WO2013137329A1 - 電子機器用カバーガラスのガラス基板、及びその製造方法 - Google Patents

電子機器用カバーガラスのガラス基板、及びその製造方法 Download PDF

Info

Publication number
WO2013137329A1
WO2013137329A1 PCT/JP2013/057033 JP2013057033W WO2013137329A1 WO 2013137329 A1 WO2013137329 A1 WO 2013137329A1 JP 2013057033 W JP2013057033 W JP 2013057033W WO 2013137329 A1 WO2013137329 A1 WO 2013137329A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
etching
pair
mirror
Prior art date
Application number
PCT/JP2013/057033
Other languages
English (en)
French (fr)
Inventor
雨宮 勲
正 桜井
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2014504966A priority Critical patent/JP6110364B2/ja
Priority to CN201380013614.7A priority patent/CN104169233B/zh
Publication of WO2013137329A1 publication Critical patent/WO2013137329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to an electronic device including a cover glass for a portable device used as a cover member for a portable device (portable electronic device) and a cover glass for a touch sensor used as a cover member for an internal substrate in a touch sensor such as a pointing device.
  • the present invention relates to a glass substrate for a cover glass and a manufacturing method thereof.
  • a cover glass for an electronic device is used as a cover member that forms a part of the exterior of a mobile device such as a mobile phone, a PDA (Personal Digital Assistant), a digital still camera, and a video camera. It is used.
  • cover glasses of various shapes have been produced in order to correspond to the casings and display screens of various shapes of mobile devices devised from the viewpoint of design, in addition to thinning and high functionality of portable devices. .
  • Patent Document a method of forming an interposing surface by etching a glass substrate and a spacer laminated with an etchant composed of a mixture of hydrofluoric acid and sulfuric acid is known (Patent Document). 2).
  • cover glasses for portable devices that protect display screens (hereinafter referred to as “cover glasses” as appropriate). Therefore, a higher mechanical strength has been demanded so that it can withstand a pressing operation on a display screen by a user, a drop of a portable device, and the like.
  • the wire material having a high hardness of the polishing brush damages the end surface of the glass substrate of the cover glass and the end portion including the interposition surface.
  • microcracks remain at the end of the glass substrate.
  • the required mechanical strength cannot be maintained due to the progress of microcracks at the end.
  • Microcracks can be removed by applying conventional etching to the edge of the glass substrate where microcracks exist, but the etched surface after microcrack removal has a very small amount due to processing marks. Unevenness (pear ground) can be formed.
  • the minute irregularities are formed by forming a plurality of spherical minute concave portions and forming convex portions by contacting edges of adjacent concave portions. If such minute unevenness remains on the surface of the edge of the glass substrate, for example, when an external force is applied to the glass substrate in the direction of bending the main surface of the glass substrate, the unevenness on the surface of the edge As a result, stress concentration tends to occur, so that the required mechanical strength may not be maintained.
  • an electronic device that can form an intervening surface interposed between a main surface and an end surface while maintaining high mechanical strength for a glass substrate of a cover glass for portable devices. It aims at providing the glass substrate of a cover glass, and its manufacturing method.
  • a first aspect of the present invention provides a pair of main surfaces, end surfaces disposed along a direction orthogonal to the pair of main surfaces, and disposed between the pair of main surfaces and the end surfaces.
  • the interposed surface forming step is a process using a mechanical processing means, and in the mirroring process step, the processing is performed using the mechanical processing means. Etching may be performed so as to remove a damage layer that may occur at the end.
  • the intervening surface forming step is an etching process, and etching liquids having different compositions are used in the intervening surface forming step and the mirroring process step. Good.
  • hydrofluoric acid or an acid having a larger acid dissociation constant than hydrofluoric acid is used as an additive with respect to hydrofluoric acid.
  • an etching solution in which an acid having a larger acid dissociation constant than hydrofluoric acid is added as an additive to hydrofluoric acid is used in the mirroring treatment step.
  • the concentration of the etchant additive in the step may be higher than the concentration of the etchant additive in the interposition surface forming step.
  • the mixing ratio of the amounts of the hydrofluoric acid and the additive in the etching solution in the mirror finishing process is preferably in the range of 10: 3 to 10:20 per kg of the etching solution.
  • the glass substrate in the mirror surface treatment step, is immersed in an etching solution, and the glass substrate is swung in parallel with the thickness direction of the glass substrate. May be.
  • an opening that is performed before the mirror-finishing process and penetrates in the thickness direction of the glass substrate is formed in the glass substrate using a mechanical processing means.
  • An opening forming step, and in the mirror finishing step, an etching process may be performed so that a damage layer that may be generated on an inner wall portion of the opening is removed by the opening forming step using the mechanical processing means. .
  • the method further includes a chemical strengthening step that is performed after the etching treatment step and performs chemical strengthening by ion exchange, and the etching treatment step is present on the inner wall portion of the opening.
  • An etching allowance may be determined in advance so as to suppress breakage of the glass substrate in the chemical strengthening step caused by a damaged layer.
  • the etching treatment may be performed in a state where a plurality of the glass substrates are laminated via a protective material having etching resistance.
  • a pair of main surfaces, an end surface disposed along a direction orthogonal to the pair of main surfaces, and the pair of main surfaces and the end surfaces are disposed.
  • a glass substrate of a cover glass for an electronic device having an end portion including a pair of interposition surfaces, wherein the interposition surface and the end surface are mirror surfaces.
  • the isotropic surface roughness Ra of the end face in two directions orthogonal to each other is 1 ⁇ m or less.
  • an opening is formed in the glass substrate, and an interposition surface is formed between the inner wall surface which is the surface of the inner wall portion of the opening and the pair of main surfaces.
  • the intervening surface and the inner wall surface may be mirror surfaces.
  • the glass substrate may be aluminosilicate glass that can be chemically strengthened by ion exchange.
  • Cover glass for portable device (electronic device) of the embodiment (hereinafter referred to as “cover glass” as appropriate)
  • a preferred usage form of the cover glass of the present embodiment is, for example, a cover glass used for protecting a display screen of a portable electronic device, particularly a mobile phone (mobile device).
  • the cover glass of the present embodiment may have a desired shape, and is produced by forming a multilayer printed layer on the main surface by a known printing method on a glass substrate having the same shape.
  • the cover glass needs to be made of glass that is thin and has high mechanical strength in order to satisfy the specifications for device drop or operation input to the display screen (operation input as a touch panel function). Reinforcement has been made.
  • FIG. 1A and 1B show an example of the appearance of the glass substrate of the cover glass of the present embodiment.
  • FIG. 1A is a perspective view of an exemplary glass substrate 1
  • FIG. 1B is an enlarged view of a cross section of an end (edge) of the glass substrate 1 shown in FIG. 1A.
  • the thickness T of the glass substrate 1 is not particularly limited, but it is usually preferably 1 mm or less, and 0.7 mm or less, from the viewpoint of suppressing an increase in the weight of various devices to which the cover glass is assembled and reducing the thickness of the devices. It is more preferable that
  • the lower limit value of the plate thickness T is preferably 0.1 mm or more from the viewpoint of ensuring the mechanical strength of the glass substrate.
  • the outer shape of the glass substrate 1 can be appropriately set according to the portable device to be incorporated. As illustrated in FIG. 1A, the glass substrate 1 is formed with an opening 1h for voice input / output, such as a receiver and a microphone, as necessary. In addition, you may provide the recessed part (it is a notch shape of planar view) recessed in the edge part of a glass substrate to the surface direction center side of a main surface.
  • the glass substrate of the present embodiment is selected from, for example, (1) SiO 2 and Al 2 O 3 , Li 2 O, and Na 2 O that are used for producing a sheet glass using a downdraw method, a float method, or the like. It is preferable to use a known glass material such as an aluminosilicate glass containing at least one alkali metal oxide and (2) soda lime glass used for producing a sheet glass using a float method or the like.
  • a compressive stress layer is formed by chemical strengthening on the surface layer portions on the front side and the back side of the glass substrate, respectively. This compressive stress layer is an altered layer in which a part of the alkali metal originally contained in the glass material constituting the glass substrate is replaced with an alkali metal having a larger ionic radius. For example, sodium ions contained in the glass material constituting the glass substrate of this embodiment are replaced with potassium ions.
  • the aluminosilicate glass includes at least each of oxides of silicon, aluminum, and sodium from the practical viewpoints such as manufacturability of plate glass, mechanical strength, and chemical durability. It is more preferable that the glass contains a glass having a high content and a relatively small content of aluminum oxide.
  • aluminosilicate glass for example, SiO 2 is 58 to 75% by weight, Al 2 O 3 is 4 to 20% by weight, Li 2 O is 0 to 10% by weight, and Na 2 O is 4 to 20%.
  • Aluminosilicate glass containing wt% as a main component can be used.
  • the glass substrate 1 of the present embodiment includes a pair of main surfaces 1p, an end surface 1t arranged along a direction orthogonal to the pair of main surfaces 1p, and a pair of main surfaces 1p. It has a pair of interposition surface 1c arrange
  • the intervening surface 1c is provided in order to avoid a decrease in mechanical strength due to the occurrence of microcracks during the manufacturing process of the cover glass or when the cover glass is assembled to a portable device. Similar to the intervening surface 1c, an interposing surface is also formed on the glass substrate 1 between the inner wall surface 1w of the opening 1h and the pair of main surfaces 1p.
  • the end surface 1t and the intervening surface 1c are mirror surfaces in order to maintain high mechanical strength with respect to the cover glass.
  • the mirror surface is generally “a surface that is finished so as to be mirror-like on a pear ground having countless fine irregularities.”
  • the surface roughness calculated average roughness Ra
  • the surface may be defined as a mirror surface (or smooth surface).
  • the boundary portions b11 and b12 between the main surface 1p and the interposed surface 1c, and the boundary portions b21 and b22 between the interposed surface 1c and the end surface 1t are Both are rounded.
  • the radii of curvature of the boundary portions b11, b12 and the boundary portions b21, b22 are all preferably in the range of 30 to 200 ⁇ m in order to suppress the occurrence of stress concentration at these boundary portions.
  • FIG. 2 is a diagram sequentially illustrating each step in the method for manufacturing the glass substrate of the cover glass for portable devices of the present embodiment. Hereinafter, each step will be described.
  • (2-1) Sheet glass laminating process The sheet glass laminating process is performed by laminating a large-sized sheet glass of a predetermined size produced by, for example, a downdraw method or a float method while interposing a protective material. It is the process of producing the laminated body of glassy glass.
  • the protective material interposed between the glass sheets is preferably a temporary attachment material that has a predetermined adhesive strength and can be peeled later.
  • a temporary attachment material for example, an ultraviolet curable resin (UV curable resin) is easily solidified by irradiation with ultraviolet rays having a predetermined wavelength, and thus has an advantage that the bonding operation is easy.
  • UV curable resin a resin that can easily peel off the glass sheet bonded with hot water, heat, or an organic solvent is preferable.
