WO2014087739A1 - 燃料発生装置及びそれを備えた燃料電池システム - Google Patents

燃料発生装置及びそれを備えた燃料電池システム Download PDF

Info

Publication number
WO2014087739A1
WO2014087739A1 PCT/JP2013/077709 JP2013077709W WO2014087739A1 WO 2014087739 A1 WO2014087739 A1 WO 2014087739A1 JP 2013077709 W JP2013077709 W JP 2013077709W WO 2014087739 A1 WO2014087739 A1 WO 2014087739A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
opening
exhaust valve
fuel cell
Prior art date
Application number
PCT/JP2013/077709
Other languages
English (en)
French (fr)
Inventor
篤広 野田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014550980A priority Critical patent/JPWO2014087739A1/ja
Priority to US14/650,349 priority patent/US20150306561A1/en
Publication of WO2014087739A1 publication Critical patent/WO2014087739A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/10Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/04Gasification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel generator that generates a fuel gas that is a reducing gas by an oxidation reaction with an oxidizing gas, and a fuel cell system including the same.
  • a fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode.
  • the one sandwiched from both sides by the (cathode) has a single cell configuration.
  • a fuel gas channel for supplying a fuel gas (for example, hydrogen) to the fuel electrode and an oxidant gas channel for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Electric power is generated by supplying the fuel gas and the oxidant gas to the fuel electrode and the oxidant electrode, respectively.
  • Fuel cells are not only energy-saving because of the high efficiency of power energy that can be extracted in principle, but they are also a power generation system that is excellent in the environment, and are expected as a trump card for solving energy and environmental problems on a global scale.
  • Patent Documents 1 to 3 disclose secondary battery fuel cell systems that combine a solid oxide fuel cell and a hydrogen generating member that generates hydrogen by an oxidation reaction and can be regenerated by a reduction reaction. Yes.
  • the hydrogen generating member generates hydrogen during the power generation operation of the system, and the hydrogen generating member is regenerated during the charging operation of the system.
  • Examples of the form of the hydrogen generating member include a form in which hydrogen is generated by an oxidation reaction and solidified with a metal that can be regenerated by a reductive reaction, leaving a void that allows gas to pass through, or the fine particles are in a pellet form.
  • grains in the space is mentioned.
  • the hydrogen generating member formed in this way has a large pressure loss portion and a small pressure loss portion when gas is supplied.
  • the gas when the gas is supplied to the hydrogen generating member, the gas does not spread uniformly to all the parts of the hydrogen generating member, but the gas flows concentrated on the portion where the pressure loss is small due to the structure of the hydrogen generating member.
  • the portion where the pressure loss is large due to the structure of the hydrogen generating member is not effectively used, the amount of generated fuel gas is reduced, and the portion where the pressure loss due to the structure of the hydrogen generating member is small is used intensively. Due to the structure of the hydrogen generating member, there was a problem that the portion where the pressure loss was small concentrated and deteriorated, and the durability of the entire hydrogen generating member was lowered.
  • the form of the hydrogen generating member is a form in which a large number of pellet-shaped particles are filled in the space, the filling is random, so that the structural variation is large, and the above problem is remarkable.
  • an object of the present invention is to provide a fuel generator that generates a large amount of fuel gas and has high durability, and a fuel cell system including the fuel generator.
  • a fuel generator that reflects one aspect of the present invention is a fuel generator that generates a fuel gas that is a reducing gas by an oxidation reaction with an oxidizing gas, wherein the oxidizing gas comprises A gas inlet supplied from the outside, a gas outlet for supplying the fuel gas to the outside, a fuel generating member that generates the fuel gas by an oxidation reaction with the oxidizing gas, the gas inlet, and the gas A storage portion provided between the outlet and the fuel generating member; and an exhaust valve provided between the storage portion and the gas outlet.
  • the oxidizing gas supplied from the outside to the accommodating portion via the gas inlet An increase in pressure in the housing part
  • the degree of opening of the exhaust valve is in the second opening degree, a larger configuration than when the opening degree of the exhaust valve is in the first opening.
  • the increase in the pressure of the housing portion due to the oxidizing gas supplied from the outside to the housing portion via the gas inlet is the opening of the exhaust valve. Is larger than that when the exhaust valve is at the first opening. Therefore, when the opening degree of the exhaust valve is the second opening degree, the oxidizing gas easily spreads to a portion where the pressure loss is large due to the structure of the fuel generating member. As a result, since the portion where the pressure loss is large due to the structure of the fuel generating member is effectively utilized, the amount of generated fuel gas increases, and the portion where the pressure loss due to the structure of the hydrogen generating member is small is not concentrated and deteriorated. The durability of the fuel generator is increased.
  • the fuel generation device reflecting one aspect of the present invention
  • the amount of fuel gas generated from the fuel generation device increases, and the fuel cell system
  • the battery capacity increases, the durability of the fuel generator increases, and the durability of the fuel cell system also increases.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a secondary battery type fuel cell system according to a first embodiment of the present invention. It is a schematic diagram which shows the structure of the fuel generator which concerns on 1st Embodiment. It is a figure which shows the example of a manufacturing method of a sub accommodating part. It is a figure which shows the flow of the gas in the fuel generator in 1st Embodiment. It is a graph which shows the state of the exhaust valve in 1st Embodiment, the average pressure of a accommodating part, and hydrogen supply amount. It is a graph which shows the state of the exhaust valve in a comparative example, the average pressure of a accommodating part, and hydrogen supply amount.
  • FIG. 1 shows a schematic configuration of a secondary battery type fuel cell system according to the first embodiment of the present invention.
  • the secondary battery type fuel cell system according to the present embodiment includes a fuel generating member 1, a fuel cell unit 2, a heater 3 for heating the fuel cell unit 2, a housing unit 4 for housing the fuel generating member 1, and a fuel.
  • a container 5 that houses the battery unit 2 and the heater 3, a pipe 6 for circulating gas between the fuel generating member 1 and the fuel cell unit 2, a fuel gas inflow side of the fuel generating member 1 and the fuel cell unit 2, Air is supplied to an exhaust valve 7 provided between the pump, a pump 8 forcibly circulating gas between the fuel generating member 1 and the fuel cell unit 2, a heat insulating container 9, and an air electrode 2C of the fuel cell unit 2.
  • the heat insulating container 9 accommodates the accommodating portion 4, the container 5, and a part of each of the pipes 6, 10, and 11. Further, the fuel generation device 100 is constituted by a part of the fuel generation member 1, the accommodating portion 4, the exhaust valve 7, and the pipe 6.
  • a heater may be provided around the fuel generating member 1.
  • other circulators such as a compressor, a fan, and a blower may be used.
  • a metal or a metal oxide is added to the surface of a metal as a base material, and a fuel gas (for example, hydrogen) is generated by an oxidation reaction with an oxidizing gas (for example, water vapor).
  • a fuel gas for example, hydrogen
  • an oxidizing gas for example, water vapor
  • a gas that can be regenerated by a reduction reaction with a reducing gas for example, hydrogen
  • the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process.
  • the added metal include Al, Rh, Pd, Cr, Ni, Cu, Co, V, and Mo.
  • the added metal oxide include SiO 2 and TiO 2 .
  • the metal used as a base material and the added metal are not the same material.
  • a fuel generating member mainly composed of Fe is used as the fuel generating member 1, as the fuel generating member 1, a fuel generating member mainly composed of Fe is used.
  • the fuel generating member mainly composed of Fe can generate hydrogen as a fuel gas (reducing gas) by consuming water vapor as an oxidizing gas, for example, by an oxidation reaction represented by the following formula (1). . 4H 2 O + 3Fe ⁇ 4H 2 + Fe 3 O 4 (1)
  • the fuel generating member 1 can be regenerated by the reductive reaction shown in the formula.
  • the iron oxidation reaction shown in the above formula (1) and the reduction reaction in the following formula (2) can also be performed at a low temperature of less than 600 ° C. 4H 2 + Fe 3 O 4 ⁇ 3Fe + 4H 2 O (2)
  • the main body of the fuel generating member 1 may be made into fine particles, and the fine particles may be molded.
  • the fine particles include a method of crushing particles by crushing using a ball mill or the like.
  • the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
  • the fuel generating member 1 may have, for example, a form in which fine particles are formed into pellet-like particles and a large number of these particles are filled in the space, and the fine particles are solidified leaving a space through which gas passes. There may be. No matter what form of the fuel generating member 1 is accommodated in the accommodating portion 4, the gas does not spread uniformly over all the portions of the fuel generating member 1, and the portion with a small pressure loss due to the structure is larger or smaller. There is a part where the pressure loss is large due to the structure.
  • the fuel cell unit 2 has an MEA structure (membrane / electrode assembly: Membrane Electrode Assembly) in which a fuel electrode 2B and an air electrode 2C as an oxidant electrode are bonded to both surfaces of an electrolyte membrane 2A as shown in FIG.
  • FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.
