WO2013137128A1 - 等速自在継手 - Google Patents
等速自在継手 Download PDFInfo
- Publication number
- WO2013137128A1 WO2013137128A1 PCT/JP2013/056415 JP2013056415W WO2013137128A1 WO 2013137128 A1 WO2013137128 A1 WO 2013137128A1 JP 2013056415 W JP2013056415 W JP 2013056415W WO 2013137128 A1 WO2013137128 A1 WO 2013137128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- constant velocity
- velocity universal
- universal joint
- boot
- silicone rubber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/18—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/84—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
- F16D3/843—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
- F16D3/845—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/50—Sealings between relatively-movable members, by means of a sealing without relatively-moving surfaces, e.g. fluid-tight sealings for transmitting motion through a wall
- F16J15/52—Sealings between relatively-movable members, by means of a sealing without relatively-moving surfaces, e.g. fluid-tight sealings for transmitting motion through a wall by means of sealing bellows or diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J3/00—Diaphragms; Bellows; Bellows pistons
- F16J3/04—Bellows
- F16J3/041—Non-metallic bellows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J3/00—Diaphragms; Bellows; Bellows pistons
- F16J3/04—Bellows
- F16J3/041—Non-metallic bellows
- F16J3/043—Non-metallic bellows with particular means for limiting wear
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2206—Oxides; Hydroxides of metals of calcium, strontium or barium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/221—Oxides; Hydroxides of metals of rare earth metal
- C08K2003/2213—Oxides; Hydroxides of metals of rare earth metal of cerium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2272—Ferric oxide (Fe2O3)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/202—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
- F16D3/205—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/202—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
- F16D3/205—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
- F16D3/2055—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/226—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
- F16D3/227—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic
Definitions
- the present invention relates to a constant velocity universal joint.
- the present invention relates to a constant velocity universal joint using a silicone rubber boot.
- constant velocity universal joints With the recent high performance of automobiles, the usage conditions of constant velocity universal joints tend to be severe. As constant velocity universal joints are required to have higher torque and higher rotation operating conditions, the amount of heat generated by the constant velocity universal joints tends to increase.
- the constant velocity universal joint for drive shafts and the constant velocity universal joint for propeller shafts installed on the differential gear side have a layout that is closer to the exhaust pipe due to space saving, so the influence of radiant heat There is a tendency to receive greatly. As a result, the boot attached to the constant velocity universal joint is exposed to a higher temperature (for example, 140 ° C. or higher).
- the constant velocity universal joint boot is subject to repeated stress accompanying deformation due to its usage environment, and therefore fatigue cracks are likely to occur at the bent portion.
- the crack may develop from there. Such cracks tend to occur when exposed to high temperatures.
- adding cerium oxide to the silicone rubber can be an effective measure for preventing the occurrence of cracks even under severe conditions at a high temperature of 140 ° C. or higher.
- cerium oxide is produced in limited areas, its availability is unstable, prices are likely to rise, and there is concern about stable supply, which may hinder use in boot materials. Therefore, without using a rare earth element-containing compound such as cerium oxide as the boot material, the boots are improved in durability at high temperatures. Specifically, the above-described use is required when used in a high-temperature (eg, 140 ° C. or higher) atmosphere. It is desired to prevent the occurrence of cracks.
- a high-temperature eg, 140 ° C. or higher
- the present invention has been made in order to cope with such a problem, and a constant velocity universal joint having excellent durability at high temperatures while using a silicone rubber boot not containing a rare earth element-containing compound such as cerium oxide.
- the purpose is to provide.
- the constant velocity universal joint of the present invention includes an outer joint member, an inner joint member, a shaft connected to the inner joint member, and a boot attached to the outer joint member and the shaft directly or via another member.
- the boot is a molded body of a silicone rubber composition containing silicone rubber, iron oxide, and titanium oxide, and not containing a rare earth element-containing compound.
- the rare earth elements are 17 elements of scandium, yttrium, and lanthanoid elements (lanthanum-ruthenium).
- the silicone rubber composition contains barium zirconate.
- the iron oxide, the titanium oxide, and the barium zirconate are each included in an amount of 0.5 to 5 parts by weight with respect to 100 parts by weight of the silicone rubber.
- the constant velocity universal joint is characterized in that grease is sealed in a space sealed by the boot.
- the boot includes a large-diameter attachment portion fixed to the outer joint member, a small-diameter attachment portion fixed to the shaft, and a bellows portion having a plurality of peaks and valleys provided between the attachment portions.
- the curvature of the outer peripheral surface of the trough part is a shape smaller than the curvature of the outer peripheral surface of the mountain part.
- this constant velocity universal joint is a sliding type constant velocity universal joint, and is used for the drive shaft for motor vehicles.
- the boot is formed in a U-shape provided between a large-diameter attachment portion fixed to an end portion of an annular member connected to the outer joint member, a small-diameter attachment portion fixed to the shaft, and the attachment portions. It consists of the bellows part which has the curved bending part. Moreover, this constant velocity universal joint is a sliding type constant velocity universal joint, and is used for the propeller shaft for motor vehicles.
- the constant velocity universal joint of the present invention is generally easy and stable because the boot to be mounted is a molded product of a silicone rubber composition containing silicone rubber, iron oxide and titanium oxide and not containing a rare earth element-containing compound.
- the boot to be mounted is a molded product of a silicone rubber composition containing silicone rubber, iron oxide and titanium oxide and not containing a rare earth element-containing compound.
- a filler that is available at a relatively low cost
- it has high temperature durability comparable to that containing cerium oxide.
- the constant velocity universal joint equipped with this boot is low in cost and excellent in durability at high temperatures.
- the constant velocity universal joint takes an operating angle by making the curvature of the valley outer peripheral surface of the bellows portion smaller than the curvature of the mountain outer peripheral surface. It is possible to suppress the deformation of the compression side phase of the boot trough that is most easily affected, and to improve the high temperature durability of the boot.
- the bent part is formed in a large R shape, and the boot bent part swings around when the constant velocity universal joint rotates at a high speed. And the high temperature durability of the boot can be further improved.
- 1 is a partial cross-sectional view showing a first embodiment of a constant velocity universal joint according to the present invention. It is a partial cross section figure which shows 2nd Embodiment of the constant velocity universal joint which concerns on this invention. It is a partial cross section figure which shows 3rd Embodiment of the constant velocity universal joint which concerns on this invention.
- the constant velocity universal joint of the present invention can improve durability at high temperatures while using a silicone rubber boot that does not contain a rare earth element-containing compound such as cerium oxide. Specifically, by improving the material surface and the structural surface of the boot, the durability of the boot at high temperatures can be improved, and as a result, the durability of the constant velocity universal joint can be improved.
- “durability of boot” means bending fatigue due to deformation of the boot, abrasion due to interference, etc.
- excellent durability at high temperature means particularly high temperature (eg, 140 ° C. The above means that the boot can be prevented from being damaged due to bending fatigue and wear during actual use in an atmosphere.
- the silicone rubber composition forming the boot of the constant velocity universal joint of the present invention is a composition obtained by adding iron oxide and titanium oxide to silicone rubber.
- the silicone rubber composition is generally formed by adding a vulcanizing agent, a silica-based filler, a processing aid, a filler for improving properties, etc. to silicone rubber (raw rubber). These are also included in the rubber composition as necessary.
- the present invention is particularly characterized in that iron oxide and titanium oxide are added in combination as the filler.
- the silicone rubber used in the present invention may be any polyorganosiloxane having a high polymerization degree having a siloxane bond (Si—O bond) and having rubber-like elasticity at room temperature.
- the silicone rubber either a millable silicone rubber or a liquid silicone rubber can be used.
- the liquid silicone rubber any of addition type liquid silicone rubber and condensation type liquid silicone rubber can be used. It is preferable to use a millable silicone rubber which is made of polyorganosiloxane having a straight chain and a high polymerization degree as a main raw material and can be handled in the same manner as natural rubber.
- methyl vinyl silicone rubber VMQ
- PVMQ methyl phenyl vinyl silicone rubber
- FVMQ methyl fluoroalkyl silicone rubber
- VMQ methyl vinyl silicone rubber is preferably used because it has a small compression set and is excellent in heat resistance and tear strength.
- metal compounds such as iron oxide, titanium oxide, cerium compounds, manganese compounds, nickel compounds, tungsten compounds, and metal organic acid salts are heat resistant. And is known as a property improver that can improve flame retardancy, and is actually added for this purpose. Possible reasons for the improvement in heat resistance include prevention of oxidation of organic groups by radical capture of transition metals and prevention of polymer crosslinking by bonding with silanol groups. These actions vary greatly depending on the metal species. For example, cerium-based compounds such as cerium oxide have the same heat resistance (hardness, tensile strength, elongation, etc.) even in a very small amount compared to iron oxide. Can be improved.
- the constant velocity universal joint rotates at a high speed while taking an operating angle
- the sliding type rotates while sliding in the axial direction
- the boot repeats deformation following the behavior.
- the bellows-like peaks, the bellows-like valleys, and the shaft interfere with each other, and stress is repeatedly applied to the peaks and valleys.
- characteristics such as being excellent in the abrasion resistance with respect to the said interference and preventing generation
- an additive such as a metal compound in consideration of these actual characteristics that cannot be judged based on general tensile strength and elongation alone.
- cerium oxide has been added as a metal compound to the silicone rubber boot of the constant velocity universal joint.
- the silicone rubber composition forming the boot of the constant velocity universal joint of the present invention uses “iron oxide” and “titanium oxide” in combination without adding a rare earth element-containing compound such as cerium oxide. It has a feature in that.
- the addition of one of iron oxide and titanium oxide without adding a rare earth element-containing compound such as cerium oxide cannot satisfy the durability at high temperatures required for boots, but iron oxide and titanium oxide. By adding together, the durability of the boot at high temperatures is increased, and the performance required for the boot can be maintained.
- iron oxide ferric trioxide (Fe 2 O 3 : red bengara), triiron tetroxide (Fe 3 O 4 : black bengara), and some of these iron atoms replaced with zinc, magnesium, etc. Etc. can be used. Moreover, what mixed these can also be used.
- titanium oxide TiO 2
- any of rutile type, anatase type, and mixed crystal type thereof can be used.
- the titanium oxide can use what was obtained by any manufacturing methods, such as a sulfuric acid method and a chlorine method.
- Iron oxide and titanium oxide are each used in the form of particles (powder) added to silicone rubber.
- the particle shape may be spherical, acicular, orthorhombic, or indefinite.
- the surface of these particles may be surface-treated with a surface treatment agent.
- iron oxide and titanium oxide it is preferable to add barium zirconate to the silicone rubber composition forming the boot of the constant velocity universal joint of the present invention.
- barium zirconate By using not only iron oxide and titanium oxide but also barium zirconate, durability at high temperatures can be maintained even if the amount of each additive and the sum of these additions are reduced. By reducing the total amount of addition, deterioration of the basic performance as rubber due to an increase in foreign matter in the silicone rubber can be suppressed.
- the addition amount of iron oxide and titanium oxide to the silicone rubber is preferably 3 to 5 parts by weight with respect to 100 parts by weight of the silicone rubber. In this case, if it is less than 3 parts by weight, the durability at high temperatures may not be sufficiently improved. Moreover, when it exceeds 5 weight part, it will be added excessively and there exists a possibility that the basic performance as rubber
- barium zirconate when used in combination, it is preferably 0.5 to 5 parts by weight per 100 parts by weight of silicone rubber. Even in this case, if the addition amounts of iron oxide and titanium oxide are each less than 0.5 parts by weight, durability at high temperatures may not be sufficiently improved. More preferably, each is 1 to 4 parts by weight, still more preferably 1 to 3 parts by weight, and most preferably 1 to 2 parts by weight.
- the amount of barium zirconate added to the silicone rubber can be appropriately determined according to the amounts of iron oxide and titanium oxide added, and is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the silicone rubber.
- the amount is less than 0.5 parts by weight, it is difficult to obtain the effect of improving durability at high temperatures by using barium zirconate in combination with iron oxide and titanium oxide.
