaphosphate
  • PEG-2000 polyethylene glycol-2000, wherein the relative molecular mass of the PEG is about 2000
  • PMAA polymethacrylic acid
  • the titanium dioxide particles added into the dispersant solution are a commercially available finished product.
  • the finished titanium dioxide particles can be nano-treated titanium dioxide particles or ordinary untreated titanium dioxide particles.
  • the employed titanium dioxide particles are nano-treated titanium dioxide particles.
  • the actual average particle size of the titanium dioxide particles employed by a typical papermaking factory is above 1000 nanometers (nm), due to aggregation between particles during storage and transportation. Such average particle size is far beyond the acceptable range for nanometer-level purposes.
  • the pH value of the mixed solution is not limited to the range of from about 9 to about 10, and can be adjusted according to the situation on the condition that such adjustment does not adversely affect the performance of the antibacterial coating.
  • the pH value of the mixed solution is not a key factor that must be considered in the process of making the antibacterial coating.
  • the reason for maintaining the pH value of the mixed solution as alkaline is that the pH value of a papermaking coating system employing the present process is alkaline. Therefore, keeping the pH value of the mixed solution as alkaline can avoid a possible negative effect caused by inconsistencies between the pH of the mixed solution and the pH of the papermaking coating system.
  • the mixed solution containing titanium dioxide particles in a dispersant can be prepared according to the following situations: (i) when the pH value of the papermaking coating system is alkaline, the mixed solution may be prepared under alkaline conditions, or adjusted to an alkaline state after the mixed solution is prepared under acidic or neutral conditions; (ii) when the pH value of the papermaking coating system is acidic, the mixed solution may be prepared under acidic conditions, or adjusted to an acidic state after the mixed solution is prepared under alkaline or neutral conditions; and (iii) when the pH value of the papermaking coating system is neutral, the mixed solution may be prepared under neutral conditions or adjusted to a neutral state after the mixed solution is prepared under alkaline or acidic conditions.
  • the mass percentage of the dispersant contained in the mixed solution depends on the mass percentage of the titanium dioxide particles contained in the mixed solution.
  • the mass percentage of the dispersant contained in the mixed solution is in the range of from about 0.3% to about 0.5% of the mass of the titanium dioxide particles contained in the mixed solution. It is to be understood that the mass percentage of the titanium dioxide particles contained in the mixed solution is not limited to the above-mentioned range, and can be adjust according to the situation on the condition that the adjustment does not adversely affect the dispersion effect of the mixed solution.
  • the order of adding the dispersant and the titanium dioxide particles is not limited to the above-described order.
  • the dispersant and titanium dioxide particles can be added into the water at the same time, the dispersant can be added into the water before the titanium dioxide particles, or the titanium dioxide particles can be added into the water before the dispersant.
  • Step 2 primary beating and breaking up of the titanium dioxide particles in the mixed solution by way of mechanical stirring to decrease the average particle size of the titanium dioxide particles and prepare a preliminary titanium dioxide dispersed solution.
  • the stirring speed of the mechanical stirring is in the range of from about 5000 to about 7000 revolutions per minute (rpm), and the stirring time of the mechanical stirring is in the range of from about 30 to about 60 minutes.
  • the stirring speed and the stirring time of the mechanical stirring also can be changed according to the original average particle size of the titanium dioxide particles added in the mixed solution.
  • the stirring speed may be higher, and the stirring time may be longer.
  • the stirring speed may be lower, and the stirring time may be shorter for saving energy.
  • Step 3 further beating and breaking up the titanium dioxide particles in the preliminary titanium dioxide dispersed solution by way of ultrasonic agitation to further decrease the average particle size of the titanium dioxide particles and thus prepare a titanium dioxide dispersed solution with an average particle size of the titanium dioxide particles being less than or equal to about 200 nanometers.
  • the ultrasonic power is 500 W (watts)
  • the ultrasonic frequency is in the range of from about 10 to about 100 kHz (kilohertz)
  • the time of ultrasonic agitation is in the range of from about 3 to about 5 minutes. It is to be understood that in the present disclosure, the ultrasonic power, the ultrasonic frequency, and the time of ultrasonic agitation can be adjusted according to the situation as long as the average particle size of the titanium dioxide particles is reduced to about 200 nanometers or less.
  • the reason for firstly employing the mechanical stirring method to beat and break up the titanium dioxide particles is that the mechanical stirring method quickly and effectively decreases the average particle size of the titanium dioxide particles when the average particle size of the titanium dioxide particles is larger than about 800 nanometers.
  • the beating effect of the mechanical stirring is weak.
  • the ultrasonic agitation method is employed to effectively decrease the average particle size of the titanium dioxide particles and obtain nanometer-sized titanium dioxide particles with the average particle size being less than or equal to 200 nanometers.
  • the method of combining the mechanical stirring and the ultrasonic agitation employed in the present disclosure as opposed to just employing the ultrasonic agitation method to break up the titanium dioxide particles has the following advantages.
  • the average particle size of the titanium dioxide particles is larger, only employing the ultrasonic agitation method to beat and break up the titanium dioxide particles consumes a lot of energy and obviously increases the cost of papermaking.
  • the approach of firstly employing the mechanical stirring method to beat and break up the titanium dioxide particles to make the average particle size of the titanium dioxide particles smaller and then employing the ultrasonic agitation method to further beat and break up the smaller titanium dioxide particles to obtain the nanometer-sized titanium dioxide particles with the average particle size being less than or equal to 200 nanometers can effectively decrease the energy required for making nanometer-sized titanium dioxide particles and thus reduce the cost of papermaking.
  • the ultrasonic agitation method effectively breaks up the smaller titanium dioxide particles by generating shock waves to make the titanium dioxide particles violently impact each other.
  • the impact effect caused by the shock waves is weak, and it is difficult to effectively break down the titanium dioxide particles to the nanometer level. Therefore in the present disclosure, firstly employing the mechanical stirring method to effectively break down the larger titanium dioxide particles helps the shock waves generated by the ultrasonic agitation method effectively break down the titanium dioxide particles to the nanometer size.
  • Step 4 mixing the nanometer-sized titanium dioxide dispersed solution with a papermaking coating to prepare an antibacterial coating with the nanometer-sized titanium dioxide particles uniformly disperse therein.
  • the mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating is more than or equal to 5% of the mass of the antibacterial coating.
  • the nanometer-sized titanium dioxide particles are evenly suspended in the dispersed solution with the help of the dispersant.
  • the larger filler particles contained in the papermaking coating such as calcium carbonate (CaCO 3 ) particles, position themselves between the nanometer-sized titanium dioxide particles, thus preventing the titanium dioxide particles from aggregating due to the steric effect of the filler particles and keeping the particle size of the titanium dioxide particles in the antibacterial coating maintained within the nanometer range.
  • the papermaking coating used to mix with the nanometer-sized titanium dioxide particles dispersed solution is a common papermaking coating used in the papermaking process.
  • the kind and the mass percentage of the papermaking coating used in the antibacterial coating can be adjusted according to actual needs of the paper product.
  • the mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating can also be adjusted according to actual needs of the paper product.
  • the mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating is in the range of from about 5% to about 15% of the mass of the antibacterial coating.
  • the present disclosure provides a process of making antibacterial paper, which includes the following steps: (i) providing a paper substrate; (ii) preparing an antibacterial coating according to the method provided in the first embodiment of the present disclosure; and (iii) employing the antibacterial coating to form an antibacterial layer on at least one external surface of the paper substrate.
  • the paper substrate is a multilayer paper including a surface layer, a sandwich layer, and a bottom layer.
  • the antibacterial layer is formed on the surface layer and/or the bottom layer of the paper substrate. It is to be understood that in the present disclosure, the number of layers of the paper substrate can also be changed according to different product designs.
  • the present disclosure provides an antibacterial paper.
  • the antibacterial paper includes a paper substrate and an antibacterial coating layer coating on at least one external surface of the paper substrate.
  • the antibacterial coating layer is formed by the antibacterial coating prepared by the process provided in the first embodiment of the present disclosure.
  • the antibacterial paper may be antibacterial paperboard or other type of paper, such as culture paper, packing paper, or industrial paper. According to the number of layers, the antibacterial paper may be monolayer paper, double layer paper, or multilayer paper.
  • the average particle size of the nanometer-sized titanium dioxide particles in the antibacterial coating layer is less than or equal to 200 nanometers.
  • the average particle size of the nanometer-sized titanium dioxide particles in the antibacterial coating layer is in the range of from 30 to 200 nanometers.
  • the antibacterial efficiency of the antibacterial coating layer of the antibacterial paper is greater than or equal to 99%.
  • the mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer of the antibacterial paper is greater than or equal to 5% of the mass of the antibacterial coating layer.
  • the mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer of the antibacterial paper is in the range of from about 5% to about 15% of the mass of the antibacterial coating layer.
  • the antibacterial efficiency of the antibacterial coating layer and the mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer are not limited to the above-mentioned values and range, and can be adjusted according to the actual needs of the preparing process of the antibacterial coating.