  • a solid oxide electrolyte using yttria-stabilized zirconia can be used as a material of the electrolyte membrane 2A.
  • Solid polymer electrolytes such as, but not limited to, those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions can be used as fuel cell electrolytes. Any material satisfying the characteristics may be used.
  • an electrolyte that passes oxygen ions or hydroxide ions for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte membrane 2A.
  • the electrolyte membrane 2A can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor® Deposition®-Electrochemical® Vapor Deposition) or the like. If there is, it can be formed using a coating method or the like.
  • CVD-EVD method Chemical Vapor® Deposition®-Electrochemical® Vapor Deposition
  • Each of the fuel electrode 2B and the air electrode 2C can be constituted by, for example, a catalyst layer in contact with the electrolyte membrane 2A and a diffusion electrode laminated on the catalyst layer.
  • the catalyst layer for example, platinum black or a platinum alloy supported on carbon black can be used.
  • the material of the diffusion electrode of the fuel electrode 2B for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
  • a material for the diffusion electrode of the air electrode 2C for example, carbon paper, La—Mn—O compound, La—Co—Ce compound or the like can be used.
  • Each of the fuel electrode 2B and the air electrode 2C can be formed by using, for example, vapor deposition.
  • the fuel cell unit 2 is electrically connected to an external load (not shown) under the control of the system controller 12 during power generation of the secondary battery type fuel cell system according to the present embodiment.
  • the following reaction (3) occurs in the fuel electrode 2B during power generation of the secondary battery type fuel cell system according to the present embodiment.
  • the fuel cell unit 2 performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation of the secondary battery type fuel cell system according to the present embodiment, H 2 is consumed and H 2 O is generated on the fuel electrode 2B side. .
  • the fuel generating member 1 generates H 2 generated on the fuel electrode 2B side of the fuel cell unit 2 during power generation of the secondary battery type fuel cell system according to the present embodiment by the oxidation reaction expressed by the above formula (1). O is consumed to produce H 2 .
  • the fuel cell unit 2 When the secondary battery type fuel cell system according to the present embodiment is charged, the fuel cell unit 2 is connected to an external power source (not shown) under the control of the system controller 12.
  • an electrolysis reaction represented by the following formula (6) which is a reverse reaction of the formula (5), occurs, and the fuel electrode 2B H 2 O is consumed on the side and H 2 is generated.
  • the reduction reaction shown in the above formula (2) occurs, and the H 2 generated on the fuel electrode 2B side of the fuel cell unit 2 is consumed. And H 2 O is produced.
  • FIG. 2 shows the configuration of the fuel generator 100 according to this embodiment.
  • the housing part 4 of the fuel generator 100 according to the present embodiment has three sub housing parts 13 each housing the fuel generating member 1 and is configured to connect the three sub housing parts 4 in parallel.
  • the container body 14 is filled with the fuel generating member pellets 15 and then covered with the lid body 16 as shown in FIG. 3B.
  • the opening degree of the exhaust valve 7 is alternately switched between an opening degree corresponding to the fully open state and an opening degree corresponding to the fully closed state.
  • the switching may be realized, for example, by controlling the system controller 12 using a control type valve for the exhaust valve 7, and the exhaust valve 7 is fully closed when the pressure difference between the inlet side and the outlet side is less than a predetermined value. You may implement
  • FIG. 4A shows the gas flow when the exhaust valve 7 is fully open.
  • FIG. 4 illustrates a case where the sub-accommodating portion 13 on the lower side of the paper is a sub-accommodating portion 13 with a small pressure loss, and the two sub-accommodating portions 13 on the upper side of the paper are sub-accommodating portions 13 with a large pressure loss. .
  • the thickness of the arrow indicates the gas flow rate, and the thicker the arrow, the larger the gas flow rate.
  • gas concentrates on the sub-accommodating portion 13 having a small pressure loss.
  • the above cycle is repeated, and the state of the exhaust valve 7, the average pressure of the accommodating portion 4, and the amount of hydrogen supplied to the outside from the gas outlet 18 are shown in FIGS. 5 (a), 5 (b), and 5 (c), respectively. ) As shown.
  • the switching cycle of the state of the exhaust valve 7 may be set according to the rated output of the fuel cell system, the amount of the fuel generating member 1, and the like. Normally, setting within the range of several seconds to several tens of seconds is assumed, but in some cases, a cycle of several minutes may be considered.
  • the amount of hydrogen supplied to the outside from the gas outlet 18 in the present embodiment is indicated by a solid line
  • the amount of hydrogen supplied to the outside from the gas outlet 18 in the comparative example is indicated by a broken line.
  • the sub-accommodating portion 13 having a large pressure loss is also effectively utilized, whereas in the comparative example, the sub-accommodating portion 13 having a large pressure loss is not effectively utilized. Therefore, as can be seen from FIG. 7, the amount of the fuel generating member 1 contributing to the oxidation reaction is larger in the present embodiment (solid line) than in the comparative example (broken line). The total amount of hydrogen supplied increases.
  • the fuel accommodated in the sub-accommodating portion 13 with a small pressure loss since the gas flows in a concentrated manner in the sub-accommodating portion 13 with a small pressure loss, that is, the state shown in FIG. 4A is not maintained, the fuel accommodated in the sub-accommodating portion 13 with a small pressure loss. It is possible to prevent the generation member 1 from concentrating and deteriorating (for example, sintering or dropping of fine particles constituting the fuel generation member 1). Thereby, durability of the fuel generator 100 becomes high.
  • FIG. 8 shows a schematic configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention.
  • the secondary battery type fuel cell system according to the present embodiment has a configuration in which a diffusion unit 19 that diffuses gas is added to the secondary battery type fuel cell system according to the first embodiment.
  • the diffusion part 19 is provided between the exhaust valve 7 and the gas outlet 18 of the fuel generator 100.
  • the amount of hydrogen supplied from the gas outlet 18 of the fuel generator 100 in the present embodiment to the outside of the fuel generator 100 (the gas inflow side of the fuel cell unit 2) is indicated by a solid line.
  • the amount of hydrogen supplied from the gas outlet 18 to the outside of the fuel generator 100 (the gas inflow side of the fuel cell unit 2) is indicated by a broken line.
  • the opening of the exhaust valve 7 is alternately switched between an opening corresponding to the fully open state and an opening corresponding to the fully closed state.
  • the diffusion unit 19 is shown in FIG. 10
  • the gas flow is schematically shown by arrows.
  • the diffusing portion 19 is configured by an expansion chamber 22 in which a gas inlet 20 and a gas outlet 21 are provided.
  • the cross-sectional area of the expansion chamber 22 (the area of the cross section of the expansion chamber 22 perpendicular to the direction of travel of the gas flowing into the gas inlet 20) is the cross-sectional area of the gas inlet 20 (flows into the gas inlet 20).
  • the cross-sectional area of the gas inlet 20 perpendicular to the gas traveling direction) and the cross-sectional area of the gas outlet 21 (the cross-sectional area of the gas outlet 20 perpendicular to the traveling direction of the gas flowing out from the gas outlet 20) Bigger than each of.
  • the gas pressure in the expansion chamber 22 becomes lower than the gas pressure in the pipe 6 due to such a difference in flow path cross-sectional area, and the gas is dispersed and diffused in all directions in the expansion chamber 22.
  • a smoothing unit 23 that smoothes the generated power of the fuel cell unit 2 may be provided instead of the diffusion unit 19.
  • the fluctuation of the amount of hydrogen supplied from the gas outlet 18 of the fuel generator 100 to the outside of the fuel generator 100 (the gas inflow side of the fuel cell unit 2) is not reduced, but is the same as when the fluctuation is reduced.
  • the output voltage of the secondary battery type fuel cell system can be stabilized.
  • a filter can be mentioned.
  • the schematic configuration of the secondary battery type fuel cell system according to the third embodiment of the present invention is the same as the schematic configuration of the secondary battery type fuel cell system according to the first embodiment shown in FIG. Further, the configuration of the fuel generation device 100 in the present embodiment is also the configuration shown in FIG. 2, similar to the configuration of the fuel generation device 100 in the first embodiment.
  • the opening of the exhaust valve 7 is alternately switched between an opening corresponding to the fully open state and an opening corresponding to the partially open state.
  • the switching may be realized, for example, by using a control type valve for the exhaust valve 7 and controlled by the system controller 12, and the exhaust valve 7 is partially opened when the pressure difference between the inlet side and the outlet side is less than a predetermined value. It may be realized by using a pressure relief valve that is fully opened above a predetermined value.
  • this embodiment has a time region in which the amount of hydrogen supplied from the gas outlet 18 of the fuel generator 100 to the outside of the fuel generator 100 (the gas inflow side of the fuel cell unit 2) becomes zero. Therefore, as compared with the first embodiment, fluctuations in the amount of hydrogen supplied from the gas outlet 18 of the fuel generator 100 to the outside of the fuel generator 100 (the gas inflow side of the fuel cell unit 2) can be reduced. In addition, the electrode of the fuel cell unit 2 and the electrolyte are not damaged by the fuel gas running out, and the durability of the fuel cell unit 2 is improved.
  • the schematic configuration of the secondary battery type fuel cell system according to the fourth embodiment of the present invention is the same as the schematic configuration of the secondary battery type fuel cell system according to the first embodiment shown in FIG.
  • the configuration of the fuel generator 100 according to the present embodiment is the configuration illustrated in FIG. 13, unlike the configuration of the fuel generator 100 according to the first embodiment.
  • the opening degree of the exhaust valve 7 is alternately switched between an opening degree corresponding to a fully opened state and an opening degree corresponding to a fully closed state or an opening degree corresponding to a partially opened state.
  • the fuel generator 100 has a configuration in which a check valve 24 is added to the fuel generator 100 according to the first embodiment.
  • the check valve 24 is provided between the gas inlet 17 of the fuel generator 100 and the accommodating portion 4.
  • the check valve 24 it is possible to prevent the gas from flowing backward from the gas inlet 17 of the fuel generator 100 to the gas outlet side of the fuel cell unit 2. Therefore, the average pressure of the housing portion 4 when the opening degree of the exhaust valve 7 is an opening degree corresponding to a fully closed state or an opening degree corresponding to a partially opened state is reliably and rapidly increased. Thereby, the generation amount of fuel gas can be increased further.
  • a check valve 24 may be provided on each gas inflow side of the sub-accommodating portion 13 as shown in FIG. 14.
  • the schematic configuration of the secondary battery type fuel cell system according to the fifth embodiment of the present invention is greatly different from the schematic configuration of the secondary battery type fuel cell system according to the first embodiment in that it includes three accommodating portions 4.
  • parts other than the fuel generator 100 have the configuration shown in FIG. 1 as in the secondary battery type fuel cell system according to the first embodiment.
  • the number of accommodating parts may be two or less or four or more.
  • the fuel generator 100 has the configuration shown in FIG. 15, and the first unit 26, the second unit 27, and the third unit 28 are disposed between the gas inlet 17 and the gas outlet 18.
  • Each unit is configured to be connected in parallel, and each unit has a configuration in which the intake valve 25, the accommodating portion 4, and the exhaust valve 7 are connected in series.
  • the opening degree of the exhaust valve 7 is alternately switched between an opening degree corresponding to the fully open state and an opening degree corresponding to the fully closed state, and the opening degree of the exhaust valve 7 is an opening degree corresponding to the fully open state.
  • the system controller 12 controls so that a certain unit is sequentially switched (see FIGS. 16A to 16C).
  • the opening degree of the exhaust valve 7 may be an opening degree corresponding to a partially opened state, not an opening degree corresponding to a fully closed state.
  • the intake valve 25 of the unit whose opening degree corresponds to the fully opened state is fully closed (see FIGS. 16A to 16F), and the exhaust valve 7 is opened.
  • the average pressure of the accommodating portion 4 in the unit whose opening is an opening corresponding to the fully closed state is reliably increased.
  • FIG. 16A during the period when the exhaust valve 7 of the first unit is fully opened, the intake valve 25 of the first unit is fully closed as shown in FIG.
  • the exhaust valves 7 of the second unit and the third unit are fully closed as shown in FIGS. 16B and 16C, and the second unit and the second unit are closed as shown in FIGS.
  • the three-unit intake valve 25 is fully opened.
  • the system is configured such that the intake valve 25 of the unit having an opening corresponding to the fully open state is fully closed, and the intake valve 25 of the unit having an opening corresponding to the fully closed state is fully open. It is controlled by the controller 12.
  • the exhaust valve 7 is switched from the fully closed state to the fully opened state, and the unit immediately after the intake valve 25 is switched from the fully opened state to the fully closed state, the average pressure of the accommodating portion 4 is in a state of increasing. Since the difference from the pressure on the outlet side of the exhaust valve 7 is large, hydrogen can be discharged for a while after switching.
  • the intake valve 25 is not limited to switching between the fully open state and the fully closed state, and may be switched to another state (for example, a partially open state).
  • a solid oxide electrolyte is used as the electrolyte membrane 2A of the fuel cell unit 2, and water is generated on the fuel electrode 2B side during power generation. According to this configuration, water is generated on the side where the fuel generating member 1 is provided, which is advantageous for simplification and miniaturization of the apparatus.
  • a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte membrane 2A of the fuel cell unit 2.
  • one fuel cell unit 2 performs both power generation and water electrolysis.
  • a fuel cell for example, a solid oxide fuel cell dedicated to power generation
  • a water electrolyzer for example, water
  • the solid oxide fuel cell dedicated to electrolysis may be connected to the fuel generating member 1 in parallel on the gas flow path.
  • the fuel gas of the fuel cell part 2 is made into hydrogen
  • air is used as the oxidant gas, but an oxidant gas other than air may be used.
  • one unit switches the exhaust valve 7 between a fully open state and a fully closed state, and the other unit sets the exhaust valve 7 to a fully open state as in the third embodiment. You may switch to a partially open state.
  • the exhaust valve 7 is switched in two states.
  • the exhaust valve 7 may be switched in three or more states (for example, a fully open state, a partially open state, and a fully closed state).
  • the accommodating part 4 was equipped with the some sub accommodating part 13, and the some sub accommodating part 13 was the structure connected in parallel,
  • the configuration may be such that a plurality of sub-accommodating sections 13 are not provided.
  • the single sub-accommodation is performed by the oxidizing gas supplied from the outside (gas outflow side of the fuel cell unit 2) to the accommodating unit 4 through the gas inlet 17. Since the average pressure of the portion 13 rises and the gas reaches the portion where the pressure loss in the single sub-accommodating portion 13 is large, the total amount of hydrogen supplied to the outside from the gas outlet 18 increases.
  • three containers are connected in series, but the accommodating portion 4 may be a single container.
  • the fuel generation apparatus described above is a fuel generation apparatus that generates a fuel gas that is a reducing gas by an oxidation reaction with an oxidizing gas, the gas inlet through which the oxidizing gas is supplied from the outside, and the fuel A gas outlet for supplying gas to the outside; a fuel generating member for generating the fuel gas by an oxidation reaction with the oxidizing gas; and the fuel generating member provided between the gas inlet and the gas outlet And an exhaust valve provided between the storage part and the gas outlet, and the opening of the exhaust valve is smaller than the first opening and the first opening.
  • the storage unit includes a plurality of sub storage units that store the fuel generation member, and the plurality of sub storage units are connected in parallel (second configuration). Also good.
  • the fuel generator having the first or second configuration may be configured to include a check valve (third configuration) provided between the gas inlet and the accommodating portion.
  • the storage unit may include a check valve on each of the gas inflow sides of the sub storage unit (fourth configuration).
  • the fuel generator having any one of the first to fourth configurations may include a gas diffusion unit (fifth configuration) provided between the exhaust valve and the gas outlet.
  • the first opening is an opening corresponding to a fully opened state
  • the second opening is equivalent to a partially opened state. It is good also as a structure (6th structure) which is an opening degree.
  • the first opening is an opening corresponding to a fully open state
  • the second opening is an opening corresponding to a fully closed state. (7th configuration).
  • an intake valve provided between the gas inlet and the accommodating portion is provided, and the intake valve, the accommodating portion, and the exhaust valve are provided. It is good also as a structure (8th structure) provided with two or more units comprised by these and connecting the said several unit in parallel.
  • the fuel generator having any one of the first to ninth configurations may include a control unit (tenth configuration) that controls a degree of opening of the exhaust valve or the intake valve.
  • the fuel cell system described above includes a fuel generator having any one of the first to tenth configurations and a fuel cell device that generates power using fuel gas supplied from the fuel generator. (Eleventh configuration).
  • the fuel cell system of the eleventh configuration may have a configuration (a twelfth configuration) including a smoothing unit that smoothes the generated power of the fuel cell device.
  • the increase in the pressure of the housing portion due to the oxidizing gas supplied from the outside to the housing portion via the gas inlet port causes the opening degree of the exhaust valve to be the second value.
  • the opening of the exhaust valve is larger than when the opening is the first opening. Therefore, when the opening degree of the exhaust valve is the second opening degree, the oxidizing gas easily spreads to a portion where the pressure loss is large due to the structure of the fuel generating member.
  • the portion where the pressure loss is large due to the structure of the fuel generating member is effectively utilized, the amount of generated fuel gas increases, and the portion where the pressure loss due to the structure of the hydrogen generating member is small is not concentrated and deteriorated.
  • the durability of the fuel generator is increased.
  • the fuel generating device described above since the fuel generating device described above is provided, the amount of fuel gas generated from the fuel generating device increases, and the battery capacity of the fuel cell system increases. The durability of the fuel cell system is increased and the durability of the fuel cell system is also increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)

Abstract

 酸化性ガスとの酸化反応により還元性ガスである燃料ガスを発生する燃料発生装置は、前記酸化性ガスが外部から供給されるガス流入口と、前記燃料ガスを外部に供給するガス流出口と、前記酸化性ガスとの酸化反応により前記燃料ガスを発生する燃料発生部材と、前記ガス流入口と前記ガス流出口との間に設けられ前記燃料発生部材を収容する収容部と、前記収容部と前記ガス流出口との間に設けられる排気バルブとを備える。そして、前記排気バルブの開度を、第1の開度と、前記第1の開度より小さい第2の開度とを含めて周期的に変化させることによって、外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなる。

Description

燃料発生装置及びそれを備えた燃料電池システム
 本発明は、酸化性ガスとの酸化反応により還元性ガスである燃料ガスを発生する燃料発生装置及びそれを備えた燃料電池システムに関する。
 燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。
 燃料電池は、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。
特表平11-501448号公報 国際公開第2012/043271号 国際公開第2012/026219号
 特許文献1乃至特許文献3には、固体酸化物型燃料電池と、酸化反応により水素を発生し、還元反応により再生可能な水素発生部材とを組み合わせた2次電池型燃料電池システムが開示されている。上記2次電池型燃料電池システムでは、システムの発電動作時に水素発生部材が水素を発生し、システムの充電動作時に水素発生部材が再生される。
 水素発生部材の形態としては、例えば酸化反応により水素を発生し、還元反応により再生可能な金属を母材とする微粒子をガスが通過する程度の空隙を残して固めた形態や上記微粒子をペレット状の粒に成型してこの粒を多数空間内に充填する形態が挙げられる。このように形成された水素発生部材には、構造上、ガスを供給した場合に圧力損失の大きい部分と小さい部分とが出来てしまうことが多い。
 そのため、水素発生部材にガスを供給した場合、水素発生部材の全ての部分に一様にガスが行き渡るのではなく、水素発生部材の構造上圧力損失の小さい部分に集中してガスが流れる。その結果、水素発生部材の構造上圧力損失の大きい部分が有効に活用されないので、燃料ガスの発生量が少なくなり、水素発生部材の構造上圧力損失の小さい部分が集中して活用されるので、水素発生部材の構造上圧力損失の小さい部分が集中して劣化し、水素発生部材全体の耐久性が落ちるという問題があった。特に水素発生部材の形態がペレット状の粒を多数空間内に充填する形態である場合には、ランダムな充填になるため、構造上のばらつきが大きく、上記の問題が顕著である。
 本発明は、上記の状況に鑑み、燃料ガスの発生量が多く耐久性が高い燃料発生装置及びそれを備えた燃料電池システムを提供することを目的とする。
 上記目的を達成するために本発明の一側面を反映した燃料発生装置は、酸化性ガスとの酸化反応により還元性ガスである燃料ガスを発生する燃料発生装置であって、前記酸化性ガスが外部から供給されるガス流入口と、前記燃料ガスを外部に供給するガス流出口と、前記酸化性ガスとの酸化反応により前記燃料ガスを発生する燃料発生部材と、前記ガス流入口と前記ガス流出口との間に設けられ前記燃料発生部材を収容する収容部と、前記収容部と前記ガス流出口との間に設けられる排気バルブとを備え、前記排気バルブの開度を、第1の開度と、前記第1の開度より小さい第2の開度とを含めて周期的に変化させることによって、外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなる構成とする。
 本発明の一側面を反映した燃料発生装置によると、外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなる。したがって、前記排気バルブの開度が前記第2の開度であるときは、前記燃料発生部材の構造上圧力損失の大きい部分にまで前記酸化性ガスが行き渡りやすくなる。これにより、燃料発生部材の構造上圧力損失の大きい部分が有効に活用されるので、燃料ガスの発生量が多くなり、水素発生部材の構造上圧力損失の小さい部分が集中して劣化せず、燃料発生装置の耐久性が高くなる。
 また、本発明の一側面を反映した燃料電池システムによると、本発明の一側面を反映した燃料発生装置を備えているので、燃料発生装置からの燃料ガスの発生量が多くなり燃料電池システムの電池容量が増加する、また、燃料発生装置の耐久性が高くなり燃料電池システムの耐久性も高くなる。
本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。 第1実施形態に係る燃料発生装置の構成を示す模式図である。 サブ収容部の製造方法例を示す図である。 第1実施形態における燃料発生装置でのガスの流れを示す図である。 第1実施形態における排気バルブの状態、収容部の平均圧力、及び水素供給量を示すグラフである。 比較例における排気バルブの状態、収容部の平均圧力、及び水素供給量を示すグラフである。 第1実施形態における水素供給量と比較例における水素供給量とを示すグラフである。 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を示す模式図である。 第2実施形態における水素供給量と第1実施形態における水素供給量とを示すグラフである。 拡散部の一構成例を示す模式図である。 本発明の第2実施形態に係る2次電池型燃料電池システムの変形例を示す模式図である。 第3実施形態における排気バルブの状態、収容部の平均圧力、及び水素供給量を示すグラフである。 第4実施形態に係る燃料発生装置の構成を示す模式図である。 第4実施形態に係る燃料発生装置の変形例を示す模式図である。 第5実施形態に係る燃料発生装置の変形例を示す模式図である。 第5実施形態における排気バルブの状態及び吸気バルブの状態を示すグラフである。 第5実施形態における水素供給量を示すグラフである。 燃料発生装置の変形例を示す模式図である。
 本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。
<第1実施形態>
 本発明の第1実施形態に係る2次電池型燃料電池システムの概略構成を図1に示す。本実施形態に係る2次電池型燃料電池システムは、燃料発生部材1と、燃料電池部2と、燃料電池部2を加熱するヒーター3と、燃料発生部材1を収容する収容部4と、燃料電池部2及びヒーター3を収容する容器5と、燃料発生部材1と燃料電池部2の間でガスを循環させるための配管6と、燃料発生部材1と燃料電池部2の燃料ガス流入側との間に設けられる排気バルブ7と、燃料発生部材1と燃料電池部2の間でガスを強制的に循環させるポンプ8と、断熱容器9と、燃料電池部2の空気極2Cに空気を供給するための配管10と、燃料電池部2の空気極2Cから空気を排出するための配管11と、システム全体を制御するシステムコントローラ12とを備えている。断熱容器9は、収容部4と、容器5と、配管6、10、及び11それぞれの一部とを収容している。また、燃料発生装置100は、燃料発生部材1と、収容部4と、排気バルブ7と、配管6との一部によって構成されている。
 なお、図が煩雑になることを防ぐため、電力を伝送する電力ラインや制御信号を伝送する制御ラインなどの図示は省略している。必要に応じて、燃料発生部材1の周辺にヒーターを設けてもよい。また、必要に応じて、燃料発生部材1や燃料電池部2の周辺に温度センサ等を設けてもよい。また、ポンプ8の代わりに、例えばコンプレッサ、ファン、ブロアなどの他の循環器を用いてもよい。
 燃料発生部材1としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、酸化性ガス(例えば水蒸気)との酸化反応によって燃料ガス(例えば水素)を発生し、還元性ガス(例えば水素)との還元反応により再生可能なものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rh、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO2、TiO2が挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。なお、本実施形態においては、燃料発生部材1として、Feを主体とする燃料発生部材を用いる。
 Feを主体とする燃料発生部材は、例えば、下記の(1)式に示す酸化反応により、酸化性ガスである水蒸気を消費して燃料ガス(還元性ガス)である水素を生成することができる。
  4H2O+3Fe→4H2+Fe34 …(1)
 上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄の残量が減っていくが、上記の(1)式の逆反応すなわち下記の(2)式に示す還元反応により、燃料発生部材1を再生することができる。なお、上記の(1)式に示す鉄の酸化反応及び下記の(2)式の還元反応は600℃未満の低い温度で行うこともできる。
  4H2+Fe34→3Fe+4H2O …(2)
 燃料発生部材1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材1の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生部材1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。
 燃料発生部材1としては、例えば、微粒子をペレット状の粒に形成してこの粒を多数空間内に埋める形態であってもよく、微粒子をガスが通過する程度の空隙を残して固めたものであってもよい。どのような形態の燃料発生部材1を収容部4に収容した場合でも、燃料発生部材1の全ての部分に一様にガスが行き渡ることはなく、大なり小なり構造上圧力損失の小さい部分と構造上圧力損失の大きい部分とが存在する。
 燃料電池部2は、図1に示す通り、電解質膜2Aの両面に燃料極2Bと酸化剤極である空気極2Cを接合したMEA構造(膜・電極接合体:Membrane Electrode  Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。
 電解質膜2Aの材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質膜2Aとして、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いる。
 電解質膜2Aは、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD-EVD法;Chemical Vapor  Deposition  - Electrochemical  Vapor Deposition)等を用いて形成することができ、固体高分子電解の場合であれば、塗布法等を用いて形成することができる。
 燃料極2B、空気極2Cはそれぞれ、例えば、電解質膜2Aに接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極2Bの拡散電極の材料としては、例えばカーボンペーパ、Ni-Fe系サーメットやNi-YSZ系サーメット等を用いることができる。また、空気極2Cの拡散電極の材料としては、例えばカーボンペーパ、La-Mn-O系化合物やLa-Co-Ce系化合物等を用いることができる。燃料極2B、空気極2Cはそれぞれ、例えば蒸着法等を用いて形成することができる。
 以下の説明では、燃料ガスとして水素を用いた場合について説明する。
 本実施形態に係る2次電池型燃料電池システムの発電時に燃料電池部2はシステムコントローラ12の制御によって外部負荷(不図示)に電気的に接続される。燃料電池部2では、本実施形態に係る2次電池型燃料電池システムの発電時に、燃料極2Bにおいて下記の(3)式の反応が起こる。
 H2+O2-→H2O+2e- …(3)
 上記の(3)式の反応によって生成された電子は、外部負荷(不図示)を通って、空気極2Cに到達し、空気極2Cにおいて下記の(4)式の反応が起こる。
 1/2O2+2e-→O2- …(4)
 そして、上記の(4)式の反応によって生成された酸素イオンは、電解質膜2Aを通って、燃料極2Bに到達する。上記の一連の反応を繰り返すことにより、燃料電池部2が発電動作を行うことになる。また、上記の(3)式から分かるように、本実施形態に係る2次電池型燃料電池システムの発電動作時には、燃料極2B側においてH2が消費されH2Oが生成されることになる。
 上記の(3)式及び(4)式より、本実施形態に係る2次電池型燃料電池システムの発電動作時における燃料電池部2での反応は下記の(5)式の通りになる。
 H2+1/2O2→H2O …(5)
 一方、燃料発生部材1は、上記の(1)式に示す酸化反応により、本実施形態に係る2次電池型燃料電池システムの発電時に燃料電池部2の燃料極2B側で生成されたH2Oを消費してH2を生成する。
 上記の(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(2)式に示す還元反応により、燃料発生部材1を再生することができ、本実施形態に係る2次電池型燃料電池システムを充電することができる。
 本実施形態に係る2次電池型燃料電池システムの充電時に燃料電池部2はシステムコントローラ12の制御によって外部電源(不図示)に接続される。燃料電池部2では、本実施形態に係る2次電池型燃料電池システムの充電時に、上記の(5)式の逆反応である下記の(6)式に示す電気分解反応が起こり、燃料極2B側においてH2Oが消費されH2が生成され、燃料発生部材1では、上記の(2)式に示す還元反応が起こり、燃料電池部2の燃料極2B側で生成されたH2が消費されH2Oが生成される。
 H2O→H2+1/2O2 …(6)
 次に、本実施形態における燃料発生装置100の構成を図2に示す。本実施形態における燃料発生装置100の収容部4は、各々燃料発生部材1を収容しているサブ収容部13を3つ備え、3つのサブ収容部4を並列接続する構成である。サブ収容部4の製造方法例としては、図3(a)に示すように、容器本体14に燃料発生部材ペレット15を充填してから蓋体16を被せ、図3(b)に示すように蓋体16と容器本体14とを溶接等により接続し、図3(c)に示すように3つの容器を溶接等により直列接続する方法を挙げることができる。
 本実施形態では、排気バルブ7の開度が全開状態に相当する開度と全閉状態に相当する開度とに交互に切り替わる。当該切り替えは、例えば、排気バルブ7に制御式のバルブを用いシステムコントローラ12の制御によって実現してもよく、排気バルブ7に入口側と出口側との圧力差が所定値未満で全閉状態となり所定値以上で全開状態となる圧力逃し弁を用いて実現してもよい。
 図4(a)は、排気バルブ7が全開状態であるときのガスの流れを示している。図4において、紙面下側のサブ収容部13が圧力損失の小さいサブ収容部13であり、紙面上側の2つのサブ収容部13が圧力損失の大きいサブ収容部13である場合を図示している。また、矢印の太さはガス流量を示しており、矢印が太いほどガス流量が大きいことを意味している。図4(a)に示すように、圧力損失の小さいサブ収容部13にガスが集中して流れる。
 排気バルブ7が全開状態から全閉状態に切り替わると、図4(b)に示すように、圧力損失の小さいサブ収容部13(紙面下側)を流れたガスは行き場を失って、圧力損失の大きいサブ収容部13(紙面上側の2つ)に流れ込む。そして、外部(燃料電池部2のガス流出側)からガス流入口17を介して収容部4に供給される酸化性ガスによって、収容部4内の平均圧力が上昇する。
 収容部4の平均圧力が上昇し、収容部4内の全体にガスが行き渡った後、排気バルブ7が全閉状態から全開状態に切り替わると、図4(c)に示すように、各々のサブ収容部13からガスが出力され、ガス流出口18から外部(燃料電池部2のガス流入側)に供給される。排気バルブ7が全閉状態から全開状態に切り替わった直後は、収容部4内の平均圧力と、排気バルブ7の出口側の圧力との差が大きいため、図4(c)の太い矢印で示すように、サブ収容部13内を流量の大きいガスが流れる。
 以上のサイクルが繰り返され、排気バルブ7の状態、収容部4の平均圧力、ガス流出口18から外部に供給される水素量はそれぞれ図5(a)、図5(b)、図5(c)に示すようになる。排気バルブ7の状態の切り替わり周期は、燃料電池システムの定格出力や燃料発生部材1の量などに応じて設定すればよい。通常は数秒~十数秒の範囲内での設定が想定されるが、場合によっては数分単位の周期とする場合も考えられる。
 ここで、比較例として、排気バルブ7を常に全開状態にする場合、すなわち排気バルブ7を設けない構成と等価である場合を考えると、排気バルブ7の状態、収容部4の平均圧力、ガス流出口18から外部に供給される水素量はそれぞれ図6(a)、図6(b)、図6(c)に示すようになる。
 図7では、本実施形態でのガス流出口18から外部に供給される水素量を実線で示し、比較例でのガス流出口18から外部に供給される水素量を破線で示している。本実施形態では、圧力損失の大きいサブ収容部13も有効に活用しているのに対して、比較例では、圧力損失の大きいサブ収容部13を有効に活用していない。そのため、図7から分かるように、比較例(破線)よりも本実施形態(実線)の方が、酸化反応に寄与する燃料発生部材1の量が多くなり、その結果ガス流出口18から外部に供給される水素の総量が多くなる。
 本実施形態では、圧力損失の小さいサブ収容部13に集中してガスが流れる状態、すなわち図4(a)に示す状態を維持しないので、圧力損失の小さいサブ収容部13に収容されている燃料発生部材1が集中して劣化(例えばシンタリングや燃料発生部材1を構成する微粒子の脱落など)することを防止することができる。これにより、燃料発生装置100の耐久性が高くなる。
<第2実施形態>
 本発明の第2実施形態に係る2次電池型燃料電池システムの概略構成を図8に示す。本実施形態に係る2次電池型燃料電池システムは、第1実施形態に係る2次電池型燃料電池システムにガスを拡散する拡散部19を追加した構成である。拡散部19は、排気バルブ7と燃料発生装置100のガス流出口18との間に設けられる。これにより、排気バルブ7側から拡散部19に供給される水素量の変動を拡散部19によって吸収することができるので、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量の変動を小さくすることができる(図9参照)。図9では、本実施形態での燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量を実線で示し、第1実施形態でのガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量を破線で示している。図9から分かるように、排気バルブ7の周期的な開閉によってガス流出口から外部へ供給される水素量が変動しても(破線)、燃料電池部2のガス流入側に供給される水素量の変動が抑えられ(実線)、燃料電池部2の発電量を安定させることができる。
 本実施形態では、第1実施形態と同様に、排気バルブ7の開度が全開状態に相当する開度と全閉状態に相当する開度とに交互に切り替わる。
 ここで、拡散部19の一構成例を図10に示す。図10ではガスの流れを矢印で模式的に示している。図10に示す構成例では拡散部19は、ガス流入口20及びガス流出口21が設けられている拡大室22によって構成されている。
 拡大室22の流路断面積(ガス流入口20に流入するガスの進行方向に垂直な拡大室22の断面の面積)は、ガス流入口20の流路断面積(ガス流入口20に流入するガスの進行方向に垂直なガス流入口20の断面の面積)及びガス流出口21の流路断面積(ガス流出口20から流出するガスの進行方向に垂直なガス流出口20の断面の面積)のそれぞれよりも大きい。
 このような流路断面積の差により、拡大室22内のガス圧力は、配管6内のガス圧力より低くなり、拡大室22内でガスは四方に分散して拡散する。
 なお、拡散部19の代わりに、図11に示すように、燃料電池部2の発電電力を平滑化する平滑部23を設けてもよい。この場合、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量の変動は小さくならないが、当該変動を小さくした場合と同様に、2次電池型燃料電池システムの出力電圧を安定化することができる。
 平滑部23の一例としては、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量の変動周波数よりも低い遮断周波数のローパスフィルタを挙げることができる。
 また、本発明に係る2次電池型燃料電池システムに拡散部19と平滑部23をともに設けることも可能である。この場合、2次電池型燃料電池システムの出力電圧をより一層安定化することができる。
<第3実施形態>
 本発明の第3実施形態に係る2次電池型燃料電池システムの概略構成は、第1実施形態に係る2次電池型燃料電池システムの概略構成と同じく図1に示す構成である。また、本実施形態における燃料発生装置100の構成も第1実施形態における燃料発生装置100の構成と同じく図2に示す構成である。
 ただし、本実施形態では、第1実施形態とは異なり、排気バルブ7の開度が全開状態に相当する開度と一部開状態に相当する開度とに交互に切り替わる。当該切り替えは、例えば、排気バルブ7に制御式のバルブを用いシステムコントローラ12の制御によって実現してもよく、排気バルブ7に入口側と出口側との圧力差が所定値未満で一部開状態となり所定値以上で全開状態となる圧力逃し弁を用いて実現してもよい。
 本実施形態における排気バルブ7の状態、収容部4の平均圧力、ガス流出口18から外部に供給される水素量はそれぞれ図12(a)、図12(b)、図12(c)に示すようになる。
 本実施形態は、第1実施形態と異なり燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量が零になる時間領域がないため、第1実施形態に比べて、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量の変動を小さくすることができるとともに、燃料ガス切れによって燃料電池部2の電極や電解質がダメージを受けることがなくなり燃料電池部2の耐久性が向上する。
<第4実施形態>
 本発明の第4実施形態に係る2次電池型燃料電池システムの概略構成は、第1実施形態に係る2次電池型燃料電池システムの概略構成と同じく図1に示す構成である。ただし、本実施形態に係る燃料発生装置100の構成は第1実施形態における燃料発生装置100の構成と異なり図13に示す構成である。
 本実施形態では、排気バルブ7の開度が全開状態に相当する開度と全閉状態に相当する開度または一部開状態に相当する開度とに交互に切り替わる。
 本実施形態に係る燃料発生装置100は、第1実施形態における燃料発生装置100に逆止弁24を追加した構成である。逆止弁24は、燃料発生装置100のガス流入口17と収容部4の間に設けられる。逆止弁24を設けることで、燃料発生装置100のガス流入口17から燃料電池部2のガス流出側にガスが逆流することを防止することができる。したがって、排気バルブ7の開度が全閉状態に相当する開度または一部開状態に相当する開度であるときの収容部4の平均圧力が確実にかつ迅速に上昇する。これにより、燃料ガスの発生量をより一層多くすることができる。
 また、図13に示す構成に代えて、図14に示すようにサブ収容部13のガス流入側それぞれに逆止弁24を設ける構成にしてもよい。
<第5実施形態>
 本発明の第5実施形態に係る2次電池型燃料電池システムの概略構成は、収容部4を3つ備える点で第1実施形態に係る2次電池型燃料電池システムの概略構成と大きく異なっているが、燃料発生装置100以外の部分は第1実施形態に係る2次電池型燃料電池システムと同じく図1に示す構成である。尚、収容部の数は2つ以下または4つ以上であっても構わない。
 本実施形態に係る燃料発生装置100は、図15に示す構成であり、第1ユニット26と、第2ユニット27と、第3ユニット28とがガス流入口17とガス流出口18との間で並列接続されている構成であって、各ユニットは吸気バルブ25、収容部4、及び排気バルブ7が直列接続されている構成である。
 本実施形態では、排気バルブ7の開度が全開状態に相当する開度と全閉状態に相当する開度とに交互に切り替わり、さらに排気バルブ7の開度が全開状態に相当する開度であるユニットが順次切り替わるように(図16(a)~(c)参照)システムコントローラ12が制御する。尚、排気バルブ7の開度は、全閉状態に相当する開度ではなく、一部開状態に相当する開度であってもよい。
 排気バルブ7の開度が全開状態に相当する開度であるユニットの吸気バルブ25を全開状態にすると、排気バルブ7の開度が全開状態に相当する開度であるユニットに集中してガスが流れ、排気バルブ7の開度が全閉状態に相当する開度であるユニット内の収容部4の平均圧力が上昇しないおそれがある。
 そこで、本実施形態では、排気バルブ7の開度が全開状態に相当する開度であるユニットの吸気バルブ25を全閉状態にし(図16(a)~(f)参照)、排気バルブ7の開度が全閉状態に相当する開度であるユニット内の収容部4の平均圧力を確実に上昇させる。図16(a)において第1ユニットの排気バルブ7を全開にしている期間においては、図16(d)が示すように第1ユニットの吸気バルブ25を全閉状態とする。同じ期間において、図16(b)(c)が示すように第2ユニット及び第3ユニットの排気バルブ7を全閉状態とし、図16(e)(f)が示すように第2ユニット及び第3ユニットの吸気バルブ25を全開状態とする。次の期間では、第2ユニットの排気バルブ7を全開にし(図16(b))、第2ユニットの吸気バルブ25を全閉状態とする(図16(d))。一方、第1ユニットと第3ユニットの排気バルブ7を全閉状態とし(図16(a)(c))、第1ユニットと第3ユニットの吸気バルブ25を全開状態とする(図16(d)(f))。このように、複数のユニットにおいて、排気バルブ7の開度が全開状態に相当する開度であるユニットと全閉状態に相当する開度であるユニットが順に切り替わるとともに、排気バルブ7の開度が全開状態に相当する開度であるユニットの吸気バルブ25が全閉状態となり、排気バルブ7の開度が全閉状態に相当する開度であるユニットの吸気バルブ25が全開状態となるよう、システムコントローラ12によって制御される。なお、排気バルブ7が全閉状態から全開状態へ切り替わるとともに、吸気バルブ25が全開状態から全閉状態に切り替わった直後のユニットでは、収容部4の平均圧力が上昇している状態であるため、排気バルブ7の出口側の圧力との差が大きいため、切り替わりからしばらくの間は、水素の排出が可能になっている。
 本実施形態では、各ユニットから順次水素が排出されるので、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量の変動を小さくすることができる(図17参照)。なお、図17では、燃料発生装置100のガス流出口18から燃料発生装置100の外部(燃料電池部2のガス流入側)に供給される水素量を実線で示し、各ユニットから排出される水素量を破線で示している。
 また、本実施形態における燃料発生装置100では、吸気バルブ25と排気バルブ7の両方を全閉状態にすることで、メンテナンス時に特定のユニットを停止状態にすることも可能である。尚、吸気バルブ25についても、全開状態と全閉状態の切り替えに限らず、その他の状態との切り替え(例えば、一部開状態)であってもよい。
<その他>
 上述した各実施形態においては、燃料電池部2の電解質膜2Aとして固体酸化物電解質を用いて、発電の際に燃料極2B側で水を発生させるようにする。この構成によれば、燃料発生部材1が設けられた側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009-99491号公報に開示された燃料電池のように、燃料電池部2の電解質膜2Aとして水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に燃料電池部2の酸化剤極である空気極2C側で水が発生されることになるため、この水を燃料発生部材1に伝搬する流路を設ければよい。また、上述した各実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。
 また、上述した各実施形態では、燃料電池部2の燃料ガスを水素にしているが、一酸化炭素や炭化水素など水素以外の還元性ガスを燃料電池部2の燃料ガスとして用いても構わない。
 また、上述した各実施形態では、酸化剤ガスに空気を用いているが、空気以外の酸化剤ガスを用いても構わない。
 また、上述した各実施形態や変形例は矛盾のない限り組み合わせて実施することができる。例えば、或る実施形態の一部分(例えば排気バルブ7の状態)のみを他の実施形態の一部分(例えば排気バルブ7の状態)と置換すること等も可能である。一例として、第5実施形態において、複数のユニットのうち、あるユニットは排気バルブ7を全開状態と全閉状態とに切り替え、他のユニットは第3実施形態のように排気バルブ7を全開状態と一部開状態とに切り替えてもよい。
 また、上述した各実施形態では、排気バルブ7を2つの状態で切り替えたが、3つ以上の状態(例えば、全開状態、一部開状態、全閉状態)で切り替えても構わない。
 また、上述した各実施形態では、収容部4が複数のサブ収容部13を備え、複数のサブ収容部13が並列接続される構成であったが、例えば図18に示すように、収容部4がサブ収容部13を複数備えていない構成であっても構わない。この場合は、排気バルブ7が全閉状態になると、外部(燃料電池部2のガス流出側)からガス流入口17を介して収容部4に供給される酸化性ガスによって、単一のサブ収容部13の平均圧力が上昇し、単一のサブ収容部13内の圧力損失の大きい部分にもガスが行き渡るので、ガス流出口18から外部に供給される水素の総量が多くなる。また、図18では3つの容器を直列接続しているが、収容部4が単一の容器であっても構わない。
 以上説明した燃料発生装置は、酸化性ガスとの酸化反応により還元性ガスである燃料ガスを発生する燃料発生装置であって、前記酸化性ガスが外部から供給されるガス流入口と、前記燃料ガスを外部に供給するガス流出口と、前記酸化性ガスとの酸化反応により前記燃料ガスを発生する燃料発生部材と、前記ガス流入口と前記ガス流出口との間に設けられ前記燃料発生部材を収容する収容部と、前記収容部と前記ガス流出口との間に設けられる排気バルブとを備え、前記排気バルブの開度を、第1の開度と、前記第1の開度より小さい第2の開度とを含めて周期的に変化させることによって、外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなる構成(第1の構成)である。
 また、上記第1の構成の燃料発生装置において、前記収容部が、前記燃料発生部材を収容するサブ収容部を複数備え、複数の前記サブ収容部を並列接続する構成(第2の構成)としてもよい。
 また、上記第1または第2の構成の燃料発生装置において、前記ガス流入口と前記収容部との間に設けられる逆止弁を備える構成(第3の構成)としてもよい。
 また、上記第2の構成の燃料発生装置において、前記収容部が、前記サブ収容部のガス流入側それぞれに逆止弁を備える構成(第4の構成)としてもよい。
 また、上記第1から第4のいずれかの構成の燃料発生装置において、前記排気バルブと前記ガス流出口との間に設けられるガス拡散部を備える構成(第5の構成)としてもよい。
 また、上記第1から第5のいずれかの構成の燃料発生装置において、前記第1の開度が全開状態に相当する開度であり、前記第2の開度が一部開状態に相当する開度である構成(第6の構成)としてもよい。
 また、上記第1から第5のいずれかの構成の燃料発生装置において、前記第1の開度が全開状態に相当する開度であり、前記第2の開度が全閉状態に相当する開度である構成(第7の構成)としてもよい。
 また、上記第1から第7のいずれかの構成の燃料発生装置において、前記ガス流入口と前記収容部との間に設けられる吸気バルブを備え、前記吸気バルブ、前記収容部、及び前記排気バルブによって構成されるユニットを複数備え、複数の前記ユニットを並列接続する構成(第8の構成)としてもよい。
 また、上記第8の構成の燃料発生装置において、前記複数のユニットにおいて、前記排気バルブの開度が第1の開度であるユニットと前記排気バルブの開度が第2の開度であるユニットとが順次切り替わるとともに、前記排気バルブの開度が第1の開度であるユニットの前記吸気バルブが全閉状態となり、前記排気バルブの開度が第2の開度であるユニットの前記吸気バルブが全開状態となる構成(第9の構成)としてもよい。
 また、上記第1から第9のいずれかの構成の燃料発生装置において、前記排気バルブ又は前記吸気バルブの開度を制御する制御部を備える構成(第10の構成)としてもよい。
 また、以上説明した燃料電池システムは、上記第1から第10のいずれかの構成の燃料発生装置と、前記燃料発生装置から供給される燃料ガスに用いて発電を行う燃料電池装置とを備える構成(第11の構成)である。
 また、上記第11の構成の燃料電池システムは、前記燃料電池装置の発電電力を平滑化する平滑部を備える構成(第12の構成)としてもよい。
 以上述べた燃料発生装置によると、外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなる。したがって、前記排気バルブの開度が前記第2の開度であるときは、前記燃料発生部材の構造上圧力損失の大きい部分にまで前記酸化性ガスが行き渡りやすくなる。これにより、燃料発生部材の構造上圧力損失の大きい部分が有効に活用されるので、燃料ガスの発生量が多くなり、水素発生部材の構造上圧力損失の小さい部分が集中して劣化せず、燃料発生装置の耐久性が高くなる。
 また、以上述べた燃料電池システムによると、上述した燃料発生装置を備えているので、燃料発生装置からの燃料ガスの発生量が多くなり燃料電池システムの電池容量が増加する、また、燃料発生装置の耐久性が高くなり燃料電池システムの耐久性も高くなる。
   1 燃料発生部材
   2 燃料電池部
   2A 電解質膜
   2B 燃料極
   2C 空気極
   3 ヒーター
   4 収容部
   5 容器
   6、10、11 配管
   7 排気バルブ
   8 ポンプ
   9 断熱容器
   12 システムコントローラ
   13 サブ収容部
   14 容器本体
   15 蓋体
   16 燃料発生部材ペレット
   17、20 ガス流入口
   18、21 ガス流出口
   19 拡散部
   22 拡大室
   23 平滑部
   24 逆止弁
   25 吸気バルブ
   26 第1ユニット
   27 第2ユニット
   28 第3ユニット

Claims (12)

  1.  酸化性ガスとの酸化反応により還元性ガスである燃料ガスを発生する燃料発生装置であって、
     前記酸化性ガスが外部から供給されるガス流入口と、
     前記燃料ガスを外部に供給するガス流出口と、
     前記酸化性ガスとの酸化反応により前記燃料ガスを発生する燃料発生部材と、
     前記ガス流入口と前記ガス流出口との間に設けられ前記燃料発生部材を収容する収容部と、
     前記収容部と前記ガス流出口との間に設けられる排気バルブとを備え、
     前記排気バルブの開度を、第1の開度と、前記第1の開度より小さい第2の開度とを含めて周期的に変化させることによって、
     外部から前記ガス流入口を介して前記収容部に供給される前記酸化性ガスによる前記収容部の圧力の上昇が、前記排気バルブの開度が前記第2の開度であるときは、前記排気バルブの開度が前記第1の開度であるときに比べて大きくなることを特徴とする燃料発生装置。
  2.  前記収容部が、前記燃料発生部材を収容するサブ収容部を複数備え、複数の前記サブ収容部を並列接続する構成である請求項1に記載の燃料発生装置。
  3.  前記ガス流入口と前記収容部との間に設けられる逆止弁を備える請求項1または請求項2に記載の燃料発生装置。
  4.  前記収容部が、前記サブ収容部のガス流入側それぞれに逆止弁を備える構成である請求項2に記載の燃料発生装置。
  5.  前記排気バルブと前記ガス流出口との間に設けられるガス拡散部を備える請求項1~4のいずれか一項に記載の燃料発生装置。
  6.  前記第1の開度が全開状態に相当する開度であり、前記第2の開度が一部開状態に相当する開度である請求項1~5のいずれか一項に記載の燃料発生装置。
  7.  前記第1の開度が全開状態に相当する開度であり、前記第2の開度が全閉状態に相当する開度である請求項1~5のいずれか一項に記載の燃料発生装置。
  8.  前記ガス流入口と前記収容部との間に設けられる吸気バルブを備え、
     前記吸気バルブ、前記収容部、及び前記排気バルブによって構成されるユニットを複数備え、複数の前記ユニットを並列接続する請求項1~7のいずれか一項に記載の燃料発生装置。
  9.  前記複数のユニットにおいて、前記排気バルブの開度が第1の開度であるユニットと前記排気バルブの開度が第2の開度であるユニットとが順次切り替わるとともに、前記排気バルブの開度が第1の開度であるユニットの前記吸気バルブが全閉状態となり、前記排気バルブの開度が第2の開度であるユニットの前記吸気バルブが全開状態となる請求項8に記載の燃料発生装置。
  10.  前記排気バルブ又は前記吸気バルブの開度を制御する制御部を備える請求項1~9のいずれか一項に記載の燃料発生装置。
  11.  請求項1~10のいずれか一項に記載の燃料発生装置と、
     前記燃料発生装置から供給される燃料ガスに用いて発電を行う燃料電池装置とを備えることを特徴とする燃料電池システム。
  12.  前記燃料電池装置の発電電力を平滑化する平滑部を備える請求項11に記載の燃料電池システム。
PCT/JP2013/077709 2012-12-07 2013-10-11 燃料発生装置及びそれを備えた燃料電池システム WO2014087739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014550980A JPWO2014087739A1 (ja) 2012-12-07 2013-10-11 燃料発生装置及びそれを備えた燃料電池システム
US14/650,349 US20150306561A1 (en) 2012-12-07 2013-10-11 Fuel Generation Device and Fuel Cell System Provided with Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012268743 2012-12-07
JP2012-268743 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014087739A1 true WO2014087739A1 (ja) 2014-06-12

Family

ID=50883167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077709 WO2014087739A1 (ja) 2012-12-07 2013-10-11 燃料発生装置及びそれを備えた燃料電池システム

Country Status (3)

Country Link
US (1) US20150306561A1 (ja)
JP (1) JPWO2014087739A1 (ja)
WO (1) WO2014087739A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026933A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 燃料電池システム及び低温起動装置
JP2007042452A (ja) * 2005-08-03 2007-02-15 Seiko Instruments Inc 燃料電池システム
JP2009093800A (ja) * 2007-10-03 2009-04-30 Toyota Motor Corp 燃料電池システム
JP2009259629A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 燃料電池システム
JP2010277837A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 燃料電池装置
WO2012026219A1 (ja) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843845B2 (ja) * 2000-07-03 2011-12-21 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
US20040156779A1 (en) * 2003-02-11 2004-08-12 Awad Hanna Albert Way to split oxygen and hydrogen of water with zero energy input
US20040221507A1 (en) * 2003-05-07 2004-11-11 Wu Benjamin C. Method and apparatus for providing hydrogen
TWI341618B (en) * 2006-02-21 2011-05-01 Casio Computer Co Ltd Vaporizer and vaporizing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026933A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 燃料電池システム及び低温起動装置
JP2007042452A (ja) * 2005-08-03 2007-02-15 Seiko Instruments Inc 燃料電池システム
JP2009093800A (ja) * 2007-10-03 2009-04-30 Toyota Motor Corp 燃料電池システム
JP2009259629A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 燃料電池システム
JP2010277837A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 燃料電池装置
WO2012026219A1 (ja) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム

Also Published As

Publication number Publication date
JPWO2014087739A1 (ja) 2017-01-05
US20150306561A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP4907861B2 (ja) 燃料電池発電システムとその停止保管方法、停止保管プログラム
WO2014045894A1 (ja) 燃料電池システム
JP5505583B1 (ja) 2次電池型燃料電池システム
JP5516735B2 (ja) 燃料電池
JP2011076816A (ja) 燃料電池システム
WO2006048764A1 (en) Fuel cell system
WO2014087739A1 (ja) 燃料発生装置及びそれを備えた燃料電池システム
JP5772681B2 (ja) 燃料電池システム
JP5896015B2 (ja) 2次電池型燃料電池システム
JP2014216062A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP2009070691A (ja) 燃料電池システムおよび燃料電池の運転方法
JP5679097B1 (ja) 2次電池型燃料電池システム
JP5435178B2 (ja) 2次電池型燃料電池システム
JP2014118336A (ja) 燃料発生装置及びそれを備えた燃料電池システム
WO2014045895A1 (ja) 2次電池型燃料電池システム
JP5673907B1 (ja) 2次電池型燃料電池システム
JP5776842B2 (ja) 2次電池型燃料電池システム
WO2013150946A1 (ja) 燃料電池システム
JP2014207115A (ja) 2次電池型燃料電池システム
JP6655784B2 (ja) 燃料電池システム
JP6084532B2 (ja) 水素製造装置
WO2014188904A1 (ja) 給電システム
KR20080042607A (ko) 연료 전지 시스템 및 그 제어 방법
JP2014110076A (ja) 燃料電池システムへのガス導入方法
JP2014110077A (ja) 燃料電池システムへのガス導入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14650349

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13860950

Country of ref document: EP

Kind code of ref document: A1