  • a wax, a light curable resin, a visible light curable resin, or the like can be used as the temporary material. Since the wax softens at a predetermined temperature to become a liquid and becomes a solid at room temperature, it is easy to bond and separate.
  • Such a temporary attachment material may be provided in a roll shape, and a temporary attachment roll is temporarily attached to the entire surface of the large-sized plate-like glass by rotating and temporarily cut, and then on the temporary attachment material. Repeat to place the next plate glass.
  • the number of laminated sheet glasses is, for example, about 10 to 100.
  • the temporary attachment material is a UV curable resin
  • the temporary attachment material is cured by irradiating the laminated sheet of glass sheets with ultraviolet rays.
  • the thin spacer of a resin material, a fiber material, a rubber material, a metal material, and a ceramic material can be used.
  • the protective material comes into contact with an etching solution used in an etching process described later, the protective material is made of a material that is not dissolved or removed by the etching solution (that is, etching resistance).
  • the protective material is made of a material that is hardly soluble or insoluble in hydrofluoric acid.
  • the thickness of the temporary attachment material is too thick, for example, 200 ⁇ m or more, chipping (chips) in a subsequent cutting step or the like becomes a problem.
  • the thickness of the temporary bonding material is, for example, 10 ⁇ m or less, it may be difficult to peel off the glass substrate. Therefore, the thickness of the temporary bonding material is preferably 10 to 200 ⁇ m, more preferably 20 to 80 ⁇ m.
  • FIG. 3 shows a perspective view of a small glass substrate laminate 10A obtained by the cutting process.
  • the laminated body 10A has a structure in which a protective material 100A and a glass substrate 1A are sequentially laminated.
  • the end surfaces of the protective material 100A and the glass substrate 1A are on the same plane.
  • an opening corresponding to the opening 1h to be provided in the cover glass is formed by machining on the glass substrate laminate 10A.
  • an opening forming step is also unnecessary.
  • an opening having a desired shape is formed by NC processing using a mechanical processing means such as a drill.
  • the shape processing step is a step of machining the laminated body 10A so that the outer shape of the laminated body 10A of the glass substrate becomes the outer shape of the cover glass.
  • the outer edge of the glass substrate laminate 10A is ground (NC processed) using a grinder or the like to obtain a desired outer shape.
  • An exemplary perspective view of the glass substrate laminate 10B obtained by the shape processing step is shown in FIG.
  • the laminated body 10B has a structure in which a protective material 100B and a glass substrate 1B are sequentially laminated.
  • the end surfaces of the protective material 100B and the glass substrate 1B are on the same plane.
  • the end surface of the glass substrate after the shape processing is a machined surface having a relatively rough surface property.
  • an example of the opening 10H formed by the opening formation process is shown.
  • the etching process is a process in which an etching process is performed using an etching apparatus 20 shown in FIG. 5 on the end of each glass substrate 1B constituting the laminated body 10B.
  • the etching processing apparatus 20 will be described with reference to FIG.
  • the liquid tank 3 filled with the etching liquid L1 is provided in the etching processing apparatus 20, the liquid tank 3 filled with the etching liquid L1 is provided.
  • the etching solution L1 is not particularly limited as long as it contains at least hydrofluoric acid, but if necessary, an acid having a larger acid dissociation constant than hydrofluoric acid, such as sulfuric acid or hydrochloric acid, is added as an additive. Also good.
  • the liquid tank 3 includes a holding mechanism for holding the laminated body 10B of the glass substrate, a liquid circulating apparatus in the tank such as a bubbling mechanism, and an oscillation (not shown) for oscillating the laminated body 10B.
  • a mechanism 5 is preferably provided.
  • a preferable example of swinging of the laminated body 10B by the swinging mechanism 5 is as shown by an arrow in FIG. 5 in the stacking direction of the stacked body 10B (that is, in the thickness direction of the glass substrate). That is, the laminated body 10B is swung at a predetermined number of times of rocking.
  • etching proceeds from the end surface of the glass substrate in contact with the etching solution in the liquid tank 3, but as the reaction proceeds, an insoluble or hardly soluble salt (for example, M 3 [AlF 6 ]) as a reaction product.
  • M 3 [AlF 6 ] 2 M: alkali metal, alkaline earth metal.
  • This insoluble or hardly soluble salt can be removed from the end face of the glass substrate by swinging the laminate 10B and further by the liquid circulation system of the etching processing apparatus 20.
  • the liquid circulation system of the etching processing apparatus 20 includes an overflow tank 4 provided in the upper part of the liquid tank 3, a pipe 8, a filtering device 6 for removing reaction products from the etching liquid, and a circulation pump 7. ing.
  • the filtering device 6 is a device for selectively removing the reaction product from the etching solution.
  • the filtering device 6 preferably has a configuration capable of selectively removing reaction products from the etchant, for example, a device configuration capable of realizing selective removal by centrifugation, selective removal by a sedimentation tank, and the like. .
  • a mirroring process for mirroring the end surface and the interposition surface and an interposition for forming the interposition surface are performed on the laminated body 10B after the shape processing step.
  • An etching process including a two-stage process including a surface forming process (a two-stage etching process) will be described.
  • the mirroring process and the intervening surface forming process are continuously performed using different etching processing apparatuses 20. The purpose is to achieve the formation of the intervening surface of the glass substrate and the mirroring of the end and intervening surface by performing two-stage etching.
  • the inventor found that the composition in the intervening surface forming step and the mirroring treatment step Have found that it is preferable to use different etching solutions. Specifically, it is preferable to change the mixing ratio of hydrofluoric acid and another acid (additive) between the etching solution for the intervening surface forming step and the etching solution for the mirror finishing process.
  • the mixing ratio of hydrofluoric acid and another acid (additive) between the etching solution for the intervening surface forming step and the etching solution for the mirror finishing process.
  • FIG. 6 is a graph when hydrofluoric acid per kg of the etching solution is 10 [mol] and the amount of sulfuric acid (H 2 SO 4 ) added per kg of the etching solution is changed. From FIG. 6, it is understood that the amount of sulfuric acid to be added is preferably 3 to 4 [mol] or less, assuming that the chamfered amount required for the glass substrate of the cover glass for portable devices is at least about 60 ⁇ m.
  • the concentration of the etching solution additive in the mirror surface treatment step is preferably higher than the concentration of the etching solution additive in the intervening surface forming step.
  • the concentration of the acid as an additive in the etching solution is low, the interposition surface at the end of the glass substrate becomes good (that is, the chamfering amount of the interposition surface can be increased) and functions as chemical etching.
  • the concentration of the acid as an additive in the etching solution is high, the end surface of the glass substrate is smoothed and functions as a chemical polishing that provides a good end surface with almost no unevenness.
  • the mixing ratio (mol ratio) of hydrofluoric acid and the additive in the etching solution in the mirror finishing process is in the range of 10: 3 to 10:20 per kg of the etching solution. Is preferably within the range of 10: 4 to 10: 9.
  • the mixing ratio of the hydrofluoric acid and the additive in the etching solution in the intervening surface forming step may be lower than that in the mirroring treatment step.
  • the etchant in the intervening surface forming step may be only hydrofluoric acid (that is, no additive may be added).
  • FIG. Step S1 in FIG. 7 shows the laminated body 10B in the initial state (that is, after the shape processing step), and the end surfaces of the protective material 100B and the glass substrate 1B constituting the laminated body 10B are the shape processing that is the previous step.
  • the same surface (machined surface) is obtained by machining in the process.
  • the etching solution prepared so that the concentration of the additive becomes the above-described one fills the liquid tank 3 of the etching processing apparatus 20, and sets the laminate 10 ⁇ / b> B in the swing mechanism 5. Then, the laminate 10B is swung for a predetermined time (for example, 3 minutes) by the swing mechanism 5 with a predetermined swing amount and swing frequency.
  • chemical polishing is performed to smooth the end face of the glass substrate and form a good end face with almost no unevenness.
  • step S ⁇ b> 2 of FIG. 7 the end surface and the interposition surface of each glass substrate 1 ⁇ / b> B become mirror surfaces from which microcracks and minute irregularities are removed.
  • the etching liquid is filled in the opening, and therefore, the mirror surface treatment step causes the inside of the opening of each glass substrate 1B constituting the laminated body 10B. Etching is performed so that the wall surface and the intervening surface between the inner wall surface and the main surface are mirror surfaces.
  • the intervening surface forming step it was filled with an etching solution prepared so that the concentration of the additive was as described above (that is, an etching solution having a lower concentration of additive than in the case of the mirroring treatment step),
  • the laminated body 10B is transferred to a liquid tank 3 different from that used in the mirror finishing process, and the laminated body 10B is moved for a predetermined time (for example, 3 minutes) by the rocking mechanism 5 with a predetermined rocking amount and the number of rocking times.
  • chemical etching is performed to polish the end surface of the glass substrate and form an interposing surface that interposes the main surface and the end surface.
  • etching proceeds from the end face 1t of each glass substrate 1B constituting the laminated body 10B. That is, since the protective material 100B has etching resistance, it is not dissolved / removed, but the end surface 1t of the glass substrate 1B in contact with the etching solution is dissolved / removed more than in the state of step S2. As the etching progresses, for example, the end surface 1t of the glass substrate 1B is dissolved and removed to the inside of, for example, about 20 to 100 ⁇ m from the end surface of the protective material 100B. That is, as shown in step S3 of FIG.
  • each glass substrate 1B so that the position of the end surface 1t of each glass substrate 1B constituting the laminated body 10B changes inward in the plane direction of the main surface 1p.
  • the glass substrate is dissolved in the etching solution between the protective materials 100B of each other, whereby a protruding portion 100j (a portion of the protective material 100B protruding outward from the end surface 1t of the glass substrate) is formed on the pair of protective materials 100B. It is formed.
  • the etching solution penetrates inward at the molecular level to the interface (indicated by BD in FIG. 7) between the protective material 100B and the glass substrate 1B, and thus in step S4 of FIG. As shown, an interposition surface 1c is formed.
  • the boundary portion between the main surface 1p and the interposition surface 1c and the boundary portion between the interposition surface 1c and the end surface 1t are all rounded ( (See FIG. 1B).
  • the etching liquid is filled in the opening, so that the inside of the opening of each glass substrate 1B constituting the laminated body 10B is formed by the intervening surface forming step.
  • An intervening surface is formed between the wall surface and the main surface.
  • the swinging action of the etching processing apparatus 20 is schematically shown in FIG.
  • the etching processing apparatus 20 when the rocking is performed in parallel with the stacked body 10B in the vertical direction, that is, the thickness direction of the glass substrate, the protrusion 100j of the protective material 100B is formed.
  • FIG. 8 when the laminated body 10B moves downward, a flow F1 of the etching solution directed toward the end face 1t of the glass substrate is generated, and when the laminated body 10B moves upward, it faces the end face 1t of the glass substrate.
  • a flow F2 of the etching solution is generated.
  • the etching solution penetrates inward at the molecular level along the interface BD (see FIG.