  • the antibacterial paper provided in the third embodiment of the present disclosure has the following advantages: (i) because the average particle size of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer is less than or equal to 200 nanometers, the antibacterial capability of the nanometer-sized titanium dioxide particles is fully employed, giving good antibacterial capability to the antibacterial paper; and (ii) because the nanometer-sized titanium dioxide particles are uniformly distributed in the antibacterial coating layer due to the steric effect of the larger filler particles contained in the antibacterial coating, the antibacterial coating layer has high porosity on the external surface of the antibacterial paper. The high porosity improves the printing performance of the paper.
  • the antibacterial paper provided by the third embodiment of the present disclosure not only has high antibacterial efficiency, but also has good printing performance.
  • preparing a titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% by mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% by mass of the mixed solution; and (c) employing three equal mass mixed solution samples from the mixed solution, mechanically stirring the three mixed solution samples 30 minutes with a rotational speed of 5000 rpm, 6000 rpm, and 7000 rpm, respectively, to obtain three titanium dioxide dispersed solutions, wherein the average particle size of the titanium dioxide particles in the three titanium dioxide dispersed solutions are shown in table 1 below;
  • step (vi) employing three paper substrates made in step (ii), employing the three antibacterial coatings respectively to form antibacterial coating layers on the external surfaces of the three paper substrates to obtain three antibacterial papers, and employing an electron microscope to detect the superficial and cross-sectional structures of the antibacterial coating layer respectively formed on the external surface of the three antibacterial papers.
  • the results are shown in FIGS. 1A ⁇ 3B .
  • preparing a titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% by mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% of the mass of the mixed solution; and (c) employing three equal mass mixed solution samples from the mixed solution, respectively employing ultrasonic agitation to stir the three mixed solution samples 3 minutes, 4 minutes, and 5 minutes with ultrasonic agitation power of 500 W and an ultrasonic agitation frequency of 20 kHz to obtain three titanium dioxide dispersed solutions, and respectively testing the average particle size of the titanium dioxide particles in the three titanium dioxide dispersed solutions to get the test results shown in table 1
  • step (vi) employing three paper substrates made in step (ii), employing the three antibacterial coatings to respectively form antibacterial coating layers on the external surface of the three paper substrates to obtain three antibacterial papers, and employing an electron microscope to detect the superficial and cross-sectional structures formed on the external surfaces of the three antibacterial papers.
  • the results are shown in FIGS. 4A ⁇ 6B .
  • the mechanical stirring method is employed to beat and break up the titanium dioxide finished product supplied by the titanium dioxide supplier.
  • the ultrasonic agitation method is employed to further beat and break up the titanium dioxide particles.
  • the antibacterial coating is employed to form an antibacterial coating layer on the external surface of a paper substrate to prepare an antibacterial paper.
  • preparing a nanometer-sized titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% of the mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% of the mass of the mixed solution; (c) employing three equal mass mixed solution samples from the mixed solution, and respectively mechanical stirring the three mixed solution samples for 30 minutes with rotational speeds of 5000 rpm, 6000 rpm, and 7000 rpm to obtain three titanium dioxide dispersed solutions; and (d) under the condition of ultrasonic agitation power being 500 W and ultrasonic agitation frequency being 20 kHz, employing ultrasonic agitation to
  • step (vi) employing a paper substrate made in step (ii), and employing the antibacterial coating obtained in step (v) to form an antibacterial coating layer on the external surface of the paper substrate and obtain an antibacterial paper, and employing an electron microscope to detect the superficial and cross-sectional structures of the antibacterial coating layer formed on the external surface of the antibacterial paper.
  • FIG. 7A and FIG. 7B The results are shown in FIG. 7A and FIG. 7B .
  • the average particle sizes of the titanium dioxide particles respectively obtained by the different dispersing methods are shown in table 1 below, wherein the titanium dioxide product shown in table 1 is the nano-treated titanium dioxide particles.
  • the average particle size of the titanium dioxide particles obtained by the dispersing method of the present disclosed example are much closer to nanometer level (e.g. the range from >0 to 100 nm) than the average particle size of the titanium dioxide product and the titanium dioxide particles obtained by the common dispersing method employed in each of comparative examples 1 and 2.
  • the antibacterial capability of nanometer-sized titanium dioxide particles depends on the average size of the titanium dioxide particles. The smaller the average particle size of the titanium dioxide particles is, the better the antibacterial efficiency of the titanium dioxide particles is. Thus, it can be concluded that the antibacterial coating provided by the present disclosure has high antibacterial efficiency.
  • FIGS. 4A ⁇ 6B demonstrate that in the antibacterial coating layer formed by the antibacterial coating prepared by only employing ultrasonic agitation to beat and break up the titanium dioxide particles: (i) the particle size is smaller when the ultrasonic agitation time is 3 minutes, but a serious aggregation of the titanium dioxide particles exists; and (ii) the titanium dioxide particles gradually uniformly disperse in the antibacterial coating layer as the ultrasonic agitation time is increased, but the average particle size of the titanium dioxide particles gradually becomes larger.
  • the nanometer-sized titanium dioxide particles uniformly disperse in the antibacterial coating layer formed by the antibacterial coating prepared by the method of the present disclosed example.
  • the average particle size of the titanium dioxide particles obtained by the dispersing method of the present disclosure is much less than the average particle size of the titanium dioxide particles obtained by the dispersing method of only employing mechanical stirring used in comparative example 1, and much less than the average particle size of the titanium dioxide particles obtained by the dispersing method of only employing ultrasonic agitation used in comparative example 2.
  • the titanium dioxide particles obtained by the dispersing method of the present disclosure and distributed in the antibacterial coating layer have a smaller size and disperse more uniformly.
  • the antibacterial capability of the antibacterial paper is characterized with the antibacterial efficiency tested according to Chinese standard GB/T 21866-2008.
  • the general testing method of the antibacterial efficiency includes the following steps: (i) inoculating quantitative bacteria in the antibacterial coating layer of antibacterial paper to be tested; (ii) making the bacteria uniformly distribute on the surface of the antibacterial coating layer by sticking a filter membrane on the surface of the antibacterial coating layer; and (iii) culturing the bacteria for about 2448 hours, then testing the live bacteria numbers on the surface of the antibacterial coating layer.
  • the printing performance of the antibacterial paper may be tested by the ink absorptivity of the antibacterial coating layer, the ink drying speed of the antibacterial coating layer, and the dispersible uniformity of the titanium dioxide particles in the antibacterial coating layer.
  • R 0 represents the light reflection factor of the antibacterial coating layer before absorbing ink
  • R 1 represents the light reflection factor of the antibacterial coating layer after absorbing ink.
  • the ink drying speed of the antibacterial coating layer surface is tested by the following steps: (i) employing a transfer paper to transfer the ink coated on the surface of the antibacterial paper to the surface of the transfer paper; and (ii) testing the ink density of the ink transferred on the surface of the transfer paper to evaluate the ink drying speed of the antibacterial coating layer surface.
  • comparative example 1 comparative example 2 example dispersing method mechanical stirring + mechanical stirring ultrasonic agitation ultrasonic agitation performance parameter 5000 rpm + 6000 rpm + 7000 rpm + 5000 rpm 6000 rpm 7000 rpm 3 min 4 min 5 min 3 min 4 min 5 min antibacterial 93.28 94.33 95.14 96.18 97.01 98.45 99.99 99.99 99.99 efficiency % ink 30 s 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.43 0.42 drying 60 s 0.45 0.44 0.43 0.43 0.42 0.41 0.36 0.35 0.35 speed 90 s 0.40 0.39 0.39 0.38 0.37 0.36 0.33 0.32 0.32 120 s 0.35 0.34 0.33 0.32 0.29 0.26 0.24 0.24 0.24 ink absorptivity 21.60 21.65 21.74 21.85 21.88 22.30 22.90 22.95 23.02
  • the antibacterial efficiency of the antibacterial paper prepared by the method of the present disclosure is much higher than the antibacterial efficiency of the antibacterial paper prepared by the common methods, which further verifies that the antibacterial paper using the antibacterial coating prepared by the method of the present disclosure has good antibacterial capability; and (ii) with regard to printing performance, compared to the antibacterial paper prepared by the common methods, the ink density of the ink transferred on the surface of the transfer paper corresponding with the antibacterial paper prepared by the method of the present disclosure is lowest, and the ink absorptivity of the antibacterial paper prepared by the method of the present disclosure is highest. Therefore, the printing performance of the antibacterial paper prepared by the method of the present disclosure is best.
  • the antibacterial paper provided by the method of the present disclosure not only has good antibacterial capability, but also has good printing performance.
  • the process of making the antibacterial coating, the process of making the antibacterial paper, and the antibacterial paper that are provided by the present disclosure have the following advantages: (i) the average particle size of the titanium dioxide particles in the antibacterial coating is less than or equal to 200 nm, which fully employs the antibacterial capability of the nanometer-sized titanium dioxide particles and makes the antibacterial efficiency of the antibacterial paper greater than 99%; and (ii) the good dispersible uniformity of the titanium dioxide particles in the antibacterial coating layer of the antibacterial paper makes the antibacterial coating layer have good printing performance.
  • the antibacterial paper provided by the present disclosure not only has good antibacterial capability, but also has good printing performance.

