WO2013137033A1 - 2次電池型燃料電池システム - Google Patents

2次電池型燃料電池システム Download PDF

Info

Publication number
WO2013137033A1
WO2013137033A1 PCT/JP2013/055781 JP2013055781W WO2013137033A1 WO 2013137033 A1 WO2013137033 A1 WO 2013137033A1 JP 2013055781 W JP2013055781 W JP 2013055781W WO 2013137033 A1 WO2013137033 A1 WO 2013137033A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas
fuel
fuel cell
power generation
Prior art date
Application number
PCT/JP2013/055781
Other languages
English (en)
French (fr)
Inventor
篤広 野田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP13761315.4A priority Critical patent/EP2827425A4/en
Priority to JP2014504795A priority patent/JP5896015B2/ja
Priority to US14/385,089 priority patent/US20150037696A1/en
Publication of WO2013137033A1 publication Critical patent/WO2013137033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
  • a fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode.
  • the one sandwiched from both sides by the (cathode) has a single cell configuration.
  • a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode and an oxidant gas flow path for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Power generation is performed by supplying fuel gas and oxidant gas to the fuel electrode and oxidant electrode through the passage.
  • Fuel cells are not only energy-saving because of the high efficiency of power energy that can be extracted in principle, but they are also a power generation system that is excellent in the environment, and are expected as a trump card for solving energy and environmental problems on a global scale.
  • Patent Document 1 As a secondary battery type fuel cell system capable of generating and charging, a system in which a space in which a fuel electrode and a fuel generating member are arranged is sealed and a reaction is promoted by natural diffusion has been proposed (Patent Document 1). And Patent Document 2). However, since the reaction speed of fuel gas is limited in natural diffusion, there is a problem that high output power cannot be obtained and the output is not stable. And when solving this subject, it is desirable that the energy efficiency of the whole system should not be sacrificed as much as possible.
  • an object of the present invention is to provide a secondary battery type fuel cell system that can increase and stabilize the output and has high energy efficiency as the entire system.
  • a secondary battery type fuel cell system generates a fuel which is a reducing gas by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and the fuel A power generation function for generating power using the reducing gas supplied from the generator, and electricity for electrolyzing the oxidizing gas that is a product of the reverse reaction supplied from the fuel generator when the fuel generator is regenerated.
  • a power generation / electrolysis unit having a decomposition function, and a circulation unit for forcibly circulating the gas containing the reducing gas and / or the oxidizing gas between the fuel generation unit and the power generation / electrolysis unit;
  • a control unit that controls the circulation unit, and the control unit controls the flow rate of the gas circulated by the circulation unit so as to be different between a power generation operation and a charging operation.
  • the power generation / electrolysis unit includes, for example, a power generation operation that generates power using the reducing gas supplied from the fuel generation unit, and the reverse supplied from the fuel generation unit during regeneration of the fuel generation unit.
  • the fuel cell may be configured to switch between an electrolysis operation for electrolyzing an oxidizing gas that is a product of the reaction, and for example, power generation may be performed using the reducing gas supplied from the fuel generation unit.
  • the fuel cell to be performed and an electrolyzer that electrolyzes an oxidizing gas that is a product of the reverse reaction supplied from the fuel generator when the fuel generator is regenerated may be provided.
  • the output can be increased and stabilized, and the energy efficiency of the entire system is improved.
  • FIG. 1 shows a schematic configuration of a secondary battery type fuel cell system according to the first embodiment of the present invention.
  • the secondary battery type fuel cell system according to the first embodiment of the present invention includes a fuel generation unit 1, a fuel cell unit 2, a partition member 3, a pump 4, and the temperatures of the fuel generation unit 1 and the fuel cell unit 2.
  • the gas flow generated by the pump 4 is schematically indicated by arrows.
  • a metal is used as a base material, and a metal or a metal oxide is added to the surface thereof.
  • a metal or a metal oxide is added to the surface thereof.
  • the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process.
  • the added metal include Al, Rh, Pd, Cr, Ni, Cu, Co, V, and Mo.
  • the added metal oxide include SiO 2 and TiO 2 .
  • the metal used as a base material and the added metal are not the same material.
  • a fuel generating member mainly composed of Fe is used as the fuel generating unit 1.
  • the fuel generating member mainly composed of Fe can generate hydrogen gas as a fuel (reducing gas) by consuming water vapor as an oxidizing gas, for example, by an oxidation reaction represented by the following formula (1). . 4H 2 O + 3Fe ⁇ 4H 2 + Fe 3 O 4 (1)
  • the fuel generation part 1 can be regenerated by the reduction reaction shown in the formula.
  • the iron oxidation reaction shown in the above formula (1) and the reduction reaction in the following formula (2) can also be performed at a low temperature of less than 600 ° C. 4H 2 + Fe 3 O 4 ⁇ 3Fe + 4H 2 O (2)
  • the main body of the fuel generating unit 1 may be made into fine particles and the fine particles may be molded.
  • the fine particles include a method of crushing particles by crushing using a ball mill or the like.
  • the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
  • the fuel generating unit 1 may be one in which fine particles are solidified leaving a space that allows gas to pass through, or in the form of being formed into pellet-shaped particles and filling these particles in a large number of spaces. It doesn't matter.
  • the fuel cell unit 2 has an MEA structure (membrane / electrode assembly: Membrane Electrode Assembly) in which a fuel electrode 2B and an air electrode 2C that is an oxidant electrode are bonded to both surfaces of an electrolyte membrane 2A as shown in FIG.
  • FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.
  • the fuel supply surface F2 to which the fuel of the fuel electrode 2B is supplied and the fuel discharge surface F1 that discharges the fuel of the fuel generator 1 are opposed to each other, and are arranged in parallel at regular intervals. Further, in the present embodiment, the fuel electrode 2B and the fuel generator 1 are each in the shape of a flat plate, but the fuel electrode 2B and the fuel generator 1 are made cylindrical or the like so that the fuel supply surface F2 and the fuel discharge surface F1 face each other. May be.
  • the partition member 3 is provided between the fuel supply surface F2 and the fuel discharge surface F1.
  • the partition member 3 is connected to the inner wall of the container 6 in front of and behind the sheet of FIG.
  • a gap is provided between the partition member 3 and the inner wall of the container 6 in the left-right direction in FIG.
  • the pump 4 forcibly circulates the gas existing in the space between the fuel supply surface F2 and the fuel discharge surface F1 in the direction of the arrow shown in FIG.
  • another circulator using mechanical energy for example, a blower or a compressor may be used.
  • the container 6 includes an air supply port for supplying air to the accommodation space of the air electrode 2C and an air discharge port for discharging air from the accommodation space of the air electrode 2C.
  • the air flow may be controlled by, for example, a fan provided outside the container 6.
  • the air flow direction is not limited to the direction shown in FIG. 1 and may be opposite to the direction shown in FIG. In this embodiment, air is used as the oxidant gas, but an oxidant gas other than air may be used.
  • a solid oxide electrolyte using yttria-stabilized zirconia can be used as a material of the electrolyte membrane 2A.
  • YSZ yttria-stabilized zirconia
  • Nafion trademark of DuPont
  • cationic conductive polymer cationic conductive polymer
  • anionic conductive polymer Solid polymer electrolytes such as, but not limited to, those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions can be used as fuel cell electrolytes. Any material satisfying the characteristics may be used.
  • an electrolyte that passes oxygen ions or hydroxide ions for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte membrane 2A.
  • the storage space of the partition member 3, the fuel generator 1, and the heater 5 formed by the container 6 and the fuel cell unit 2 is mainly sealed with an oxidizing gas (for example, water vapor or carbon dioxide) and then sealed or closed.
  • an oxidizing gas for example, water vapor or carbon dioxide