  • the rocking direction of the stacked body 10B is not limited to the above-described direction, and may be other rocking directions. For example, you may rock
  • the rocking condition is at least twice the sum of the thicknesses of the glass substrate and the protective material to be etched (in the example shown in FIG. 5, the length in the stacking direction of the stacked body 10B).
  • the number of movements is preferably 1 to 60 times / minute.
  • the number of oscillations is more preferably 10 to 30 times / min in order to further improve the circulation effect of the etching solution.
  • the rocking direction of the stacked body 10B is not limited to the above-described direction, and may be other rocking directions.
  • What is necessary is just to move an etching liquid relatively with respect to a glass substrate or its laminated body, and the rocking
  • the etching solution By moving the etching solution relative to the glass substrate, the etching solution flows toward the end surface, so that the etching solution penetrates into the interface between the protective material and the glass substrate, and an interposition surface is formed. .
  • the manufacturing method of the present embodiment is not limited to the two-stage etching process described above.
  • the intervening surface has already been subjected to mechanical processing by brush polishing on the laminated body 10B after the shape processing step (not shown; see, for example, the above cited reference 1) or mechanical grinding processing using a general-purpose grindstone.
  • the laminated body 10 ⁇ / b> B on which the is formed is an object to be etched, it is not necessary to form an intervening surface by etching.
  • the etching process may be for the purpose of mirroring only the end face and the intervening surface. Similar to the mirroring process described above, hydrofluoric acid and an additive (with an acid dissociation constant).
  • the mixing ratio (mol ratio) with hydrofluoric acid is preferably in the range of 10: 3 to 10:20 per kg of the etching solution, and in the range of 10: 4 to 1:12. More preferably.
  • fluctuation conditions of a mirror-finishing process are the same as the rocking
  • the intervening surface forming step may be performed first, followed by the mirroring process step.
  • the etching process is performed so as to suppress the breakage of the glass substrate in the chemical strengthening process caused by the damaged layer that may exist on the inner wall portion of the opening. The takeover of is decided beforehand.
  • the margin (dissolved amount) of the inner wall of the opening in this etching step may be 20 to 200 ⁇ m, as in the case of the end face 1t of the glass substrate 1B. Moreover, it is preferable to set it as 50 micrometers or more in order to remove a damaged layer more reliably, and to set it as 100 micrometers or less in order to improve production efficiency.
  • the peeling step is a step of peeling the glass substrate laminates 10B one by one and separating the individual glass substrates from the laminate 10B.
  • the peeling method in the peeling process depends on the properties of the protective material.
  • the protective material temporary bonding material made of an ultraviolet curable resin may be peeled off in an environment of warm water (80 to 90 degrees Celsius). There is a protective material.
  • the laminated body 10B can be peeled (separated) on each glass substrate by immersing the laminated body 10B in a container containing warm water.
  • Chemical strengthening step Next, a chemical strengthening step is performed.
  • a chemical strengthening step a plurality of glass substrates are loaded into a cassette (holder), and the cassette is immersed in a chemical strengthening treatment liquid containing a molten salt.
  • a chemical strengthening treatment liquid containing a molten salt containing a molten salt.
  • the composition and temperature of the molten salt, and the immersion time can be appropriately selected according to the glass composition of the glass substrate, the thickness of the compressive stress layer formed on the surface layer portion of the glass substrate, etc., but the glass composition of the glass substrate has been described above.
  • a low-temperature ion exchange method in which the treatment temperature of the chemical strengthening treatment liquid is usually 500 ° C. or lower. This is because the high-temperature ion exchange method in which ion exchange is performed in the temperature range above the annealing point of the glass does not provide a mechanical strength as high as that of the low-temperature ion exchange method.
  • the composition and temperature of the molten salt and the immersion time are preferably selected from the ranges exemplified below.
  • -Composition of molten salt Potassium nitrate or a mixed salt of potassium nitrate and sodium nitrate
  • -Temperature of molten salt 320 ° C to 470 ° C ⁇ Immersion time: 3 to 600 minutes
  • An aluminosilicate glass including a glass containing at least silicon, aluminum, and sodium oxides, and particularly containing a large amount of silicon oxide and a relatively small amount of aluminum oxide is formed by a downdraw method to obtain a thickness of 0. Molded into 5 mm plate glass.
  • the surface roughness (arithmetic mean roughness Ra) of the main surface of the sheet glass formed by the downdraw method was 10 nm when examined by an atomic force microscope.
  • the plate-like glass is cut into a rectangular glass substrate having a size of 370 mm ⁇ 470 mm, and the cut glass substrate is laminated with an ultraviolet curable resin material as a temporary attachment material uniformly attached to the surface thereof to form a laminate.
  • an ultraviolet curable resin material as a temporary attachment material uniformly attached to the surface thereof to form a laminate.
  • the laminated body was irradiated with visible light to cure the resin material so that the laminated glass substrates were not separated.
  • the mirror treatment process and the intervening plane forming process are sequentially performed on the end portions of the glass substrates constituting the laminate using the etching processing apparatus shown in FIG. A staged etching process was performed. Different etching processing apparatuses were used in the mirror finishing process and the intervening surface forming process. Etching conditions were as follows. The mixing ratio of hydrofluoric acid (HF) in the etching solution and sulfuric acid (H 2 SO 4 ) as an additive in each step is as shown in Table 1.
  • HF hydrofluoric acid
  • H 2 SO 4 sulfuric acid
  • Etching solution temperature 40 ° C ⁇ Circulated flow rate: 20 L / min ⁇ Oscillation time: 3 minutes ⁇ Oscillation amount: 120 mm (pp) ⁇ Oscillation frequency: 30 times / min [Etching condition of the intervening surface forming step] -Etching solution temperature: 35 ° C ⁇ Circulating flow rate: 10 L / min ⁇ Oscillation time: 5 minutes ⁇ Oscillation amount: 20 mm (pp) ⁇ Oscillation frequency: 25 times / minute
  • the laminated body was taken out from the etching processing apparatus and immersed in warm water (80 to 90 degrees Celsius) to be separated into a plurality of glass substrates. At this time, no abnormality was found on the surface of each glass substrate.
  • the chamfering amount of the interposition surface and the surface roughness of the end surface and the interposition surface were measured and evaluated.
  • the measurement method and evaluation criteria for the chamfered amount of the intervening surface, the end surface, and the surface roughness of the intervening surface were as follows. The edge of the glass substrate is magnified 200 times with an optical microscope, and the amount of chamfering of the intervening surface is measured. “70” for 70 to 100 ⁇ m, “ ⁇ ” for 50 to 70 ⁇ m, and 50 ⁇ m or less. Evaluated as “x”. “ ⁇ ” or “ ⁇ ” is acceptable.
  • the surface roughness of the end surface and the intervening surface is expressed by an arithmetic average roughness Ra defined by JIS B0601: 2001, for example, measured by a Keyence laser microscope (VK-9700) and defined by JIS B0633: 2001. Calculated by the method. At this time, the arithmetic average roughness Ra was calculated in two directions orthogonal to each other on each of the end face and the intervening face. As a result, “ ⁇ ” was evaluated when 0.05 ⁇ m or less in both directions, “ ⁇ ” when 0.1 ⁇ m or less in both directions, and “X” when larger than 0.2 ⁇ m in at least one direction. . “ ⁇ ” or “ ⁇ ” is acceptable.
  • the mixing ratio of HF and H 2 SO 4 is the ratio of the amount of substance (mol) per 1 kg of the total amount of the etching solution.
  • the breaking load was measured by a four-point bending test method according to the above, and the four-point bending strength of the glass substrate was calculated.
  • the external size of the evaluation sample is 100.4 mm ⁇ 47.4 mm.
  • the breaking load was about 500 MPa, and in each of Examples 1 to 5, the breaking load exceeded 600 MPa. That is, it was confirmed that the mechanical strength was improved when the end surface and the intervening surface of the glass substrate were mirror surfaces as compared to the non-mirror surface.
  • Example 3 the manufacturing conditions of Example 1 were changed to create a glass substrate with an opening.
  • a glass substrate laminate was prepared in the same manner as in Example 1, and the edge of the glass substrate laminate was used with a brush and loose abrasive grains by the method described in JP-A-2009-256125. And polished. And a pair of interposition surface was formed in the edge part of the glass substrate in a laminated body, the laminated body was isolate
  • the same conditions as the mirror-finishing process of Example 3 are applied to the edge part of a laminated body.
  • the mirror surface treatment was performed by etching.
  • the laminated body was isolate
  • a 1.3 mm ⁇ 10.0 mm long hole in plan view was formed in a laminated state, and the inner wall of the opening was mirror-finished (etched). A glass substrate of Example 6 with an opening was obtained.
  • Example 7 a glass substrate of Example 7 was obtained under the same production conditions as in Example 3. Also, in the process of manufacturing the glass substrate of Example 7, a 1.3 mm ⁇ 10.0 mm long hole in plan view was formed in a laminated state, and the inner wall of the opening was mirror-finished (etched). A glass substrate of Example 7 with an opening was obtained. Then, with respect to the glass substrates of Examples 6 and 7 and Comparative Example 3, the breaking load was measured by a four-point bending test method according to JIS-R1601, and the four-point bending strength of the glass substrate was obtained. The results are shown in Table 2 below. The number of samples is 100, and Table 2 shows the range of values obtained by the four-point bending test.
  • Example 6 and Comparative Example 3 in Table 2 even when a pair of intervening surfaces are formed at the end of the glass substrate by brush polishing, by performing a mirroring process by etching process thereafter, It was confirmed that the mechanical strength of the glass substrate could be improved. In addition, it was confirmed that the strength can be improved more remarkably in the case with an opening. Furthermore, as shown in Example 6 and Example 7, in place of brush polishing, the mechanical strength can be improved most when the interpolated surface is formed by the etching process after the mirroring process is performed in advance. Was confirmed.
  • Example 8 and Comparative Examples 4 and 5 in Table 3 even when an intervening surface is formed at the end of the glass substrate by a single wafer method, by performing a mirroring process by an etching process thereafter It was confirmed that the mechanical strength of the glass substrate could be improved. Further, it was confirmed that the brush polishing method as in Comparative Example 5 could not sufficiently polish the inner wall portion of the opening, and the damaged layer present on the inner wall portion of the opening could not be removed.
  • the yield in the chemical strengthening process was about 98%.
  • the yield in the chemical strengthening process was about 40%.
  • chipping and cracking around the slit occurred during the chemical strengthening process. This is due to the thermal expansion of the glass substrate during chemical strengthening and the change in stress associated with ion exchange during chemical strengthening, which causes microcracks in the damage layer on the inner wall of the opening when the opening is formed by machining such as a drill. This is because of progress.
  • the yield in the chemical strengthening process is significantly reduced by the influence of the damaged layer when the damaged layer is not removed not only on the inner wall portion of the opening but also on the outer periphery of the glass substrate.
  • the manufacturing method of the glass substrate of the cover glass for electronic devices of this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, it is various improvement. Or you can change it.
  • the processing method of the present invention is not limited to such a lamination method, and may be a method (single wafer method) in which each process is performed in units of one glass substrate.
  • a glass substrate may be laminated