Abstract

An antibacterial paper comprises a paper substrate, wherein at least one external surface of the paper substrate is coated with an antibacterial coating layer containing titanium dioxide particles uniformly distributed therein, the average particle size of the titanium dioxide particles is less than or equal to 200 nanometers (nm), and the mass percentage of the titanium dioxide particles contained in the antibacterial coating layer is more than or equal to 5% of the mass of the antibacterial coating layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of U.S. Ser. No. 14/093,027, filed on Nov. 28, 2013, which is a continuation of International Application No. PCT/CN2013/000370, which has an international filing date of Mar. 31, 2013, which claims benefit of China Patent Application No. 201210095148.9, filed on Mar. 31, 2012. The entire contents thereof are incorporated herein by reference.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to a process for making an antibacterial coating, and a process for making an antibacterial paper having the antibacterial coating.
  • 2. Description of Related Art
  • Today, not only do people need tissue paper and industrial paper for hygiene and to keep things sterile, but they also need the paper itself to have antibacterial capability.
  • A conventional process of making an antibacterial paper involves coating an antibacterial layer containing nanometer-sized titanium dioxide particles on a paper surface, to make the paper have antibacterial capability. However, the antibacterial effect of the antibacterial paper made by this method is not as good as it would ideally be. The main reason is that the method cannot fully employ the antibacterial capability of the nanometer-sized titanium dioxide particles.
  • In the above-described process of making antibacterial paper, the nanometer-sized titanium dioxide particles used in the antibacterial layer are supplied by a supplier. It is well known that the antibacterial capability of the nanometer-sized titanium dioxide particles depends on the average particle size of the particles. In particular, the smaller the average particle size of the titanium dioxide particles is, the better antibacterial capability the titanium dioxide particles have. However, as the particle size of the titanium dioxide particles becomes smaller, the specific surface energy of the titanium dioxide particles becomes larger. The large specific surface energy causes nanometer-sized titanium dioxide particles to aggregate during storage or transportation. The aggregation of the titanium dioxide particles greatly increases the average size of the titanium dioxide particles. As a result, the antibacterial capability of the nanometer-sized titanium dioxide particles is reduced.
  • Therefore, a process of making an antibacterial coating and a process of making an antibacterial paper using the antibacterial coating to overcome the above-mentioned problems are needed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A and FIG. 1B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 5000 rpm (revolutions per minute) in a comparative example 1 of the present disclosure.
  • FIG. 2A and FIG. 2B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 6000 rpm in the comparative example 1 of the present disclosure.
  • FIG. 3A and FIG. 3B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 7000 rpm in the comparative example 1 of the present disclosure.
  • FIG. 4A and FIG. 4B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 3 mins (minutes) in a comparative example 2 of the present disclosure.
  • FIG. 5A and FIG. 5B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 4 mins in the comparative example 2 of the present disclosure.
  • FIG. 6A and FIG. 6B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by ultrasonic agitation for 5 mins in the comparative example 2 of the present disclosure.
  • FIG. 7A and FIG. 7B respectively shows superficial and cross-sectional electron micrographs of an antibacterial coating layer formed by an antibacterial coating prepared by mechanical stirring with a speed of 5000 rpm and by ultrasonic agitation for 3 mins in a comparative example 3 of the present disclosure.
  • DETAILED DESCRIPTION
  • In a first embodiment, the present disclosure provides a process of making an antibacterial coating. In the following description, where the context permits, a “coating” includes a reference to a substance used for coating. The process includes the following steps:
  • Step 1: preparing a mixed solution containing titanium dioxide particles and a dispersant.
  • In this embodiment, the mixed solution is prepared by the following steps: (a) adjusting the pH value of water to be greater than 7; (b) adding the dispersant into the water while stirring to obtain a dispersant solution; and (c) adding the titanium dioxide particles into the dispersant solution to obtain the mixed solution. In the present embodiment, in step (a), the pH value can be maintained in the range of from about 9 to about 10 by adding an alkaline substance.
  • In step (a), the alkaline substance can be sodium hydroxide (NaOH), sodium carbonate (Na2CO3), or other alkaline substance commonly used in the art. The dispersant can be a sodium polyacrylate (PAAS), a cetyltrimethylammonium bromide (CTAB), a sodium hexametaphosphate (SHMP), a polyethylene glycol-2000 (PEG-2000, wherein the relative molecular mass of the PEG is about 2000), a polymethacrylic acid (PMAA), or other dispersant commonly used in the art.
  • In step (c), the titanium dioxide particles added into the dispersant solution are a commercially available finished product. The finished titanium dioxide particles can be nano-treated titanium dioxide particles or ordinary untreated titanium dioxide particles.
  • In this embodiment, the employed titanium dioxide particles are nano-treated titanium dioxide particles. Referring also to the above description in the Related Art section of this disclosure, although the titanium dioxide particles have been nano-treated, the actual average particle size of the titanium dioxide particles employed by a typical papermaking factory is above 1000 nanometers (nm), due to aggregation between particles during storage and transportation. Such average particle size is far beyond the acceptable range for nanometer-level purposes.
  • It is to be understood that in this embodiment, the pH value of the mixed solution is not limited to the range of from about 9 to about 10, and can be adjusted according to the situation on the condition that such adjustment does not adversely affect the performance of the antibacterial coating.
  • It should be noted that, the pH value of the mixed solution is not a key factor that must be considered in the process of making the antibacterial coating. In this embodiment, the reason for maintaining the pH value of the mixed solution as alkaline is that the pH value of a papermaking coating system employing the present process is alkaline. Therefore, keeping the pH value of the mixed solution as alkaline can avoid a possible negative effect caused by inconsistencies between the pH of the mixed solution and the pH of the papermaking coating system.
  • It is to be understood that in the present disclosure, the mixed solution containing titanium dioxide particles in a dispersant can be prepared according to the following situations: (i) when the pH value of the papermaking coating system is alkaline, the mixed solution may be prepared under alkaline conditions, or adjusted to an alkaline state after the mixed solution is prepared under acidic or neutral conditions; (ii) when the pH value of the papermaking coating system is acidic, the mixed solution may be prepared under acidic conditions, or adjusted to an acidic state after the mixed solution is prepared under alkaline or neutral conditions; and (iii) when the pH value of the papermaking coating system is neutral, the mixed solution may be prepared under neutral conditions or adjusted to a neutral state after the mixed solution is prepared under alkaline or acidic conditions.
  • In the present disclosure, the mass percentage of the dispersant contained in the mixed solution depends on the mass percentage of the titanium dioxide particles contained in the mixed solution. In this embodiment, the mass percentage of the dispersant contained in the mixed solution is in the range of from about 0.3% to about 0.5% of the mass of the titanium dioxide particles contained in the mixed solution. It is to be understood that the mass percentage of the titanium dioxide particles contained in the mixed solution is not limited to the above-mentioned range, and can be adjust according to the situation on the condition that the adjustment does not adversely affect the dispersion effect of the mixed solution.
  • It is to be understood that in the present disclosure, when preparing the mixed solution, the order of adding the dispersant and the titanium dioxide particles is not limited to the above-described order. For example, in steps (b) and (c), the dispersant and titanium dioxide particles can be added into the water at the same time, the dispersant can be added into the water before the titanium dioxide particles, or the titanium dioxide particles can be added into the water before the dispersant.
  • Step 2: primary beating and breaking up of the titanium dioxide particles in the mixed solution by way of mechanical stirring to decrease the average particle size of the titanium dioxide particles and prepare a preliminary titanium dioxide dispersed solution.
  • In this embodiment, the stirring speed of the mechanical stirring is in the range of from about 5000 to about 7000 revolutions per minute (rpm), and the stirring time of the mechanical stirring is in the range of from about 30 to about 60 minutes. It is to be understood that in the present disclosure, the stirring speed and the stirring time of the mechanical stirring also can be changed according to the original average particle size of the titanium dioxide particles added in the mixed solution. When the titanium dioxide particles added into the mixed solution are the untreated titanium dioxide particles, the stirring speed may be higher, and the stirring time may be longer. When the titanium dioxide particles added into the mixed solution are the nano-treated titanium dioxide particles, the stirring speed may be lower, and the stirring time may be shorter for saving energy.
  • Step 3: further beating and breaking up the titanium dioxide particles in the preliminary titanium dioxide dispersed solution by way of ultrasonic agitation to further decrease the average particle size of the titanium dioxide particles and thus prepare a titanium dioxide dispersed solution with an average particle size of the titanium dioxide particles being less than or equal to about 200 nanometers.
  • In this embodiment, the ultrasonic power is 500 W (watts), the ultrasonic frequency is in the range of from about 10 to about 100 kHz (kilohertz), and the time of ultrasonic agitation is in the range of from about 3 to about 5 minutes. It is to be understood that in the present disclosure, the ultrasonic power, the ultrasonic frequency, and the time of ultrasonic agitation can be adjusted according to the situation as long as the average particle size of the titanium dioxide particles is reduced to about 200 nanometers or less.
  • In the present disclosure, the reason for firstly employing the mechanical stirring method to beat and break up the titanium dioxide particles is that the mechanical stirring method quickly and effectively decreases the average particle size of the titanium dioxide particles when the average particle size of the titanium dioxide particles is larger than about 800 nanometers. When the average particle size of the titanium dioxide particles is less than about 800 nanometers, the beating effect of the mechanical stirring is weak. Accordingly, the ultrasonic agitation method is employed to effectively decrease the average particle size of the titanium dioxide particles and obtain nanometer-sized titanium dioxide particles with the average particle size being less than or equal to 200 nanometers.