- it exceeds 5 weight part it will be added excessively and there exists a possibility that the basic performance as rubber
- the same amount as that of iron oxide and titanium oxide is preferably 1 to 4 parts by weight, more preferably 1 to 3 parts by weight, and most preferably 1 to 2 parts by weight.
- barium zirconate is added in addition to iron oxide and titanium oxide, and the addition amount of each is 2 to 4 parts by weight with respect to 100 parts by weight of silicone rubber. The effect is obtained.
- an organic peroxide vulcanizing agent or a SiH group-containing compound can be used as the vulcanizing agent.
- the organic peroxide vulcanizing agent is used for an organic peroxide curable silicone rubber and is used as a catalyst for accelerating the crosslinking reaction of polyorganosiloxane.
- organic peroxide vulcanizing agent examples include acyl peroxides such as 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, and p-chlorobenzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di ( Alkyl peroxides such as t-butylperoxy) hexane, di (t-butyl) peroxide, and t-butylcumyl peroxide can be used.
- acyl peroxides such as 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, and p-chlorobenzoyl peroxide
- dicumyl peroxide 2,5-dimethyl-2,5-di ( Alkyl peroxides such as t-butylperoxy) hexane, di (t-butyl) peroxide, and t-butylcumyl peroxide
- the SiH group-containing compound is used for addition reaction curable silicone rubber.
- a polyorganosiloxane having a vinyl group at the terminal or side chain and a SiH group-containing compound having three or more —SiH groups at the molecular terminal are crosslinked by hydrosilylation reaction as an addition reaction in the presence of a platinum-based catalyst.
- the SiH group-containing compound is a polymer having a relatively low molecular weight, and is used in an amount of about 1 to 3 mole equivalents of —SiH groups per mole equivalent of vinyl groups of the polyorganosiloxane.
- an organic peroxide vulcanizing agent as a vulcanizing agent is added to millable silicone rubber (particularly VMQ). It is preferable to use (alkyl type).
- Silica fine powder, diatomaceous earth, quartz powder, etc. can be used as the silica-based filler.
- the silica fine powder preferably has a large specific surface area.
- fumed silica or precipitated silica can be used.
- by improving the dispersibility of the silica-based filler it is possible to improve the tear strength and to prevent cracking at high temperatures. For this reason, in addition to adding the processing aid mentioned later, it is preferable to siliconize the silica surface.
- processing aids low-viscosity silicone oils / resins having silanol groups or alkoxy groups at the ends, silane compounds, and the like can be used. By adding these processing aids, it is possible to easily disperse various fillers, increase the wetting speed of the filler and polymer, improve flowability, and improve physical properties.
- fillers for improving properties other than iron oxide, titanium oxide, and barium zirconate may be added for the purpose of improving mechanical strength, oil resistance, increasing weight, adjusting hardness, and other purposes.
- alumina, talc, clay, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, magnesium silicate, aluminum hydroxide, synthetic zeolite, carbon black, glass powder, hydrotalcite and the like can be used. These may be used alone or in combination of two or more.
- an abrasion resistance improver may be added.
- an improving agent mineral oil, vegetable oil, low melting point solid hydrocarbon compound, aliphatic polyether compound, aliphatic polyester compound, aliphatic polylactone compound, fatty acid amide compound, poly (alkylene oxide) glycol, and the like can be used. These may be used alone or in combination of two or more.
- additives may be added to the silicone rubber composition as necessary.
- plasticizers such as plasticizers, anti-aging agents, vulcanization accelerators, vulcanization retarders, colorants such as pigments and dyes, and the like can be used.
- the boot of the constant velocity universal joint of the present invention is a vulcanized molded body of the above-mentioned silicone rubber composition, and a predetermined molding method using the silicone rubber composition according to the characteristics (millable, liquid, etc.) of the silicone rubber. It is obtained by molding into a boot shape.
- a conventional rubber kneader such as a Banbury mixer, kneader, or open roll, and heated and compressed in the same manner as normal organic rubber.
- Molded into a predetermined boot shape by molding or injection molding.
- the molding temperature and time are determined according to the type of vulcanizing agent, boot size, and the like.
- injection molding, liquid injection molding, etc. are employable.
- the mechanical properties (JIS K6251-6253) of the boot of the constant velocity universal joint of the present invention will be described.
- the hardness is preferably 58 to 72 in terms of durometer hardness (type A).
- the tensile strength is preferably 7 MPa or more, and more preferably 8 MPa or more.
- the elongation at break is preferably 300% or more, and more preferably 350% or more.
- the tear strength is preferably 30 kN / m or more, and more preferably 38 kN / m or more. These are desirable ranges in order to withstand deformation in the environment in which the boot is used (deformation associated with the operating angle), foreign matter interference such as stepping stones, and swinging (abnormal deformation) at high speed rotation. If the hardness is too high, the bending fatigue property and crack propagation property may be impaired.
- the constant velocity universal joint of the present invention includes an outer joint member, an inner joint member, a shaft connected to the inner joint member, and the silicone rubber mounted on the outer joint member and the shaft directly or via another member. And a boot which is a molded body of the composition.
- Examples of the structure other than the boot of the constant velocity universal joint of the present invention include the following.
- the boot to be mounted is required to be able to be deformed following the behavior of the constant velocity universal joint.
- an inner joint member having a structure in which the track groove of the outer joint member is inclined at a predetermined angle with respect to the axis in opposite directions, and a ball interposed at the intersection of the track groove of the outer joint member and the track groove of the inner joint member (4, 6, 8, 10) and a structure comprising a cage for holding the ball between the outer joint member and the inner joint member.
- FIG. 1 is a partially cutaway sectional view of a tripod type joint (hereinafter referred to as TJ), and FIG. 2 is a partially cutaway sectional view of a double offset type joint (hereinafter referred to as DOJ).
- TJ tripod type joint
- DOJ double offset type joint
- the TJ 1 has three linear track grooves 3 in the axial direction formed on the inner surface of the outer joint member 2.
- a tripod member (inner joint member) 4 incorporated inside the outer joint member 2 is provided with three leg shafts 5.
- a spherical roller 6 is inserted outside each leg shaft 5 and a needle 7 is assembled between the spherical roller 6 and the leg shaft 5 to support the spherical roller 6 so that it can rotate and slide in the axial direction.
- a spherical roller 6 is inserted into the track groove 3 so as to roll freely.
- a boot 9 which is a molded body of the silicone rubber composition is mounted.
- the boot 9 is fitted to the outer joint member 2 and fixed to the outer cylinder end portion (large-diameter mounting portion) 9a, and the inner cylinder end is fixed to the shaft 8 connected to the inner joint member 4.
- the constant velocity universal joint is covered so as to be sealed.
- a lubricant such as grease is sealed in this sealed space.
- the boot 9 fits the outer cylinder end 9a to the outer joint member 2 and fixes it with the fastening band 10a or the like, while fixing the inner cylinder end 9b to the shaft 8 with the fastening band 10b or the like.
- a boot groove 8a is formed on the outer peripheral surface of the portion where the inner cylinder end portion 9b of the shaft 8 is fixed, and the inner cylinder end portion 9b is fitted into the boot groove 8a.
- the inner cylinder end portion 9b in the boot groove 8a can be more firmly fixed to the shaft 8.
- the DOJ 11 has a plurality of axial track grooves 14 and 15 in the axial direction formed on the inner surface of the outer joint member 12 and the outer surface of the inner ring (inner joint member) 13.
- a ball 16 incorporated between the track grooves 14 and 15 is supported by a cage 17, the outer periphery of the cage 17 is a spherical surface 17 a, and the inner periphery is a spherical surface 17 b that fits the outer periphery of the inner ring 13.
- the positions (b) and (b) of the spherical surfaces 17 a and 17 b are shifted in the axial direction on the axis of the outer joint member 12.
- a boot 19 which is a molded body of the silicone rubber composition, is mounted from the outer joint member 12 to a shaft 18 connected to the inner ring 13.
- the structure of the boot 19 and its mounting structure are the same as the boot 9 in FIG. Further, a lubricant (not shown) such as grease is sealed in the space sealed by the boot 19.
- the bellows shape of each of the boots 9 and 19 makes the curvature of the outer peripheral surface of the valley portion of the bellows portion smaller than the curvature of the outer peripheral surface of the mountain portion. That is, by making the radius of curvature of the bellows valley portion larger than the radius of curvature of the peak portion, it is possible to suppress the deformation of the compression side phase of the boot valley portion when the operating angle is taken and to improve the durability of the valley portion. ing. If the curvature of the valley outer peripheral surface is equal to or greater than the curvature of the mountain outer peripheral surface, the valley portion is largely crushed and a crack starting point is likely to occur.
- the end portion of the bellows portion on the small diameter attachment portion side is provided with a connection portion that is smoothly continuous with the small diameter attachment portion and whose outer surface is formed in an arc shape having a center of curvature outside the boot.
- the curvature radius of the outer surface is set to be larger than the curvature radius of the outer surface of the peak portion of the bellows portion, and the thickness at any point of the connection portion is the thickness at the end of the connection portion on the large-diameter mounting portion side.
- a shaft mounting portion in which a fitting groove for mounting a boot band is formed on the outer diameter surface thereof, and the shaft mounting portion connected to the bellows portion from the shaft mounting portion through a thick portion.
- a structure including a thin portion that allows buckling displacement with respect to the bellows portion can also be employed.
- a constant velocity universal joint that is a molded body of a predetermined silicone rubber composition and that is used for a drive shaft (drive shaft) for automobiles equipped with a boot having the above structure has excellent durability at high temperatures. Can hold.
- FIG. 3 is a partially cutaway cross-sectional view of a cross groove type joint (hereinafter referred to as LJ).
- LJ cross groove type joint
- This is a sliding type constant velocity universal joint, and is used for a propulsion shaft for automobiles.
- the LJ 21 is located on the outer periphery of the inner joint member 23 having a plurality of track grooves 27 formed on the outer peripheral surface and the inner joint member 23, and the track grooves of the inner joint member 23 on the inner peripheral surface thereof. 27 and an outer joint member 22 in which the same number of track grooves 26 are formed.
- the track groove 27 of the inner joint member 23 and the track groove 26 of the outer joint member 22 form an angle inclined in the opposite direction with respect to the axis, and the ball 24 is formed at the intersection of the paired track groove 27 and track groove 26. It has been incorporated.
- a cage 25 is disposed between the inner joint member 23 and the outer joint member 22, and the balls 24 are held in the pockets of the cage 25.
- the boot 29 is attached between the outer joint member 22 and the shaft 28 connected to the inner joint member 23 via the annular member 30 attached to the outer joint member 22, and covers the constant velocity universal joint so as to be sealed. Is. A lubricant (not shown) such as grease is sealed in this sealed space.
- the boot 29 is fixed to an outer cylinder end portion (large diameter mounting portion) 29 a fixed to the end portion of the annular member 30 attached to the outer joint member 22, and a shaft 28 connected to the inner joint member 23.
- An inner cylinder end portion (small diameter attachment portion) 29b and a bellows portion provided between them and having a bent portion 29c curved in a U shape are provided.
- the outer tube end 29 a of the boot 29 is sealed by being fixed to the annular member 30.
- a fixing method as shown in FIG. 3, a method is provided in which a concave portion 30 a is provided in the annular member 30, and the tip of the outer cylinder end portion 29 a of the boot 29 is fitted into the concave portion 30 a to crimp the concave portion 30 a of the annular member 30.
- the fixing method of this outer cylinder end part 29a and the annular member 30 is an example, and is not restricted to this.
- the outer cylinder end portion 29 a may be fixed to the annular member 30 with the fastening band 31 or the like, or the annular member 30 may be formed integrally with the boot 29 and attached to the outer joint member 22.
- Reference numeral 32 in the figure denotes an air vent groove that prevents the grease filled in the boot from leaking out.
- the annular member 30 is generally made of an iron metal ring, but may be made of other metals such as aluminum or resin.
- the inner cylinder end 29 b of the boot 29 is sealed by being fixed to the shaft 28.