Abstract

 電子機器用カバーガラスのガラス基板について高い機械的強度を保持させつつ、主表面と端面と間に介在する介在面を形成することを可能とする電子機器用カバーガラスのガラス基板の製造方法、及び電子機器用カバーガラスのガラス基板が提供される。上記製造方法は、一対の主表面と、一対の主表面に対して直交する方向に沿って配置された端面と、一対の主表面と端面との間に配置された一対の介在面とを有する電子機器用カバーガラスのガラス基板の製造方法であって、ガラス基板に対して、介在面及び端面が鏡面となるようにエッチング処理を行うエッチング処理工程、を含むことを特徴とする。

Description

電子機器用カバーガラスのガラス基板、及びその製造方法
 本発明は、携帯機器(携帯型電子機器)のカバー部材として用いられる携帯機器用カバーガラスと、ポインティングデバイスなどのタッチセンサにおける内部基板のカバー部材として用いられるタッチセンサ用カバーガラスとを含む電子機器用カバーガラスのガラス基板、及びその製造方法に関する。
 電子機器として、例えば携帯電話機、PDA(Personal Digital Assistant)、デジタルスティルカメラ、ビデオカメラ等の携帯機器の外装の一部をなすカバー部材には、携帯機器用カバーガラス(電子機器用カバーガラス)が用いられている。近年、携帯機器の薄型化や高機能化に加え、意匠性の観点から考案される様々な形状の携帯機器の筐体および表示画面に対応すべく、様々な形状のカバーガラスが作製されている。
 このような携帯機器用カバーガラスの基材であるガラス基板の外縁に何ら処理が施されていないとするならば、主表面と端面との境界線が鋭利となって、その境界線からクラックやチッピング(欠け)が生じやすいために所要の機械的強度が得られない場合がある。そこで、携帯機器用カバーガラスのガラス基板の主表面と端面と間に介在する介在面(面取り面)を形成することが知られている。従来、介在面の形成方法として、回転ブラシ(研磨ブラシ)を用いて機械加工により介在面を形成する方法が知られている(特許文献1)。別の介在面の形成方法として、ガラス基板とスペーサを積層したものを、フッ化水素酸と硫酸の混合液からなるエッチング液によりエッチングして介在面を形成する方法が知られている(特許文献2)。
特開2009-256125号公報 特開昭57-34049号公報
 近年、携帯機器では、表示画面の大型化、タッチパネル機能を有する表示画面の普及が進んでおり、それに伴って、表示画面を保護する携帯機器用カバーガラス(以下、適宜「カバーガラス」という。)には、利用者による表示画面に対する押圧操作や、携帯機器の落下等に耐えうるように、より一層高い機械的強度が要求されるようになってきている。
 ところが、機械加工により介在面を形成する従来の方法では、例えば研磨ブラシの硬度の高い線材がカバーガラスのガラス基板の端面および介在面を含む端部に対して損傷を与えることによって、研磨後においてガラス基板の端部にマイクロクラックが残存している場合がある。この場合には、例えばガラス基板を曲げる方向に外力が加わったときに、端部におけるマイクロクラックの進行によって、所要の機械的強度を保持できない可能性がある。
 マイクロクラックが存在するガラス基板の端部に対して従来のエッチング処理を施すことによってマイクロクラックを除去することはできるが、マイクロクラック除去後のエッチング処理面には、加工痕を起因とする微小な凹凸(梨地面)が形成されうる。この微小な凹凸は、球状の微小な凹部が複数形成され、かつ隣り合う凹部の縁同士が接して凸部が形成されたものである。このような微小な凹凸がガラス基板の端部の表面上に残存していると、例えばガラス基板の主表面を曲げる方向に、ガラス基板に外力が加わったときに、端部の表面上の凹凸によって応力集中が生じやすくなるため、所要の機械的強度を保持できない可能性がある。
 よって、発明の1つの側面では、携帯機器用カバーガラスのガラス基板について高い機械的強度を保持させつつ、主表面と端面との間に介在する介在面を形成することを可能とする電子機器用カバーガラスのガラス基板及びその製造方法を提供することを目的とする。
 上記課題に直面した発明者は、電子機器用カバーガラスのガラス基板の端面および介在面を鏡面化することによって、マイクロクラックあるいは微小な凹凸が除去されるため、端面および介在面上での特定部位の応力集中を避けることができ、カバーガラスのガラス基板の機械的強度を向上させることができることを見出した。なお、端面および介在面を鏡面化することによって、その表面性状が極めて滑らかとなるため、外観品質が良好となるという効果もある。
 そこで、本発明の第1の観点は、一対の主表面と、前記一対の主表面に対して直交する方向に沿って配置された端面、及び前記一対の主表面と前記端面との間に配置された一対の介在面を含む端部とを有する電子機器用カバーガラスのガラス基板の製造方法であって、前記ガラス基板の前記一対の主表面と前記端面との間に前記一対の介在面を形成する介在面形成工程と、前記ガラス基板に対して、前記端部の表面が鏡面となるようにエッチング処理を行う鏡面化処理工程とを含むことを特徴とする。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記介在面形成工程は、機械的加工手段を用いた処理であり、前記鏡面化処理工程では、前記機械的加工手段を用いた処理により前記端部に生じうるダメージ層が除去されるようにエッチング処理を行ってもよい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記介在面形成工程は、エッチング処理であり、前記介在面形成工程及び前記鏡面化処理工程では、組成がそれぞれ異なるエッチング液が用いられてもよい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記介在面形成工程では、フッ化水素酸、もしくはフッ化水素酸に対し、フッ化水素酸よりも酸解離定数が大きい酸を添加剤として加えたエッチング液が用いられ、前記鏡面化処理工程では、フッ化水素酸に対し、フッ化水素酸よりも酸解離定数が大きい酸を添加剤として加えたエッチング液が用いられ、前記鏡面化処理工程でのエッチング液の添加剤の濃度は、前記介在面形成工程でのエッチング液の添加剤の濃度よりも高くてもよい。さらに、前記鏡面化処理工程でのエッチング液におけるフッ化水素酸と前記添加剤との物質量の混合比は、エッチング液総量1kg当たり10:3~10:20の範囲内であることが好ましい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記鏡面化処理工程では、前記ガラス基板をエッチング液に浸漬し、前記ガラス基板の厚さ方向に対して平行に前記ガラス基板を揺動させてもよい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記鏡面化処理工程の前に行われ、機械的加工手段を用いて前記ガラス基板に前記ガラス基板の厚さ方向に貫通する開口を形成する開口形成工程、をさらに含み、前記鏡面化処理工程では、前記機械的加工手段を用いた開口形成工程により前記開口の内壁部に生じうるダメージ層が除去されるようにエッチング処理を行ってもよい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記エッチング処理工程後に行われ、イオン交換による化学強化を行う化学強化工程をさらに含み、前記エッチング処理工程では、前記開口の内壁部に存在しうるダメージ層を起因とする前記化学強化工程での前記ガラス基板の破損を抑えるように、エッチングの取しろが予め決められていてもよい。
 上記電子機器用カバーガラスのガラス基板の製造方法において、前記エッチング処理は、対エッチング性を有する保護材を介して複数の前記ガラス基板が積層された状態で行われてもよい。
 本発明の第2の観点は、一対の主表面と、前記一対の主表面に対して直交する方向に沿って配置された端面、及び前記一対の主表面と前記端面との間に配置された一対の介在面を含む端部と、を有する電子機器用カバ-ガラスのガラス基板であって、前記介在面及び前記端面が鏡面であることを特徴とする。
 上記電子機器用カバ-ガラスのガラス基板において、前記端面の互いに直交する2方向での等方的な表面粗さRaが1μm以下であることが好ましい。
 上記電子機器用カバ-ガラスのガラス基板において、前記ガラス基板には開口が形成され、前記開口の内壁部の表面である内壁面と前記一対の主表面との間に介在面が形成されており、当該介在面及び前記内壁面が鏡面であってもよい。
 上記電子機器用カバ-ガラスのガラス基板において、前記ガラス基板は、イオン交換による化学強化可能なアルミノシリケートガラスであってもよい。
実施形態のカバーガラスのガラス基板の斜視図。 実施形態のカバーガラスのガラス基板の端部の断面拡大図。 実施形態のカバーガラスの製造方法における各工程を示す図。 切断工程後のガラス基板の積層体の斜視図。 形状加工工程後のガラス基板の積層体の斜視図。 エッチング処理工程で使用されるエッチング装置の概略を示す図。 エッチング液においてフッ化水素酸に添加する硫酸の濃度と介在部における面取りの幅の関係を示す図。 実施形態のエッチング処理工程におけるガラス基板の積層体の端部の経時変化を示す図。 実施形態のエッチング処理工程において、積層体に対する揺動作用を説明する図。
 (1)実施形態の携帯機器(電子機器)用カバーガラス(以下、適宜「カバーガラス」という。)
 本実施形態のカバーガラスの好ましい利用形態は例えば、携帯型電子機器、特に携帯電話機(携帯機器)の表示画面の保護のために用いられるカバーガラスである。本実施形態のカバーガラスは所望の形状であってよく、同一の形状のガラス基板に対して公知の印刷法によって多層の印刷層を主表面上に形成することで作製される。カバーガラスは、機器の落下あるいは表示画面への操作入力(タッチパネル機能としての操作入力)に対する仕様を満足させるべく、薄くかつ高い機械的強度を有するガラスからなる必要があるため、イオン交換処理による化学強化がなされている。
 図1A及び図1Bに、本実施形態のカバーガラスのガラス基板の外観の一例を示す。図1Aは例示的なガラス基板1の斜視図であり、図1Bは図1Aに示すガラス基板1の端部(縁部)の断面を拡大した図である。ガラス基板1の板厚Tは特に限定されないが、カバーガラスが組み付けられる各種機器の重量増大の抑制や、機器の薄型化の観点から、通常は、1mm以下であることが好ましく、0.7mm以下であることがより好ましい。なお、板厚Tの下限値は、ガラス基板の機械的強度を確保する観点から、0.1mm以上とすることが好ましい。ガラス基板1の外形形状は、組み込み対象となる携帯機器に応じて適宜設定されうる。図1Aに例示するように、ガラス基板1には、必要に応じて、例えばレシーバやマイク等の音声入出力用の開口1hが形成される。なお、ガラス基板の端部に、主表面の面方向中心側へ窪む(平面視切り欠き状の)凹部を設けてもよい。
 本実施形態のガラス基板は例えば、(1)ダウンドロー法やフロート法等を利用した板状ガラスの作製に用いられるSiOとAlと、LiOおよびNaOから選択される少なくとも1種のアルカリ金属酸化物と、を含むアルミノシリケートガラス、(2)フロート法等を利用した板状ガラスの作製に用いられるソーダライムガラスなど、公知のガラス材料を用いることが好適である。ガラス基板の表面側および裏面側の表層部分にはそれぞれ、化学強化によって圧縮応力層が形成されている。この圧縮応力層は、ガラス基板を構成するガラス材料に元々含まれるアルカリ金属の一部を、よりイオン半径の大きなアルカリ金属に置換した変質層である。例えば、本実施形態のガラス基板を構成するガラス材料に含まれるナトリウムイオンがカリウムイオンに置換される。
 アルミノシリケートガラスとしては、板状ガラスの製造性、機械的強度、化学的耐久性等の実用上の観点等から、ケイ素、アルミニウム、及びナトリウムのそれぞれの酸化物を最低限含み、特に酸化ケイ素の含有が多く、酸化アルミニウムの含有量が相対的に少ないガラスを含むものであることがより好ましい。なお、このようなアルミノシリケートガラスとしては、例えば、SiOが58~75重量%、Alが4~20重量%、LiOが0~10重量%、NaOが4~20重量%を主成分として含有するアルミノシリケートガラスを用いることができる。
 図1Bに示すように、本実施形態のガラス基板1は、一対の主表面1pと、一対の主表面1pに対して直交する方向に沿って配置された端面1tと、一対の主表面1pと端面1tとの間に配置された一対の介在面1cとを有する。介在面1cは、カバーガラスの製造工程上、あるいはカバーガラスの携帯機器への組付け時において、マイクロクラックが生じることによる機械的強度低下を回避するために設けられている。介在面1cと同様に、ガラス基板1には、開口1hの内壁面1wと一対の主表面1pとの間にも介在面が形成されている。
 端面1t及び介在面1cは、カバーガラスについて高い機械的強度を保持するため、鏡面となっている。なお、鏡面とは、一般には「無数の微細凹凸を有する梨地面に対して鏡のように物が映るほどよく仕上げられた面のこと。」(出典:切削・研削・研磨用語辞典、砥粒加工学会編、工業調査会発行(1995年12月5日))」と定義される。例えば、ある面上で互いに直交する2方向における表面粗さ(算出平均粗さRa)が0.1μm以下である場合に、その表面が鏡面(又は平滑面)であると定義してもよい。即ち、互いに直交する2方向の等方的な表面粗さRaが0.1μm以下であれば鏡面であると定義してもよい。
 また、図1Bに示すように、実施形態のカバーガラスの端部において、主表面1pと介在面1cとの境界部b11,b12、及び介在面1cと端面1tとの境界部b21,b22は、いずれも丸みを帯びた形状となっている。なお、境界部b11,b12および境界部b21,b22の曲率半径は、これらの境界部での応力集中の発生を抑えるために、いずれも30~200μmの範囲内であることが好ましい。
 (2)実施形態のカバーガラスのガラス基板の製造方法
 以下、本実施形態の携帯機器用カバーガラスのガラス基板の製造方法について説明する。図2は、本実施形態の携帯機器用カバーガラスのガラス基板の製造方法における各工程を順に示す図である。以下、各工程について説明する。
 (2-1)板状ガラス積層工程
 板状ガラス積層工程は、例えばダウンドロー法やフロート法により作製された所定のサイズの大判の板状ガラスを、保護材を介在させながら積層することによって板状ガラスの積層体を作製する工程である。
 板状ガラスの間に介在させる保護材は、所定の接着強度があり、また後で剥離させることができる仮着材であることが好ましい。このように、保護材として仮着材を用いることで、積層体を構成する各板状ガラスが分離し難くなるため、積層体の取り扱いが容易となる。そのような仮着材として、例えば紫外線硬化樹脂(UV硬化樹脂)は、所定の波長の紫外線の照射で容易に固化するため接着作業が容易であるという利点がある。紫外線硬化樹脂として、温水、熱もしくは有機溶媒により接着した板状ガラスを容易に剥離させることができるものが好ましい。なお、仮着材としては紫外線硬化樹脂のほか、ワックス、光硬化樹脂、可視光線硬化樹脂等も使用することができる。ワックスは、所定の温度で軟化して液状になり常温で固形状となるので、接着・分離作業が容易である。
 このような仮着材はロール状で設けられてもよく、大判の板状ガラスの一面全体に仮着材のロールを回転させて仮付けして切断し、次にその仮着材の上に次の板状ガラスを載置させることを繰り返す。板状ガラスの積層枚数は例えば10~100枚程度である。仮着材がUV硬化樹脂の場合には、板状ガラスの積層体に対して紫外線を照射して仮着材を硬化させる。なお、仮着材の代わりにスペーサを貼付する場合には、樹脂材料、繊維材料、ゴム材料、金属材料、セラミック材料の薄厚のスペーサを使用することができる。
 保護材は、後述するエッチング処理工程で使用されるエッチング液に触れることになるため、エッチング液に対しては溶解・除去されない性質(つまり、耐エッチング性)の材料からなる。例えばエッチング液としてフッ化水素酸を主成分とする場合には、保護材はフッ化水素酸に対して難溶性または不溶性の材料からなる。
 また、仮着材の厚さが例えば200μm以上の場合等、厚過ぎる場合には、後の切断工程等でのチッピング(欠け)が問題となる。他方、仮着材の厚さが例えば10μm以下の場合等、薄過ぎる場合には、ガラス基板からの剥離が困難となる場合がある。よって、仮着材の厚さは10~200μmであることが好ましく、20~80μmであればさらに好ましい。
 (2-2)切断工程
 次に、大判の板状ガラスが積層された積層体を円板カッター(ダイヤモンドディスク)によって縦横に分割(切断)して、小片のガラス基板の積層体を作製する。この小片のガラス基板の大きさは、最終的に得られるカバーガラスよりも少し大きい程度である。切断工程によって得られた小片のガラス基板の積層体10Aの斜視図を図3に示す。図3に示すように、積層体10Aは、保護材100Aとガラス基板1Aが順に積層された構造となっている。切断工程後の積層体10Aの側面では、保護材100Aとガラス基板1Aの端面が同一平面をなしている。
 (2-3)開口形成工程
 次に、ガラス基板の積層体10Aに対して、カバーガラスに設けられるべき開口1hに対応する開口を機械加工により形成する。なお、カバーガラスに開口が不要であれば、開口形成工程も不要である。開口形成工程では、例えばドリル等の機械的加工手段を用いて所望の形状の開口をNC加工により形成する。
 (2-4)形状加工工程
 次に形状加工工程を行う。形状加工工程は、ガラス基板の積層体10Aの外形がカバーガラスの外形形状となるように、積層体10Aに対して機械加工を行う工程である。形状加工工程では、例えばグラインダ等を用いてガラス基板の積層体10Aの外縁を研削加工(NC加工)して、所望の外形形状にする。形状加工工程によって得られたガラス基板の積層体10Bの例示的な斜視図を図4に示す。図4に示すように、積層体10Bは、保護材100Bとガラス基板1Bが順に積層された構造となっている。切断工程後の積層体10Bの側面では、保護材100Bとガラス基板1Bの端面が同一平面をなしている。形状加工後のガラス基板の端面は、比較的粗い表面性状の機械加工面となっている。なお、図4に示す積層体10Bでは、開口形成工程で形成された開口10Hの一例が示されている。
 (2-5)エッチング処理工程(端部処理工程)
 エッチング処理工程は、積層体10Bを構成する各々のガラス基板1Bの端部に対し、図5に示すエッチング処理装置20を用いてエッチング処理を施す工程である。
 エッチング処理装置20について図5を参照して説明する。図5に示すように、エッチング処理装置20では、エッチング液L1によって満たされた液槽3が設けられる。エッチング液L1としては、少なくともフッ化水素酸を含むものであれば特に限定されないが、必要に応じて、硫酸あるいは塩酸等、酸解離定数がフッ化水素酸よりも大きい酸を添加剤として加えてもよい。
 液槽3内には、ガラス基板の積層体10Bを保持する保持機構や、バブリング機構等の槽内液循環装置や、積層体10Bを揺動するためのアクチュエータ(図示せず)を含む揺動機構5が設けられていることが好ましい。揺動機構5による積層体10Bの好ましい揺動例は、図5に矢印で示すように積層体10Bの積層方向(つまり、ガラス基板の厚さ方向)に、所定の揺動量及び一定時間当たりの所定の揺動回数で積層体10Bを揺動させることである。
 積層体10Bにおいて、液槽3内のエッチング液に接触するガラス基板の端面からエッチングが進行するが、エッチングの進行に伴い反応生成物として不溶性あるいは難溶性の塩(例えば、M[AlF],M[AlF、M:アルカリ金属、アルカリ土類金属)が生ずる。この不溶性あるいは難溶性の塩は、積層体10Bの揺動、さらにはエッチング処理装置20の液循環システムによってガラス基板の端面から除去されうる。エッチング処理装置20の液循環システムは、液槽3の上部に設けられるオーバーフロー槽4と、配管8と、エッチング液から反応生成物を除去するためのフィルタリング装置6と、循環ポンプ7とから構成されている。
 この液循環システムでは、液槽3内のエッチング液が液槽3からオーバーフロー槽4に移動し、配管8を通じてフィルタリング装置6に送られる。そして、フィルタリング装置6によってエッチングによる反応生成物が捕捉・除去される。反応生成物が除去されたエッチング液は、循環ポンプ7により液槽3の底面から再び液槽3内に戻される。
 ここで、フィルタリング装置6は、反応生成物をエッチング液から選択的に除去するための装置である。また、フィルタリング装置6は、エッチング液から反応生成物を選択的に除去可能な構成、例えば、遠心分離による選択的除去や、沈殿槽による選択的除去等を実現可能な装置構成であることが好ましい。
 ガラス基板の積層体10Bの揺動機構5、及び液循環システムを採用することによって、積層体10Bのガラス基板の端部にエッチングの反応生成物が堆積し難くなるため、エッチング後のエッチング面に対するスクラブ洗浄等の物理的な処理が不要となる。そのため、本工程では、エッチング後のハンドスクラブ洗浄等の物理的な処理によって生じうるガラス基板の端部に対する機械的損傷の可能性を無くすことができる。
 以下、エッチング処理装置20を用いたエッチング処理工程の好ましい態様として、形状加工工程後の積層体10Bに対し、端面及び介在面の鏡面化を行う鏡面化処理工程と、介在面の形成を行う介在面形成工程とを含む2段階の工程を含むエッチング処理工程(2段階のエッチング処理工程)について説明する。この2段階のエッチング処理工程では、鏡面化処理工程と介在面形成工程とが、異なるエッチング処理装置20を用いて連続的に行われる。2段階のエッチングを行うことによって、ガラス基板の介在面の形成と、端部及び介在面の鏡面化とを達成することを目的としている。
 発明者は、異なるエッチング液の組成に対する介在面形成の度合い(面取り量)と鏡面化の程度(例えば、表面粗さ)とを試行錯誤した結果、介在面形成工程及び鏡面化処理工程では、組成がそれぞれ異なるエッチング液を使用することが好ましいことを見出した。具体的に、介在面形成工程用のエッチング液と鏡面化処理工程用のエッチング液とで、フッ化水素酸と他の酸(添加剤)との混合比を変化させることが好適である。ここで、エッチングによって得られる面取り量とエッチング液中の硫酸添加量との関係の一例を図6に示す。この図6のグラフは、エッチング液総量1kgあたりのフッ化水素酸を10[mol]とし、エッチング液総量1kgあたりの硫酸(HSO)の添加量を変化させた際のグラフである。図6から、携帯機器用カバーガラスのガラス基板として求められる面取り量が少なくとも60μm程度であるとすると、添加する硫酸の量は例えば3~4[mol]以下であるのが好ましいことが分かる。
 一方、エッチング液に添加する硫酸の量が少なくとも3~4[mol]以上である場合に、ガラス基板の端部表面が平滑化されて鏡面となることが分かった。つまり、鏡面化処理工程でのエッチング液の添加剤の濃度は、介在面形成工程でのエッチング液の添加剤の濃度よりも高いことが好ましいことが分かった。エッチング液中の添加剤としての酸の濃度が低い場合には、ガラス基板の端部の介在面が良好となり(つまり、介在面の面取り量が多く取れ)、ケミカルエッチングとして機能する。他方、エッチング液中の添加剤としての酸の濃度が高い場合には、ガラス基板の端面が平滑化されて凹凸が殆ど無い良好な端面が得られるケミカルポリッシングとして機能する。
 より具体的には、鏡面化処理工程でのエッチング液におけるフッ化水素酸と添加剤との混合比(mol比)は、エッチング液総量1kg当たり10:3~10:20の範囲内であることが好ましく、10:4~10:9の範囲内であることがさらに好ましい。一方、介在面形成工程でのエッチング液におけるフッ化水素酸と添加剤との混合比は、エッチング液における添加剤の濃度が鏡面化処理工程の場合よりも低くすればよい。なお、介在面形成工程でのエッチング液は、フッ化水素酸のみでもよい(つまり、添加剤を加えなくてもよい)。
 以下、図7を参照して、具体的な2段階のエッチング処理工程の手順の一例を説明する。図7のステップS1~S4は、鏡面化処理工程におけるガラス基板1Bの端部の表面性状の変化と、介在面形成工程におけるガラス基板1Bの端部形状の変化とを順を追って概念的に示す図である。図7のステップS1は、初期状態の(つまり、形状加工工程後の)積層体10Bを示しており、積層体10Bを構成する保護材100Bとガラス基板1Bの端面は、前工程である形状加工工程における機械加工によって同一面(機械加工面)となっている。
 先ず、鏡面化処理工程では、添加剤の濃度が上述したものとなるように調製したエッチング液で、エッチング処理装置20の液槽3内を満たし、揺動機構5に積層体10Bをセットして、揺動機構5により所定の揺動量、揺動回数で積層体10Bを一定時間(例えば、3分間)揺動させる。この鏡面化処理工程では、ガラス基板の端面が平滑化されて凹凸が殆ど無い良好な端面を形成するケミカルポリッシングが行われる。その結果、図7のステップS2に示すように、各ガラス基板1Bの端面及び介在面は、マイクロクラックや微小な凹凸が除去されて鏡面となる。
 なお、開口形成工程にて開口10Hが形成された場合には、開口内にもエッチング液が充満しているため、鏡面化処理工程によって、積層体10Bを構成する各ガラス基板1Bの開口の内壁面と、その内壁面と主表面の間の介在面とが鏡面となるようにエッチング処理が行われる。
 次に、介在面形成工程では、添加剤の濃度が上述したものとなるように調製したエッチング液(つまり、鏡面化処理工程の場合よりも添加剤の濃度が低いエッチング液)で満たされた、鏡面化処理工程で使用されたものとは別の液槽3に、積層体10Bを移し、揺動機構5により所定の揺動量、揺動回数で積層体10Bを一定時間(例えば、3分間)揺動させる。この介在面形成工程では、ガラス基板の端面を研磨し、かつ主表面と端面を介在する介在面を形成するケミカルエッチングが行われる。その結果、図7のステップS3に示すように、積層体10Bを構成する各ガラス基板1Bの端面1tからエッチングが進行する。つまり、保護材100Bは耐エッチング性を有しているために溶解・除去されないが、エッチング液に触れているガラス基板1Bの端面1tは、ステップS2の状態よりも溶解・除去される。エッチングの進行に伴って、例えば、ガラス基板1Bの端面1tは、保護材100Bの端面よりも例えば20~100μm程度内側まで溶解・除去される。つまり、図7のステップS3に示すように、積層体10Bを構成する各ガラス基板1Bの端面1tの位置が主表面1pの面方向内側へ変化するように、各ガラス基板1Bに設けられた一対の保護材100B同士の間で前記ガラス基板を前記エッチング液に溶解させることによって、一対の保護材100Bに突出部100j(ガラス基板の端面1tを基準として外側に突出した保護材100Bの部分)が形成される。
 さらに、エッチング処理装置20の揺動作用によって、保護材100Bとガラス基板1Bの界面(図7にBDで示す。)にエッチング液が分子レベルで内側に浸透することで、図7のステップS4に示すように介在面1cが形成される。このとき、実質的に等方性エッチングがなされるため、主表面1pと介在面1cとの境界部、及び介在面1cと端面1tとの境界部は、いずれも丸みを帯びた形状となる(図1Bを参照)。
 なお、開口形成工程にて開口10Hが形成された場合には、開口内にもエッチング液が充満しているため、介在面形成工程によって、積層体10Bを構成する各ガラス基板1Bの開口の内壁面と主表面との間に介在面が形成される。
 エッチング処理装置20の揺動作用を、概略的に図8に示す。エッチング処理装置20において、積層体10Bに対して上下方向、つまり、ガラス基板の厚さ方向に対して平行に揺動が行われると、保護材100Bの突出部100jが形成されているために、図8に示すように、積層体10Bが下方向に移動するときにはガラス基板の端面1tに向けたエッチング液の流動F1が生じ、積層体10Bが上方向に移動するときにはガラス基板の端面1tに向けたエッチング液の流動F2が生じる。これによって、保護材100Bとガラス基板1Bの界面BD(図7参照)に沿ってエッチング液が分子レベルで内側に浸透し、主表面1pと端面1tに介在する部分を溶解・除去する。その結果、主表面1pと端面1tとの間に介在面1cが形成される。形成される介在面1cの面内方向の幅(面取り量)は、例えば70~100μm程度である。
 なお、エッチング処理装置20において、積層体10Bの揺動方向は上述した方向に限られず、他の揺動方向でもよい。例えば、ガラス基板1Bの主表面と平行な方向に揺動させてもよい。
 なお、積層体10Bの開口10H内で十分にエッチング液を流動させて開口内の介在面を良好に形成させるためには、積層体10Bの積層方向の揺動量を制御することが好ましい。例えば、揺動条件として、エッチング処理工程の対象となるガラス基板と保護材の厚さの和(図5に示す例では、積層体10Bの積層方向の長さ)の2倍以上であり、揺動回数は1~60回/分であるのが好ましい。また、揺動回数は、エッチング液の循環効果をより高めるために10~30回/分であるのがより好ましい。
 なお、エッチング処理装置20において、積層体10Bの揺動方向は上述した方向に限られず、他の揺動方向でもよい。例えば、ガラス基板1Bの主表面と平行な方向(つまり、前後左右の方向)に揺動させてもよい。ガラス基板あるいはその積層体に対してエッチング液を相対的に移動させればよく、その揺動方向は問わない。ガラス基板に対してエッチング液を相対的に移動させることで、端面に向けたエッチング液の流動が生ずるため、それによって保護材とガラス基板の界面にエッチング液が浸透し、介在面が形成される。
 なお、本実施形態の製造方法は、上述した2段階のエッチング処理工程に限られない。例えば、形状加工工程後の積層体10Bに対して予めブラシ研磨による機械加工を施すこと(図示せず;例えば、上記引用文献1を参照)、又は総型砥石による機械研削加工等によって既に介在面が形成されている積層体10Bがエッチング処理対象となる場合には、エッチングによって介在面を形成する必要がない。その場合には、上記エッチング処理工程は、端面及び介在面の鏡面化のみを目的としてもよく、上述した鏡面化処理工程と同様に、エッチング液におけるフッ化水素酸と添加剤(酸解離定数がフッ化水素酸よりも大きい酸)との混合比(mol比)は、エッチング液総量1kg当たり10:3~10:20の範囲内であることが好ましく、10:4~1:12の範囲内であることがさらに好ましい。なお、鏡面化処理工程の揺動条件も介在面形成工程の揺動条件と同様である。
 また、上記エッチング処理工程では、鏡面化処理工程と介在面形成工程とをその順に行う場合について説明したが、鏡面化処理工程と介在面形成工程との順番を入れ替えてもよい。つまり、介在面形成工程を先に行い、その後に鏡面化処理工程を行ってもよい。
 ここで、上記エッチング処理工程(鏡面化処理工程又は介在面形成工程)では、開口の内壁部に存在しうるダメージ層を起因とする化学強化工程でのガラス基板の破損を抑えるように、エッチング処理の取しろが予め決められている。このエッチング工程での開口の内壁部の取しろ(溶解量)は、ガラス基板1Bの端面1tの場合と同様に、20~200μmとしても良い。また、より確実にダメージ層を除去するために50μm以上とし、生産効率を高めるために100μm以下とすることが好ましい。
 (2-6)剥離工程
 剥離工程は、ガラス基板の積層体10Bを1枚ずつ剥離し、積層体10Bから個々のガラス基板を分離する工程である。剥離工程における剥離方法は保護材の特性に依存するが、例えば、紫外線硬化樹脂からなる保護材(仮着材)の中には、温水(摂氏80~90度)の環境下で剥離するタイプの保護材が存在する。そのような場合には、積層体10Bを温水を含む容器内に浸漬させることで、積層体10Bを1枚ごとのガラス基板に剥離(分離)することができる。
 (2-7)化学強化工程
 次に、化学強化工程を行う。
 化学強化工程では、ガラス基板を複数枚、カセット(ホルダー)に装填し、溶融塩を含む化学強化処理液にカセットを浸漬させる。これにより、ガラス基板に含まれる1種以上のアルカリ金属を、溶融塩のアルカリ金属との間でイオン交換処理を行い、ガラス基板の表層部分に圧縮応力層を形成する。
 溶融塩の組成および温度、ならびに、浸漬時間は、ガラス基板のガラス組成や、ガラス基板の表層部分に形成する圧縮応力層の厚み等に応じて適宜選択できるが、ガラス基板のガラス組成が上述したアルミノシリケートガラスやソーダライムガラスであれば、化学強化処理液の処理温度を通常500℃以下とする低温型イオン交換法を利用することが好ましい。これは、イオン交換をガラスの徐冷点以上の温度域で行う高温型イオン交換法では、低温型イオン交換法ほど大きな機械的強度が得られず、また、強化処理中に溶融塩によってガラス表面が浸食され透明性が損なわれやすいため、携帯機器用カバーガラスに適したガラス基板が得られにくいことによる。例えば、本実施形態の化学強化工程では、溶融塩の組成および温度、ならびに、浸漬時間は、下記に例示する範囲から選択することが好ましい。
 ・溶融塩の組成 :硝酸カリウム、または、硝酸カリウムと硝酸ナトリウムとの混塩
 ・溶融塩の温度 :320℃~470℃
 ・浸漬時間   :3分~600分
 (2-8)最終洗浄工程
 最終洗浄工程では、例えば、化学強化後のガラス基板を複数枚パレットに載せた状態で行われる酸洗浄、アルカリ洗浄、純水によるリンス洗浄、IPA(イソプロピルアルコール)による洗浄の少なくともいずれかを含む。
 以下に、本発明を実施例によりさらに説明する。但し、本発明は実施例に示す態様に限定されるものではない。
 ケイ素、アルミニウム、及びナトリウムのそれぞれの酸化物を最低限含み、特に酸化ケイ素の含有が多く、酸化アルミニウムの含有量が相対的に少ないガラスを含むアルミノシリケートガラスをダウンドロー法により、板厚0.5mmの板状ガラスに成形した。このダウンドロー法により形成された板状ガラスの主表面の表面粗さ(算術平均粗さRa)を、原子間力顕微鏡により調べたところ10nmであった。
 上記板状ガラスを370mm×470mmのサイズの矩形のガラス基板に切り出し、切り出したガラス基板を、その表面に仮着材としての紫外線硬化樹脂材を均一に貼り付けた上で積層して積層体を作製した。さらに積層体に可視光線を照射させて樹脂材を硬化させ、積層されたガラス基板が分離しないようにした。
 [実施例1~5及び比較例1,2の積層体]
 ・ガラス基板の積層枚数:20枚
 ・仮着材:紫外線硬化樹脂材
 ・仮着材の厚さ:約20μm
 実施例及び比較例の積層体を作製後、図5に示したエッチング処理装置を用い、積層体を構成する各ガラス基板の端部に対して鏡面化処理工程と介在面形成工程を順に行う2段階のエッチング処理を行った。鏡面化処理工程と介在面形成工程とでは異なるエッチング処理装置を用いた。エッチング処理条件は以下のとおりとした。なお、各工程でのエッチング液におけるフッ化水素酸(HF)と、添加剤としての硫酸(HSO)の混合比は表1に示したとおりである。
 [鏡面化処理工程のエッチング処理条件]
 ・エッチング液の温度:40℃
 ・循環される流量:20L/分
 ・揺動時間:3分
 ・揺動量:120mm(p-p)
 ・揺動回数:30回/分
 [介在面形成工程のエッチング処理条件]
 ・エッチング液の温度:35℃
 ・循環される流量:10L/分
 ・揺動時間:5分
 ・揺動量:20mm(p-p)
 ・揺動回数:25回/分
 次に、積層体をエッチング処理装置から取り出し、温水(摂氏80~90度)に浸漬させて複数のガラス基板に分離した。このとき、各ガラス基板の表面に異常は見られなかった。得られたガラス基板について、介在面の面取り量と、端面及び介在面の表面粗さとを測定して評価した。介在面の面取り量と端面及び介在面の表面粗さの測定方法及び評価基準は、以下の通りとした。
 ガラス基板の端部を光学顕微鏡により200倍に拡大して、介在面の面取り量を測定し、70~100μmの場合に「○」、50~70μmの場合に「△」、50μm以下の場合に「×」と評価した。なお、「○」又は「△」が合格である。
 また、端面及び介在面の表面粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、例えば、キーエンス製レーザ顕微鏡(VK-9700)で測定し、JIS B0633:2001で規定される方法で算出した。このとき、端面及び介在面の各々において、互いに直交する2方向についての算術平均粗さRaを算出した。その結果、2方向ともに0.05μm以下である場合に「○」、2方向ともに0.1μm以下である場合に「△」、少なくとも1方向で0.2μmより大きい場合に「×」と評価した。なお、「○」又は「△」が合格である。
Figure JPOXMLDOC01-appb-T000001

 (※1)HFとHSOの混合比は、エッチング液総量1kg当たりの物質量(mol)の比である。
 表1に示す評価結果から、鏡面化処理工程でのエッチング液のHSOの濃度が介在面形成工程でのエッチング液のHSOの濃度よりも高い場合(実施例1~5)に、介在面の面取り量と、端面及び介在面の表面粗さとの両方が良好になったことが分かる。特に、HFとHSOの混合比が10:4~10:20の範囲内である場合に特に良好であった。実施例1~5の場合のガラス基板について、端面及び介在面をレーザ顕微鏡により200倍に拡大して観察したところ、マイクロクラックや微小な凹凸が認められず、極めて平滑であり鏡面といえる表面性状であった。一方、比較例では、いずれかの工程でHSOの濃度が適切ではなく、介在面の面取り量、あるいは端面及び介在面の表面粗さが良好にならなかった。
 さらに、比較例1と実施例1~5のガラス基板について、に準じた4点曲げ試験法により破壊荷重を測定して、ガラス基板の4点曲げ強度を算出した。なお、評価サンプルの外形サイズは100.4mm×47.4mmである。その結果、比較例1の場合には破壊荷重は約500MPaであり、実施例1~5の場合には破壊荷重はいずれも600MPaを上回っていた。つまり、ガラス基板の端面及び介在面が鏡面となっている場合には、非鏡面の場合と比較して、機械的強度が向上したことが確認された。
 [比較例3及び実施例6,7]
 次に、実施例1の製造条件を変更して、開口付のガラス基板を作成した。具体的に、実施例1と同様にガラス基板の積層体を作成し、特開2009-256125号公報に記載された方法により、ガラス基板の積層体の端部をブラシと遊離砥粒とを用いて研磨した。そして、積層体におけるガラス基板の端部に一対の介在面を形成し、積層体を分離して化学強化を施し、比較例3のガラス基板を得た。また、比較例3の製造過程において、端部の研磨を行う前に、切り出した積層体の長手方向の一端から30mm間隔をおいて1.3mm×10.0mmの平面視長孔状の開口を機械的加工手段により形成し、ブラシ及び遊離砥粒を用いて端部と、開口の内壁部とについて研磨し、積層体を分離して、分離後のガラス基板に化学強化を施した。このように、比較例3のガラス基板として、開口なしのガラス基板と、開口付きのガラス基板とを得た。
 また、比較例3の製造工程を一部変更し、積層体の端部をブラシと遊離砥粒とを用いて研磨した後に、積層体の端部に、実施例3の鏡面化処理と同じ条件にてエッチングによる鏡面化処理を施した。そして、積層体を分離して、分離後のガラス基板に化学強化を施し、実施例6のガラス基板を得た。また、実施例6のガラス基板の製造過程においても、積層状態で1.3mm×10.0mmの平面視長孔状の開口を形成して、開口の内壁部を鏡面化処理(エッチング処理)し、開口付きの実施例6のガラス基板を得た。
 さらに、実施例3と同様の製造条件により、実施例7のガラス基板を得た。また、実施例7のガラス基板の製造過程においても、積層状態で1.3mm×10.0mmの平面視長孔状の開口を形成して、開口の内壁部を鏡面化処理(エッチング処理)し、開口付きの実施例7のガラス基板を得た。
 そして、実施例6,7及び比較例3のガラス基板に対して、JIS-R1601に準じた4点曲げ試験法により破壊荷重を測定して、ガラス基板の4点曲げ強度を求めた。この結果を次の表2に示す。なお、サンプル数は、各100枚であり、表2には、4点曲げ試験により得られた値の範囲を示す。
Figure JPOXMLDOC01-appb-T000002
 表2の実施例6及び比較例3に示すように、ブラシ研磨によりガラス基板の端部に一対の介在面を形成した場合であっても、その後にエッチング処理による鏡面化処理を行うことによって、ガラス基板の機械的強度の向上を図れることが確認された。また、開口付きの場合にはより顕著に強度の向上を図れることが確認された。さらに、実施例6及び実施例7に示すように、ブラシ研磨に代えて、予め鏡面化処理工程を施した後にエッチング処理による介在面形成を行う場合が最も機械的強度の向上を図ることができることが確認された。
 [比較例4,5及び実施例8]
 次に、1枚のガラス基板単位で各工程を行う方式である枚葉方式にて、総型砥石を用いた研削加工によりガラス基板の端部に一対の介在面を形成した。その後、研削加工後のガラス基板に対して化学強化を施し、比較例4のガラス基板を得た。また、比較例4の製造過程において、ブラシと遊離砥粒とを用いてガラス基板の端部を研磨した後に、化学処理を施し、比較例5のガラス基板を得た。これらの比較例4,5のガラス基板の製造過程でそれぞれ機械的加工手段を用いて、1.3mm×10.0mmの平面視長孔状の開口を形成して、化学強化を施し、開口付きの比較例4,5のガラス基板を得た。
 また、比較例4のガラス基板の製造工程を一部変更し、総型砥石を用いた研削加工をした後に、ガラス基板の端部に、実施例3の鏡面化処理と同じ条件でエッチングによる鏡面化処理を施した。そして、ガラス基板に化学強化を施し、実施例8のガラス基板を得た。さらに、実施例8のガラス基板の製造過程において、1.3mm×10.0mmの平面視長孔状の開口を形成して、開口内部を鏡面化処理(エッチング処理)し、開口付きの実施例8のガラス基板を得た。
 そして、これらのサンプルについて、JIS-R1601に準じた4点曲げ試験法により破壊荷重を測定して、ガラス基板の4点曲げ強度を求めた。この結果を次の表3に示す。なお、サンプル数は、各100枚であり、表3には、4点曲げ試験により得られた値の範囲を示す。
Figure JPOXMLDOC01-appb-T000003
 表3の実施例8及び比較例4,5に示すように、枚葉方式によりガラス基板の端部に介在面を形成する場合であっても、その後にエッチング処理による鏡面化処理を行うことによって、ガラス基板の機械的強度の向上を図れることが確認された。また、比較例5のようにブラシ研磨方式では、開口の内壁部を十分に研磨できず、開口の内壁部に存在するダメージ層を除去できないことが確認された。
 ここで、実施例8の方式で作成したガラス基板(開口付き)では、化学強化工程における歩留まりが約98%であった。これに対して、比較例5の方式で作成したガラス基板(開口付き)では、化学強化工程における歩留まりが約40%であった。具体的に、比較例2の方法で作成したガラス基板では、化学強化工程の際にスリット周辺の欠けやひび割れが生じたことが確認された。これは、化学強化の際のガラス基板の熱膨張や、化学強化の際のイオン交換に伴う応力変化によって、ドリルなどの機械加工による開口形成の際に開口の内壁部のダメージ層のマイクロクラックが進展したためである。なお、開口の内壁部のみならず、ガラス基板の外周においてもダメージ層をエッチング処理で除去しない場合には、ダメージ層の影響によって化学強化工程での歩留まりが大幅に低下することが確認された。
 従って、機械加工方式で外形加工及び開口形成の少なくともいずれか一方を行う場合、機械加工に伴うダメージ層をエッチング処理によって除去する必要があり、機械加工に伴うダメージ層をエッチング処理で除去することによって、機械的強度のみならず、歩留まりを向上させることができる。
 以上、本発明の実施形態について詳細に説明したが、本発明の電子機器用カバーガラスのガラス基板の製造方法は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよい。
 例えば、上述した実施形態では、複数のガラス基板の積層体を対象として、開口形成工程、形状加工工程、及びエッチング処理工程を行う例について説明した。しかしながら、本発明の加工方式は、このような積層方式に限るものではなく、1枚のガラス基板単位で各工程を行う方式(枚葉方式)でもよい。また、開口形成工程及び形状加工工程の少なくとも一方を枚葉方式で行った後、ガラス基板を積層して、積層体をエッチング処理してもよい。
 また、上述した実施形態では、本発明を携帯機器用カバーガラスのガラス基板の製造方法に適用した例について説明した。しかしながら、本発明は、タッチセンサにおける内部基板のカバー部材として用いられるタッチセンサ用カバーガラスのガラス基板の製造方法に適用してもよい。

Claims (13)

  1.  一対の主表面と、前記一対の主表面に対して直交する方向に沿って配置された端面、及び前記一対の主表面と前記端面との間に配置された一対の介在面を含む端部とを有する電子機器用カバーガラスのガラス基板の製造方法であって、
     前記ガラス基板の前記一対の主表面と前記端面との間に前記一対の介在面を形成する介在面形成工程と、
     前記ガラス基板に対して、前記端部の表面が鏡面となるようにエッチング処理を行う鏡面化処理工程と、
     を含むことを特徴とする電子機器用カバーガラスのガラス基板の製造方法。
  2.  前記介在面形成工程は、機械的加工手段を用いた処理であり、
     前記鏡面化処理工程では、前記機械的加工手段を用いた処理により前記端部に生じうるダメージ層が除去されるようにエッチング処理を行うことを特徴とする請求項1に記載の電子機器用カバーガラスのガラス基板の製造方法。
  3.  前記介在面形成工程は、エッチング処理であり、
     前記介在面形成工程及び前記鏡面化処理工程では、組成がそれぞれ異なるエッチング液が用いられる
     ことを特徴とする請求項1に記載の電子機器用カバーガラスのガラス基板の製造方法。
  4.  前記介在面形成工程では、フッ化水素酸、もしくはフッ化水素酸に対し、フッ化水素酸よりも酸解離定数が大きい酸を添加剤として加えたエッチング液が用いられ、
     前記鏡面化処理工程では、フッ化水素酸に対し、フッ化水素酸よりも酸解離定数が大きい酸を添加剤として加えたエッチング液が用いられ、
     前記鏡面化処理工程でのエッチング液の添加剤の濃度は、前記介在面形成工程でのエッチング液の添加剤の濃度よりも高い
     ことを特徴とする請求項3に記載の電子機器用カバーガラスのガラス基板の製造方法。
  5.  前記鏡面化処理工程でのエッチング液におけるフッ化水素酸と前記添加剤との物質量の混合比は、エッチング液総量1kg当たり10:3~10:20の範囲内である
     ことを特徴とする請求項4に記載の電子機器用カバーガラスのガラス基板の製造方法。
  6.  前記鏡面化処理工程では、前記ガラス基板をエッチング液に浸漬し、前記ガラス基板の厚さ方向に対して平行に前記ガラス基板を揺動させる
     ことを特徴とする請求項1~5のいずれか1項に記載の電子機器用カバーガラスのガラ
    ス基板の製造方法。
  7.  前記鏡面化処理工程の前に行われ、機械的加工手段を用いて前記ガラス基板に前記ガラス基板の厚さ方向に貫通する開口を形成する開口形成工程、
     をさらに含み、
     前記鏡面化処理工程では、前記機械的加工手段を用いた開口形成工程により前記開口の内壁部に生じうるダメージ層が除去されるようにエッチング処理を行う
     ことを特徴とする請求項1~6のいずれか1項に記載の電子機器用カバーガラスのガラス基板の製造方法。
  8.  前記エッチング処理工程後に行われ、イオン交換による化学強化を行う化学強化工程
     をさらに含み、
     前記エッチング処理工程では、前記開口の内壁部に存在しうるダメージ層を起因とする前記化学強化工程での前記ガラス基板の破損を抑えるように、エッチングの取しろが予め決められている
     ことを特徴とする請求項7に記載の電子機器用カバーガラスのガラス基板の製造方法。
  9.  前記エッチング処理は、対エッチング性を有する保護材を介して複数の前記ガラス基板が積層された状態で行われる
     ことを特徴とする請求項1~8のいずれか1項に記載の電子機器用カバーガラスのガラス基板の製造方法。
  10.  一対の主表面と、前記一対の主表面に対して直交する方向に沿って配置された端面、及び前記一対の主表面と前記端面との間に配置された一対の介在面を含む端部と、を有する電子機器用カバ-ガラスのガラス基板であって、
     前記介在面及び前記端面が鏡面である
     ことを特徴とする電子機器用カバーガラスのガラス基板。
  11.  前記端面の互いに直交する2方向での等方的な表面粗さRaが1μm以下である
     ことを特徴とする請求項10に記載の電子機器用カバーガラスのガラス基板。
  12.  前記ガラス基板には開口が形成され、
     前記開口の内壁部の表面である内壁面と前記一対の主表面との間に介在面が形成されており、当該介在面及び前記内壁面が鏡面である
     ことを特徴とする請求項10又は11に記載の電子機器用カバーガラスのガラス基板。
  13.  前記ガラス基板は、イオン交換による化学強化可能なアルミノシリケートガラスである ことを特徴とする請求項10~12のいずれか1項に記載の電子機器用カバーガラスのガラス基板。
PCT/JP2013/057033 2012-03-13 2013-03-13 電子機器用カバーガラスのガラス基板、及びその製造方法 WO2013137329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504966A JP6110364B2 (ja) 2012-03-13 2013-03-13 電子機器用カバーガラスのガラス基板、及びその製造方法
CN201380013614.7A CN104169233B (zh) 2012-03-13 2013-03-13 电子设备用玻璃盖片的玻璃基板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-056270 2012-03-13
JP2012056270 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013137329A1 true WO2013137329A1 (ja) 2013-09-19

Family

ID=49161234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057033 WO2013137329A1 (ja) 2012-03-13 2013-03-13 電子機器用カバーガラスのガラス基板、及びその製造方法

Country Status (3)

Country Link
JP (2) JP6110364B2 (ja)
CN (1) CN104169233B (ja)
WO (1) WO2013137329A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083832A1 (ja) * 2013-12-06 2015-06-11 電気化学工業株式会社 端面保護された硬質基板およびその製造方法
JP2016179913A (ja) * 2015-03-23 2016-10-13 三和フロスト工業株式会社 ガラス基板のエッチング方法およびその装置
WO2017030112A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 ガラス板
JP2017154933A (ja) * 2016-03-02 2017-09-07 日本電気硝子株式会社 板ガラスおよびその製造方法
WO2017149876A1 (ja) * 2016-03-04 2017-09-08 日本電気硝子株式会社 板ガラス及びその製造方法並びにエッチング処理装置
US10730793B2 (en) * 2015-01-20 2020-08-04 AGC Inc. Chemically strengthened glass and production method for same
CN112299728A (zh) * 2020-11-20 2021-02-02 惠州市清洋实业有限公司 一种摄像头玻璃用磨边蚀刻液及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695318B2 (ja) * 2017-12-27 2020-05-20 Hoya株式会社 円盤状ガラス基板の製造方法、薄板ガラス基板の製造方法、導光板の製造方法及び円盤状ガラス基板
JP7151551B2 (ja) * 2019-02-28 2022-10-12 Agc株式会社 カバーガラスの製造方法、カバーガラスおよび表示装置
CN112390536B (zh) * 2019-08-12 2022-07-15 重庆鑫景特种玻璃有限公司 超薄玻璃盖板、超薄强化玻璃盖板及其制备方法
KR102450350B1 (ko) * 2020-08-13 2022-10-04 (주)피엔피 초박형 유리블록 불림장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139840A (ja) * 1997-11-10 1999-05-25 Nippon Electric Glass Co Ltd 電子部品用板ガラスの製造方法
JP2000169166A (ja) * 1998-11-30 2000-06-20 Hoya Optics Kk 板ガラス製品の製造方法
WO2009078406A1 (ja) * 2007-12-18 2009-06-25 Hoya Corporation 携帯端末用カバーガラス及びその製造方法、並びに携帯端末装置
JP2009208983A (ja) * 2008-03-03 2009-09-17 Hoya Corp ガラス基材及びその製造方法
JP2009227523A (ja) * 2008-03-24 2009-10-08 Hoya Corp ガラス基材及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575601B2 (ja) * 2000-09-26 2004-10-13 旭テクノグラス株式会社 電子光学部品用ガラスの製造方法
JP5029952B2 (ja) * 2007-09-06 2012-09-19 富士電機株式会社 ガラス基板およびその製造方法、ならびに当該ガラス基板を用いた磁気ディスク
JP2009280452A (ja) * 2008-05-23 2009-12-03 Central Glass Co Ltd ガラス基板及び製造方法
JP2010003365A (ja) * 2008-06-20 2010-01-07 Furukawa Electric Co Ltd:The ガラス基板の製造方法
EP2404228B1 (en) * 2009-03-02 2020-01-15 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
JP5235916B2 (ja) * 2010-01-18 2013-07-10 Hoya株式会社 磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法及び磁気ディスク
US8776547B2 (en) * 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
WO2014045809A1 (ja) * 2012-09-20 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139840A (ja) * 1997-11-10 1999-05-25 Nippon Electric Glass Co Ltd 電子部品用板ガラスの製造方法
JP2000169166A (ja) * 1998-11-30 2000-06-20 Hoya Optics Kk 板ガラス製品の製造方法
WO2009078406A1 (ja) * 2007-12-18 2009-06-25 Hoya Corporation 携帯端末用カバーガラス及びその製造方法、並びに携帯端末装置
JP2009208983A (ja) * 2008-03-03 2009-09-17 Hoya Corp ガラス基材及びその製造方法
JP2009227523A (ja) * 2008-03-24 2009-10-08 Hoya Corp ガラス基材及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083832A1 (ja) * 2013-12-06 2015-06-11 電気化学工業株式会社 端面保護された硬質基板およびその製造方法
US10730793B2 (en) * 2015-01-20 2020-08-04 AGC Inc. Chemically strengthened glass and production method for same
JP2016179913A (ja) * 2015-03-23 2016-10-13 三和フロスト工業株式会社 ガラス基板のエッチング方法およびその装置
WO2017030112A1 (ja) * 2015-08-19 2017-02-23 旭硝子株式会社 ガラス板
JPWO2017030112A1 (ja) * 2015-08-19 2017-12-21 旭硝子株式会社 ガラス板
JP2017154933A (ja) * 2016-03-02 2017-09-07 日本電気硝子株式会社 板ガラスおよびその製造方法
WO2017149877A1 (ja) * 2016-03-02 2017-09-08 日本電気硝子株式会社 板ガラスおよびその製造方法
KR20180119551A (ko) * 2016-03-02 2018-11-02 니폰 덴키 가라스 가부시키가이샤 판유리 및 그 제조 방법
US10773994B2 (en) 2016-03-02 2020-09-15 Nippon Electric Glass Co., Ltd. Plate glass and method for producing same
KR102614200B1 (ko) * 2016-03-02 2023-12-15 니폰 덴키 가라스 가부시키가이샤 판유리의 제조 방법
WO2017149876A1 (ja) * 2016-03-04 2017-09-08 日本電気硝子株式会社 板ガラス及びその製造方法並びにエッチング処理装置
CN112299728A (zh) * 2020-11-20 2021-02-02 惠州市清洋实业有限公司 一种摄像头玻璃用磨边蚀刻液及其使用方法

Also Published As

Publication number Publication date
CN104169233B (zh) 2017-04-12
JP6452743B2 (ja) 2019-01-16
JPWO2013137329A1 (ja) 2015-08-03
CN104169233A (zh) 2014-11-26
JP6110364B2 (ja) 2017-04-05
JP2017142510A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6452743B2 (ja) 携帯機器用カバーガラス、携帯機器用ガラス基板
JP2013536153A (ja) ガラス製品の端面を強化する方法
US20100279067A1 (en) Glass sheet having enhanced edge strength
JP6111240B2 (ja) 電子機器用カバーガラスのガラス基板の製造方法
CN107108347A (zh) 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
US11389919B2 (en) Methods for strengthening edges of laminated glass articles and laminated glass articles formed therefrom
TW201514128A (zh) 分析藍寶石物品的方法
JP2015093822A (ja) 強化ガラスと強化ガラスの面取り面の形成方法。
TW202012331A (zh) 用於微電子製造的載具
JP2013241291A (ja) 電子機器用カバーガラスの製造方法
TW201529498A (zh) 強化玻璃切割及去角方法
KR20220094505A (ko) 초박형 글라스의 제조방법 및 상기 방법으로 제조된 초박형 글라스
JP2014031286A (ja) 電子機器用カバーガラスのガラス基板の製造方法
JP5083477B2 (ja) 情報記録媒体用ガラス基板の製造方法
WO2018207794A1 (ja) ガラス基板、およびガラス基板の製造方法
JP2020007184A (ja) 半導体用支持基板
JP2013040086A (ja) 強化ガラス板及びカバーガラスの製造方法並びにカバーガラス
JP2013030268A5 (ja)
JP2014009118A (ja) 電子機器用カバーガラスのガラス基板の製造方法
JPWO2020013984A5 (ja)
TW201513188A (zh) 減少藍寶石的厚度的方法
JP2013241292A (ja) 電子機器用カバーガラスの製造方法
JP2015098414A (ja) 強化ガラスと強化ガラスの面取り相当面の形成方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504966

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760711

Country of ref document: EP

Kind code of ref document: A1