  • The method of combining the mechanical stirring and the ultrasonic agitation employed in the present disclosure as opposed to just employing the ultrasonic agitation method to break up the titanium dioxide particles has the following advantages. First, compared to the ultrasonic agitation method, the energy consumption of the mechanical stirring method is lower. When the average particle size of the titanium dioxide particles is larger, only employing the ultrasonic agitation method to beat and break up the titanium dioxide particles consumes a lot of energy and obviously increases the cost of papermaking. In the present disclosure, the approach of firstly employing the mechanical stirring method to beat and break up the titanium dioxide particles to make the average particle size of the titanium dioxide particles smaller and then employing the ultrasonic agitation method to further beat and break up the smaller titanium dioxide particles to obtain the nanometer-sized titanium dioxide particles with the average particle size being less than or equal to 200 nanometers can effectively decrease the energy required for making nanometer-sized titanium dioxide particles and thus reduce the cost of papermaking. Second, the ultrasonic agitation method effectively breaks up the smaller titanium dioxide particles by generating shock waves to make the titanium dioxide particles violently impact each other. By comparison, for the larger titanium dioxide particles, the impact effect caused by the shock waves is weak, and it is difficult to effectively break down the titanium dioxide particles to the nanometer level. Therefore in the present disclosure, firstly employing the mechanical stirring method to effectively break down the larger titanium dioxide particles helps the shock waves generated by the ultrasonic agitation method effectively break down the titanium dioxide particles to the nanometer size.
  • Step 4: mixing the nanometer-sized titanium dioxide dispersed solution with a papermaking coating to prepare an antibacterial coating with the nanometer-sized titanium dioxide particles uniformly disperse therein. Typically, the mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating is more than or equal to 5% of the mass of the antibacterial coating.
  • Before the nanometer-sized titanium dioxide dispersed solution is mixed with the papermaking coating, the nanometer-sized titanium dioxide particles are evenly suspended in the dispersed solution with the help of the dispersant. When the nanometer-sized titanium dioxide dispersed solution is mixed with the papermaking coating, the larger filler particles contained in the papermaking coating, such as calcium carbonate (CaCO3) particles, position themselves between the nanometer-sized titanium dioxide particles, thus preventing the titanium dioxide particles from aggregating due to the steric effect of the filler particles and keeping the particle size of the titanium dioxide particles in the antibacterial coating maintained within the nanometer range.
  • It is to be understood that in this step, the papermaking coating used to mix with the nanometer-sized titanium dioxide particles dispersed solution is a common papermaking coating used in the papermaking process. The kind and the mass percentage of the papermaking coating used in the antibacterial coating can be adjusted according to actual needs of the paper product. The mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating can also be adjusted according to actual needs of the paper product. In this embodiment, the mass percentage of the nanometer-sized titanium dioxide particles in the antibacterial coating is in the range of from about 5% to about 15% of the mass of the antibacterial coating.
  • In a second embodiment, the present disclosure provides a process of making antibacterial paper, which includes the following steps: (i) providing a paper substrate; (ii) preparing an antibacterial coating according to the method provided in the first embodiment of the present disclosure; and (iii) employing the antibacterial coating to form an antibacterial layer on at least one external surface of the paper substrate.
  • In this embodiment, the paper substrate is a multilayer paper including a surface layer, a sandwich layer, and a bottom layer. The antibacterial layer is formed on the surface layer and/or the bottom layer of the paper substrate. It is to be understood that in the present disclosure, the number of layers of the paper substrate can also be changed according to different product designs.
  • In a third embodiment, the present disclosure provides an antibacterial paper. The antibacterial paper includes a paper substrate and an antibacterial coating layer coating on at least one external surface of the paper substrate. The antibacterial coating layer is formed by the antibacterial coating prepared by the process provided in the first embodiment of the present disclosure.
  • It is to be understood that in the present disclosure, the antibacterial paper may be antibacterial paperboard or other type of paper, such as culture paper, packing paper, or industrial paper. According to the number of layers, the antibacterial paper may be monolayer paper, double layer paper, or multilayer paper.
  • In this embodiment, the average particle size of the nanometer-sized titanium dioxide particles in the antibacterial coating layer is less than or equal to 200 nanometers. Typically, the average particle size of the nanometer-sized titanium dioxide particles in the antibacterial coating layer is in the range of from 30 to 200 nanometers.
  • In this embodiment, the antibacterial efficiency of the antibacterial coating layer of the antibacterial paper is greater than or equal to 99%. The mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer of the antibacterial paper is greater than or equal to 5% of the mass of the antibacterial coating layer. Typically, the mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer of the antibacterial paper is in the range of from about 5% to about 15% of the mass of the antibacterial coating layer. It is to be understood that in the present disclosure, the antibacterial efficiency of the antibacterial coating layer and the mass percentage of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer are not limited to the above-mentioned values and range, and can be adjusted according to the actual needs of the preparing process of the antibacterial coating.
  • Compared to common antibacterial paper, the antibacterial paper provided in the third embodiment of the present disclosure has the following advantages: (i) because the average particle size of the nanometer-sized titanium dioxide particles contained in the antibacterial coating layer is less than or equal to 200 nanometers, the antibacterial capability of the nanometer-sized titanium dioxide particles is fully employed, giving good antibacterial capability to the antibacterial paper; and (ii) because the nanometer-sized titanium dioxide particles are uniformly distributed in the antibacterial coating layer due to the steric effect of the larger filler particles contained in the antibacterial coating, the antibacterial coating layer has high porosity on the external surface of the antibacterial paper. The high porosity improves the printing performance of the paper. Thus the antibacterial paper provided by the third embodiment of the present disclosure not only has high antibacterial efficiency, but also has good printing performance.
  • INTRODUCTION TO EXAMPLES
  • To further verify the antibacterial capability and the printing performance of the antibacterial paper provided by the present disclosure, three sets of examples are provided in the following description. In the three sets of examples, the materials and the process parameters used in the examples are the same, except for the method of beating and breaking up the titanium dioxide finished product supplied by the titanium dioxide supplier.
  • Comparative Example 1
  • In comparative example 1, only the mechanical stirring method is employed to beat and break up the titanium dioxide finished product supplied by the titanium dioxide supplier during the process of preparing an antibacterial coating. Then the antibacterial coating is employed to form an antibacterial coating layer on the external surface of a paper substrate to prepare an antibacterial paper. The specific steps include the following:
  • (i) preparing a papermaking pulp employing the following processes in this order: beating pulp, screening the pulp, cleaning the pulp, floating the pulp, heat-dispersing the pulp, bleaching the pulp, and refining the pulp;
  • (ii) employing the papermaking pulp to make the paper substrates;
  • (iii) preparing a papermaking coating;
  • (iv) preparing a titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% by mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% by mass of the mixed solution; and (c) employing three equal mass mixed solution samples from the mixed solution, mechanically stirring the three mixed solution samples 30 minutes with a rotational speed of 5000 rpm, 6000 rpm, and 7000 rpm, respectively, to obtain three titanium dioxide dispersed solutions, wherein the average particle size of the titanium dioxide particles in the three titanium dioxide dispersed solutions are shown in table 1 below;
  • (v) respectively mixing the three titanium dioxide dispersed solutions, obtained by the different mechanical stirring speeds, with the papermaking coating to obtain three equal mass antibacterial coatings, wherein in each antibacterial coating, the mass percentage of the titanium dioxide is 5% of the mass of the antibacterial coating; and
  • (vi) employing three paper substrates made in step (ii), employing the three antibacterial coatings respectively to form antibacterial coating layers on the external surfaces of the three paper substrates to obtain three antibacterial papers, and employing an electron microscope to detect the superficial and cross-sectional structures of the antibacterial coating layer respectively formed on the external surface of the three antibacterial papers. The results are shown in FIGS. 1A˜3B.
  • Comparative Example 2
  • Only employing the ultrasonic agitation method to beat and break up the titanium dioxide finished product supplied by the titanium dioxide supplier during the process of preparing an antibacterial coating, and then employing the antibacterial coating to form an antibacterial coating layer on the external surface of a paper substrate to prepare an antibacterial paper. The specific steps include the following:
  • (i) preparing a papermaking pulp employing the following processes in this order: beating pulp, screening the pulp, cleaning the pulp, floating the pulp, heat-dispersing the pulp, bleaching the pulp, and refining the pulp;
  • (ii) employing the papermaking pulp to make the paper substrates;
  • (iii) preparing a papermaking coating;
  • (iv) preparing a titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% by mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% of the mass of the mixed solution; and (c) employing three equal mass mixed solution samples from the mixed solution, respectively employing ultrasonic agitation to stir the three mixed solution samples 3 minutes, 4 minutes, and 5 minutes with ultrasonic agitation power of 500 W and an ultrasonic agitation frequency of 20 kHz to obtain three titanium dioxide dispersed solutions, and respectively testing the average particle size of the titanium dioxide particles in the three titanium dioxide dispersed solutions to get the test results shown in table 1 below;
  • (v) respectively mixing the three titanium dioxide dispersed solutions obtained by the different ultrasonic agitation times with the papermaking coating to obtain three equal mass antibacterial coatings, wherein in each antibacterial coating, the mass percentage of the titanium dioxide is 5% of the mass of the antibacterial coating; and
  • (vi) employing three paper substrates made in step (ii), employing the three antibacterial coatings to respectively form antibacterial coating layers on the external surface of the three paper substrates to obtain three antibacterial papers, and employing an electron microscope to detect the superficial and cross-sectional structures formed on the external surfaces of the three antibacterial papers. The results are shown in FIGS. 4A˜6B.
  • Present Disclosed Example
  • According to the present disclosure, during the process of preparing an antibacterial coating, firstly, the mechanical stirring method is employed to beat and break up the titanium dioxide finished product supplied by the titanium dioxide supplier. Then, the ultrasonic agitation method is employed to further beat and break up the titanium dioxide particles. Lastly, the antibacterial coating is employed to form an antibacterial coating layer on the external surface of a paper substrate to prepare an antibacterial paper. The specific steps include the following:
  • (i) preparing a papermaking pulp employing the following processes in this order: beating pulp, screening the pulp, cleaning the pulp, floating the pulp, heat-dispersing the pulp, bleaching the pulp, and refining the pulp;
  • (ii) employing the papermaking pulp to make the paper substrates;
  • (iii) preparing a papermaking coating;
  • (iv) preparing a nanometer-sized titanium dioxide dispersed solution according to the following steps: (a) adding NaOH into water to adjust the pH value of the water to 9, adding a dispersant into the water with a mass percentage of the dispersant being 0.3% of the mass of the titanium dioxide to be added, and stirring the water containing the dispersant with a rotational speed of 500 rpm to obtain a dispersant solution; (b) adding nano-treated titanium dioxide particles into the dispersant solution to obtain a mixed solution, wherein a mass percentage of the titanium dioxide particles in the mixed solution is 20% of the mass of the mixed solution; (c) employing three equal mass mixed solution samples from the mixed solution, and respectively mechanical stirring the three mixed solution samples for 30 minutes with rotational speeds of 5000 rpm, 6000 rpm, and 7000 rpm to obtain three titanium dioxide dispersed solutions; and (d) under the condition of ultrasonic agitation power being 500 W and ultrasonic agitation frequency being 20 kHz, employing ultrasonic agitation to stir the titanium dioxide dispersed solution obtained with the rotational speed of 5000 rpm for 3 minutes, stir the titanium dioxide dispersed solution obtained with the rotational speed of 6000 rpm for 4 minutes, and stir the titanium dioxide dispersed solution obtained with the rotational speed of 7000 rpm for 5 minutes, to obtain three nanometer-sized titanium dioxide dispersed solutions, and respectively testing the average particle size of the titanium dioxide particles in the three nanometer-sized titanium dioxide dispersed solutions to get the test results shown in table 1 below;
  • (v) mixing the nanometer-sized titanium dioxide dispersed solution prepared under the conditions of the mechanical stirring speed being 5000 rpm and the ultrasonic agitation time being 3 minutes with the papermaking coating to obtain an antibacterial coating, wherein the mass percentage of the nanometer-sized titanium dioxide in the antibacterial coating is 5% of the mass of the antibacterial coating; and
  • (vi) employing a paper substrate made in step (ii), and employing the antibacterial coating obtained in step (v) to form an antibacterial coating layer on the external surface of the paper substrate and obtain an antibacterial paper, and employing an electron microscope to detect the superficial and cross-sectional structures of the antibacterial coating layer formed on the external surface of the antibacterial paper. The results are shown in FIG. 7A and FIG. 7B.
  • Results Part 1: The Distribution of the Average Particle Sizes
  • The average particle sizes of the titanium dioxide particles respectively obtained by the different dispersing methods are shown in table 1 below, wherein the titanium dioxide product shown in table 1 is the nano-treated titanium dioxide particles.
  • TABLE 1
    present disclosed
    example
    titanium mechanical stirring +
    dioxide comparative example 1 comparative example 2 ultrasonic agitation
    dispersing finished mechanical stirring ultrasonic agitation 5000 rpm + 6000 rpm + 7000 rpm +
    method product 5000 rpm 6000 rpm 7000 rpm 3 min 4 min 5 min 3 min 4 min 5 min
    the 1092 nm 624 nm 541 nm 427 nm 409 nm 327 nm 243 nm 91 nm 90.97 nm 90.58 nm
    average
    particle
    size
  • It can be clearly seen from table 1 that the average particle size of the titanium dioxide particles obtained by the dispersing method of the present disclosed example are much closer to nanometer level (e.g. the range from >0 to 100 nm) than the average particle size of the titanium dioxide product and the titanium dioxide particles obtained by the common dispersing method employed in each of comparative examples 1 and 2.
  • As described above in the Related Art section of this disclosure, the antibacterial capability of nanometer-sized titanium dioxide particles depends on the average size of the titanium dioxide particles. The smaller the average particle size of the titanium dioxide particles is, the better the antibacterial efficiency of the titanium dioxide particles is. Thus, it can be concluded that the antibacterial coating provided by the present disclosure has high antibacterial efficiency.
  • Results Part 2: The Dispersing Performance
  • By comparing the electron micrographs of the antibacterial coating layers coated on the external surface of the antibacterial papers respectively prepared by comparative example 1, comparative example 2, and the present disclosed example in FIGS. 1A˜7B, the following conclusions can be drawn:
  • It can be seen from FIG. 1A to FIG. 3B that in the antibacterial coating layer formed by the antibacterial coating prepared by only employing mechanical stirring to beat and break up the titanium dioxide particles: (i) the titanium dioxide particles gradually uniformly disperse in the antibacterial coating layer as the stirring speed is increased; but (ii) the average particle size of the titanium dioxide particles is larger than 200 nanometers, and an obvious aggregation of the titanium dioxide particles exists.
  • FIGS. 4A˜6B demonstrate that in the antibacterial coating layer formed by the antibacterial coating prepared by only employing ultrasonic agitation to beat and break up the titanium dioxide particles: (i) the particle size is smaller when the ultrasonic agitation time is 3 minutes, but a serious aggregation of the titanium dioxide particles exists; and (ii) the titanium dioxide particles gradually uniformly disperse in the antibacterial coating layer as the ultrasonic agitation time is increased, but the average particle size of the titanium dioxide particles gradually becomes larger.
  • As shown in FIG. 7A and FIG. 7B, the nanometer-sized titanium dioxide particles uniformly disperse in the antibacterial coating layer formed by the antibacterial coating prepared by the method of the present disclosed example. In addition, the average particle size of the titanium dioxide particles obtained by the dispersing method of the present disclosure is much less than the average particle size of the titanium dioxide particles obtained by the dispersing method of only employing mechanical stirring used in comparative example 1, and much less than the average particle size of the titanium dioxide particles obtained by the dispersing method of only employing ultrasonic agitation used in comparative example 2.
  • Thus, comparing the results of the electron micrographs shown in FIGS. 1A˜7B, the titanium dioxide particles obtained by the dispersing method of the present disclosure and distributed in the antibacterial coating layer have a smaller size and disperse more uniformly.
  • Results Part 3: The Antibacterial Capability and the Printing Performance
  • In this embodiment, the antibacterial capability of the antibacterial paper is characterized with the antibacterial efficiency tested according to Chinese standard GB/T 21866-2008. The general testing method of the antibacterial efficiency includes the following steps: (i) inoculating quantitative bacteria in the antibacterial coating layer of antibacterial paper to be tested; (ii) making the bacteria uniformly distribute on the surface of the antibacterial coating layer by sticking a filter membrane on the surface of the antibacterial coating layer; and (iii) culturing the bacteria for about 2448 hours, then testing the live bacteria numbers on the surface of the antibacterial coating layer. The higher the antibacterial efficiency is, the better the antibacterial capability is.
  • The printing performance of the antibacterial paper may be tested by the ink absorptivity of the antibacterial coating layer, the ink drying speed of the antibacterial coating layer, and the dispersible uniformity of the titanium dioxide particles in the antibacterial coating layer.
  • The value of the ink absorptivity is tested according to Chinese standard GB12911-1991. In this embodiment, the formula for approximately calculating the ink absorptivity is represented by the following equation:
  • R 0 - R 1 R 0 * 100 % ,
  • wherein R0 represents the light reflection factor of the antibacterial coating layer before absorbing ink, and R1 represents the light reflection factor of the antibacterial coating layer after absorbing ink. The higher the ink absorptivity is, the better the printing performance is.
  • The ink drying speed of the antibacterial coating layer surface is tested by the following steps: (i) employing a transfer paper to transfer the ink coated on the surface of the antibacterial paper to the surface of the transfer paper; and (ii) testing the ink density of the ink transferred on the surface of the transfer paper to evaluate the ink drying speed of the antibacterial coating layer surface. The higher the ink density of the ink transferred on the surface of the transfer paper is, the lower the ink drying speed of the antibacterial coating layer is, and the poorer the printing performance of the antibacterial paper is.
  • The results of the antibacterial capability and the printing performance of the antibacterial paper prepared by the different dispersing methods are summarized in table 2 below.
  • TABLE 2
    present disclosed
    comparative example 1 comparative example 2 example
    dispersing method
    mechanical stirring +
    mechanical stirring ultrasonic agitation ultrasonic agitation
    performance parameter
    5000 rpm + 6000 rpm + 7000 rpm +
    5000 rpm 6000 rpm 7000 rpm 3 min 4 min 5 min 3 min 4 min 5 min
    antibacterial 93.28 94.33 95.14 96.18 97.01 98.45 99.99 99.99 99.99
    efficiency %
    ink 30 s 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.43 0.42
    drying 60 s 0.45 0.44 0.43 0.43 0.42 0.41 0.36 0.35 0.35
    speed 90 s 0.40 0.39 0.39 0.38 0.37 0.36 0.33 0.32 0.32
    120 s  0.35 0.34 0.33 0.32 0.29 0.26 0.24 0.24 0.24
    ink absorptivity 21.60 21.65 21.74 21.85 21.88 22.30 22.90 22.95 23.02
  • From the data shown in table 2, it can be seen that: (i) with regard to antibacterial efficiency, the antibacterial efficiency of the antibacterial paper prepared by the method of the present disclosure is much higher than the antibacterial efficiency of the antibacterial paper prepared by the common methods, which further verifies that the antibacterial paper using the antibacterial coating prepared by the method of the present disclosure has good antibacterial capability; and (ii) with regard to printing performance, compared to the antibacterial paper prepared by the common methods, the ink density of the ink transferred on the surface of the transfer paper corresponding with the antibacterial paper prepared by the method of the present disclosure is lowest, and the ink absorptivity of the antibacterial paper prepared by the method of the present disclosure is highest. Therefore, the printing performance of the antibacterial paper prepared by the method of the present disclosure is best.
  • It can be plainly seen according to the data shown in table 2 that, compared to the antibacterial paper prepared by the common dispersing methods, the antibacterial paper provided by the method of the present disclosure not only has good antibacterial capability, but also has good printing performance.
  • Compared to the prior art, the process of making the antibacterial coating, the process of making the antibacterial paper, and the antibacterial paper that are provided by the present disclosure have the following advantages: (i) the average particle size of the titanium dioxide particles in the antibacterial coating is less than or equal to 200 nm, which fully employs the antibacterial capability of the nanometer-sized titanium dioxide particles and makes the antibacterial efficiency of the antibacterial paper greater than 99%; and (ii) the good dispersible uniformity of the titanium dioxide particles in the antibacterial coating layer of the antibacterial paper makes the antibacterial coating layer have good printing performance. Thus, the antibacterial paper provided by the present disclosure not only has good antibacterial capability, but also has good printing performance.
  • It is to be further understood that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims (9)