- a boot groove 28a is formed on the outer peripheral surface of the portion where the inner cylinder end 29b of the shaft 28 is fixed, and the inner cylinder end 29b is fitted into the boot groove 28a and fixed with a fastening band or the like. Further, by providing the annular protrusions 28b on both sides of the boot groove 28a, the inner cylinder end 29b in the boot groove 28a can be more firmly fixed to the shaft 28.
- Constant velocity universal joints used in automobile propulsion shafts that are molded bodies of a predetermined silicone rubber composition and equipped with boots having the above-described structure have excellent durability at high temperatures. Can hold.
- the outer joint member and the shaft connected to the inner joint member are fitted on the large diameter portion and the small diameter portion of the boot, and the large diameter portion and the small diameter portion are fitted.
- the boot band is an annular body having no folded portion, and the axial outer peripheral edge of the boot band is bent to the outer diameter side.
- a gap was formed between the axial outer peripheral edge and the bottom end of the corresponding fitting groove of the boot to avoid interference.
- a structure can also be adopted.
- the constant velocity universal joint of the present invention can be of any form, and can be a sliding type constant velocity universal joint having a mechanism that slides in the axial direction of the outer joint member such as the tripod type, double offset type, or cross groove type. Without limitation, it can also be used as a fixed type constant velocity universal joint using a ball such as a zepper type or a barfield type.
- the tripod type constant velocity universal joint may be either a double roller type or a single roller type.
- the grease to be sealed in the constant velocity universal joint of the present invention is formed by adding an additive to a base grease composed of a base oil and a thickener.
- the base oil is not particularly limited, and those commonly used as a base oil for grease for constant velocity universal joints can be used.
- mineral oil such as naphthenic, paraffinic, liquid paraffin, hydrodewaxed oil, polyglycol oil such as polyalkylene glycol, ether synthetic oil such as alkyl diphenyl ether and polyphenyl ether, diester oil, polyol ester oil, etc.
- Hydrocarbon synthetic oils such as ester synthetic oils, silicone oils such as polydimethylsiloxane and polyphenylmethylsiloxane, GTL base oils, and poly- ⁇ -olefins (hereinafter referred to as PAO) can be used. These may be used alone or as a mixed oil of two or more.
- base oils containing mineral oils such as naphthenic and paraffinic oils, considering that they are inexpensive and easy to use industrially.
- base oil containing a synthetic oil such as ester oil or PAO oil
- the above base oil preferably has a kinematic viscosity at 40 ° C. of 40 mm 2 / s or more, more preferably 40 to 350 mm 2 / s, in order to suppress a decrease in lubricating performance.
- a kinematic viscosity at 40 ° C. of 40 mm 2 / s or more, more preferably 40 to 350 mm 2 / s, in order to suppress a decrease in lubricating performance.
- the kinematic viscosity is less than 40 mm 2 / s, it is difficult to form an oil film during low-speed rotation.
- the kinematic viscosity exceeds 350 m 2 / s, the low-temperature characteristics are deteriorated, the fluidity is poor, and the ability to quickly supply oil to the lubricating surface is poor.
- the thickener is not particularly limited, and a thickener generally used as a thickener for a constant velocity universal joint grease can be used.
- soap-type thickeners such as metal soaps and composite metal soaps, and non-soap-type thickeners such as benton, silica gel, urea compounds and urea / urethane compounds can be used.
- the metal soap include sodium soap, calcium soap, aluminum soap, and lithium soap
- examples of the urea compound and urea / urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, and diurethane compounds.
- a urea compound, particularly a diurea compound which is excellent in heat resistance and excellent in the intervention property and adhesion to the sliding portion.
- the urea compound is obtained by reacting a polyisocyanate component and a monoamine component.
- a base grease is prepared by reacting a polyisocyanate component and a monoamine component in a base oil.
- the polyisocyanate component include phenylene diisocyanate, tolylene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, and hexane diisocyanate.
- an aliphatic monoamine, an alicyclic monoamine, and an aromatic monoamine can be used as a monoamine component.
- aliphatic monoamine hexylamine, octylamine, dodecylamine, hexadecylamine, octadecylamine, stearylamine, oleylamine and the like can be used.
- alicyclic monoamine cyclohexylamine or the like can be used.
- aromatic monoamine aniline, p-toluidine and the like can be used.
- additives those generally used as additives for grease for constant velocity universal joints, such as extreme pressure agents, antioxidants, rust preventives and oily agents, can be used.
- organometallic compounds organic molybdenum compounds such as molybdenum dithiocarbamate and molybdenum dithiophosphate, organic zinc compounds such as zinc dithiocarbamate, zinc dithiophosphate and zinc phenate, organic antimony compounds such as antimony dithiocarbamate and antimony dithiophosphate, Organic selenium compounds such as selenium dithiocarbamate, organic bismuth compounds such as bismuth naphthenate and bismuth dithiocarbamate, organic iron compounds such as iron dithiocarbamate and iron octylate, organic copper compounds such as copper dithiocarbamate and copper naphthenate, maleic acid Organic tin compounds such as tin and dibutyltin sulfide, or organic gold such as alkali sulfonates, phenates, phosphonates, gold, silver and titanium of al
- sulfur compounds include sulfides such as dibenzyl disulfide or polysulfide compounds, sulfurized oils and fats, ashless carbamic acid compounds, thiourea compounds, and thiocarbonates.
- phosphoric acid extreme pressure agent phosphoric acid ester compounds such as trioctyl phosphate and tricresyl phosphate, acidic phosphoric acid ester, phosphorous acid ester and acidic phosphorous acid ester can be used. .
- halogen-based extreme pressure agents such as chlorinated paraffin, or solid lubricants such as molybdenum disulfide, tungsten disulfide, graphite, polytetrafluoroethylene resin, antimony sulfide, and boron nitride can be used.
- sulfur-based extreme pressure agents such as dithiocarbamic acid compounds and dithiophosphoric acid compounds can be suitably used.
- the following compounds can be used. That is, phenyl-1-naphthylamine, phenyl-2-naphthylamine, diphenyl-p-phenylenediamine, dipyridylamine, phenothiazine, N-methylphenothiazine, N-ethylphenothiazine, 3,7-dioctylphenothiazine, p, p'-dioctyldiphenylamine Amine compounds such as N, N'-diisopropyl-p-phenylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, phenol compounds such as 2,6-di-tert-dibutylphenol, etc. Can be used.
- the following compounds can be used. That is, ammonium salts of organic sulfonic acids, alkali metals such as barium, zinc, calcium and magnesium, organic sulfonates of alkaline earth metals, organic carboxylates, phenates, phosphonates, alkyls such as alkyl or alkenyl succinic acid esters, Alkenyl succinic acid derivatives, partial esters of polyhydric alcohols such as sorbitan monooleate, hydroxy fatty acids such as oleoylsarcosine, mercapto fatty acids such as 1-mercaptostearic acid or metal salts thereof, higher fatty acids such as stearic acid Higher alcohols such as isostearyl alcohol, esters of higher alcohols and higher fatty acids, thiazoles such as 2,5-dimercapto-1,3,4-thiadiazole, 2-mercaptothiadiazole, 2- ( Sildithio) -benzimidazo
- the oily agent for example, the following compounds can be used. That is, fatty acids such as oleic acid and stearic acid, fatty acid alcohols such as oleyl alcohol, fatty acid esters such as polyoxyethylene stearic acid ester and polyglyceryl oleic acid ester, and phosphate esters such as tricresyl phosphate can be used.
- fatty acids such as oleic acid and stearic acid
- fatty acid alcohols such as oleyl alcohol
- fatty acid esters such as polyoxyethylene stearic acid ester and polyglyceryl oleic acid ester
- phosphate esters such as tricresyl phosphate
- additives can be added alone or in combination of two or more.
- the content of these additives is preferably individually 0.05% by weight or more of the total amount of grease, and the total amount is preferably in the range of 0.15 to 20% by weight of the total amount of grease. In particular, when the total amount exceeds 20% by weight, an effect commensurate with the increase in the content may not be expected, and undesirable phenomena such as aggregation of these additives in the grease may be caused.
- the following grease A is preferably used.
- the following components (a) to (f) are included.
- the content of diurea thickener in the total composition is 1 to 25% by weight
- the content of molybdenum disulfide dialkyldithiocarbamate is 0.1 to 5% by weight
- the content of molybdenum disulfide is 0.1 to 5% by weight
- the content of sulfur-phosphorus extreme pressure agent is 0.1 to
- the boot is a molded body of the above-mentioned predetermined silicone rubber composition, and the structure thereof is improved as necessary. Even if it is used, cracking and the like can be suppressed. In particular, as shown in the examples described later, even when the above grease A or grease B is used, it can be suitably used.
- the silicone rubber composition as the boot material was prepared by adding each filler in the amount (parts by weight) shown in Table 1 to 100 parts by weight of silicone rubber.
- the iron oxide in the table is ferric trioxide (Fe 2 O 3 : red bengara).
- As the silicone rubber millable silicone rubber was used, and an organic peroxide vulcanizing agent was used as the vulcanizing agent.
- the additives other than the fillers shown in Table 1 vulcanizing agents, silica-based fillers, processing aids, etc.
- silicone rubber are the same in all of Examples 1 to 5 and Comparative Examples 1 to 5. Is used.
- a boot having a bellows-like bent portion shown in FIG. 1 is manufactured using this boot material, and is attached to a sliding tripod type constant velocity universal joint.
- the conditions are an operating angle of 15 deg, an ambient temperature of 140 ° C., and a rotational speed of 500 rpm. Rotating at a time twice as long as the predetermined time, the durability at high temperature was evaluated. The results are shown in Table 1.
- the test result visually confirms the state of the boot, evaluates that there is no crack at all ⁇ ⁇ '', evaluates a thing with a slight crack ⁇ ⁇ '', the crack has progressed and has broken Recorded as an evaluation “x”.
- the grease A was used as the encapsulated grease. Specifically, it was produced as follows. A container was charged with 4100 g of base oil and 1012 g of diphenylmethane-4,4′-diisocyanate, and the mixture was heated to 70-80 ° C. In a separate container, 4100 g of base oil, 563 g of cyclohexylamine and 225 g of aniline were taken, heated to 70-80 ° C., and added to the previous container. The mixture was heated to 160 ° C. with good stirring and allowed to cool to obtain a base grease. As the base oil, a mineral oil having a kinematic viscosity at 40 ° C. of 154 mm 2 / s was used.
- Examples 2 to 4 are preferable to be Example 2 or Example 3 in which the addition amount is reduced from the viewpoint of cost because the state after operation for twice the predetermined time is not cracked.
- Example 1 although the amount of filler added was small, a slight crack was observed, but it is considered that the specification can be satisfied in practical use.
- Example 5 since barium zirconate was not added, a slight crack was observed, but it is considered that the specification can be satisfied in practical use.
- the silicone rubber composition used as a boot material was prepared by adding each filler in the amount (parts by weight) shown in Table 2 to 100 parts by weight of silicone rubber.
- the iron oxide in the table is ferric trioxide (Fe 2 O 3 : red bengara).
- the additives other than the fillers shown in Table 2 vulcanizing agents, silica-based fillers, processing aids, etc.
- silicone rubber are the same in all of Examples 6 to 10 and Comparative Examples 6 to 10. (The same as Example 1) is used.
- a boot having a bent portion curved in a U-shape as shown in FIG. 2 is manufactured and mounted on a sliding cross groove type constant velocity universal joint, with an operating angle of 5 deg, an ambient temperature of 150 ° C., and a rotation. It was rotated for a predetermined time under the condition of several thousand rpm and evaluated for durability. The results are shown in Table 2. The evaluation method for the test results is the same as in Example 1.
- the grease B was used as the encapsulated grease. Specifically, it was produced as follows. In the same manner as in the above [Test 1], only base oil was replaced with mineral oil having a kinematic viscosity at 40 ° C. of 141 mm 2 / s to obtain a base grease.
- This base grease contains 3% by weight of molybdenum dialkyldithiocarbamate sulfide, 1% by weight of molybdenum disulfide, 2% by weight of zinc dithiophosphate, 2% by weight of sulfur-based extreme pressure agent not containing phosphorus, and sulfur-containing organotin.