  • a small amount of fuel for example, reducing gas such as hydrogen gas or carbon monoxide gas
  • hydrogen gas which is a reducing gas generated from the fuel generating unit 1
  • water vapor which is an oxidizing gas generated by power generation
  • the fuel cell unit 2 is electrically connected to the load LD by turning on the switch SW1 and turning off the switch SW2.
  • the switch SW1 is turned off and the switch SW2 is turned on to electrically connect the fuel cell unit 2 to the power source 8.
  • the fuel generation unit 1 consumes water vapor supplied from the fuel cell unit 2 by the Fe oxidation reaction shown in the above formula (1) to generate hydrogen gas, and the hydrogen gas is supplied to the fuel cell unit 2. Supply.
  • the fuel cell unit 2 operates as an electrolyzer, the reverse reactions of the above formulas (3) and (4) occur, and water vapor is consumed on the fuel electrode 2B side to generate hydrogen gas.
  • the fuel generator 1 advances the change from iron oxide to iron by the reduction reaction shown in the above formula (2) to increase the remaining amount of iron, that is, the fuel generator 1 is regenerated and the fuel cell unit 2 is regenerated.
  • the hydrogen gas supplied from is consumed to generate water vapor, and the water vapor is supplied to the fuel cell unit 2.
  • the electrolyte membrane 2A can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like. If there is, it can be formed using a coating method or the like.
  • CVD-EVD method Chemical Vapor Deposition-Electrochemical Vapor Deposition
  • Each of the fuel electrode 2B and the air electrode 2C can be constituted by, for example, a catalyst layer in contact with the electrolyte membrane 2A and a diffusion electrode laminated on the catalyst layer.
  • the catalyst layer for example, platinum black or a platinum alloy supported on carbon black can be used.
  • the material of the diffusion electrode of the fuel electrode 2B for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
  • a material for the diffusion electrode of the air electrode 2C for example, carbon paper, La—Mn—O compound, La—Co—Ce compound or the like can be used.
  • Each of the fuel electrode 2B and the air electrode 2C can be formed by using, for example, vapor deposition.
  • the fuel gas is forcibly circulated by the pump 4
  • the flow velocity is faster than in the case of natural diffusion, and the reaction is performed at the fuel electrode 2B.
  • the fuel can be sufficiently supplied to the fuel electrode 2B. Therefore, the output becomes larger than that in the case of natural diffusion, and the gas flow can be controlled to be constant, so that the output can be stabilized.
  • a minimum value in a range where the generated power is maximized is obtained in advance by experiments or theoretical calculations.
  • the control part 7 memorize
  • the pump 4 is controlled by setting the flow rate to the minimum value in the range where the generated power becomes maximum or a value with a slight margin in the minimum value.
  • the gas flow rate here refers to, for example, the amount (volume) of gas flowing through a cross section fixed within a unit time, and can be measured with a flow meter.
  • the flow rate of the gas circulated by the pump 4 is set to the minimum value in the range where the generated power is maximum or a value with a slight margin in the minimum value. And charging time becomes shorter than necessary. There is no problem that the charging time is shortened more than necessary. However, as described above, during the charging operation, the flow rate of the gas circulated by the pump 4 is within the range where the generated power is maximized, as in the power generation operation.
  • the drive energy input to the pump 4 at the time of the charging operation is unnecessarily increased, resulting in a problem that the energy efficiency of the entire system is deteriorated. .
  • the pump drive amount does not increase in direct proportion but draws a gradual curve that gradually increases and the energy efficiency decreases. It is. Accordingly, unless the rapid charging is necessary and it is necessary to input a large amount of driving energy to the pump 4, it is more energy efficient as a whole system to keep the driving energy input to the pump 4 low. Can be kept in.
  • the flow rate of the gas circulated by the pump 4 during the charging operation by the control unit 7 is the flow rate of the gas circulated by the pump 4 during the power generation operation.
  • the pump 4 is controlled so as to be less. As a result, it is possible to prevent the drive energy input to the pump 4 from being excessively increased during the charging operation, so that the energy efficiency of the entire system is improved.
  • the flow rate of the gas circulated by the pump 4 during the charging operation may be determined in consideration of the charge time that can be secured. Therefore, the pump 4 may be operated as shown in FIG. 2 during the charging operation, or may be stopped as shown in FIG. If the pump 4 is stopped during the charging operation, the energy efficiency of the entire system is best. Therefore, if the charging time that can be secured is sufficiently long and the pump 4 can be stopped during the charging operation, the pump 4 can be stopped during the charging operation. It is desirable to stop. Even when the pump 4 is stopped, the gas circulates, albeit slowly, due to the inclination of the water vapor partial pressure ratio of the gas (mixed gas of hydrogen gas and water vapor) in the closed space.
  • a form in which the power generation period is daytime and the charging period is nighttime when inexpensive nighttime power is available is preferable.
  • a stop period (a period in which the secondary battery type fuel cell system is not generating or charging) may be appropriately provided.
  • the control unit 7 sets the flow rate of the gas circulated by the pump 4 during the charging operation to the pump 4 during the power generation operation.
  • the pump 4 may be controlled so as to increase the flow rate of the gas to be circulated.
  • the control unit 7 uses the first control mode in which the flow rate of the gas circulated by the pump 4 during the charging operation is less than the flow rate of the gas circulated by the pump 4 during the power generation operation, and the pump 4 circulates during the charging operation.
  • the control mode may be switched depending on the presence / absence of the special circumstances described above, and the second control mode in which the flow rate of the gas to be increased is larger than the flow rate of the gas circulated by the pump 4 during the power generation operation.
  • the flow rate of the gas circulated by the pump 4 is constant in a range where the generated power is maximized so that the maximum output is always possible during the power generation operation. If the information related to the power required for the LD is acquired and the power required for the load LD fluctuates, the flow rate of the gas circulated by the pump 4 during the power generation operation may be changed according to the fluctuation.
  • the fuel generation is performed so that the charging operation of the secondary battery type fuel cell system according to the first embodiment of the present invention automatically ends the charging.
  • the fuel generating unit 1 is regenerated up to a predetermined ratio based on a signal from the detecting unit that detects the regeneration state of the unit 1, the switch SW2 is switched from on to off and the control unit 7 stops the pump 4 It may be.
  • the detection unit for example, a device that detects a regeneration state based on a change in the weight of the fuel generation unit 1 or a change in the permeability of the fuel generation unit 1 when the fuel generation unit 1 is Fe as in the present embodiment.
  • An apparatus for detecting a reproduction state based on the above can be cited.
  • the said detection part may be provided in a fuel cell system, and may be provided in the exterior of a fuel cell system.
  • the flow rate of the gas circulated by the pump 4 during the charging operation is constant.
  • the control unit 7 enters the regeneration state of the fuel generation unit 1 based on the signal from the detection unit. Accordingly, the gas flow rate circulated by the pump 4 during the charging operation may be changed.
  • the gas flow rate is increased.
  • a method of preparing for an unexpected situation for example, sudden demand for generated power
  • the gas is forcibly circulated by the same pump 4 during the power generation operation and during the charge operation.
  • a dedicated pump 4B may be provided, and the gas may be forcibly circulated by the dedicated pump 4A during the power generation operation during the power generation operation, and the gas may be forcibly circulated by the dedicated pump 4A during the power generation operation during the power generation operation.
  • FIG. 6 shows a schematic configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the various modifications appropriately described in the first embodiment of the present invention may be applied to the second embodiment of the present invention as long as there is no particular contradiction.
  • a fuel generating unit 1 and a heater 5 for adjusting the temperature of the fuel generating unit 1 are accommodated in a container 9, and the fuel cell unit 2,
  • a heater 5 that adjusts the temperature of the battery unit 2 is housed in a container 10, includes a pipe 11 for circulating gas between the fuel generation unit 1 and the fuel cell unit 2, and a pump 4 is provided on the pipe 11.
  • the secondary battery type fuel cell system according to the first embodiment of the present invention has a configuration in which the fuel generation unit 1 and the fuel cell unit 2 are accommodated in the same container 3, whereas the second of the present invention.
  • the secondary battery type fuel cell system is configured such that the fuel generating unit 1 and the fuel cell unit 2 are accommodated in separate containers (containers 9 and 10).
  • the fuel electrode 2B and the heater 5 are in contact with each other.
  • a space is provided between the fuel electrode 2B and the heater 5, and the end of the circulation path 11 is connected to the space. Good.
  • control content of the control unit 7 in the present embodiment is the same as the control content of the control unit 7 in the secondary battery type fuel cell system according to the first embodiment of the present invention, it relates to the second embodiment of the present invention.
  • the secondary battery type fuel cell system has the same effect as the secondary battery type fuel cell system according to the first embodiment of the present invention.
  • FIG. 7 shows a schematic configuration of a secondary battery type fuel cell system according to the third embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the connection lines between the first to fourth heaters H1 to H4 and the first to fourth temperature sensors T1 to T4 and the temperature controller 12 are omitted. Yes.
  • the secondary battery type fuel cell system according to the third embodiment of the present invention removes the pump 4 and the control unit 7 from the secondary battery type fuel cell system according to the first embodiment of the present invention.
  • the configuration includes fourth heaters H1 to H4, first to fourth temperature sensors T1 to T4, a check valve V, and a temperature control unit 12.
  • the first heater H1 heated left side near the paper surface of the fuel generating section 1, the first temperature sensor T1 for detecting the temperature T 1 of the left side near the paper surface of the fuel generating section 1.
  • the second heater H2 to heat the left side near the paper surface of the fuel electrode 2B, the second temperature sensor T2 for detecting the temperature T 2 on the left side near the paper surface of the fuel electrode 2B.
  • the third heater H3 heated right side near the paper surface of the fuel electrode 2B, a third temperature sensor T3 detects the temperature T 3 on the right side near the paper surface of the fuel electrode 2B.
  • the fourth heater H4 heats the right side near the paper surface of the fuel generating section 1, the fourth temperature sensor T4 for detecting the temperature T 4 of the right side near the paper surface of the fuel generating section 1.
  • the check valve V is disposed in the right channel toward the paper surface of the partition member 3.
  • the temperature control unit 12 refers to the detected temperatures T 1 to T 4 of the first to fourth temperature sensors T 1 to T 4 , and T 4 > T 1 > T 2 > T 3 in both the power generation operation and the charging operation.
  • the first to fourth heaters H1 to H4 are controlled so that
  • the check valve V Since the check valve V is provided on the right side of the partition member 3 with respect to the paper surface, the gas present in the vicinity of the right side of the paper surface of the fuel generating unit 1 is T 4 > T 3 but the fuel electrode 2B The gas does not move near the right side of the page, and the gas circulates clockwise according to the temperature gradient described above.
  • the gas circulating in the gas flow path can be forcibly circulated.
  • the gas flow rate can be controlled by adjusting the temperature gradient. For example, by making the temperature gradient at the time of charging smaller than the temperature gradient at the time of power generation, the flow rate of the gas circulating at the time of charging can be made smaller than the flow rate of the gas circulating at the time of power generation.
  • the control unit 7 of the secondary battery type fuel cell system according to the first embodiment of the present invention controls the pump 4 whereas the secondary battery type fuel cell system according to the third embodiment of the present invention.
  • the temperature control unit 12 controls the first to fourth heaters H1 to H4, both of which ultimately control the gas flow rate, and the control content of the gas flow rate is the same. Therefore, the secondary battery type fuel cell system according to the third embodiment of the present invention has the same effects as the secondary battery type fuel cell system according to the first embodiment of the present invention.
  • the first embodiment of the present invention and the third embodiment of the present invention are implemented in combination, that is, the gas is forced between the fuel generation unit 1 and the fuel cell unit 2 using mechanical energy. It is also possible to use both a circulator for circulation and a heating device for providing a temperature gradient in a gas flow path for circulating gas between the fuel generator 1 and the fuel cell unit 2.
  • FIG. 8 shows a schematic configuration of a secondary battery type fuel cell system according to the fourth embodiment of the present invention.
  • the same parts as those in FIGS. 6 and 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the connection lines between the first to fourth heaters H1 to H4 and the first to fourth temperature sensors T1 to T4 and the temperature controller 12 are omitted in order to prevent the drawing from becoming complicated. Yes.
  • the secondary battery type fuel cell system according to the fourth embodiment of the present invention removes the pump 4 and the control unit 7 from the secondary battery type fuel cell system according to the second embodiment of the present invention.
  • the configuration includes fourth heaters H1 to H4, first to fourth temperature sensors T1 to T4, and a temperature control unit 12.
  • the temperature control by the temperature control unit 12 is the same as that of the third embodiment of the present invention, and thus the description thereof is omitted.
  • the control unit 7 of the secondary battery type fuel cell system according to the second embodiment of the present invention controls the pump 4 whereas the secondary battery type fuel cell system according to the fourth embodiment of the present invention.
  • the temperature control unit 12 controls the first to fourth heaters H1 to H4, both of which ultimately control the gas flow rate, and the control content of the gas flow rate is the same. Therefore, the secondary battery type fuel cell system according to the fourth embodiment of the present invention has the same effects as the secondary battery type fuel cell system according to the second embodiment of the present invention.
  • the second embodiment of the present invention and the fourth embodiment of the present invention are implemented in combination, that is, the gas is forced between the fuel generating unit 1 and the fuel cell unit 2 using mechanical energy. It is also possible to use both a circulator for circulation and a heating device for providing a temperature gradient in a gas flow path for circulating gas between the fuel generator 1 and the fuel cell unit 2.
  • a solid oxide electrolyte is used as the electrolyte membrane 2A of the fuel cell unit 2, and water is generated on the fuel electrode 2B side during power generation. According to this configuration, water is generated on the side where the fuel generator 1 is provided, which is advantageous for simplification and miniaturization of the apparatus.
  • a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte membrane 2A of the fuel cell unit 2.
  • one fuel cell unit 2 performs both power generation and water electrolysis.
  • a fuel cell for example, a solid oxide fuel cell dedicated to power generation
  • a water electrolyzer for example, water
  • the solid oxide fuel cell dedicated to electrolysis may be connected to the fuel generating member 1 in parallel on the gas flow path.
  • the fuel of the fuel cell unit 2 is hydrogen, but a reducing gas other than hydrogen, such as carbon monoxide or hydrocarbon, may be used as the fuel of the fuel cell unit 2.
  • air is used as the oxidant gas, but an oxidant gas other than air may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 2次電池型燃料電池システムは、化学反応により還元性ガスである燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部と、前記燃料発生部から供給される前記還元性ガスを用いて発電を行う発電機能及び前記燃料発生部の再生時に前記燃料発生部から供給される前記逆反応の生成物である酸化性ガスを電気分解する電気分解機能を有する発電・電気分解部と、前記燃料発生部と前記発電・電気分解部との間で前記還元性ガス及び/又は前記酸化性ガスを含むガスを強制的に循環させる循環部と、前記循環部を制御する制御部とを備える。そして、前記制御部が、前記循環部により循環させるガスの流量を発電動作時と充電動作時とで異なるように制御する。

Description

2次電池型燃料電池システム
 本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。
 燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。
 燃料電池は、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。
国際公開第2011/040182号 国際公開第2011/052283号
 発電および充電が可能な2次電池型燃料電池システムとして、燃料極と燃料発生部材が配置されている空間は密閉されており自然拡散にて反応を促進させるシステムが提案されている(特許文献1および特許文献2参照)。しかしながら、自然拡散では燃料ガスの反応速度が限られるため、高い出力電力が得られない、また出力が安定しないという課題がある。そして、この課題を解決する場合に、システム全体としてのエネルギー効率が極力犠牲にならないことが望ましい。
 本発明は、上記の状況に鑑み、出力を高くまた安定させることができ、かつシステム全体としてのエネルギー効率が良い2次電池型燃料電池システムを提供することを目的とする。
 上記目的を達成するために本発明に係る2次電池型燃料電池システムは、化学反応により還元性ガスである燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部と、前記燃料発生部から供給される前記還元性ガスを用いて発電を行う発電機能及び前記燃料発生部の再生時に前記燃料発生部から供給される前記逆反応の生成物である酸化性ガスを電気分解する電気分解機能を有する発電・電気分解部と、前記燃料発生部と前記発電・電気分解部との間で前記還元性ガス及び/又は前記酸化性ガスを含むガスを強制的に循環させる循環部と、前記循環部を制御する制御部とを備え、前記制御部が、前記循環部により循環させるガスの流量を発電動作時と充電動作時とで異なるように制御する構成とする。なお、前記発電・電気分解部は、例えば、前記燃料発生部から供給される前記還元ガスを用いて発電を行う発電動作と、前記燃料発生部の再生時に前記燃料発生部から供給される前記逆反応の生成物である酸化性ガスを電気分解する電気分解動作とを切り替える燃料電池を備える構成であってもよく、また、例えば、前記燃料発生部から供給される前記還元ガスを用いて発電を行う燃料電池と、前記燃料発生部の再生時に前記燃料発生部から供給される前記逆反応の生成物である酸化性ガスを電気分解する電気分解器とを別個に備える構成であってもよい。
 本発明に係る2次電池型燃料電池システムによると、出力を高くまた安定させることができ、かつシステム全体としてのエネルギー効率が良くなる。
本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。 ポンプにより循環させるガスの流量の設定例を示すタイムチャートである。 ポンプにより循環させるガスの流量の他の設定例を示すタイムチャートである。 ポンプにより循環させるガスの流量の更に他の設定例を示すタイムチャートである。 本発明の第1実施形態に係る2次電池型燃料電池システムの変形例を示す図である。 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を示す図である。
 本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。
<第1実施形態>
 本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を図1に示す。本発明の第1実施形態に係る2次電池型燃料電池システムは、燃料発生部1と、燃料電池部2と、仕切部材3と、ポンプ4と、燃料発生部1及び燃料電池部2の温度を調節するヒーター5と、燃料発生部1、燃料電池部2、仕切部材3、ポンプ4、及びヒーター5を収容する容器6と、制御部7とを備えている。なお、図1では、ポンプ4によって生じるガスの流れを矢印で模式的に示している。
 燃料発生部1の材料としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、酸化性ガス(例えば水蒸気)との酸化反応によって燃料(例えば水素)を発生し、還元性ガス(例えば水素)との還元反応により再生可能なものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rh、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO、TiOが挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。なお、本実施形態においては、燃料発生部1として、Feを主体とする燃料発生部材を用いる。
 Feを主体とする燃料発生部材は、例えば、下記の(1)式に示す酸化反応により、酸化性ガスである水蒸気を消費して燃料(還元性ガス)である水素ガスを生成することができる。
  4HO+3Fe→4H+Fe …(1)
 上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄の残量が減っていくが、上記の(1)式の逆反応すなわち下記の(2)式に示す還元反応により、燃料発生部1を再生することができる。なお、上記の(1)式に示す鉄の酸化反応及び下記の(2)式の還元反応は600℃未満の低い温度で行うこともできる。
  4H+Fe→3Fe+4HO …(2)
 燃料発生部1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部1の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生部1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。また、燃料発生部1としては、微粒子をガスが通過する程度の空隙を残して固めたものであってもよいし、ペレット状の粒に形成してこの粒を多数空間内に埋める形態であっても構わない。
 燃料電池部2は、図1に示す通り、電解質膜2Aの両面に燃料極2Bと酸化剤極である空気極2Cを接合したMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。
 燃料極2Bの燃料が供給される燃料供給面F2と燃料発生部1の燃料を放出する燃料放出面F1とは対向しており、一定の間隔で平行に配置される。また、本実施形態では、燃料極2B、燃料発生部1がそれぞれ平板形状であるが、燃料極2B、燃料発生部1を円筒形状などにして燃料供給面F2と燃料放出面F1とを対向させてもよい。
 仕切部材3は、燃料供給面F2と燃料放出面F1との間に設けられる。仕切部材3は、図1の紙面手前及び紙面奥において、容器6の内壁に接続されている。一方、図1の紙面左右方向において、仕切部材3と容器6の内壁との間に隙間が設けられている。
 ポンプ4は、燃料供給面F2と燃料放出面F1との間の空間内に存在するガスを例えば図1に示す矢印の方向で強制循環する。なお、ポンプ4の代わりに、機械的なエネルギーを用いる他の循環器(例えば、ブロア、コンプレッサ等)を用いてもよい。
 容器6は、空気極2Cの収容空間に空気を供給するための空気供給口と、空気極2Cの収容空間から空気を排出するための空気排出口とを備えている。空気の流れは、例えば容器6の外部に設けられるファンなどによって制御するとよい。なお、空気の流れ方向は、図1に示す方向に限定されることはなく、図1に示す方向と逆であってもよい。また、本実施形態では、酸化剤ガスに空気を用いているが、空気以外の酸化剤ガスを用いてもよい。
 電解質膜2Aの材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質膜2Aとして、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いる。
 容器6と燃料電池部2とによって形成される仕切部材3、燃料発生部1、及びヒーター5の収容空間は主に酸化性ガス(例えば水蒸気や二酸化炭素など)を充填してから密閉又は閉鎖するが、少量の燃料(例えば水素ガスや一酸化炭素ガスなどの還元性ガス)が混入しても構わない。この密閉又は閉鎖された空間において、燃料発生部1から発生する還元性ガスである水素ガスや発電によって発生する酸化性ガスである水蒸気が循環し、発電・充電及び酸化・還元反応に利用される。
 発電動作時には、スイッチSW1をオンにし、スイッチSW2をオフにすることで、燃料電池部2を負荷LDに電気的に接続する。一方、充電動作時には、スイッチSW1をオフにし、スイッチSW2をオンにすることで、燃料電池部2を電源8に電気的に接続する。
 例えば燃料を水素にした場合、本実施形態では、発電動作時に、燃料極2Bにおいて下記の(3)式の反応が起こる。
  H+O2-→HO+2e …(3)
 上記の(3)式の反応によって生成された電子は、燃料極2Bから負荷LDを通って、空気極2Cに到達し、空気極2Cにおいて下記の(4)式の反応が起こる。
  1/2O+2e→O2- …(4)
 そして、上記の(4)式の反応によって生成された酸素イオンは、電解質膜2Aを通って、燃料極2Bに到達する。上記の一連の反応を繰り返すことにより、燃料電池部2が発電動作を行うことになる。
 そして、燃料発生部1は、上記の(1)式に示すFeの酸化反応により、燃料電池部2から供給される水蒸気を消費して、水素ガスを発生させ、水素ガスを燃料電池部2に供給する。
 また、充電動作時には、燃料電池部2が電気分解器として作動して、上記の(3)式及び(4)式の逆反応が起こり、燃料極2B側において水蒸気が消費され水素ガスが生成され、燃料発生部1は、上記の(2)式に示す還元反応により、酸化鉄から鉄への変化を進めて鉄の残量を増やし、すなわち燃料発生部1は再生されて、燃料電池部2から供給される水素ガスを消費して、水蒸気を発生させ、水蒸気を燃料電池部2に供給する。
 電解質膜2Aは、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD-EVD法;Chemical Vapor Deposition - Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解の場合であれば、塗布法等を用いて形成することができる。
 燃料極2B、空気極2Cはそれぞれ、例えば、電解質膜2Aに接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極2Bの拡散電極の材料としては、例えばカーボンペーパ、Ni-Fe系サーメットやNi-YSZ系サーメット等を用いることができる。また、空気極2Cの拡散電極の材料としては、例えばカーボンペーパ、La-Mn-O系化合物やLa-Co-Ce系化合物等を用いることができる。燃料極2B、空気極2Cはそれぞれ、例えば蒸着法等を用いて形成することができる。
 本発明の第1実施形態に係る2次電池型燃料電池システムでは、燃料ガスはポンプ4によって強制循環されるため、自然拡散の場合に比べて流速が速くなり、燃料極2Bで反応するための燃料を燃料極2Bに十分に供給することができる。そのため、自然拡散の場合に比べて出力が大きくなり、またガスの流れを一定に制御することができるため出力を安定させることができる。
 発電動作時に前記循環部により循環させるガスの流量に関して、発電電力が最大になる範囲での最小値を予め実験や理論計算などで予め求めておく。そして、制御部7は、発電電力が最大になる範囲での最小値あるいはその最小値に若干マージンを持たせた値を内部メモリなどに記憶しておき、発電動作時に、ポンプ4により循環させるガスの流量を発電電力が最大になる範囲での最小値あるいはその最小値に若干マージンを持たせた値に設定してポンプ4を制御する。ここでいうガスの流量とは、例えば、単位時間内に固定した断面を流れるガスの量(体積)をいい、フローメーターで測定することができる。
 ここで、急速充電が必要であるなどの特段の事情がなければ、充電時間を短くする必要がない。このため、充電動作時にも、発電動作時と同様に、ポンプ4により循環させるガスの流量を発電電力が最大になる範囲での最小値あるいはその最小値に若干マージンを持たせた値にしてしまうと、必要以上に充電時間が短くなる。必要以上に充電時間が短くなること自体は何ら問題ないが、上記のように、充電動作時にも、発電動作時と同様に、ポンプ4により循環させるガスの流量を発電電力が最大になる範囲での最小値あるいはその最小値に若干マージンを持たせた値にしてしまうと、充電動作時にポンプ4に投入する駆動エネルギーが無駄に多くなるので、システム全体としてのエネルギー効率が悪くなるという問題が生じる。これは一般的に、ポンプに投入する駆動エネルギーを上げていった場合、ポンプの駆動量は正比例して増加せずに、徐々に増加する緩やかなカーブを描き、エネルギー効率が低下していくためである。従って、急速充電が必要であり、ポンプ4に大きな駆動エネルギーを投入することが必要な場合を除いては、ポンプ4に投入する駆動エネルギーを低めに抑える方がシステム全体としてのエネルギー効率がよい状態に保つことができる。
 そこで、本発明の第1実施形態に係る2次電池型燃料電池システムにおいては、制御部7が、充電動作時にポンプ4により循環させるガスの流量を、発電動作時にポンプ4により循環させるガスの流量よりも少なくするように、ポンプ4を制御する。これにより、充電動作時にポンプ4に投入する駆動エネルギーが無駄に多くなることを防ぐことができるので、システム全体としてのエネルギー効率が良くなる。
 充電動作時にポンプ4により循環させるガスの流量は、確保できる充電時間を考慮して決定すればよい。したがって、充電動作時にポンプ4を図2に示すように動作させてもよく図3に示すように停止させてもよい。充電動作時にポンプ4を停止させると、システム全体としてのエネルギー効率が最も良くなるので、確保できる充電時間が十分に長く充電動作時にポンプ4を停止させることができるのであれば、充電動作時にポンプ4を停止させることが望ましい。ポンプ4を停止させた場合であっても、閉鎖空間内におけるガス(水素ガスと水蒸気の混合気体)の水蒸気分圧比の傾斜により、ガスは緩やかではあるが循環する。
 発電期間および充電期間に関しては、例えば、発電期間を日中とし、充電期間を安価な夜間電力が利用可能な夜間とする形態が好適である。なお、図2、図3、及び後述する図4では設けていないが、停止期間(2次電池型燃料電池システムが発電動作も充電動作もしていない期間)を適宜設けてもよい。
 また、急速充電が必要であるなどの特段の事情が生じた場合には、図4に示すように、制御部7が、充電動作時にポンプ4により循環させるガスの流量を、発電動作時にポンプ4により循環させるガスの流量よりも多くするように、ポンプ4を制御してもよい。この場合、制御部7は、充電動作時にポンプ4により循環させるガスの流量を、発電動作時にポンプ4により循環させるガスの流量よりも少なくする第1の制御モードと、充電動作時にポンプ4により循環させるガスの流量を、発電動作時にポンプ4により循環させるガスの流量よりも多くする第2の制御モードとを有し、上述した特段の事情の有無などによって制御モードを切り替えるようにすればよい。
 また、上述した実施形態では、発電動作時に常に最大出力が可能なようにポンプ4により循環させるガスの流量を発電電力が最大になる範囲で一定にしているが、例えば、制御部7が、負荷LDに必要な電力に関する情報を取得し、負荷LDに必要な電力が変動すれば、その変動に応じて発電動作時にポンプ4により循環させるガスの流量を変更するようにしてもよい。
 また、例えば燃料発生部1が所定の割合まで再生されたときに、本発明の第1実施形態に係る2次電池型燃料電池システムの充電動作が自動的に充電を終了するように、燃料発生部1の再生状態を検出する検出部からの信号に基づいて燃料発生部1が所定の割合まで再生されたときに、スイッチSW2がオンからオフに切り替わるとともに制御部7がポンプ4を停止させるようにしてもよい。上記検出部としては、例えば燃料発生部1の重量変化に基づいて再生状態を検出する装置や、燃料発生部1が本実施形態のようにFeである場合に燃料発生部1の透磁率変化に基づいて再生状態を検出する装置などを挙げることができる。なお、上記検出部は、燃料電池システム内に設けてもよく、燃料電池システムの外部に設けてもよい。
 また、上述した実施形態では、充電動作時にポンプ4により循環させるガスの流量を一定にしているが、例えば、制御部7が、上記検出部からの信号に基づいて燃料発生部1の再生状態に応じて充電動作時にポンプ4により循環させるガスの流量を変更するようにしてもよい。燃料発生部1の再生状態に応じて充電動作時にポンプ4により循環させるガスの流量を変更する例としては、燃料発生部1が再生されている割合が低い場合は、ガスの流量を多くして充電速度を速くすることでいち早く不測の事態(例えば突発的な発電電力の要求)に備えておき、その後ガスの流量を少なくして残りの充電を行う方法を挙げることができる。
 また、上述した実施形態では、発電動作時も充電動作時も同一のポンプ4によりガスを強制循環させたが、図5に示すようにポンプ4の代わりに発電動作時専用ポンプ4A及び充電動作時専用ポンプ4Bを設け、発電動作時には発電動作時専用ポンプ4Aによりガスを強制循環させ、発電動作時には発電動作時専用ポンプ4Aによりガスを強制循環させるようにしてもよい。
<第2実施形態>
 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を図6に示す。なお、図6において図1と同一の部分には同一の符号を付し詳細な説明を省略する。また、本発明の第1実施形態において適宜説明した種々の変形例は、特に矛盾のない限り本発明の第2実施形態においても適用してよい。後述する本発明の第3及び第4実施形態においても同様である。
 本発明の第2実施形態に係る2次電池型燃料電池システムは、燃料発生部1と、燃料発生部1の温度を調節するヒーター5とが容器9に収容され、燃料電池部2と、燃料電池部2の温度を調節するヒーター5とが容器10に収容され、燃料発生部1と燃料電池部2との間でガスを循環させるための配管11を備え、ポンプ4を配管11上に設けた構成である。つまり、本発明の第1実施形態に係る2次電池型燃料電池システムが燃料発生部1と燃料電池部2とを同一の容器3に収容する構成であるのに対して、本発明の第2実施形態に係る2次電池型燃料電池システムは燃料発生部1と燃料電池部2とを別々の容器(容器9及び10)に収容する構成である。なお、本実施形態では燃料極2Bとヒーター5とが接しているが、燃料極2Bとヒーター5との間に空間を設け、その空間に循環経路11の端部が接続されるようにしてもよい。
 本実施形態における制御部7の制御内容は、本発明の第1実施形態に係る2次電池型燃料電池システムにおける制御部7の制御内容と同じであるため、本発明の第2実施形態に係る2次電池型燃料電池システムは本発明の第1実施形態に係る2次電池型燃料電池システムと同様の効果を奏する。
<第3実施形態>
 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成を図7に示す。なお、図7において図1と同一の部分には同一の符号を付し詳細な説明を省略する。また、図7において、図が煩雑になることを防ぐために、第1~第4ヒーターH1~H4及び第1~第4温度センサーT1~T4と、温度制御部12との接続線は省略している。
 本発明の第3実施形態に係る2次電池型燃料電池システムは、本発明の第1実施形態に係る2次電池型燃料電池システムからポンプ4及び制御部7を取り除き、その代わりに第1~第4ヒーターH1~H4と、第1~第4温度センサーT1~T4と、逆止弁Vと、温度制御部12とを備えた構成である。
 第1ヒーターH1は燃料発生部1の紙面の向かって左側近傍を加熱し、第1温度センサーT1は燃料発生部1の紙面の向かって左側近傍の温度Tを検出する。第2ヒーターH2は燃料極2Bの紙面の向かって左側近傍を加熱し、第2温度センサーT2は燃料極2Bの紙面の向かって左側近傍の温度Tを検出する。第3ヒーターH3は燃料極2Bの紙面の向かって右側近傍を加熱し、第3温度センサーT3は燃料極2Bの紙面の向かって右側近傍の温度Tを検出する。第4ヒーターH4は燃料発生部1の紙面の向かって右側近傍を加熱し、第4温度センサーT4は燃料発生部1の紙面の向かって右側近傍の温度Tを検出する。逆止弁Vは、仕切部材3の紙面の向かって右側の流路に配置される。
 温度制御部12は、第1~第4温度センサーT1~T4の検出温度T~Tを参照しながら、発電動作時及び充電動作時の両方においてT>T>T>Tになるように第1~第4ヒーターH1~H4を制御する。
 T>Tであるため、燃料発生部1の紙面の向かって右側近傍に存在するガスが、熱拡散によって燃料発生部1の紙面の向かって左側近傍に移動する。
 また、T>Tであるため、燃料発生部1の紙面の向かって左側近傍に存在するガスが、熱拡散によって燃料極2Bの紙面の向かって左側近傍に移動する。
 また、T>Tであるため、燃料極2Bの紙面の向かって左側近傍に存在するガスが、熱拡散によって燃料極2Bの紙面の向かって右側近傍に移動する。
 仕切部材3の紙面の向かって右側には逆止弁Vが設けられているため、T>Tではあるが燃料発生部1の紙面の向かって右側近傍に存在するガスが燃料極2Bの紙面の向かって右側近傍に移動することはなく、ガスは上述の温度勾配に従って時計回りに循環することになる。
 上記のように、燃料発生部1と燃料電池部2との間でガスを循環させるためのガス流路に温度勾配をつけることで、当該ガス流路を循環するガスを強制循環することができる。また、温度勾配のつけ方によって、ガスの流量を制御することができる。例えば、発電時における温度勾配よりも、充電時における温度勾配を小さくすることによって、発電時に循環するガスの流量よりも充電時に循環するガスの流量を小さくすることができる。
 本発明の第1実施形態に係る2次電池型燃料電池システムの制御部7はポンプ4を制御対象にしているのに対して、本発明の第3実施形態に係る2次電池型燃料電池システムの温度制御部12は第1~第4ヒーターH1~H4を制御対象にしているが、両者とも最終的にガスの流量を制御しており、そのガスの流量の制御内容を同じにしている。したがって、本発明の第3実施形態に係る2次電池型燃料電池システムは本発明の第1実施形態に係る2次電池型燃料電池システムと同様の効果を奏する。
 なお、本発明の第1実施形態と本発明の第3実施形態とを組み合わせて実施すること、つまり、機械的なエネルギーを用いて燃料発生部1と燃料電池部2との間でガスを強制循環させる循環器と、燃料発生部1と燃料電池部2との間でガスを循環させるためのガス流路に温度勾配をつける加熱装置とを併用することも可能である。
<第4実施形態>
 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成を図8に示す。なお、図8において図6及び図7と同一の部分には同一の符号を付し詳細な説明を省略する。また、図8において、図が煩雑になることを防ぐために、第1~第4ヒーターH1~H4及び第1~第4温度センサーT1~T4と、温度制御部12との接続線は省略している。
 本発明の第4実施形態に係る2次電池型燃料電池システムは、本発明の第2実施形態に係る2次電池型燃料電池システムからポンプ4及び制御部7を取り除き、その代わりに第1~第4ヒーターH1~H4と、第1~第4温度センサーT1~T4と、温度制御部12とを備えた構成である。温度制御部12による温度制御は、本発明の第3実施形態と同様であるため、説明を省略する。
 本発明の第2実施形態に係る2次電池型燃料電池システムの制御部7はポンプ4を制御対象にしているのに対して、本発明の第4実施形態に係る2次電池型燃料電池システムの温度制御部12は第1~第4ヒーターH1~H4を制御対象にしているが、両者とも最終的にガスの流量を制御しており、そのガスの流量の制御内容を同じにしている。したがって、本発明の第4実施形態に係る2次電池型燃料電池システムは本発明の第2実施形態に係る2次電池型燃料電池システムと同様の効果を奏する。
 なお、本発明の第2実施形態と本発明の第4実施形態とを組み合わせて実施すること、つまり、機械的なエネルギーを用いて燃料発生部1と燃料電池部2との間でガスを強制循環させる循環器と、燃料発生部1と燃料電池部2との間でガスを循環させるためのガス流路に温度勾配をつける加熱装置とを併用することも可能である。
<変形例>
 上述した各実施形態においては、燃料電池部2の電解質膜2Aとして固体酸化物電解質を用いて、発電の際に燃料極2B側で水を発生させるようにする。この構成によれば、燃料発生部1が設けられた側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009-99491号公報に開示された燃料電池のように、燃料電池部2の電解質膜2Aとして水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に燃料電池部2の酸化剤極である空気極2C側で水が発生されることになるため、この水を燃料発生部1に伝搬する流路を設ければよい。また、上述した各実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。
 また、上述した各実施形態では、燃料電池部2の燃料を水素にしているが、一酸化炭素や炭化水素など水素以外の還元性ガスを燃料電池部2の燃料として用いても構わない。
 また、上述した各実施形態では、酸化剤ガスに空気を用いているが、空気以外の酸化剤ガスを用いても構わない。
   1 燃料発生部
   2 燃料電池部
   2A 電解質膜
   2B 燃料極
   2C 空気極
   3 仕切部材
   4 ポンプ
   4A 発電動作時専用ポンプ
   4B 充電動作時専用ポンプ
   5 ヒーター
   6、9、10 容器
   7 制御部
   8 電源
   11 配管
   12 温度制御部
   F1 燃料放出面
   F2 燃料供給面
   H1~H4 第1~第4ヒーター
   LD 負荷
   T1~T4 第1~第4温度センサー
   SW1、SW2 スイッチ

Claims (14)

  1.  化学反応により還元性ガスである燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部と、
     前記燃料発生部から供給される前記還元性ガスを用いて発電を行う発電機能及び前記燃料発生部の再生時に前記燃料発生部から供給される前記逆反応の生成物である酸化性ガスを電気分解する電気分解機能を有する発電・電気分解部と、
     前記燃料発生部と前記発電・電気分解部との間で前記還元性ガス及び/又は前記酸化性ガスを含むガスを強制的に循環させる循環部と、
     前記循環部を制御する制御部とを備え、
     前記制御部が、前記循環部により循環させるガスの流量を発電動作時と充電動作時とで異なるように制御することを特徴とする2次電池型燃料電池システム。
  2.  前記制御部が、充電動作時に前記循環部により循環させるガスの流量を、発電動作時に前記循環部により循環させるガスの流量よりも少なくすることを特徴とする請求項1に記載の2次電池型燃料電池システム。
  3.  前記制御部が、充電動作時に前記循環部によるガスの強制的な循環を停止させて、充電動作時に循環するガスの流量を、発電動作時に前記循環部により循環させるガスの流量よりも少なくすることがあることを特徴とする請求項1又は請求項2に記載の2次電池型燃料電池システム。
  4.  前記制御部が、
     充電動作時に前記循環部により循環させるガスの流量を、発電動作時に前記循環部により循環させるガスの流量よりも少なくする第1の制御モードと、
     充電動作時に前記循環部により循環させるガスの流量を、発電動作時に前記循環部により循環させるガスの流量よりも多くする第2の制御モードとを有することを特徴とする請求項1~3のいずれか一項に記載の2次電池型燃料電池システム。
  5.  前記制御部が、発電動作時に、発電量が最大になる範囲での最小値または前記最小値に所定のマージンを持たせたガスの流量を循環させるよう、前記循環部を制御することを特徴とする請求項1~4のいずれか一項に記載の2次電池型燃料電池システム。
  6.  前記制御部が、発電動作時に、外部負荷が要求する電力の変動に応じて前記循環部により循環させるガスの流量を制御することを特徴とする請求項1~4のいずれか一項に記載の2次電池型燃料電池システム。
  7.  前記燃料発生部の再生状態を検出する検出部を備え、
     前記制御部が、前記検出部によって前記燃料発生部が所定の割合まで再生されたと検出されたときに、前記循環部によるガスの循環を停止させることを特徴とする請求項1~6のいずれか一項に記載の2次電池型燃料電池システム。
  8.  前記燃料発生部の再生状態を検出する検出部を備え、
     前記制御部が、前記検出部によって検出された前記燃料発生部の再生状態に応じて、前記循環部によって循環させるガスの流量を変更することを特徴とする請求項1~6のいずれか一項に記載の2次電池型燃料電池システム。
  9.  前記制御部が、前記検出部によって検出された前記燃料発生部の再生されている割合が小さい場合は前記循環部によって循環させるガスの流量を多くすることを特徴とする請求項8に記載の2次電池型燃料電池システム。
  10.  前記検出部は、前記燃料発生部の重量変化または透磁率変化に基づいて、前記燃料発生部の再生状態を検出することを特徴とする請求項7~9のいずれか一項に記載の2次電池型燃料電池システム。
  11.  前記燃料発生部を収容する第1の容器と、
     前記発電・電気分解部を収容する第2の容器と、
     前記燃料発生部と前記発電・電気分解部との間でガスを循環させるための配管とを備えることを特徴とする請求項1~10のいずれか1項に記載の2次電池型燃料電池システム。
  12.  前記燃料発生部と前記発電・電気分解部とを収容する容器と、
     仕切部材とを備え、
     前記燃料発生部と前記発電・電気分解部との間に空間が存在し、前記仕切部材が前記空間内に設けられることを特徴とする請求項1~10のいずれか1項に記載の2次電池型燃料電池システム。
  13.  前記循環部が、機械的なエネルギーを用いる循環器を有することを特徴とする請求項1~12のいずれか1項に記載の2次電池型燃料電池システム。
  14.  前記循環部が、前記燃料発生部と前記発電・電気分解部との間でガスを循環させるためのガス流路に温度勾配をつける加熱装置を有し、
     前記温度勾配によってガスを強制的に循環させることを特徴とする請求項1~13のいずれか1項に記載の2次電池型燃料電池システム。
PCT/JP2013/055781 2012-03-12 2013-03-04 2次電池型燃料電池システム WO2013137033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13761315.4A EP2827425A4 (en) 2012-03-12 2013-03-04 SECONDARY CELL TYPE FUEL CELL SYSTEM
JP2014504795A JP5896015B2 (ja) 2012-03-12 2013-03-04 2次電池型燃料電池システム
US14/385,089 US20150037696A1 (en) 2012-03-12 2013-03-04 Secondary Cell-Type Fuel Cell System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-054656 2012-03-12
JP2012054656 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013137033A1 true WO2013137033A1 (ja) 2013-09-19