What is claimed is:
1. An antibacterial paper comprising:
a paper substrate, wherein at least one external surface of the paper substrate is coated with an antibacterial coating layer, and the antibacterial coating layer is prepared by a method which comprising:
preparing a mixed solution containing titanium dioxide particles and a dispersant;
beating and breaking up the titanium dioxide particles in the mixed solution by mechanical stirring to prepare a preliminary titanium dioxide dispersed solution;
further beating and breaking up the titanium dioxide particles in the preliminary titanium dioxide dispersed solution by ultrasonic agitation to prepare a titanium dioxide dispersed solution with an average particle size of the titanium dioxide particles being less than or equal to 200 nanometers; and
mixing the titanium dioxide dispersed solution with papermaking coating to prepare the antibacterial coating layer with the titanium dioxide particles uniformly dispersed therein, the mass percentage of the titanium dioxide particles in the antibacterial coating layer being more than or equal to 5% of the mass of the antibacterial coating layer.
2. The antibacterial paper of claim 1, wherein the antibacterial efficiency of the antibacterial coating layer is more than or equal to 99%.
3. An antibacterial paper comprising:
a paper substrate, wherein at least one external surface of the paper substrate is coated with an antibacterial coating layer containing titanium dioxide particles uniformly distributed therein, the average particle size of the titanium dioxide particles is less than or equal to 200 nanometers (nm), and the mass percentage of the titanium dioxide particles contained in the antibacterial coating layer is more than or equal to 5% of the mass of the antibacterial coating layer.
4. The antibacterial paper of claim 3, wherein the antibacterial efficiency of the antibacterial coating layer is more than or equal to 99%.
5. The antibacterial paper of claim 3, wherein the mass percentage of the titanium dioxide particles contained in the antibacterial coating layer is in the range of from 5%˜15% of the mass of the antibacterial coating layer.
6. An antibacterial paper comprising:
a paper substrate, wherein at least one external surface of the paper substrate is coated with an antibacterial coating layer containing titanium dioxide particles uniformly distributed therein, the average particle size of the titanium dioxide particles is less than or equal to 200 nanometers (nm), and the antibacterial efficiency of the antibacterial coating layer is more than or equal to 99%.
7. The antibacterial paper of claim 6, wherein the average particle size of the titanium dioxide particles is less than or equal to 200 nm.
8. The antibacterial paper of claim 6, wherein the mass percentage of the titanium dioxide particles contained in the antibacterial coating layer is more than or equal to 5% of the mass of the antibacterial coating layer.
9. The antibacterial paper of claim 6, wherein the mass percentage of the titanium dioxide particles contained in the antibacterial coating layer is in the range of from 5%˜15% of the mass of the antibacterial coating layer.
US14/557,441 2012-03-31 2014-12-01 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper Abandoned US20150086598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/557,441 US20150086598A1 (en) 2012-03-31 2014-12-01 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201210095148.9 2012-03-31
CN2012100951489A CN102635038A (en) 2012-03-31 2012-03-31 Production method for antibacterial paperboards
PCT/CN2013/000370 WO2013143351A1 (en) 2012-03-31 2013-03-31 Antibacterial coating manufacturing process, antibacterial paper manufacturing process, and antibacterial paper
US14/093,027 US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper
US14/557,441 US20150086598A1 (en) 2012-03-31 2014-12-01 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/093,027 Division US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Publications (1)