- Examples 7 to 9 are preferable to be Example 7 or Example 8 in which the addition amount is reduced from the viewpoint of cost because the state after operation for a predetermined time is not cracked.
- Example 6 since the amount of the additive added was small, a slight crack was observed, but it is considered that the specification can be satisfied in practical use.
- Example 10 since barium zirconate was not added, a slight crack was observed, but it is considered that the specification can be satisfied in practical use.
- the constant velocity universal joint of the present invention is excellent in durability at high temperature while using a boot made of silicone rubber not containing a rare earth element-containing compound such as cerium oxide, so that it is used for an automobile drive shaft or an automobile propeller shaft, etc. It can be suitably used as a quick universal joint.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Sealing Devices (AREA)
- Diaphragms And Bellows (AREA)
Abstract
酸化セリウムなどの希土類元素含有化合物を含まないシリコーンゴム製のブーツを用いながら、高温での耐久性に優れる等速自在継手を提供する。等速自在継手は、外側継手部材2と、内側継手部材4と、該内側継手部材4に連結されたシャフト8と、外側継手部材2およびシャフト8に直接または別部材を介して装着されるブーツ9とを備えてなり、このブーツ9が、シリコーンゴムと酸化鉄と酸化チタンとを含み、希土類元素含有化合物を含まないシリコーンゴム組成物の成形体である。さらに、必要に応じて、上記シリコーンゴム組成物が、バリウムジルコネートを含む。
Description
本発明は等速自在継手に関する。特に、シリコーンゴム製のブーツを用いた等速自在継手に関する。
近年の自動車の高性能化に伴い、等速自在継手の使用条件は過酷になる傾向にある。等速自在継手に対し、より高トルク、高回転の使用条件が要求されることで、等速自在継手の発熱量が増加する傾向にある。また、デファレンシャルギア側に装備されるドライブシャフト用等速自在継手や、プロペラシャフト用等速自在継手では、省スペース化により、排気管との距離が近くなるレイアウトとなることで、その輻射熱の影響を大きく受ける傾向にある。その結果、等速自在継手に装着されているブーツは、より高温(例えば、140℃以上)に曝されることとなる。
このため、特に耐熱性が必要となる等速自在継手の場合には、耐熱性に優れたシリコーンゴムから形成されるシリコーンゴム製等速自在継手用ブーツの使用が望まれている(特許文献1参照)。シリコーンゴムを材料として採用することで、同時に低温特性(例えば、-40℃以下)にも優れる。また、等速自在継手用ブーツの高温での耐久性をさらに高めるため、シリコーンゴムにレアアース(希土類元素)を含む化合物の一つである酸化セリウムを添加しているものがある。
等速自在継手用ブーツは、その使用環境から、変形に伴う繰り返し応力が加わるため、屈曲部などにおいて疲労亀裂の発生が起こりやすい。特にシリコーンゴムを材料として用いる場合では、一旦亀裂が発生すると、そこから亀裂が進展してしまうおそれがある。高温に曝される場合では、このような亀裂が発生しやすくなる。上述のように、シリコーンゴムに対して酸化セリウムを添加することは、140℃以上の高温下の厳しい条件下でも、この亀裂発生を防止する有効な対策となり得る。
しかしながら、酸化セリウムは産出地が限られていることから、入手性が不安定で、価格も高騰し易く安定供給に不安があり、ブーツ材料への使用に支障を来たす可能性がある。このため、ブーツ材料に酸化セリウムなどの希土類元素含有化合物を用いないで、ブーツの高温での耐久性を向上させる、具体的には、高温(例えば、140℃以上)雰囲気下での使用に際して上記亀裂の発生を防止することが望まれている。
本発明はこのような問題に対処するためになされたものであり、酸化セリウムなどの希土類元素含有化合物を含まないシリコーンゴム製のブーツを用いながら、高温での耐久性に優れる等速自在継手を提供することを目的とする。
本発明の等速自在継手は、外側継手部材と、内側継手部材と、該内側継手部材に連結されたシャフトと、上記外側継手部材および上記シャフトに直接または別部材を介して装着されるブーツとを備えてなる等速自在継手であって、上記ブーツが、シリコーンゴムと酸化鉄と酸化チタンとを含み、希土類元素含有化合物を含まないシリコーンゴム組成物の成形体であることを特徴とする。なお、希土類(レアアース)元素とは、スカンジウム、イットリウム、ランタノイド元素(ランタン‐ルテニウム)の17元素である。
上記シリコーンゴム組成物が、バリウムジルコネートを含むことを特徴とする。また、上記酸化鉄、上記酸化チタン、および上記バリウムジルコネートが、上記シリコーンゴム100重量部に対して、それぞれ0.5~5重量部含まれることを特徴とする。
上記等速自在継手は、上記ブーツで密封された空間にグリースが封入されてなることを特徴とする。
上記ブーツは、上記外側継手部材に固定される大径取付部と、上記シャフトに固定される小径取付部と、上記両取付部間に備えられる複数の山谷を有する蛇腹部とからなり、上記蛇腹部の谷部外周面の曲率が山部外周面の曲率よりも小さい形状であることを特徴とする。また、この等速自在継手が、摺動式等速自在継手であり、自動車用ドライブシャフトに使用されることを特徴とする。
上記ブーツは、上記外側継手部材に連結された環状部材の端部に固定される大径取付部と、上記シャフトに固定される小径取付部と、上記両取付部間に備えられるU字状に湾曲した屈曲部を有するベロー部とからなることを特徴とする。また、この等速自在継手が、摺動式等速自在継手であり、自動車用プロペラシャフトに使用されることを特徴とする。
本発明の等速自在継手は、装着されるブーツが、シリコーンゴムと酸化鉄と酸化チタンとを含み、希土類元素含有化合物を含まないシリコーンゴム組成物の成形体であるので、一般に容易かつ安定的に比較的安価に入手可能な充填剤を使用しながら、酸化セリウムを含む場合と比較して同程度の高温耐久性を有する。具体的には、140℃以上の高温雰囲気下での運転試験において、蛇腹谷部等における亀裂の発生を抑制できる。このため、このブーツを装着した等速自在継手は、低コストで、高温での耐久性に優れる。
さらに、上記シリコーンゴム組成物にバリウムジルコネートを添加することで、より高温耐久性を向上させることができる。
また、複数の山谷を有する蛇腹部を備えたブーツにおいて、その蛇腹部の谷部外周面の曲率を山部外周面の曲率よりも小さい形状にすることで、等速自在継手が作動角を取った際に最も影響を受けやすいブーツ谷部の圧縮側位相の変形を抑制でき、ブーツの高温耐久性をより向上させることができる。
また、U字状に湾曲した屈曲部を有するベロー部を備えたブーツにすることで、該屈曲部が大きなR形状で形成され、等速自在継手が高速回転した際のブーツ屈曲部の振れ回りを抑制するとともに、ブーツの高温耐久性をより向上させることができる。
本発明の等速自在継手は、酸化セリウムなどの希土類元素含有化合物を含まないシリコーンゴム製のブーツを用いながら、高温での耐久性を向上させ得るものである。詳細には、ブーツの材料面や構造面を改良することで、高温でのブーツの耐久性を向上させ、その結果、等速自在継手の耐久性を向上させ得るものである。本発明において「ブーツの耐久性」とは、ブーツの変形に伴う屈曲疲労性や干渉による摩耗性などを意味し、「高温での耐久性に優れる」とは、特に、高温(例えば、140℃以上)雰囲気下での実使用に際して、屈曲疲労性や摩耗性に起因するブーツの破損を防止できることをいう。
本発明の等速自在継手のブーツを形成するシリコーンゴム組成物は、シリコーンゴムに、酸化鉄と酸化チタンとを添加してなる組成物である。シリコーンゴム組成物は、一般的に、シリコーンゴム(生ゴム)に、加硫剤、シリカ系充填剤、加工助剤、特性向上用の充填剤などを添加してなるものであり、本発明のシリコーンゴム組成物においても、必要に応じてこれらが含まれる。本発明では、この充填剤として、特に酸化鉄と酸化チタンとを併用して添加している点に特徴を有する。
本発明に使用するシリコーンゴムは、シロキサン結合(Si-O結合)を有する高重合度のポリオルガノシロキサン類であって、室温においてゴム状弾性を有するものであればよい。シリコーンゴムとしては、ミラブル型シリコーンゴム、液状シリコーンゴムのいずれも使用できる。また、液状シリコーンゴムとしては、付加型液状シリコーンゴム、縮合型液状シリコーンゴムのいずれも使用できる。直鎖状で高重合度のポリオルガノシロキサンを主原料とし、天然ゴムなどと同様に取り扱える、ミラブル型シリコーンゴムを使用することが好ましい。
また、ジメチル系シリコーンゴム(MQ)、メチルビニル系シリコーンゴム(VMQ)、メチルフェニルビニル系シリコーンゴム(PVMQ)、メチルフルオロアルキル系シリコーンゴム(FVMQ)のいずれも使用できる。これらの中でも、圧縮永久歪みが小さく、耐熱性および引き裂き強度に優れることからメチルビニル系シリコーンゴム(VMQ)を用いることが好ましい。
一般的な用途(等速自在継手以外)のシリコーンゴムにおいて、酸化鉄、酸化チタン、セリウム系化合物、マンガン系化合物、ニッケル系化合物、タングステン系化合物などの金属化合物や金属有機酸塩は、耐熱性や難燃性を向上し得る特性向上剤として知られており、実際に該目的で添加されている。耐熱性が向上する理由としては、遷移金属のラジカル捕捉による有機基の酸化の防止、シラノール基との結合によるポリマー架橋の防止などが考えられている。これらの作用は、金属種により大きく異なり、例えば、酸化セリウム等のセリウム系化合物は、酸化鉄と比較して非常に少ない量でも、同程度の耐熱性(硬さ、引張り強さ、伸び等)の向上が図れる。
一方、等速自在継手は、作動角を取りながら高速で回転し、摺動式では軸線方向に摺動しながら回転し、ブーツはその挙動に追従して変形を繰り返す。この際、蛇腹状の山部同士や、蛇腹状の谷部とシャフトとが干渉し、また、山部や谷部に対して繰り返し応力が加わる。このため、上記干渉に対する耐摩耗性に優れることや、上記繰り返し応力に対する疲労亀裂の発生を防止できること等の特性が要求される。等速自在継手のシリコーンゴム製ブーツでは、一般的な引張り強さや伸び等のみからでは適合判断できないこれらの実特性も考慮して、金属化合物等の添加剤の選定を行なう必要がある。従来は、これらの事情を勘案し、等速自在継手のシリコーンゴム製ブーツに、金属化合物として、酸化セリウムを添加していた。
これに対して、本発明の等速自在継手のブーツを形成するシリコーンゴム組成物は、酸化セリウムなどの希土類元素含有化合物を添加せずに、「酸化鉄」と「酸化チタン」とを併用している点に特徴を有する。酸化セリウムなどの希土類元素含有化合物を添加せず、酸化鉄と酸化チタンの一方のみを添加したものでは、ブーツに要求される高温での耐久性を満足することができないが、酸化鉄と酸化チタンをともに添加することでブーツの高温での耐久性が高まり、ブーツに要求される性能を保持できる。
酸化鉄としては、三酸化二鉄(Fe2O3:赤ベンガラ)、四酸化三鉄(Fe3O4:黒ベンガラ)、これらの鉄原子の一部が亜鉛、マグネシウム等で置き換えられたものなどが使用できる。また、これらを混合したものも使用できる。
酸化チタン(TiO2)としては、ルチル型、アナターゼ型、これらの混晶型のいずれも使用できる。また、酸化チタンは、硫酸法、塩素法など、いずれの製法で得られたものでも使用できる。
酸化鉄および酸化チタンは、それぞれ粒子(粉末)状のものがシリコーンゴムに添加されて使用される。粒子形状としては、球状、針状、斜方晶形、不定形状のいずれであってもよい。また、これら粒子の表面を、表面処理剤により表面処理したものであってもよい。
本発明の等速自在継手のブーツを形成するシリコーンゴム組成物には、酸化鉄と酸化チタンに加えて、バリウムジルコネートを添加することが好ましい。酸化鉄と酸化チタンのみでなく、さらにバリウムジルコネートを併用することで、それぞれの添加量およびこれら添加量の総和を少なくしても、高温での耐久性が維持できる。添加量の総和を少なくすることで、シリコーンゴム中の異物増加によるゴムとしての基本性能の悪化を抑制できる。
シリコーンゴムに対する酸化鉄と酸化チタンの添加量は、バリウムジルコネートを併用しない場合は、シリコーンゴム100重量部に対して、それぞれ3~5重量部とすることが好ましい。この場合、3重量部未満であると、高温での耐久性を十分に向上できないおそれがある。また、5重量部をこえると、過分の添加となり、ゴムとしての基本性能が悪化してしまう懸念がある。
一方、バリウムジルコネートを併用する場合は、シリコーンゴム100重量部に対して、それぞれ0.5~5重量部とすることが好ましい。この場合でも、酸化鉄と酸化チタンの添加量が、それぞれ0.5重量部未満であると、高温での耐久性を十分に向上できないおそれがある。より好ましくは、それぞれ1~4重量部であり、さらに好ましくはそれぞれ1~3重量部であり、最も好ましくはそれぞれ1~2重量部である。
シリコーンゴムに対するバリウムジルコネートの添加量は、酸化鉄と酸化チタンの添加量に合わせて適宜決定でき、シリコーンゴム100重量部に対して、0.5~5重量部とすることが好ましい。0.5重量部未満であると、バリウムジルコネートを酸化鉄および酸化チタンと併用することによる高温での耐久性を向上させる効果が得られにくい。また、5重量部をこえると、過分の添加となり、ゴムとしての基本性能が悪化してしまう懸念がある。酸化鉄および酸化チタンと同量とし、1~4重量部が好ましく、1~3重量部がさらに好ましく、1~2重量部が最も好ましい。
また、実施例に示すように、酸化鉄と酸化チタンに加えて、バリウムジルコネートを添加し、それぞれの添加量をシリコーンゴム100重量部に対して、2~4重量部とすることで特に優れた効果が得られている。
本発明の等速自在継手のブーツを形成するシリコーンゴム組成物に添加されるその他の成分(加硫剤、シリカ系充填剤、加工助剤など)について以下に説明する。
加硫剤としては、有機過酸化物加硫剤やSiH基含有化合物を使用できる。有機過酸化物加硫剤は、有機過酸化物硬化型シリコーンゴムに用いられ、ポリオルガノシロキサンの架橋反応を促進するための触媒として使用される。有機過酸化物加硫剤としては、例えば、2,4-ジクロロベンゾイルペルオキシド、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシドなどのアシル系ペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ジ(t-ブチル)ペルオキシド、t-ブチルクミルペルオキシドなどのアルキル系ペルオキシドが使用できる。このような有機過酸化物加硫剤は、シリコーンゴム100重量部に対して、0.1~5重量部程度、好ましくは0.1~3重量部程度用いられる。
一方、SiH基含有化合物は、付加反応硬化型シリコーンゴムに用いられる。ビニル基を末端または側鎖に有するポリオルガノシロキサンと、分子末端に-SiH基を3個以上有するSiH基含有化合物とを、白金系触媒の存在下において付加反応であるヒドロシリル化反応させて架橋させる。SiH基含有化合物は、比較的低分子量のポリマーであり、ポリオルガノシロキサンのビニル基1モル当量当たり-SiH基1~3モル当量程度用いられる。
本発明では、耐熱性、耐寒性、機械的強度の温度依存性に優れ、取扱い性等にも優れることから、ミラブル型シリコーンゴム(特にVMQ)に、加硫剤として有機過酸化物加硫剤(アルキル系)を用いることが好ましい。
シリカ系充填剤としては、シリカ微粉末、けいそう土、石英粉などが使用できる。シリカ微粉末は、比表面積が大きいものが好ましく、例えば、煙霧質シリカや沈殿シリカを使用できる。また、シリカ系充填剤の分散性を向上させることで、引き裂き強度を向上でき、高温時の亀裂防止にも繋がる。このため、後述の加工助剤を添加することに加えて、シリカ表面をシリコーン処理することが好ましい。
加工助剤としては、末端にシラノール基やアルコキシ基を持つ低粘度シリコーンオイル・樹脂、シラン化合物などが使用できる。これら加工助剤を添加することで、各種充填剤の分散が容易になり、充填剤とポリマーのぬれ速度が増し、流れ性が改良され、物性が向上する等の利点が得られる。
シリコーンゴム組成物には、機械強度、耐油性の改善、増量、硬度の調整、その他の目的で、酸化鉄、酸化チタン、バリウムジルコネート以外の特性向上用の充填剤を添加してもよい。このような充填剤としては、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、珪酸マグネシウム、水酸化アルミニウム、合成ゼオライト、カーボンブラック、ガラス粉、ハイドロタルサイトなどが使用できる。これらは単独で使用してもよく、あるいは2種以上併用してもよい。
また、ブーツの耐摩耗性を向上させるために、耐摩耗性改良剤を添加してもよい。このような改良剤としては、鉱油、植物油、低融点固形炭化水素化合物、脂肪族ポリエーテル化合物、脂肪族ポリエステル化合物、脂肪族ポリラクトン化合物、脂肪酸アミド化合物、ポリ(アルキレンオキシド)グリコールなどが使用できる。これらは、単独で使用してもよく、あるいは2種以上併用してもよい。
さらに、シリコーンゴム組成物には、必要に応じて、その他の各種添加剤を添加してもよい。このような添加剤としては、可塑剤、老化防止剤、加硫促進剤、加硫遅延剤、顔料や染料などの着色剤等が使用できる。
本発明の等速自在継手のブーツは、上記シリコーンゴム組成物の加硫成形体であり、該シリコーンゴム組成物を用いて、シリコーンゴムの特性(ミラブル、液状など)に合わせた成形方法で所定のブーツ形状に成形することで得られる。ミラブル型シリコーンゴムを用いる場合は、シリコーンゴム組成物を構成する各材料を、バンバリーミキサー、ニーダー、オープンロールなど通常のゴム用混練機を用いて混練し、通常の有機ゴムと同様に、加熱圧縮成形や射出成形で所定のブーツ形状に成形する。成形温度および時間は、加硫剤の種類、ブーツサイズなどに応じて決定する。また、液状シリコーンゴムを用いる場合は、注入成形、液状射出成形などを採用できる。
本発明の等速自在継手のブーツの機械的物性(JIS K6251-6253)について説明する。硬さは、デュロメータ硬さ(タイプA)で58~72が好ましい。引張り強さは、7MPa以上が好ましく、8MPa以上がより好ましい。破断時伸び量は、300%以上が好ましく、350%以上がより好ましい。引き裂き強度は、30kN/m以上が好ましく、38kN/m以上がより好ましい。これらは、ブーツの使用環境での変形(作動角に伴う変形)、飛び石などの異物干渉、高速回転時の振れ回り(異常変形)に耐えるために望ましい範囲である。硬さが高過ぎると、屈曲疲労性、亀裂伝播性に支障が出るおそれがある。
本発明の等速自在継手は、外側継手部材と、内側継手部材と、該内側継手部材に連結されたシャフトと、外側継手部材およびシャフトに直接または別部材を介して装着される、上記シリコーンゴム組成物の成形体であるブーツとを備えてなる。
本発明の等速自在継手のブーツ以外の構造としては、以下のようなものが挙げられる。下記の構造を含め、いずれの構造であっても、装着されるブーツは、等速自在継手の挙動に追従した変形が可能であることが要求される。
(A)内周面に軸方向に延びる三本の直線状トラック溝が形成された外側継手部材と、径方向に突設された三本の脚軸を有する内側継手部材としてのトリポード部材と、このトリポード部材の脚軸に回転自在に支持される転動体としてのローラとを備えてなり、このローラが外側継手部材のトラック溝に沿って転動自在に配置されている構造。
(B)円筒状の内周面に軸方向に延びる複数の直線状トラック溝が形成された外側継手部材と、球面状の外周面に外側継手部材のトラック溝と対をなす複数の直線状トラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に配置された転動体としてのボール(3~8個)と、外側継手部材と内側継手部材との間に上記ボールを保持するケージとを備えてなる構造。
(C)内周面に複数の直線状トラック溝が形成された外側継手部材と、外周面に外側継手部材のトラック溝と対をなす複数の直線状トラック溝が形成され、かつ、このトラック溝と外側継手部材のトラック溝とが軸線に対して互いに逆方向に所定角度傾斜した構造を有する内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との交叉部に介在したボール(4、6、8、10個)と、外側継手部材と内側継手部材との間に上記ボールを保持するケージとを備えてなる構造。
(A)内周面に軸方向に延びる三本の直線状トラック溝が形成された外側継手部材と、径方向に突設された三本の脚軸を有する内側継手部材としてのトリポード部材と、このトリポード部材の脚軸に回転自在に支持される転動体としてのローラとを備えてなり、このローラが外側継手部材のトラック溝に沿って転動自在に配置されている構造。
(B)円筒状の内周面に軸方向に延びる複数の直線状トラック溝が形成された外側継手部材と、球面状の外周面に外側継手部材のトラック溝と対をなす複数の直線状トラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に配置された転動体としてのボール(3~8個)と、外側継手部材と内側継手部材との間に上記ボールを保持するケージとを備えてなる構造。
(C)内周面に複数の直線状トラック溝が形成された外側継手部材と、外周面に外側継手部材のトラック溝と対をなす複数の直線状トラック溝が形成され、かつ、このトラック溝と外側継手部材のトラック溝とが軸線に対して互いに逆方向に所定角度傾斜した構造を有する内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との交叉部に介在したボール(4、6、8、10個)と、外側継手部材と内側継手部材との間に上記ボールを保持するケージとを備えてなる構造。
本発明の等速自在継手の第1および第2の具体的な実施形態を図1および図2に基づいて説明する。図1はトリポード型ジョイント(以下、TJと記す)の一部切欠断面図を、図2はダブルオフセット型ジョイント(以下、DOJと記す)の一部切欠断面図をそれぞれ示す。これらは、摺動式等速自在継手であり、自動車用駆動軸(ドライブシャフト)などに使用される。
図1に示すように、TJ1は、外側継手部材2の内面に軸方向の三本の直線状トラック溝3を形成している。外側継手部材2の内側に組み込んだ、トリポード部材(内側継手部材)4には、三本の脚軸5が設けられている。各脚軸5の外側に球面ローラ6を挿入し、その球面ローラ6と脚軸5との間にニードル7を組み込んで球面ローラ6を回転可能に、かつ軸方向にスライド可能に支持し、その球面ローラ6を上記トラック溝3に転動自在に挿入してある。外側継手部材2から、トリポード部材4に連結されたシャフト8にかけて、上記シリコーンゴム組成物の成形体であるブーツ9が装着されている。
ブーツ9は、外側継手部材2に嵌合されて固定される外筒端部(大径取付部)9aと、内側継手部材4に連結されたシャフト8に嵌合されて固定される内筒端部(小径取付部)9bと、これら外筒端部9aと内筒端部9bとの間を繋ぐ複数の山谷を有する蛇腹状の屈曲部(以下、「蛇腹部」ともいう)9cとを備え、等速自在継手を密封するように覆うものである。この密封空間に、グリースなどの潤滑剤(図示省略)が封入されている。ブーツ9は、外筒端部9aを外側継手部材2に嵌合して締結バンド10a等で固定する一方、内筒端部9bをシャフト8に締結バンド10b等で固定する。シャフト8の内筒端部9bを固定する部位の外周面にはブーツ溝8aが形成され、該ブーツ溝8aに内筒端部9bが嵌入される。なお、ブーツ溝8aの両側にそれぞれ環状突出部8bを設けることにより、ブーツ溝8aに入っている内筒端部9bのシャフト8への固定をさらに強固なものとできる。
図2に示すように、DOJ11は、外側継手部材12の内面および内輪(内側継手部材)13の外面に軸方向の複数の直線状トラック溝14、15を形成している。トラック溝14、15間に組み込んだボール16をケージ17で支持し、このケージ17の外周を球面17aとし、かつ内周を内輪13の外周に適合する球面17bとしている。各球面17a、17bの中心(イ)、(ロ)を外側継手部材12の軸心上において軸方向に位置をずらしてある。外側継手部材12から、内輪13に連結されたシャフト18にかけて、上記シリコーンゴム組成物の成形体であるブーツ19が装着されている。ブーツ19の構造およびその取付構造は、図1におけるブーツ9と同様である。また、ブーツ19で密封された空間に、グリースなどの潤滑剤(図示省略)が封入されている。
図1および図2において、それぞれのブーツ9、19の蛇腹形状は、蛇腹部の谷部外周面の曲率を山部外周面の曲率よりも小さくしている。すなわち、蛇腹谷部の湾曲の半径を山部の湾曲の半径よりも大きくすることで作動角を取った際のブーツ谷部の圧縮側位相の変形を抑制して谷部の耐久性を向上させている。谷部外周面の曲率を山部外周面の曲率と同等以上とすると、谷部が大きく潰されてしまい亀裂の起点を生じやすくなる。
また、蛇腹部の小径取付部側の端部に、小径取付部と滑らかに連続し、かつ、外面がブーツの外部に曲率中心を有する円弧状に形成された接続部を設け、この接続部の外面の曲率半径が、蛇腹部の山部の外面の曲率半径よりも大きく設定され、かつ、上記接続部の任意の点における肉厚を該接続部の大径取付部側の端部における肉厚以上とする構造も採用できる。
また、小径取付部において、その外径面にブーツバンド装着用の嵌合溝が形成されたシャフト装着部と、このシャフト装着部から肉厚部を介して蛇腹部に連結されてシャフト装着部および蛇腹部に対する座屈状変位を許容する肉薄部とを備えた構造も採用できる。
所定のシリコーンゴム組成物の成形体であり、かつ、以上のような構造のブーツを装着した自動車用駆動軸(ドライブシャフト)に使用される等速自在継手は、優れた高温での耐久性を保持できる。
本発明の等速自在継手の第3の具体的な実施形態を図3に基づいて説明する。図3はクロスグルーブ型ジョイント(以下、LJと記す)の一部切欠断面図を示す。これは摺動式等速自在継手であり、自動車用推進軸(プロペラシャフト)などに使用される。
図3に示すように、LJ21は、外周面に複数のトラック溝27が形成された内側継手部材23と、内側継手部材23の外周に位置し、その内周面に内側継手部材23のトラック溝27と同数のトラック溝26が形成されている外側継手部材22とを備える。内側継手部材23のトラック溝27と外側継手部材22のトラック溝26は、軸線に対して反対方向に傾斜した角度をなし、対をなすトラック溝27とトラック溝26との交叉部にボール24が組み込まれている。内側継手部材23と外側継手部材22の間にケージ25が配置され、ボール24は、ケージ25のポケット内に保持されている。
ブーツ29は、外側継手部材22に装着した環状部材30を介して、外側継手部材22と内側継手部材23に連結されたシャフト28との間にかけて装着され、等速自在継手を密封するように覆うものである。この密封空間に、グリースなどの潤滑剤(図示省略)が封入されている。このブーツ29は、外側継手部材22に装着された環状部材30の端部に固定される外筒端部(大径取付部)29aと、内側継手部材23に連結されたシャフト28に固定される内筒端部(小径取付部)29bと、それらの間に備えられ、U字状に湾曲した屈曲部29cを有するベロー部とを備えている。U字状に大きく湾曲した屈曲部29cを設けることにより、LJ21が高速回転した際のブーツ屈曲部の振れ回りを抑制すると共に、ブーツの耐久性を向上させている。
ブーツ29の外筒端部29aは、環状部材30に固定されることによりシールされている。固定方法としては、図3に示すように、環状部材30に凹部30aを設け、この凹部30aにブーツ29の外筒端部29aの先端を嵌合して環状部材30の凹部30aを加締める方法などが挙げられる。なお、この外筒端部29aと環状部材30との固定方法は一例であってこれに限られるものではない。例えば、環状部材30に外筒端部29aを締結バンド31等によって固定してもよいし、環状部材30をブーツ29と予め一体に成形して外側継手部材22に装着してもよい。図中の符号32は、ブーツ内部に充填されるグリースが漏れ出さない程度の空気抜き用の溝である。なお、環状部材30は、鉄製の金属環が一般的に使用されるが、アルミなどの他の金属製や、樹脂製であってもよい。
また、ブーツ29の内筒端部29bは、シャフト28に固定されることによりシールされている。このシャフト28の内筒端部29bを固定する部位の外周面にはブーツ溝28aが形成され、このブーツ溝28aに内筒端部29bが嵌合して締結バンド等で固定される。また、ブーツ溝28aの両側にそれぞれ環状突出部28bを設けることにより、ブーツ溝28aに入っている内筒端部29bのシャフト28への固定をさらに強固なものとできる。
所定のシリコーンゴム組成物の成形体であり、かつ、以上のような構造のブーツを装着した自動車用推進軸(プロペラシャフト)に使用される等速自在継手は、優れた高温での耐久性を保持できる。
その他、ブーツの取付構造としては、外側継手部材と、内側継手部材に連結されたシャフトに、ブーツの大径部と小径部を外嵌し、この大径部と小径部に形成された嵌合溝に装着したブーツバンドを縮径することによってブーツを固定する構造において、このブーツバンドを、折り返し部を有しない円環状体とするとともに、ブーツバンドの軸方向外周縁部を外径側へ折り曲げた形状あるいは湾曲した形状とし、ブーツバンドの縮径状態において、上記軸方向外周縁部と、これに対応するブーツの嵌合溝の底部端部との間に隙間を形成し、干渉を回避した構造も採用できる。
本発明の等速自在継手は、任意の形態とでき、上記したトリポード型、ダブルオフセット型、クロスグルーブ型などの外側継手部材の軸線方向にスライドする機構を備えた摺動式等速自在継手に限定されず、ゼッパ型、バーフィールド型などのボールを用いたタイプの固定式等速自在継手としても使用できる。なお、トリポード型等速自在継手は、ダブルローラタイプ、シングルローラタイプのいずれでもよい。
本発明の等速自在継手に封入するグリースは、基油と増ちょう剤とからなるベースグリースに添加剤を配合してなるものである。
基油としては、特に限定されず、等速自在継手用グリースの基油として一般的に使用されているものを使用できる。例えば、ナフテン系、パラフィン系、流動パラフィン、水素化脱ろう油などの鉱油、ポリアルキレングリコールなどのポリグリコール油、アルキルジフェニルエーテル、ポリフェニルエーテルなどのエーテル系合成油、ジエステル油、ポリオールエステル油などのエステル系合成油、ポリジメチルシロキサン、ポリフェニルメチルシロキサンなどのシリコーン油、GTL基油、ポリ-α-オレフィン(以下、PAOと記す)等の炭化水素系合成油が使用できる。これらは、1種類単独で用いても2種類以上の混合油として用いてもよい。これらの中で、価格が安く工業的に利用しやすいことを考慮すると、ナフテン系、パラフィン系などの鉱油を含む基油を使用することが好ましい。また、潤滑性能や潤滑寿命を考慮すると、エステル油やPAO油などの合成油を含む基油を使用することが好ましく、エステル油とPAO油の混合油とすることが特に好ましい。
上記基油は、潤滑性能の低下を抑制するため、40℃における動粘度が40mm2/s以上であることが好ましく、より好ましくは40~350mm2/sである。動粘度が40mm2/s未満であると低速回転時において油膜が形成されにくい。また、動粘度が350m2/sをこえると、低温特性が悪くなり、流動性が悪く、潤滑面への迅速な油の供給性に劣る。
増ちょう剤としては、特に限定されず、等速自在継手用グリースの増ちょう剤として一般的に使用されているものを使用できる。例えば、金属石けん、複合金属石けんなどの石けん系増ちょう剤、ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物などの非石けん系増ちょう剤を使用できる。金属石けんとしては、ナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けんなどが、ウレア化合物およびウレア・ウレタン化合物としては、ジウレア化合物、トリウレア化合物、テトラウレア化合物、他のポリウレア化合物、ジウレタン化合物などが使用できる。これらの中でも、耐熱性に優れ、摺動部への介入性と付着性にも優れたウレア化合物、特にジウレア化合物の使用が好ましい。
ウレア化合物は、ポリイソシアネート成分とモノアミン成分とを反応して得られる。ウレア化合物を増ちょう剤とする場合は、基油中でポリイソシアネート成分とモノアミン成分とを反応させてベースグリースを作製する。ポリイソシアネート成分としては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜などが使用できる。また、モノアミン成分としては、脂肪族モノアミン、脂環族モノアミンおよび芳香族モノアミンを用いることができる。脂肪族モノアミンとしては、ヘキシルアミン、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ステアリルアミン、オレイルアミンなどが使用できる。脂環族モノアミンとしては、シクロヘキシルアミンなどが使用できる。芳香族モノアミンとしては、アニリン、p-トルイジンなどが使用できる。
添加剤としては、極圧剤、酸化防止剤、防錆剤、油性剤など、等速自在継手用グリースの添加剤として一般的に使用されているものを使用できる。
極圧剤を添加することにより、耐荷重性や極圧性を向上させることができる。例えば以下の化合物を使用できる。有機金属系のものとしては、ジチオカルバミン酸モリブデン、ジチオリン酸モリブデンなどの有機モリブデン化合物、ジチオカルバミン酸亜鉛、ジチオリン酸亜鉛、亜鉛フェネートなどの有機亜鉛化合物、ジチオカルバミン酸アンチモン、ジチオリン酸アンチモンなどの有機アンチモン化合物、ジチオカルバミン酸セレンなどの有機セレン化合物、ナフテン酸ビスマス、ジチオカルバミン酸ビスマスなどの有機ビスマス化合物、ジチオカルバミン酸鉄、オクチル酸鉄などの有機鉄化合物、ジチオカルバミン酸銅、ナフテン酸銅などの有機銅化合物、マレイン酸スズ、ジブチルスズスルファイドなどの有機スズ化合物、あるいは、アルカリ金属、アルカリ土類金属の有機スルホネート、フェネート、ホスホネート、金、銀、チタンなどの有機金属化合物も必要であれば使用できる。硫黄系化合物としては、ジベンジルジスルフィドなどのスルフィドあるいはポリスルフィド化合物、硫化油脂類、無灰系カルバミン酸化合物類、チオウレア系化合物、もしくはチオカーボネート類などを使用できる。リン酸系極圧剤としては、トリオクチルフォスフェート、トリクレジルフォスフェートなどのリン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステルなどのリン酸エステル系化合物を使用できる。また、その他、塩素化パラフィンなどのハロゲン系の極圧剤、あるいは、二硫化モリブデン、二硫化タングステン、グラファイト、ポリテトラフルオロエチレン樹脂、硫化アンチモン、窒化硼素などの固体潤滑剤を使用できる。これらの極圧剤の中で、ジチオカルバミン酸系化合物やジチオリン酸系化合物などの硫黄系極圧剤を好適に使用できる。
酸化防止剤として、例えば以下の化合物を使用できる。すなわち、フェニル-1-ナフチルアミン、フェニル-2-ナフチルアミン、ジフェニル-p-フェニレンジアミン、ジピリジルアミン、フェノチアジン、N-メチルフェノチアジン、N-エチルフェノチアジン、3,7-ジオクチルフェノチアジン、p,p′-ジオクチルジフェニルアミン、N,N′-ジイソプロピル-p-フェニレンジアミン、N,N′-ジ-sec-ブチル-p-フェニレンジアミンなどのアミン系化合物、2,6-ジ-tert-ジブチルフェノールなどのフェノール系化合物などを使用できる。
防錆剤として、例えば以下の化合物を使用できる。すなわち、有機スルホン酸のアンモニウム塩、バリウム、亜鉛、カルシウム、マグネシウムなどのアルカリ金属、アルカリ土類金属の有機スルホン酸塩、有機カルボン酸塩、フェネート、ホスホネート、アルキルもしくはアルケニルこはく酸エステルなどのアルキル、アルケニルこはく酸誘導体、ソルビタンモノオレエートなどの多価アルコールの部分エステル、オレオイルザルコシンなどのヒドロキシ脂肪酸類、1-メルカプトステアリン酸などのメルカプト脂肪酸類あるいはその金属塩、ステアリン酸などの高級脂肪酸類、イソステアリルアルコールなどの高級アルコール類、高級アルコールと高級脂肪酸とのエステル、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプトチアジアゾールなどのチアゾール類、2-(デシルジチオ)-ベンゾイミダゾール、ベンズイミダゾールなどのイミダゾール系化合物、あるいは、2,5-ビス(ドデシルジチオ)ベンズイミダゾールなどのジスルフィド系化合物、あるいは、トリスノニルフェニルフォスファイトなどのリン酸エステル類、ジラウリルチオプロピオネートなどのチオカルボン酸エステル系化合物などを使用できる。また、金属表面を不動態化させる、亜硝酸塩、硝酸塩、クロム酸塩、リン酸塩、モリブデン酸塩、タングステン酸塩などの腐食抑制剤も使用できる。
油性剤として、例えば以下の化合物を使用できる。すなわち、オレイン酸やステアリン酸などの脂肪酸、オレイルアルコールなどの脂肪酸アルコール、ポリオキシエチレンステアリン酸エステルやポリグリセリルオレイン酸エステルなどの脂肪酸エステル、トリクレジルフォスフェートなどのリン酸エステルなどを使用できる。
これらの添加剤は単独または2種類以上組み合せて添加できる。これらの添加剤の含有量は、個別にはグリース全体量の0.05重量%以上、合計量でグリース全量の0.15~20重量%の範囲となることが好ましい。特に、合計量で20重量%をこえる場合は、含有量の増加に見合う効果が期待できない場合があり、また、グリース中でこれら添加剤が凝集するなどの好ましくない現象を招くこともある。
本発明の等速自在継手を自動車用ドライブシャフトに適用する場合、具体的には以下のグリースAを用いることが好ましい。
[グリースA]
下記の成分(a)~(f)を含む。
(a)基油
(b)ジウレア系増ちょう剤
(c)硫化ジアルキルジチオカルバミン酸モリブデン
(d)二硫化モリブデン
(e)ジチオリン酸亜鉛、およびチオフォスフェートからなる群から選ばれる少なくとも1種の硫黄-リン系極圧剤
(f)RCONH2(Rは炭素数15~17のアルキル基を示す)で表される脂肪酸アミド
ただし、全組成物中、ジウレア系増ちょう剤の含有量は1~25重量%、硫化ジアルキルジチオカルバミン酸モリブデンの含有量は0.1~5重量%、二硫化モリブデンの含有量は0.1~5重量%、硫黄-リン系極圧剤の含有量は0.1~5重量%、脂肪酸アミドの含有量は0.1~5重量%である。
[グリースA]
下記の成分(a)~(f)を含む。
(a)基油
(b)ジウレア系増ちょう剤
(c)硫化ジアルキルジチオカルバミン酸モリブデン
(d)二硫化モリブデン
(e)ジチオリン酸亜鉛、およびチオフォスフェートからなる群から選ばれる少なくとも1種の硫黄-リン系極圧剤
(f)RCONH2(Rは炭素数15~17のアルキル基を示す)で表される脂肪酸アミド
ただし、全組成物中、ジウレア系増ちょう剤の含有量は1~25重量%、硫化ジアルキルジチオカルバミン酸モリブデンの含有量は0.1~5重量%、二硫化モリブデンの含有量は0.1~5重量%、硫黄-リン系極圧剤の含有量は0.1~5重量%、脂肪酸アミドの含有量は0.1~5重量%である。
本発明の等速自在継手を自動車用プロペラシャフトに適用する場合、具体的には以下のグリースBを用いることが好ましい。
[グリースB]
下記の成分(a)~(g)を含む。
(a)基油
(b)次式で表わされるジウレア系増ちょう剤
R1NH-CO-NH-C6H4-p-CH2-C6H4-p-NH-CO-NHR2
(式中、R1およびR2は、同一もしくは異なる、炭素原子数6または7のアリール基もしくはシクロヘキシル基である。)
(c)硫化ジアルキルジチオカルバミン酸モリブデンもしくは硫化ジアルキルジチオリン酸モリブデンまたは両者併用した混合物
(d)二硫化モリブデン
(e)ジチオリン酸亜鉛もしくは硫黄-窒素系極圧剤または両者混合した極圧剤
(f)リン分を含まない硫黄系極圧剤
(g)硫黄含有有機スズ化合物(例えば、ジメチル錫ビス(イソオクチルチオグリコール)、モノメチル錫トリス(イソオクチルチオグリコール)およびジ(n-オクチル)錫ビス(イソオクチルメルカプトアセテート)からなる群から選ばれる1種以上の硫黄含有有機スズ化合物)
[グリースB]
下記の成分(a)~(g)を含む。
(a)基油
(b)次式で表わされるジウレア系増ちょう剤
R1NH-CO-NH-C6H4-p-CH2-C6H4-p-NH-CO-NHR2
(式中、R1およびR2は、同一もしくは異なる、炭素原子数6または7のアリール基もしくはシクロヘキシル基である。)
(c)硫化ジアルキルジチオカルバミン酸モリブデンもしくは硫化ジアルキルジチオリン酸モリブデンまたは両者併用した混合物
(d)二硫化モリブデン
(e)ジチオリン酸亜鉛もしくは硫黄-窒素系極圧剤または両者混合した極圧剤
(f)リン分を含まない硫黄系極圧剤
(g)硫黄含有有機スズ化合物(例えば、ジメチル錫ビス(イソオクチルチオグリコール)、モノメチル錫トリス(イソオクチルチオグリコール)およびジ(n-オクチル)錫ビス(イソオクチルメルカプトアセテート)からなる群から選ばれる1種以上の硫黄含有有機スズ化合物)
一般的に等速自在継手のブーツでは、温度条件に加えて、これらグリースに含まれる各成分(基油や添加剤)の影響など、種々の要因により耐久性が低下するおそれがある。本発明の等速自在継手は、ブーツが上述の所定のシリコーンゴム組成物の成形体であり、また、必要に応じてその構造も改良しているので、封入グリースとして上記各成分からなるものを使用しても亀裂発生等を抑制できる。特に、後述の実施例に示すとおり、上記のグリースAやグリースBを用いる場合でも、好適に使用できる。
[試験1:実施例1~5、比較例1~5]
ブーツ材料となるシリコーンゴム組成物は、シリコーンゴム100重量部に対して表1に示す量(重量部)の各充填剤を添加することで調整した。表中の酸化鉄は、三酸化二鉄(Fe2O3:赤ベンガラ)である。シリコーンゴムとしては、ミラブル型シリコーンゴムを用い、加硫剤として有機過酸化物加硫剤を用いた。また、表1に示す充填剤以外の添加剤(加硫剤、シリカ系充填剤、加工助剤等)と、シリコーンゴムについては、実施例1~5および比較例1~5のすべてで同じものを用いている。
ブーツ材料となるシリコーンゴム組成物は、シリコーンゴム100重量部に対して表1に示す量(重量部)の各充填剤を添加することで調整した。表中の酸化鉄は、三酸化二鉄(Fe2O3:赤ベンガラ)である。シリコーンゴムとしては、ミラブル型シリコーンゴムを用い、加硫剤として有機過酸化物加硫剤を用いた。また、表1に示す充填剤以外の添加剤(加硫剤、シリカ系充填剤、加工助剤等)と、シリコーンゴムについては、実施例1~5および比較例1~5のすべてで同じものを用いている。
このブーツ材料を用いて図1に示す蛇腹状の屈曲部を有するブーツを製作し、摺動式トリポード型等速自在継手に装着して、作動角15deg、雰囲気温度140℃、回転数500rpmの条件で所定時間の2倍の時間回転させて、高温での耐久性について評価した。その結果を表1に示す。なお、試験結果は、目視でブーツの状態を確認し、亀裂がまったくないものを評価「◎」、僅かに亀裂が認められるものを評価「○」、亀裂が進展し、破断しているものを評価「×」として記録した。
また、封入グリースには、上記グリースAを用いた。具体的には以下のように作製した。容器に基油4100gとジフェニルメタン-4,4’-ジイソシアネート1012gをとり、混合物を70~80℃に加熱した。別容器に基油4100gとシクロヘキシルアミン563g、アニリン225gをとり、70~80℃に加熱後、先の容器に加えた。混合物をよく攪拌しながら160℃まで昇温し、放冷し、ベースグリースを得た。基油としては、40℃の動粘度が154mm2/sである鉱油を用いた。このベースグリースに、硫化ジアルキルジチオカルバミン酸モリブデンを3重量%、二硫化モリブデンを1重量%、チオフォスフェートを1重量%、脂肪酸アミドを2重量%添加し、得られた混合物を三段ロールミルにてちょう度No.1グレードに調整した。なお、各添加量は、グリース全体量に対する重量%である。
この試験結果から、実施例2~4はともに所定時間の2倍作動後の状態が亀裂なしであるので、コスト面から添加量を少なくした実施例2または実施例3が好ましいことがわかる。これに対し、実施例1は充填剤の添加量が少なかったため僅かに亀裂が認められるものの、実用上は仕様を満足できるものと考えられる。また、実施例5はバリウムジルコネートを添加しなかったため僅かに亀裂が認められるものの、実用上は仕様を満足できるものと考えられる。
[試験2:実施例6~10、比較例6~10]
ブーツ材料となるシリコーンゴム組成物は、シリコーンゴム100重量部に対して表2に示す量(重量部)の各充填剤を添加することで調整した。表中の酸化鉄は、三酸化二鉄(Fe2O3:赤ベンガラ)である。なお、表2に示す充填剤以外の添加剤(加硫剤、シリカ系充填剤、加工助剤等)と、シリコーンゴムについては、実施例6~10および比較例6~10のすべてで同じもの(実施例1と同じもの)を用いている。
ブーツ材料となるシリコーンゴム組成物は、シリコーンゴム100重量部に対して表2に示す量(重量部)の各充填剤を添加することで調整した。表中の酸化鉄は、三酸化二鉄(Fe2O3:赤ベンガラ)である。なお、表2に示す充填剤以外の添加剤(加硫剤、シリカ系充填剤、加工助剤等)と、シリコーンゴムについては、実施例6~10および比較例6~10のすべてで同じもの(実施例1と同じもの)を用いている。
このブーツ材料を用いて図2に示すU字状に湾曲した屈曲部を有するブーツを製作し、摺動式クロスグルーブ型等速自在継手に装着して、作動角5deg、雰囲気温度150℃、回転数5000rpmの条件で所定時間回転させて、耐久性について評価した。その結果を表2に示す。なお、試験結果の評価方法は、実施例1と同様である。
また、封入グリースには、上記グリースBを用いた。具体的には以下のように作製した。上記[試験1]と同様の方法で、基油のみ、40℃の動粘度が141mm2/sである鉱油に替えてベースグリースを得た。このベースグリースに、硫化ジアルキルジチオカルバミン酸モリブデンを3重量%、二硫化モリブデンを1重量%、ジチオリン酸亜鉛を2重量%、リン分を含まない硫黄系極圧剤を2重量%、硫黄含有有機スズ化合物(ジメチル錫ビス(イソオクチルチオグリコール)とモノメチル錫トリス(イソオクチルチオグリコール)の75/25(重量比)混合物)を1重量%添加し、得られた混合物を三段ロールミルにてちょう度No.1グレードに調整した。なお、各添加量は、グリース全体量に対する重量%である。
この試験結果から、実施例7~9はともに所定時間作動後の状態が亀裂なしであるので、コスト面から添加量を少なくした実施例7または実施例8が好ましいことがわかる。これに対し、実施例6は添加剤の添加量が少なかったため僅かに亀裂が認められるものの、実用上は仕様を満足できるものと考えられる。また、実施例10はバリウムジルコネートを添加しなかったため僅かに亀裂が認められるものの、実用上は仕様を満足できるものと考えられる。
本発明の等速自在継手は、酸化セリウムなどの希土類元素含有化合物を含まないシリコーンゴム製のブーツを用いながら、高温での耐久性に優れるので、自動車用ドライブシャフトや自動車用プロペラシャフトに用いる等速自在継手として好適に利用できる。
1 TJ
2 外側継手部材
3 トラック溝
4 トリポード部材(内側継手部材)
5 脚軸
6 球面ローラ
7 ニードル
8 シャフト
9 ブーツ
10a、10b 締結バンド
11 DOJ
12 外側継手部材
13 内輪(内側継手部材)
14、15 トラック溝
16 ボール
17 ケージ
18 シャフト
19 ブーツ
21 LJ
22 外側継手部材
23 内側継手部材
24 ボール
25 ケージ
26、27 トラック溝
28 シャフト
29 ブーツ
30 環状部材
31 締結バンド
32 空気抜き用の溝
2 外側継手部材
3 トラック溝
4 トリポード部材(内側継手部材)
5 脚軸
6 球面ローラ
7 ニードル
8 シャフト
9 ブーツ
10a、10b 締結バンド
11 DOJ
12 外側継手部材
13 内輪(内側継手部材)
14、15 トラック溝
16 ボール
17 ケージ
18 シャフト
19 ブーツ
21 LJ
22 外側継手部材
23 内側継手部材
24 ボール
25 ケージ
26、27 トラック溝
28 シャフト
29 ブーツ
30 環状部材
31 締結バンド
32 空気抜き用の溝
Claims (11)
- 外側継手部材と、内側継手部材と、該内側継手部材に連結されたシャフトと、前記外側継手部材および前記シャフトに直接または別部材を介して装着されるブーツとを備えてなる等速自在継手であって、
前記ブーツが、シリコーンゴムと酸化鉄と酸化チタンとを含み、希土類元素含有化合物を含まないシリコーンゴム組成物の成形体であることを特徴とする等速自在継手。 - 前記シリコーンゴム組成物が、バリウムジルコネートを含むことを特徴とする請求項1記載の等速自在継手。
- 前記酸化鉄、前記酸化チタン、および前記バリウムジルコネートが、前記シリコーンゴム100重量部に対して、それぞれ0.5~5重量部含まれることを特徴とする請求項2記載の等速自在継手。
- 前記酸化鉄、前記酸化チタン、および前記バリウムジルコネートが、前記シリコーンゴム100重量部に対して、それぞれ2~4重量部含まれることを特徴とする請求項2記載の等速自在継手。
- 前記シリコーンゴムがミラブル型シリコーンゴムであり、加硫剤として有機過酸化物加硫剤を用いることを特徴とする請求項1記載の等速自在継手。
- 前記等速自在継手は、前記ブーツで密封された空間にグリースが封入されてなることを特徴とする請求項1記載の等速自在継手。
- 前記グリースが、硫黄系極圧剤を含むことを特徴とする請求項6記載の等速自在継手。
- 前記ブーツは、前記外側継手部材に固定される大径取付部と、前記シャフトに固定される小径取付部と、前記両取付部間に備えられる複数の山谷を有する蛇腹部とからなり、前記蛇腹部の谷部外周面の曲率が山部外周面の曲率よりも小さい形状であることを特徴とする請求項1記載の等速自在継手。
- 前記等速自在継手が、摺動式等速自在継手であり、自動車用ドライブシャフトに使用されることを特徴とする請求項8記載の等速自在継手。
- 前記ブーツは、前記外側継手部材に連結された環状部材の端部に固定される大径取付部と、前記シャフトに固定される小径取付部と、前記両取付部間に備えられるU字状に湾曲した屈曲部を有するベロー部とからなることを特徴とする請求項1記載の等速自在継手。
- 前記等速自在継手が、摺動式等速自在継手であり、自動車用プロペラシャフトに使用されることを特徴とする請求項10記載の等速自在継手。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/385,147 US9181986B2 (en) | 2012-03-14 | 2013-03-08 | Constant velocity universal joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012056728A JP5889678B2 (ja) | 2012-03-14 | 2012-03-14 | 等速自在継手 |
JP2012-056728 | 2012-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137128A1 true WO2013137128A1 (ja) | 2013-09-19 |
Family
ID=49161038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056415 WO2013137128A1 (ja) | 2012-03-14 | 2013-03-08 | 等速自在継手 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9181986B2 (ja) |
JP (1) | JP5889678B2 (ja) |
WO (1) | WO2013137128A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108087440A (zh) * | 2017-12-01 | 2018-05-29 | 上海纳铁福传动系统有限公司 | 三销轴叉精锻件冷精整用的温锻件毛坯 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105209531B (zh) * | 2013-05-23 | 2018-06-12 | 道康宁东丽株式会社 | 耐热硅橡胶组合物 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS522439A (en) * | 1975-06-24 | 1977-01-10 | Shin Etsu Chem Co Ltd | Fixing roller |
JPH0552360U (ja) * | 1991-12-20 | 1993-07-13 | エヌティエヌ株式会社 | 等速自在継手用ブーツ |
JP2572621Y2 (ja) * | 1991-11-14 | 1998-05-25 | エヌティエヌ株式会社 | 自動車のプロペラシャフト用等速ジョイントのブーツ |
JPH10158518A (ja) * | 1996-12-02 | 1998-06-16 | Shin Etsu Chem Co Ltd | 自動車ジョイントカバーブーツ用シリコーンゴム組成物 |
JP2001348481A (ja) * | 2000-06-09 | 2001-12-18 | Wacker Asahikasei Silicone Co Ltd | 耐熱性シリコーンゴム組成物及びその成形体 |
JP2007321923A (ja) * | 2006-06-02 | 2007-12-13 | Nok Corp | 自在継手用ブーツ |
JP2009019129A (ja) * | 2007-07-12 | 2009-01-29 | Ntn Corp | 自在継手用グリースおよび自在継手 |
JP2010078149A (ja) * | 2008-09-01 | 2010-04-08 | Ntn Corp | ステアリング装置用ブーツ、ステアリング装置用等速自在継手およびステアリング装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919161A (en) * | 1971-12-29 | 1975-11-11 | Gen Electric | Heat curable polysiloxane compositions containing fibers |
JPH0816194B2 (ja) * | 1990-05-14 | 1996-02-21 | 信越化学工業株式会社 | シリコーンゴム組成物およびその製造方法 |
JP3500973B2 (ja) * | 1998-07-15 | 2004-02-23 | 信越化学工業株式会社 | オイルブリード性シリコーンゴム組成物 |
JP4416246B2 (ja) * | 2000-01-07 | 2010-02-17 | Ntn株式会社 | プロペラシャフト用等速自在継手 |
US20040017046A1 (en) * | 2001-01-05 | 2004-01-29 | Frazer Richard D. | Transmission joint boot |
JP2005214395A (ja) | 2004-02-02 | 2005-08-11 | Ntn Corp | ステアリング装置用等速自在継手およびステアリング装置 |
JP4809603B2 (ja) * | 2004-11-25 | 2011-11-09 | 本田技研工業株式会社 | 等速ジョイント |
JP4461000B2 (ja) * | 2004-11-25 | 2010-05-12 | 本田技研工業株式会社 | 等速ジョイント用グリース組成物及び等速ジョイント |
US7297065B2 (en) * | 2004-12-08 | 2007-11-20 | Gkn Driveline North America, Inc. | Automotive driveline components manufactured of silicone materials |
JP5729590B2 (ja) * | 2010-12-29 | 2015-06-03 | Ntn株式会社 | グリース組成物、グリース封入軸受、自在継手および直動装置 |
-
2012
- 2012-03-14 JP JP2012056728A patent/JP5889678B2/ja not_active Expired - Fee Related
-
2013
- 2013-03-08 US US14/385,147 patent/US9181986B2/en active Active
- 2013-03-08 WO PCT/JP2013/056415 patent/WO2013137128A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS522439A (en) * | 1975-06-24 | 1977-01-10 | Shin Etsu Chem Co Ltd | Fixing roller |
JP2572621Y2 (ja) * | 1991-11-14 | 1998-05-25 | エヌティエヌ株式会社 | 自動車のプロペラシャフト用等速ジョイントのブーツ |
JPH0552360U (ja) * | 1991-12-20 | 1993-07-13 | エヌティエヌ株式会社 | 等速自在継手用ブーツ |
JPH10158518A (ja) * | 1996-12-02 | 1998-06-16 | Shin Etsu Chem Co Ltd | 自動車ジョイントカバーブーツ用シリコーンゴム組成物 |
JP2001348481A (ja) * | 2000-06-09 | 2001-12-18 | Wacker Asahikasei Silicone Co Ltd | 耐熱性シリコーンゴム組成物及びその成形体 |
JP2007321923A (ja) * | 2006-06-02 | 2007-12-13 | Nok Corp | 自在継手用ブーツ |
JP2009019129A (ja) * | 2007-07-12 | 2009-01-29 | Ntn Corp | 自在継手用グリースおよび自在継手 |
JP2010078149A (ja) * | 2008-09-01 | 2010-04-08 | Ntn Corp | ステアリング装置用ブーツ、ステアリング装置用等速自在継手およびステアリング装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108087440A (zh) * | 2017-12-01 | 2018-05-29 | 上海纳铁福传动系统有限公司 | 三销轴叉精锻件冷精整用的温锻件毛坯 |
CN108087440B (zh) * | 2017-12-01 | 2019-05-28 | 上海纳铁福传动系统有限公司 | 三销轴叉精锻件冷精整用的温锻件毛坯 |
Also Published As
Publication number | Publication date |
---|---|
JP2013190034A (ja) | 2013-09-26 |
US9181986B2 (en) | 2015-11-10 |
JP5889678B2 (ja) | 2016-03-22 |
US20150038601A1 (en) | 2015-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7762894B2 (en) | Constant velocity joint | |
US7867956B2 (en) | Urea-based lubricating grease composition | |
JP2001011481A (ja) | 等速ジョイント用グリース組成物 | |
JP5729590B2 (ja) | グリース組成物、グリース封入軸受、自在継手および直動装置 | |
US20010016563A1 (en) | Constant-velocity universal joint for propeller shaft | |
KR20150063438A (ko) | 그리스 조성물 | |
JPH09296196A (ja) | 等速ジョイント用グリース組成物 | |
EP1840195B1 (en) | Grease composition for constant velocity joint and constant velocity joint | |
JP2011063659A (ja) | 自在継手用グリースおよび自在継手 | |
JP4864296B2 (ja) | 等速ジョイント用グリース組成物及びそれを封入した等速ジョイント | |
JP5255754B2 (ja) | 等速ジョイント用グリース組成物及び等速ジョイント | |
JP4829523B2 (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JP5889678B2 (ja) | 等速自在継手 | |
JP4181771B2 (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JPH06330072A (ja) | ウレアグリース組成物 | |
JP2008069282A (ja) | 等速ジョイント用グリース組成物および等速ジョイント | |
JP3833756B2 (ja) | ウレアグリース組成物 | |
CN114302941A (zh) | 用于等速万向节的包含硫化锌和二硫化钼和/或二硫化钨的润滑脂组合物 | |
JP2008163201A (ja) | 等速ジョイント用グリース組成物及び等速ジョイント | |
CN114630887B (zh) | 用于等速万向节的包含硫化锌和硫化铜以及二硫化钼和/或二硫化钨的润滑脂组合物 | |
JP2006283830A (ja) | 等速自在継手 | |
CA2401507C (en) | Grease composition for constant velocity joints | |
EP4339491A1 (en) | Flexible boot for constant-velocity universal joint and constant-velocity universal joint | |
US10829714B2 (en) | Grease composition for constant velocity joints, and constant velocity joint in which same is sealed | |
JP5399203B2 (ja) | 固定型等速自在継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761223 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14385147 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13761223 Country of ref document: EP Kind code of ref document: A1 |