Family

ID=49160946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055781 WO2013137033A1 (ja) 2012-03-12 2013-03-04 2次電池型燃料電池システム

Country Status (4)

Country Link
US (1) US20150037696A1 (ja)
EP (1) EP2827425A4 (ja)
JP (1) JP5896015B2 (ja)
WO (1) WO2013137033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146396A1 (ja) * 2012-03-28 2015-12-10 コニカミノルタ株式会社 2次電池型燃料電池システム
WO2017022313A1 (ja) * 2015-08-05 2017-02-09 株式会社センリョウ 高圧水素を製造可能なタンク式発電装置および燃料電池車両

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178455A (ja) * 1987-01-19 1988-07-22 Fuji Electric Co Ltd 自由電解液形燃料電池
JPH01265457A (ja) * 1988-02-26 1989-10-23 Stork Screens Bv 蓄電池半セル内で用いるための電極材料
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2010170782A (ja) * 2009-01-21 2010-08-05 Sharp Corp レドックスフロー電池およびその充放電方法
JP2011054329A (ja) * 2009-08-31 2011-03-17 Toyota Motor Corp 金属空気電池システム、及び、当該システムを用いたモーター駆動体
WO2011040182A1 (ja) 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 燃料電池装置
WO2011052283A1 (ja) 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 燃料電池装置
WO2011077969A1 (ja) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 反応容器及びそれを用いた燃料電池システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687991B2 (ja) * 1994-02-24 2005-08-24 株式会社エクォス・リサーチ ハイブリッド電源装置
JP2011222427A (ja) * 2010-04-13 2011-11-04 Fujitsu Ltd 空気二次電池蓄電装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178455A (ja) * 1987-01-19 1988-07-22 Fuji Electric Co Ltd 自由電解液形燃料電池
JPH01265457A (ja) * 1988-02-26 1989-10-23 Stork Screens Bv 蓄電池半セル内で用いるための電極材料
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2010170782A (ja) * 2009-01-21 2010-08-05 Sharp Corp レドックスフロー電池およびその充放電方法
JP2011054329A (ja) * 2009-08-31 2011-03-17 Toyota Motor Corp 金属空気電池システム、及び、当該システムを用いたモーター駆動体
WO2011040182A1 (ja) 2009-09-30 2011-04-07 コニカミノルタホールディングス株式会社 燃料電池装置
WO2011052283A1 (ja) 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 燃料電池装置
WO2011077969A1 (ja) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 反応容器及びそれを用いた燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146396A1 (ja) * 2012-03-28 2015-12-10 コニカミノルタ株式会社 2次電池型燃料電池システム
WO2017022313A1 (ja) * 2015-08-05 2017-02-09 株式会社センリョウ 高圧水素を製造可能なタンク式発電装置および燃料電池車両
CN107710486A (zh) * 2015-08-05 2018-02-16 株式会社选良 可制造高压氢的罐式发电装置以及燃料电池车辆
US10305130B2 (en) 2015-08-05 2019-05-28 Kabushiki Kaisha Senryou Tank-type power generation device capable of manufacturing high-pressure hydrogen and fuel cell vehicle

Also Published As

Publication number Publication date
JPWO2013137033A1 (ja) 2015-08-03
JP5896015B2 (ja) 2016-03-30
EP2827425A1 (en) 2015-01-21
US20150037696A1 (en) 2015-02-05
EP2827425A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2011052283A1 (ja) 燃料電池装置
WO2014045894A1 (ja) 燃料電池システム
JP5505583B1 (ja) 2次電池型燃料電池システム
WO2012070487A1 (ja) 2次電池型燃料電池システム
JP5896015B2 (ja) 2次電池型燃料電池システム
JP5168431B2 (ja) 2次電池型固体酸化物燃料電池システム
JP5435178B2 (ja) 2次電池型燃料電池システム
JP5679097B1 (ja) 2次電池型燃料電池システム
JP5673907B1 (ja) 2次電池型燃料電池システム
JP2014216062A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP5772681B2 (ja) 燃料電池システム
JP2014207115A (ja) 2次電池型燃料電池システム
JP2014154358A (ja) 2次電池型燃料電池システム
WO2013150946A1 (ja) 燃料電池システム
WO2011142247A1 (ja) 燃料電池装置
WO2014045895A1 (ja) 2次電池型燃料電池システム
WO2014188904A1 (ja) 給電システム
JP5776842B2 (ja) 2次電池型燃料電池システム
JP2014075246A (ja) 燃料電池システム
JP2012252877A (ja) 2次電池型燃料電池システム
WO2014087739A1 (ja) 燃料発生装置及びそれを備えた燃料電池システム
JP2014110076A (ja) 燃料電池システムへのガス導入方法
JP2014110075A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP2014118336A (ja) 燃料発生装置及びそれを備えた燃料電池システム
JP2013069450A (ja) 2次電池型燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014504795

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013761315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013761315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14385089

Country of ref document: US