Publication Number Publication Date
US20150086598A1 true US20150086598A1 (en) 2015-03-26

Family

ID=46619605

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/093,027 Active US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper
US14/557,441 Abandoned US20150086598A1 (en) 2012-03-31 2014-12-01 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/093,027 Active US8940086B2 (en) 2012-03-31 2013-11-28 Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper

Country Status (4)

Country Link
US (2) US8940086B2 (en)
JP (1) JP2014524948A (en)
CN (2) CN102635038A (en)
WO (1) WO2013143351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992359A1 (en) 2020-11-01 2022-05-04 Arctic Paper Kostrzyn Spólka Akcyjna Antimicrobial paper coating

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635038A (en) * 2012-03-31 2012-08-15 宁波亚洲浆纸业有限公司 Production method for antibacterial paperboards
CN103306164B (en) * 2013-05-21 2015-04-15 洛阳惠尔纳米科技有限公司 Water and oil proofed and antibacterial paper and preparation method thereof
CN104389240A (en) * 2014-10-17 2015-03-04 广西大学 Preparation method of nanometer antibacterial agent for paper
CN105256640A (en) * 2015-10-14 2016-01-20 泉州华祥纸业有限公司 Method for preparing industrial specialty paper
CN105780585A (en) * 2016-03-27 2016-07-20 张耀忠 Paper mould-proof agent and preparation method thereof
CN106283858A (en) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 A kind of preparation method of photochromic corrugated board
CN106283878A (en) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 A kind of preparation method of antibiotic antistatic corrugated board
CN106337316A (en) * 2016-08-29 2017-01-18 佛山市高明区尚润盈科技有限公司 Method for preparing antibacterial and anti-radiation corrugated paperboard
CN106283857A (en) * 2016-08-29 2017-01-04 佛山市高明区尚润盈科技有限公司 A kind of preparation method of multifunction tile corrugated paper board
CN108385446A (en) * 2018-04-04 2018-08-10 黄智慧 A kind of preparation method of high-temperature stable release paper
CN109082941A (en) * 2018-07-25 2018-12-25 宜兴市华法纸业有限公司 A kind of cardboard of included sterilization antibacterial functions
CN109096943B (en) * 2018-08-06 2019-12-13 瑞安市赛维进出口贸易有限公司 Conductive cloth with adhesive
CN113718557A (en) * 2021-08-20 2021-11-30 乔永恒 Novel pollution-free negative ion decorative paper of environmental protection
CN114223672B (en) * 2021-12-31 2023-06-13 广东粤港澳大湾区国家纳米科技创新研究院 Composite antibacterial mildew-proof material, application thereof, composite powder coating and preparation method
CN114717876B (en) * 2022-04-06 2023-05-12 金东纸业(江苏)股份有限公司 Preparation method of antibacterial paper and antibacterial paper
CN114960273A (en) * 2022-06-07 2022-08-30 万国纸业太阳白卡纸有限公司 Antibacterial paper and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302404A (en) * 1991-11-18 1994-04-12 Oy Kyro Board & Paper Ltd. Wallpaper
US5935717A (en) * 1996-06-28 1999-08-10 Hitachi, Ltd. Functional film having inorganic thin on surface of organic film article using the same and process for producing the same
JP2000027095A (en) * 1998-07-03 2000-01-25 Hour Seishi Kk Photocatalyst titanium oxide-containing paper
US20060134239A1 (en) * 2003-06-17 2006-06-22 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Agents against microorganisms containing patchouli oil, patchouli alcohol and/or the derivatives thereof
US20060246149A1 (en) * 2003-04-18 2006-11-02 Herwig Buchholz Antimicrobial pigments

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292967A (en) * 1988-09-30 1990-04-03 Titan Kogyo Kk Deodorizing paint composition
SI9011099B (en) * 1989-06-06 1999-10-31 Pluess - Staufer Ag Highly concentrated aqueous suspension of minerals and/or fillers and/or pigments
JPH08157315A (en) * 1994-10-05 1996-06-18 Daiso Co Ltd Antifungal and antibacterial composition and use thereof
JP2963657B2 (en) * 1996-07-05 1999-10-18 株式会社信州セラミックス Deposition treatment agent
KR100436705B1 (en) * 1997-05-06 2004-08-25 삼성에스디아이 주식회사 Cathode ray tube having antibacterial coating film formed on panel unit, and method for manufacturing the same
JP2000011921A (en) * 1997-05-06 2000-01-14 Samsung Display Devices Co Ltd Cathode-ray tube provided with antibacterial coating film and its manufacture
JP2002053812A (en) * 2000-08-09 2002-02-19 Mizuno Tomofumi Coating
JP3874600B2 (en) * 2000-11-08 2007-01-31 日鉄鉱業株式会社 Catalyst powder, coating composition and coating
JP2002178626A (en) * 2000-12-12 2002-06-26 Mitsubishi Paper Mills Ltd Ink jet recording material
CN1195120C (en) * 2002-05-14 2005-03-30 常德卷烟厂 Making process of antiseptic China Cypress paper
JP2004100110A (en) * 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp Photocatalyst supporting paper
JP2004276363A (en) * 2003-03-14 2004-10-07 Konica Minolta Holdings Inc Manufacturing method for inkjet recording sheet and inkjet recording sheet
US7452416B2 (en) * 2004-05-17 2008-11-18 Cpm Industries Cationic titanium dioxide pigments
US20050282946A1 (en) * 2004-06-21 2005-12-22 Tyau-Jeen Lin Titanium dioxide slurries for ink applications
CN1257946C (en) * 2004-08-05 2006-05-31 复旦大学 High stability high transparency rutile type nano titanium dioxide slurry and its dispersively preparing method
US7482054B2 (en) * 2004-08-09 2009-01-27 Behr Process Corporation Pigment spacing
JP5047458B2 (en) * 2004-12-02 2012-10-10 日本製紙株式会社 Coated paper for printing
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
KR100666528B1 (en) * 2005-07-18 2007-01-19 한솔제지주식회사 The manufacture of antibiotic food packaging paperboard
CN101153138A (en) * 2006-09-25 2008-04-02 天津市振东涂料有限公司 Method of producing ultra-bright light catalysis degradation antimicrobial environment protection paint
CN101153137A (en) * 2006-09-25 2008-04-02 天津市振东涂料有限公司 Method of producing ultra-bright light catalysis degradation antimicrobial environment protection paint
JP4916832B2 (en) * 2006-09-29 2012-04-18 大王製紙株式会社 Sanitary paper
CN1958950A (en) * 2006-11-20 2007-05-09 狄华明 Environmental protective newsprint paper
CN100535063C (en) * 2007-06-14 2009-09-02 济南大学 Nanometer ecological paint
EP2204351A4 (en) * 2007-09-12 2012-03-28 M Tech Co Ltd Ultrafine particles of titanium dioxide and process for producing the ultrafine particles
JP4599476B2 (en) * 2009-06-08 2010-12-15 香川県 Paper with antibacterial function
PL214152B1 (en) * 2009-09-29 2013-06-28 Ekopak Plus Spolka Z Ograniczona Odpowiedzialnoscia Cardboard with biocidal properties and method for obtaining cardboard with biocidal properties
CN101928496A (en) * 2010-08-18 2010-12-29 南昌兴达涂料有限公司 High-performance visible light catalyzing inner-wall antibacterial coating
CN102329552A (en) * 2011-05-27 2012-01-25 安徽美佳新材料股份有限公司 Preparation method of multifunctional composite coating
CN102635038A (en) * 2012-03-31 2012-08-15 宁波亚洲浆纸业有限公司 Production method for antibacterial paperboards

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302404A (en) * 1991-11-18 1994-04-12 Oy Kyro Board & Paper Ltd. Wallpaper
US5935717A (en) * 1996-06-28 1999-08-10 Hitachi, Ltd. Functional film having inorganic thin on surface of organic film article using the same and process for producing the same
JP2000027095A (en) * 1998-07-03 2000-01-25 Hour Seishi Kk Photocatalyst titanium oxide-containing paper
US20060246149A1 (en) * 2003-04-18 2006-11-02 Herwig Buchholz Antimicrobial pigments
US20060134239A1 (en) * 2003-06-17 2006-06-22 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Agents against microorganisms containing patchouli oil, patchouli alcohol and/or the derivatives thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Machine Translation of CN 102635038A (2012) *
Matsubara et al., “Photoactive TiO2 Containing Paper: Preparation and its Photocatalytic Activity under Weak UV Light Illumination”, Chemistry Letters pp. 767-768 (1995) *
Ngo et al., "Paper Surfaces Functionalized by Nanoparticles", Advances in Colloid Science 163, pp. 23-38 (2011) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992359A1 (en) 2020-11-01 2022-05-04 Arctic Paper Kostrzyn Spólka Akcyjna Antimicrobial paper coating

Also Published As

Publication number Publication date
CN103194935A (en) 2013-07-10
US8940086B2 (en) 2015-01-27
CN102635038A (en) 2012-08-15
WO2013143351A1 (en) 2013-10-03
JP2014524948A (en) 2014-09-25
US20140083635A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
US8940086B2 (en) Process of making antibacterial coating and antibacterial paper with same, and antibacterial paper
JP7090589B2 (en) Paper and paperboard products
CN103590283B (en) Coating and apply the coated paper of this coating
RU2346098C1 (en) Method for production of coated paper
KR20190137841A (en) Microfibrous cellulose with enhanced properties and method for producing same
TW467832B (en) Formulation suitable for ink receptive coatings
KR102098517B1 (en) Process for the production of nano-fibrillar cellulose suspensions
JP5341518B2 (en) Manufacturing method of paper coating liquid and coated paper coated with paper coating liquid obtained by the method
RU2365696C2 (en) Production of paper using latex with agglomerated hollow particles
RU2415986C1 (en) Suspensions of latex-treated filler for use in paper making
CN103590282B (en) Coating and apply the coated paper of this coating
US5261956A (en) Method for improving the rheology of calcined kaolin clay products
US20140302337A1 (en) Process for manufacturing coated substrates
US20060260775A1 (en) Method to manufacture paper
CN1229544C (en) Poly(vinyl alcohol) binder for calcium carbonate pigment
CN111621172A (en) Method for improving dispersibility of titanium dioxide in aqueous color paste
US20020040773A1 (en) Process for producing silica particles suitable for use as filler for paper
US6156117A (en) Polymer structured clay pigment and method of preparing the same
US20220316140A1 (en) Microfibrillated coating compositions, processes and applicators therefor
US6402827B1 (en) Paper or paper board coating composition containing a structured clay pigment
SK165099A3 (en) Method for making paper using a gelling system
JPH09176988A (en) Production of filler added paper
US10961662B1 (en) Ash retention additive and methods of using the same
CN106835827A (en) Special modified calcium carbonate containing conductive black of a kind of copy paper and preparation method thereof
JP5650393B2 (en) Newspaper

Legal Events

Date Code Title Description
AS Assignment

Owner name: NINGBO ASIA PULP & PAPER CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAI, SHU-HUA;WANG, JUN-MING;QUAN, JI-PING;AND OTHERS;REEL/FRAME:034292/0815

Effective date: 20141104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION