WO2013136986A1 - 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム - Google Patents

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム Download PDF

Info

Publication number
WO2013136986A1
WO2013136986A1 PCT/JP2013/055162 JP2013055162W WO2013136986A1 WO 2013136986 A1 WO2013136986 A1 WO 2013136986A1 JP 2013055162 W JP2013055162 W JP 2013055162W WO 2013136986 A1 WO2013136986 A1 WO 2013136986A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
sealing member
substrate
convex
radiographic imaging
Prior art date
Application number
PCT/JP2013/055162
Other languages
English (en)
French (fr)
Inventor
金子 泰久
井上 知己
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013136986A1 publication Critical patent/WO2013136986A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a grid used for radiographic imaging, a method for manufacturing the grid, and a radiographic imaging system using the grid.
  • X-ray When radiation such as X-rays (hereinafter, X-ray is taken as an example) is irradiated on a subject such as a human body, the intensity and phase change due to the interaction with the subject.
  • X-ray imaging apparatuses that are widely used image the transmitted X-ray intensity. For example, since bones and the like have low X-ray transmittance, and tissues such as muscles have high X-ray transmittance, when the distribution of transmitted X-ray intensity is imaged, it is possible to identify tissues having different X-ray transmittances. it can.
  • an X-ray intensity image obtained by imaging the intensity of transmitted X-rays (hereinafter referred to as an X-ray intensity image)
  • a tissue having a high X-ray transmittance is typically black and a tissue having a low X-ray transmittance is white.
  • tissues having different X-ray transmittances can be identified.
  • tissues having similar X-ray transmittances are adjacent to each other, it is not easy to identify them.
  • soft tissues such as cartilage have a high X-ray transmittance
  • tissues and body fluids adjacent to the periphery have a high X-ray transmittance, so that the soft tissue is difficult to be reflected in an X-ray intensity image.
  • lesions also occur in tissues that are difficult to see in an X-ray intensity image, it is desired that these can be identified by X-ray imaging.
  • phase contrast image an X-ray image that can identify a soft tissue having a high X-ray transmittance is obtained by imaging a subject based on a phase change of transmitted X-rays (phase imaging).
  • an X-ray imaging system that performs phase imaging, in order to obtain information on a phase change of transmitted X-rays, at least two grids are arranged between an X-ray source and an X-ray detector to image a subject. . Specifically, the first grid and the second grid are arranged oppositely between the X-ray source and the X-ray detector, and the X-rays emitted from the X-ray source are passed through the first grid, thereby An X-ray image having a self-image of one grid is generated. For example, the Talbot effect is used to generate the X-ray image.
  • X-ray detection is performed on the X-ray image that has passed through the first grid and the second grid while the position of the second grid is gradually changed in the in-plane direction with respect to the X-ray image generated by the first grid.
  • a phase contrast image can be generated based on a plurality of images obtained by photographing.
  • This X-ray image capturing method is called a fringe scanning method.
  • a source grid may be provided between the X-ray source and the first grid to disperse the X-ray focal point and improve the contrast of the X-ray image.
  • an absorption grid that partially absorbs X-rays and a phase grid that partially transmits X-rays with a deviated phase are known.
  • An absorption grid having a high aspect ratio is used as the second grid or the source grid.
  • an absorption grid or a phase grid can be used as the first grid (Japanese Patent Laid-Open No. 2012-035050).
  • the phase-type grid has, for example, a concavo-convex structure on the surface of a silicon substrate or the like, and adjusts the length of the X-rays that pass through the substrate by the concave and convex portions of the concavo-convex structure, so A phase difference of ⁇ or ⁇ / 2 is generated between the X-ray and the X-ray transmitted through the part. Due to this phase difference, the Talbot effect is generated, and X-rays transmitted through the phase grid form a self-image of the phase grid at a predetermined position.
  • Such a phase-type grid in which a concavo-convex structure is formed on the surface of the substrate can use a substrate having a similar concavo-convex structure formed in the process of manufacturing an absorption grid.
  • an absorption grid is manufactured by forming a concavo-convex structure on the surface of a silicon substrate and embedding a metal as an X-ray absorber in the concave portion.
  • a method is disclosed. If a concavo-convex structure is formed on the surface of the silicon substrate by a similar method, a phase-type grid can be obtained.
  • phase type grids of other structures by arranging materials having different refractive indexes of X-rays on the surface of a silicon substrate or the like at a pitch corresponding to the above-described concavo-convex structure, and adjusting the thickness thereof appropriately, Those that generate a phase difference of ⁇ or ⁇ / 2 in X-rays transmitted through these materials are known. For example, in Atsushi Momose et al. Japanease Journal of Applied Physics Vol. 45, No. 6A, 2006, pp.
  • an ultra-thin gold thin film and X-rays that can transmit almost all X-rays used for imaging
  • a phase-type grid is disclosed in which a pattern in which resists are arranged is formed on a silicon substrate, thereby generating a phase difference in X-rays that respectively transmit the gold thin film and the X-ray resist.
  • the concavo-convex structure is exposed to air in the first type phase-type grid in which a concavo-convex structure is formed on the surface of a silicon substrate or the like and a phase difference is generated in X-rays transmitted through the convex and concave portions.
  • a desired phase difference may not be obtained due to deterioration over time.
  • the air to which the concavo-convex structure is exposed contains oxygen and water vapor, and when the silicon substrate is in contact with oxygen or water vapor, an oxide film is formed on the surface.
  • stress may be applied to the convex part due to the formation of the oxide film, and the interval and perpendicularity of the concave-convex structure may change. In such a case, the phase difference generated between the concave part and the convex part is deviated from a predetermined value. End up. Further, if stress is continuously applied to the convex portion due to the formation of the oxide film, the convex portion may be damaged.
  • phase type grid that generates a predetermined phase difference between an X-ray transmitted through the gold thin film and an X-ray transmitted through the resist by forming a pattern in which gold thin films and resists are alternately arranged on the surface of the silicon substrate. Since the gold thin film absorbs X-rays, X-rays that pass through the gold thin film are lost. Although it is desirable for the phase grid to generate only a partial phase difference without losing X-rays, this type of phase-type grid not only generates a predetermined phase difference but also reduces the dose of X-rays. It will be lost.
  • the gold thin film may be formed as thin as possible.
  • the thickness in order to generate a predetermined phase difference in the X-ray transmitted through the gold thin film with respect to the X-ray transmitted through the X-ray resist portion, the thickness must be set to a predetermined thickness determined according to the refractive index of the X-ray. Don't be. For this reason, the thickness of the gold thin film cannot be arbitrarily changed and reduced.
  • An object of the present invention is to provide a grid for radiographic imaging and a method for manufacturing the same, in which X-ray loss is small and deterioration with time is unlikely to occur. Moreover, it aims at providing the radiographic imaging system using this grid for radiographic imaging.
  • the radiation image capturing grid of the present invention includes a substrate and a sealing member.
  • a grid part and a peripheral part are formed on the surface of the substrate.
  • the grid portion generates a predetermined phase difference between the radiation transmitted through the concave portion and the radiation transmitted through the convex portion.
  • the peripheral part is formed in a convex shape around the grid part.
  • the sealing member is in contact with at least the peripheral edge portion to seal the grid portion.
  • the convex part is thinner than the peripheral part, and it is preferable that there is a gap between the convex part and the sealing member.
  • the upper surface of the convex part may be joined to the sealing member.
  • the grid part is preferably sealed in a vacuum by a sealing member.
  • the grid portion may be sealed by filling air or a gas lighter than air with a sealing member.
  • the substrate and the sealing member are preferably joined by anodic bonding.
  • the substrate is preferably a silicon substrate
  • the sealing member is preferably an ion conductive substrate.
  • Both the substrate and the sealing member may be a silicon substrate.
  • the Young's modulus of the sealing member is preferably smaller than the Young's modulus of the substrate.
  • the Young's modulus of the sealing member is preferably larger than the Young's modulus of the substrate.
  • the substrate may be a bonded substrate between a first substrate made of a predetermined material and a second substrate made of the same material as the sealing member, and the grid portion and the peripheral portion may be formed on the first substrate.
  • the method for manufacturing a grid for radiographic imaging of the present invention includes an etching step and a joining step.
  • the etching step the surface of the substrate made of a predetermined material is etched to form a grid portion and a peripheral portion on the substrate surface.
  • the grid portion generates a predetermined phase difference between the radiation transmitted through the concave portion and the radiation transmitted through the convex portion.
  • the peripheral portion is formed in a convex shape around the grid portion.
  • the sealing member is brought into contact with at least the peripheral portion, the substrate and the sealing member are joined, and the grid portion is sealed.
  • the radiographic imaging system of the present invention is a radiographic imaging system that captures radiation emitted from a radiation source via a phase-type radiographic imaging grid and generates a phase contrast image.
  • a radiographic imaging system that captures radiation emitted from a radiation source via a phase-type radiographic imaging grid and generates a phase contrast image.
  • a grid part and a peripheral part are formed on the surface of the substrate.
  • the grid portion generates a predetermined phase difference between the radiation transmitted through the concave portion and the radiation transmitted through the convex portion.
  • the peripheral part is formed in a convex shape around the grid part.
  • the sealing member is in contact with at least the peripheral edge portion to seal the grid portion.
  • the predetermined phase difference is generated by the uneven structure of the substrate, thereby causing almost no X-ray partial loss and generating the predetermined phase difference. Since the concavo-convex structure is sealed, deterioration with time can be suppressed.
  • the X-ray imaging system 10 includes an X-ray source 11, a source grid 12, a first grid 13, a second grid 14, and an X-ray along the Z direction that is an X-ray irradiation direction.
  • An image detector 15 is provided.
  • the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and emits X-rays to the subject H.
  • the source grid 12 and the second grid 14 are absorption grids that partially absorb X-rays, and linear X-ray absorption parts and X-ray transmission parts are alternately arranged.
  • the first grid 13 is a phase type grid that generates a predetermined phase difference (for example, ⁇ or ⁇ / 2) by the uneven structure of the substrate.
  • Each of the grids 12 to 14 is disposed so as to face the X-ray source 11 in the Z direction, and in each case, a grid line is provided along the X direction.
  • the distance between the first grid 13 and the second grid 14 is set to a Talbot distance, for example.
  • the Talbot distance is a distance at which X-rays that have passed through the first grid 13 generate a self-image of the first grid 13 due to the Talbot effect.
  • the X-ray image detector 15 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 14.
  • X-rays radiated from the X-ray source 11 are partially shielded by the X-ray absorption part of the source grid 12, thereby reducing the effective focal size in the Y direction, and arranging many in the Y direction.
  • a line-shaped X-ray is formed.
  • the phase of each line-shaped X-ray changes when passing through the subject H.
  • a fringe image (a self-image of the first grid 13) reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmission optical path length. ) Is formed.
  • the striped image generated by each line-shaped X-ray is projected onto the second grid 14 and overlaps at the position of the second grid 14.
  • the stripe image is intensity-modulated by being partially shielded by the second grid 14.
  • a phase contrast image is generated using a fringe scanning method. That is, the second grid 14 is intermittently moved with respect to the first grid 13, and the X-ray image detector 15 performs imaging by irradiating the subject H with X-rays from the X-ray source 11 while the second grid 14 is stopped. This intermittent movement is performed in the Y direction at a constant scanning pitch obtained by equally dividing the lattice pitch (for example, five divisions).
  • phase differentiation An image is obtained.
  • the phase differential image corresponds to the distribution of the X-ray refraction angle in the subject H.
  • the first grid 13 which is a phase type grid
  • the first grid 13 includes a silicon substrate 41 on which the concavo-convex structure 42 is formed, and a sealing member 43 that seals the upper portion of the concavo-convex structure 42.
  • the concavo-convex structure 42 is formed on one surface of the silicon substrate 41 and has a grid part 42 a that substantially functions as a phase-type grid and a peripheral part 42 b that is a peripheral part of the silicon substrate 41.
  • the grid portion 42a has a structure in which concave portions 46 and convex portions 47 that generate a predetermined phase difference according to the X-ray transmission position are alternately arranged in a direction perpendicular to the X-ray irradiation direction.
  • the concave portion 46 and the convex portion 47 are columnar plate-like structures provided by extending linearly in the X direction, and the inside of the concave portion 46 is vacuum.
  • vacuum means that the pressure is reduced to some extent from atmospheric pressure, and at least the contents of oxygen and water vapor are reduced compared to air.
  • the depth of the concave portion 46 (height of the convex portion 47) is such that a predetermined phase difference is generated between the X-ray 48 transmitted through the concave portion 46 and the X-ray 49 transmitted through the convex portion 47. It is determined according to the refractive index of the silicon substrate 41 and the refractive index of the recess 46 (vacuum). Since the refractive index of the silicon substrate 41 is larger than the refractive index of the vacuum, the phase of the X-ray 49 transmitted through the convex portion 47 is delayed with respect to the X-ray 48 transmitted through the concave portion 46.
  • the width of the concave portions 46 and the convex portions 47 in the X direction and the arrangement pitch of the concave portions 46 and the convex portions 47 are from the X-ray source 11 that arranges the first grid 13. It is determined according to the distance, the arrangement pitch of the X-ray absorption part and the X-ray transmission part of the source grid 11 which is an absorption type grid, and the like.
  • the peripheral edge part 42b is a convex structure provided at the same height as the convex part 47 of the grid part 42a.
  • the peripheral edge portion 42 b is provided at the end portion of the silicon substrate 41 over the entire periphery, and surrounds the outer periphery of the concave portion 46 and the convex portion 47 forming the grid portion 42 a without any gap. For this reason, at least the peripheral edge part 42 b is joined to the sealing member 43, whereby the concavo-convex structure 42 is sealed and shielded from the air outside the first grid 13.
  • the peripheral edge portion 42 b is formed to have a sufficient thickness in the in-plane direction (X direction and Y direction), and is at least thicker than the convex portion 47 in the in-plane direction. This is to prevent the peripheral edge portion 42 b and the convex portion 47 from being damaged by the bonding with the sealing member 43.
  • the peripheral portion 42 b and the convex portion 47 are provided at the same height, so that not only the peripheral portion 42 b but also the upper surface of the convex portion 47 is joined to the sealing member 43. For this reason, each recessed part 46 is each interrupted
  • the silicon substrate 41 is provided with a thickness that does not absorb the X-rays 48 that pass through the convex portions 47 of the concave-convex structure 42. For this reason, the X-ray 49 transmitted through the concave portion 46 and the X-ray 48 transmitted through the convex portion 47 have a phase difference from each other, but the dose is substantially the same.
  • the sealing member 43 is a glass substrate made of, for example, borosilicate glass, and is bonded to the upper surfaces of the peripheral edge part 42 b and the convex part 47. As will be described later, since the sealing member 43 is joined to the upper surface of the peripheral portion 42b and the convex portion 47 in a vacuum, the inside of the concave portion 46 is evacuated, but the sealing member 43 includes the peripheral portion 42b and the convex portion 47. Since the upper surface of the convex portion 47 is firmly bonded to the upper surface of the convex portion 47 by anodic bonding, external air or the like from the bonding interface between the sealing member 43 and the peripheral portion 42 b and the upper surface of the convex portion 47 and the sealing member 43 is recessed 46. It does not flow in.
  • a method for manufacturing the first grid 13 will be described.
  • a resist is applied to a parallel plate-like silicon substrate 41 to form a resist pattern 51 corresponding to the concavo-convex structure 42 (resist pattern forming step).
  • the resist pattern 51 is etched as shown in FIG. 5 to form an uneven structure 42 (etching step).
  • a sealing member 43 is brought into contact with the surface of the silicon substrate 41 on which the concavo-convex structure 42 is formed, and a DC voltage is applied so that the sealing member 43 becomes a cathode while heating.
  • the first grid 13 is completed by anodically bonding the peripheral portion 42b of the concavo-convex structure 42 and the upper surfaces of the convex portions 47 and the sealing member 43 (joining step).
  • the bonding step is performed in a state where the concavo-convex structure 42 and the periphery of the sealing member 43 are evacuated by using a vacuum chamber or the like.
  • anodic bonding is a bonding method in which glass and a conductor (semiconductor or metal) are bonded, and a covalent bond between the glass and the conductor is formed at the bonding interface.
  • the first grid 13 is provided with the concavo-convex structure 42 on the surface of the silicon substrate 41, so that the first grid 13 has a predetermined position between the X-rays transmitted through the concave portions 46 and the X-rays transmitted through the convex portions 47. Create a phase difference.
  • the silicon substrate 41 has an extremely low X-ray absorption capability compared to a metal thin film such as gold, and the absorption of X-rays by the silicon substrate 41 can be almost ignored in taking an X-ray image. For this reason, the first grid 13 can partially cause a predetermined phase difference in the transmitted X-rays according to the positions of the concave portions 46 and the convex portions 47 without partially changing the X-ray dose. .
  • the first grid 13 is sealed from the outside by sealing the upper surface of the concavo-convex structure 42 with a sealing member 43, and the recess 46 is kept in a vacuum. For this reason, the uneven structure 42 of the first grid 13 can suppress deterioration over time due to contact with oxygen, water vapor, or the like contained in the air.
  • the concavo-convex structure 42 of the phase type grid is very fine and has a high aspect ratio, it may be damaged even by blowing a gas to remove a small amount of dust adhering to the surface. For this reason, the normal phase type grid in which the concavo-convex structure 42 is exposed does not damage the concavo-convex structure. Therefore, a special phase type grid is specially used during the incorporation into the X-ray imaging apparatus 10 during or after manufacture of the phase type grid. Since a working device and an extremely clean environment are required, the phase type grid in which the concavo-convex structure 42 is exposed is expensive.
  • the first grid 13 is sealed with the concave-convex structure 42, a certain amount of care is required for handling, but a special environment such as a phase-type grid in which the concave-convex structure 42 is exposed or special No equipment is required. For this reason, the first grid 13 can be manufactured at a lower cost than the phase type grid in which the uneven structure 42 is exposed.
  • the concavo-convex structure 42 is not damaged even if air is blown to remove the dust. The chance of the first grid 13 being damaged after completion is reduced.
  • the first grid 13 is formed in a parallel plate shape and is used in the X-ray imaging system 10 in a parallel plate shape, the X-rays emitted from the X-ray source 11 spread in a cone beam shape. As shown in FIG. 7, it is preferable that the first grid 13 be curved in the X direction according to the cone-beam spread of the X-rays.
  • the convex portion 47 when the first grid 13 is curved, if the upper surface of the convex portion 47 is joined to the sealing member 43, the convex portion 47 may be tilted by the curvature, and the concavo-convex structure 42 may be damaged. is there. Therefore, as in the first grid 50 shown in FIG. 8, a portion corresponding to the concavo-convex structure 42 (particularly the convex portion 47) of the sealing member 43 is formed so that the upper surface of the convex portion 47 is not joined to the sealing member 43. By making it thin, it is preferable to provide a gap between the upper surface of the convex portion 47 and the sealing member 43. Thus, the first grid 13 can be curved without damaging the concavo-convex structure 42.
  • the first grid 50 can be manufactured, for example, as follows.
  • a resist pattern 52 corresponding to the peripheral portion 42b is formed on the surface of the parallel plate-shaped sealing member 43, and the surface of the sealing member 43 is etched as shown in FIG.
  • the groove 53 is formed.
  • Etching for forming the groove 53 can be performed by, for example, wet etching using a solution containing hydrofluoric acid.
  • the resist pattern 52 is removed, and as shown in FIG. 11, the sealing member 43 and the silicon substrate 41 are brought into contact with each other at the peripheral portion 42b so that the groove 53 and the concavo-convex structure 42 face each other, and bonded by anodic bonding.
  • the method for forming the concavo-convex structure 42 on the silicon substrate 41 is the same as described above (see FIGS. 4 and 5).
  • the portion corresponding to the concavo-convex structure 42 of the sealing member 43 is thinned to provide a gap between the upper surface of the sealing member 43 and the convex portion 47.
  • a gap may be provided between the convex portion 47 and the sealing member 43 by leaving the member 43 in a flat plate shape and reducing the thickness of the convex portion 47 with respect to the peripheral edge portion 42b.
  • the first grid 60 can be manufactured as follows, for example.
  • a resist pattern (not shown) corresponding to the peripheral edge portion 42b is formed on the surface of the silicon substrate 41, and the silicon substrate 41 is etched using this as a mask, whereby the concave portions 26 and the convex portions 47 are formed.
  • a groove 54 corresponding to the position of the grid portion 42a is formed. At this time, the groove 54 has a depth corresponding to the distance between the upper surface of the convex portion 47 and the sealing member 43, for example.
  • a resist is applied on the groove 54 to form a resist pattern 56 corresponding to the convex portion 47 and the peripheral portion 42b.
  • a step corresponding to the depth of the groove 54 formed in advance is formed in the resist pattern 56 between the portion corresponding to the convex portion 47 and the portion corresponding to the peripheral portion.
  • the peripheral portion 42b is thicker than the convex portion 47 (the convex portion 47 is thinner than the peripheral portion 42b). 42 is formed.
  • the joining step for joining the sealing member 43 to the silicon substrate 41 is performed in the same manner as in the above-described embodiment.
  • the sealing member 43 is brought into contact with the upper surface of the peripheral edge portion 42b, the upper surface of the convex portion 47 does not come into contact with the sealing member 43. Therefore, the sealing member 43 is connected to the silicon substrate 41 only on the upper surface of the peripheral edge portion 42b. Be joined.
  • a gap may be provided between the convex portion 47 and the sealing member 43 by partially thinning the sealing member 43 and thinning the convex portion 47 with respect to the peripheral edge portion 42b.
  • the first grids 13, 50, and 60 are curved so that the surface with the concavo-convex structure 42 and the sealing member 43 is convex, the silicon substrate 41 and If the magnitude
  • the material of the sealing member 43 within a range where the Young's modulus of the sealing member 43 is smaller than the Young's modulus of the silicon substrate 41.
  • the substrate on which the concavo-convex structure 42 is formed is made of a material other than silicon.
  • the first grid 13 functions.
  • the silicon substrate 41 may be softer than the sealing member 43, contrary to the above. preferable.
  • the material of the sealing member 43 may be selected within a range where the Young's modulus of the sealing member 43 is larger than the Young's modulus of the silicon substrate 41.
  • the surface with the concavo-convex structure 42 and the sealing member 43 is convex.
  • the surface with the concavo-convex structure 42 and the sealing member 43 may be curved so as to be concave. .
  • the uneven structure 42 cannot be sealed by bonding the sealing member 43 and the silicon substrate 41 by strong bonding such as anodic bonding, but at least the recess 46 is required to suppress the deterioration of the uneven structure 42 with time. It is only necessary to be bonded with an adhesive force that can prevent the inflow of air into the tube.
  • the first grid 13 is sealed by bonding a sealing member 43 to a silicon substrate 41 provided with a concavo-convex structure 42 in a vacuum state, but the concavo-convex structure under a nitrogen gas or rare gas atmosphere. 42 may be sealed, and the recess 46 may be filled with nitrogen gas or the like. Deterioration with time due to the exposure of the concavo-convex structure 42 to the air is mainly due to contact with oxygen and water vapor contained in the air. Therefore, as described above, a gas having low reactivity with the silicon substrate 41 is used. Even when the concave portion 46 is filled, deterioration with time can be suppressed as in the case of making a vacuum.
  • the sealing member 43 and the silicon substrate 41 are placed in order to further suppress X-ray absorption. If it is made thin, it may be easily damaged by slight deformation or impact, but if nitrogen gas or the like is sealed so that the internal pressure of the sealed uneven structure 42 is balanced with the atmospheric pressure, the sealing member 43 or silicon Even if the substrate 41 is thinned, the first grid 13 that is not easily damaged can be obtained.
  • the gas filling the recess 46 is preferably a gas lighter than air, such as helium, hydrogen, nitrogen, or a mixed gas thereof.
  • a gas lighter than air such as helium, hydrogen, nitrogen, or a mixed gas thereof.
  • the gas filled in the recess 46 may be air.
  • the uneven structure 42 is deteriorated with time by the amount of oxygen or water vapor contained in the filled air. Since no replacement occurs, the deterioration with time does not progress further after the concavo-convex structure 42 deteriorates due to oxygen or water vapor contained in the air sealed in the recess 46. Therefore, even when the recess 46 is filled with air, deterioration with time can be suppressed.
  • the sealing member 43 can be joined to the uneven structure 42, and any material can be used as long as the uneven structure 42 can be sealed.
  • a silicon substrate may be used for the sealing member 43.
  • the silicon substrate 41 on which the concavo-convex structure 42 is formed and the sealing member may be bonded by so-called silicon bonding or room temperature bonding instead of anodic bonding in the bonding process. it can.
  • the sealing member 43 may be made of soda glass, potassium soda lead glass, aluminosilicate, beta alumina, zirconia, or the like in addition to the above-described borosilicate glass (Pyrex (registered trademark) or Tempax (registered trademark)). it can.
  • the organic material that can be used as the sealing member 43 is preferably a material that can maintain a relatively high rigidity.
  • polyimide, PEEK, PET, PEN, acrylic, or the like can be used.
  • an organic material is used for the sealing member 43, air may flow into the recess 46 due to poor adhesion with the silicon substrate 41, and the effect of suppressing deterioration with time may not be obtained. It is more preferable to use an inorganic material such as a glass substrate or a silicon substrate that can be firmly bonded to the sealing member 43.
  • the silicon substrate 41 on which the concavo-convex structure 42 is formed and the sealing member 43 which is a glass substrate are joined by anodic bonding, or when a silicon substrate is used for the sealing member 43, the silicon substrate on which the sealing member and the concavo-convex structure 42 are formed. 41 is bonded by silicon bonding, but the sealing member 43 and the silicon substrate 41 may be bonded by diffusion bonding. Specifically, if a metal thin film is formed on the upper surface of the peripheral portion 42b and a corresponding portion of the sealing member 43, the metal thin films are brought into contact with each other, and heated and pressed, diffusion bonding between the metal thin films is performed. Thus, the sealing member 43 and the silicon substrate 41 can be joined. However, even if the metal thin film is provided very thinly, X-ray absorption is higher than that of the silicon substrate or the glass substrate. Therefore, it should be avoided to provide the metal thin film on the upper surface of the convex portion 47.
  • the substrate on which the uneven structure 42 is provided may not be the uniform silicon substrate 41.
  • the first grid 70 may be formed using a bonded substrate 64 of a silicon substrate 62 and a glass substrate 63 instead of the silicon substrate 41.
  • the recess 46 is formed so that the glass substrate 63 is exposed through the silicon substrate 62 using, for example, the glass substrate 63 as an etch stopper.
  • the material when materials having a large difference in thermal expansion coefficient are bonded, the material may be damaged due to stress generated when thermal expansion occurs.
  • the sealing member 43 and the glass substrate 63 are made of the same material, the thermal expansion coefficient is obtained. Since the difference is relaxed, damage due to thermal expansion can be prevented. Since the thermal expansion coefficient of silicon is 3.0 ⁇ 10 ⁇ 6 / ° C. and the thermal expansion coefficient of borosilicate glass is 3.2 ⁇ 10 ⁇ 6 / ° C., the thermal expansion coefficients of the silicon substrate 41 and the sealing member 43 are almost equal. However, if the bonded substrate of the silicon substrate 62 and the glass substrate 63 is used as described above, damage due to thermal expansion can be prevented more reliably.
  • the upper surface of the convex portion 47 is joined to the sealing member 43.
  • the sealing member 43 may be partially thinned to provide a gap between the convex portion 47 and the sealing member 43.
  • the convex portion 47 may be thinner than the peripheral edge portion 42 b and a gap may be provided between the convex portion 47 and the sealing member 43.
  • the silicon substrate 62 and the glass substrate 63 can be bonded by anodic bonding, and when the bonding substrate 64 is used, the subsequent manufacturing method of the first grid 70 is the same as the above-described manufacturing method.
  • etching process for forming the concavo-convex structure 42 on the surface of the silicon substrate 41 deep etching is suitable.
  • dry etching called a Bosch process is suitable.
  • the Bosch process is an etching method using, for example, SF 6 gas for etching silicon (silicon substrate 41) and C 4 F 8 gas for forming a protective film.
  • the recess 46 may be formed by anisotropic wet etching with an etching rate different depending on the plane orientation of the silicon single crystal.
  • the subject H is arranged between the X-ray source and the first grid, the subject H may be arranged between the first grid and the second grid. In this case as well, a phase contrast image is similarly generated.
  • the radiation source grid is provided, but the radiation source grid may be omitted.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線の部分的な損失をほぼ発生させず、かつ、経時劣化を抑えた位相型の放射線画像撮影用グリッドを提供する。 位相型グリッド(13)は、シリコン基板(41)と封止部材(43)とを備える。シリコン基板(41)は、凹部(46)を透過するX線と凸部(47)を透過するX線との間に所定位相差を発生させるグリッド部(42a)と、グリッド部(42a)の周囲に凸状の周縁部(42b)が表面に形成されている。封止部材(43)は、グリッド部(42a)及び周縁部(42b)が形成されたシリコン基板(41)の表面に設けられ、少なくとも周縁部(42b)と当接してグリッド部(42a)を封止する。

Description

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
 本発明は、放射線画像の撮影に用いられるグリッド及びその製造方法と、このグリッドを用いた放射線画像撮影システムとに関する。
 X線等の放射線(以下、X線を例にする)は、人体等の被検体に照射されると、被検体との相互作用により、強度と位相が変化する。従来普及しているX線撮影装置は、透過X線強度を画像化する。例えば、骨等はX線透過率が低く、筋肉等の組織はX線透過率が高いので、透過X線強度の分布を画像化すると、これらのX線透過率が異なる組織を識別することができる。このように、透過X線の強度を画像化したX線画像(以下、X線強度画像という)では、典型的にはX線透過率が高い組織は黒く、X線透過率が低い組織は白くなる。
 X線強度画像によれば、X線透過率が異なる組織を識別することができるが、X線透過率が近い組織が隣接している場合には、これらの識別は容易ではない。例えば、軟骨等の軟部組織はX線透過率が高く、多くの場合、その周囲に隣接する組織や体液等もX線透過率が高いので、軟部組織はX線強度画像には写り難い。しかしながら、X線強度画像には写り難い組織にも病変は発生するので、これらもX線撮影により識別可能にすることが望まれている。
 X線透過率が高くX線強度画像には写り難い組織も、透過X線に位相変化を与えていることが知られている。近年、透過X線の位相変化に基づいて被検体を画像化すること(位相イメージング)により、X線透過率が高い軟部組織等を識別可能なX線画像(以下、位相コントラスト画像という)を得るX線撮影システムが提案されている。
 位相イメージングを行うX線撮影システムでは、透過X線の位相変化の情報を得るために、X線源とX線検出器との間に、少なくとも2つのグリッドを配置して被検体の撮影を行う。具体的には、X線源とX線検出器との間に第1グリッド及び第2グリッドを対向配置し、X線源から射出されたX線を、第1グリッドを通過させることにより、第1グリッドの自己像を有するX線像を生成する。X線像の生成には、例えばタルボ効果が用いられる。そして、第1グリッドにより生成されたX線像に対して、第2グリッドの位置を面内方向に段階的に変化させながら、第1グリッドと第2グリッドを通過したX線像をX線検出器により撮影する。撮影により得られる複数の画像に基づいて位相コントラスト画像を生成することができる。このX線画像撮影方法は、縞走査法と呼ばれている。なお、X線源と第1グリッドとの間に、X線焦点を分散化し、X線像のコントラストを向上させるための線源グリッドが設けられることもある。
 グリッドには、X線を部分的に吸収する吸収型グリッドと、部分的にX線の位相を偏重して透過する位相型グリッドが知られている。第2グリッドや線源グリッドにはアスペクト比が高い吸収型グリッドが用いられる。一方、第1グリッドには吸収型グリッドも位相型グリッドも用いることができる(特開2012-035050号公報)。
 位相型グリッドは、例えば、シリコン基板等の表面に凹凸構造を設け、この凹凸構造の凹部と凸部でX線が基板を透過する長さを調節することにより、凹部を透過するX線と凸部を透過するX線との間にπまたはπ/2の位相差を発生させる。この位相差により、タルボ効果が生じ、位相型グリッドを透過したX線は、所定の位置で該位相型グリッドの自己像を形成する。
 このような基板表面に凹凸構造を形成するタイプの位相型グリッドは、吸収型グリッドを製造する工程で形成される同様の凹凸構造の基板を利用することができる。例えば、C.David et al. Microelectromic Engineering 84(2007)1172-1177には、シリコン基板の表面に凹凸構造を形成し、その凹部にX線吸収材である金属を埋め込むことにより吸収型グリッドを製造する方法が開示されている。同様の方法でシリコン基板の表面に凹凸構造を形成すれば位相型グリッドが得られる。
 また、他の構造の位相型グリッドとしては、シリコン基板等の表面に上述の凹凸構造に対応するピッチでX線の屈折率が異なる材料を配列し、その厚さを適宜調節することにより、これらの各材料を透過したX線にπやπ/2の位相差を発生させるものが知られている。例えば、Atsushi Momose et al. Japanease Journal of Applied Physics Vol. 45, No. 6A, 2006, pp. 5254-5262では、撮影に使用するX線をほぼ透過可能な程度に極薄の金薄膜とX線レジストとを配列したパターンをシリコン基板上に形成することにより、金薄膜とX線レジストをそれぞれ透過するX線に位相差を発生させる位相型グリッドが開示されている。
 位相型グリッドには、上述のように、2タイプの構造が知られているが、それぞれ下記のような問題点がある。
 まず、シリコン基板等の表面に凹凸構造を形成し、凸部と凹部とを透過するX線に位相差を生じさせる第1のタイプの位相型グリッドは、凹凸構造が空気にさらされているために、経時劣化によって所望の位相差が得られなくなってしまうことがある。具体的には、凹凸構造がさらされる空気には酸素や水蒸気が含まれており、シリコン基板は酸素や水蒸気に接すると表面に酸化膜が形成される。このため、当初、凹凸構造の凸部と凹部で所定位相差が発生するように位相型グリッドを製造しておいたとしても、表面に酸化膜が形成されると、もとのシリコン基板に対して透過率や屈折率等の物性が変化し、凹部と凸部で発生する位相差が所定値からずれてしまう。これは予め凹凸構造の表面に酸化膜を形成した場合でも同様である。すなわち、酸素や水蒸気に露呈されていることにより経時的に酸化膜の厚さが変化すると、凹部及び凸部で生じる位相差が所定値からからずれてしまうことがある。
 また、酸化膜の形成によって凸部に応力が加わり、凹凸構造の間隔や垂直度が変化してしまうことがあるが、このような場合にも凹部と凸部で生じる位相差が所定値からずれてしまう。さらに、酸化膜が形成されたことによって凸部に応力が加わり続けると、凸部が破損してしまうこともある。
 シリコン基板の表面に金薄膜とレジストを交互に配列したパターンを形成することによって、金薄膜を透過したX線とレジストを透過したX線に所定位相差を発生させるタイプの位相型グリッドの場合、金薄膜がX線を吸収するので、金薄膜を透過するX線が少なからず損失してしまう。位相グリッドは、X線を損失せずに部分的に位相差のみを発生させることが望ましいが、このタイプの位相型グリッドでは、所定位相差を発生させるだけでなく、X線の線量までもが損失してしまう。
 また、X線の吸収を十分に抑えるためには、金薄膜をできる限り薄く形成すればよい。しかし、X線レジストの部分を透過するX線に対して、金薄膜を透過するX線に所定位相差を発生させるためには、X線の屈折率に応じて定まる所定の厚さにしなければならない。このため、金薄膜の厚さを任意に変更し、薄くすることはできない。
 本発明は、X線の損失が少なく、かつ、経時劣化も発生し難い放射線画像撮影用グリッド及びその製造方法を提供することを目的とする。また、この放射線画像撮影用グリッドを用いた放射線画像撮影システムを提供することを目的とする。
 本発明の放射線画像撮影用グリッドは、基板と封止部材を備える。基板の表面には、グリッド部と周縁部が形成される。グリッド部は、凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させる。周辺部は、グリッド部の周囲に凸状に形成される。封止部材は、少なくとも周縁部と当接してグリッド部を封止する。
 凸部は周縁部よりも薄く、凸部と封止部材の間に隙間があることが好ましい。
 凸部の上面が封止部材と接合されていても良い。
 グリッド部は封止部材によって真空に封止されていることが好ましい。
 グリッド部は封止部材によって空気または空気よりも軽い気体を充填して封止されていても良い。
 基板と封止部材は陽極接合により接合されていることが好ましい。
 陽極接合をする場合、基板はシリコン基板であり、封止部材はイオン導電性基板であることが好ましい。
 基板と封止部材はともにシリコン基板でも良い。
 封止部材がある側の面が凸になるように湾曲される場合、封止部材のヤング率が基板のヤング率よりも小さいことが好ましい。
 封止部材がある側の面が凹になるように湾曲される場合、封止部材のヤング率が基板のヤング率よりも大きいことが好ましい。
 基板を所定材料からなる第1基板と封止部材と同じ材料からなる第2基板との接合基板にし、グリッド部及び周縁部を第1基板に形成しても良い。
 本発明の放射線画像撮影用グリッドの製造方法は、エッチング工程と接合工程を備える。エッチング工程は、所定材料からなる基板の表面をエッチングして、基板表面にグリッド部と周縁部を形成する。グリッド部は、凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させる。周縁部は、グリッド部の周囲に凸状に形成される。接合工程は、封止部材を少なくとも周縁部に当接させ、基板と封止部材を接合し、グリッド部を封止する。
 本発明の放射線画像撮影システムは、放射線源から照射される放射線を、位相型の放射線画像撮影用グリッドを介して撮影し、位相コントラスト画像を生成する放射線画像撮影システムであり、放射線画像撮影用グリッドが、基板と封止部材を備える。基板の表面には、グリッド部と周縁部が形成される。グリッド部は、凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させる。周辺部は、グリッド部の周囲に凸状に形成される。封止部材は、少なくとも周縁部と当接してグリッド部を封止する。
 本発明の放射線画像撮影用グリッド及びその製造方法によれば、基板の凹凸構造により所定位相差を発生させることによりX線の部分的な損失をほぼ発生させず、かつ、所定位相差を発生させる凹凸構造を封止するので経時劣化を抑えることができる。
X線画像撮影システムの構成を示す説明図である。 第1グリッドの構成を模式的に示す断面図(図3におけるII-II断面)である。 凹凸構造の構成を模式的に示すZ方向から見た平面図である。 レジストパターン形成工程を示す説明図である。 エッチング工程を示す説明図である。 接合工程を示す説明図である。 第1グリッドを湾曲させて用いる態様を示す断面図である。 封止部材を一部薄くして凸部との間に隙間を設けた変形例を示す断面図である。 封止部材の表面にレジストパターンを形成する工程を示す説明図である。 封止部材の表面に溝を形成する工程を示す説明図である。 封止部材を接合する工程を示す説明図である。 凸部を薄くして封止部材との間に隙間を設けた変形例を示す断面図である。 シリコン基板の表面にグリッド部の位置に対応した溝を形成する工程を示す説明図である。 レジストパターンを形成する工程を示す説明図である。 レジストパターンをマスクとして溝をエッチングする工程を示す説明図である。 封止部材を接合する接合工程を示す説明図である。 シリコン基板の代わりにシリコンとガラスの接合基板を用いた変形例を示す断面図である。
 図1に示すように、X線画像撮影システム10は、X線照射方向であるZ方向に沿って、X線源11、線源グリッド12、第1グリッド13、第2グリッド14、及びX線画像検出器15を備える。
 X線源11は、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体HにX線を放射する。
 線源グリッド12及び第2グリッド14は、X線を部分的に吸収する吸収型グリッドであり、直線状のX線吸収部とX線透過部が交互に配列されている。第1グリッド13は基板の凹凸構造により所定位相差(例えばπまたはπ/2)を発生させる位相型グリッドである。各グリッド12~14は、Z方向においてX線源11に対向配置されており、いずれも格子線がX方向に沿って設けられている。
 線源グリッド12と第1グリッド13との間には、被検体Hが配置可能な間隔が設けられている。第1グリッド13と第2グリッド14との距離は、例えばタルボ距離に設定する。タルボ距離とは、第1グリッド13を通過したX線が、タルボ効果により第1グリッド13の自己像を生成する距離である。
 X線画像検出器15は、半導体回路を用いたフラットパネル検出器であり、第2グリッド14の背後に配置されている。
 X線源11から放射されたX線は、線源グリッド12のX線吸収部によって部分的に遮蔽されることにより、Y方向に関する実効的な焦点サイズが縮小され、Y方向に配列された多数のライン状のX線が形成される。各ライン状のX線は、被検体Hを通過する際に位相が変化する。この各X線が第1グリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した縞画像(第1グリッド13の自己像)が形成される。各ライン状のX線により生成された縞画像は、第2グリッド14に投影され、第2グリッド14の位置で重なり合う。
 縞画像は、第2グリッド14により部分的に遮蔽されることにより強度変調される。本実施形態では、縞走査法を用いて位相コントラスト画像を生成する。すなわち、第1グリッド13に対して第2グリッド14を間欠移動させるとともに、その停止中に、X線源11から被検体HにX線を照射してX線画像検出器15により撮影を行う。この間欠移動は、格子ピッチを等分割(例えば、5分割)した一定の走査ピッチでY方向に行う。
 X線画像検出器15の各画素の画素データの強度変化を表す強度変調信号の位相ズレ量(被検体Hがある場合とない場合とでの位相のズレ量)を算出することにより、位相微分画像が得られる。位相微分画像は、被検体HでのX線の屈折角度の分布に対応する。この位相微分画像をX方向に沿って積分することにより、位相コントラスト画像が得られる。
 以下、位相型グリッドである第1グリッド13の構造を説明する。図2に示すように、第1グリッド13は、凹凸構造42が形成されたシリコン基板41と、凹凸構造42の上部を封止する封止部材43を備える。また、凹凸構造42は、シリコン基板41の一方の表面に形成され、実質的に位相型グリッドとして機能するグリッド部42aと、シリコン基板41の周縁部分である周縁部42bとを有する。
 グリッド部42aは、X線の透過位置に応じて所定位相差を発生させる凹部46と凸部47がX線の照射方向に対して垂直な方向に交互に配列された構造を有する。凹部46及び凸部47は、X方向に直線状に延伸して設けられた柱板状構造であり、凹部46内は真空である。本明細書で真空とは、大気圧よりもある程度減圧され、少なくとも空気に比べて酸素及び水蒸気の含有量が低減されていることを言う。凹部46の深さ(凸部47の高さ)は、凹部46を透過するX線48と凸部47を透過するX線49の間に所定位相差が発生するように、凸部46を形成するシリコン基板41の屈折率と凹部46(真空)の屈折率に応じて定められている。シリコン基板41の屈折率は、真空の屈折率よりも大きいので、凸部47を透過するX線49は、凹部46を透過するX線48に対して位相が遅れる。
 凹部46や凸部47のX方向の幅、凹部46と凸部47の配列ピッチ(凹部46と凸部47のX方向の合計幅)は、第1グリッド13を配置するX線源11からの距離や、吸収型グリッドである線源グリッド11のX線吸収部とX線透過部の配列ピッチ等に応じて定められる。
 周縁部42bは、図2に示すように、グリッド部42aの凸部47と同じ高さに設けられた凸状構造である。但し、図3に示すように、周縁部42bは、シリコン基板41の端部に、全周にわたって設けられ、グリッド部42aを形成する凹部46及び凸部47の外周を隙間なく囲む。このため、少なくとも周縁部42bが封止部材43と接合されることにより、凹凸構造42は封止され、第1グリッド13の外部にある空気から遮断される。また、図2及び図3から分かるように、周縁部42bは、面内方向(X方向及びY方向)に十分な厚さに形成されており、面内方向において少なくとも凸部47よりも厚い。これは、封止部材43との接合によって、周縁部42bや凸部47が破損しないようにするためである。なお、第1グリッド13では、周縁部42bと凸部47が同じ高さに設けられているので、周縁部42bだけでなく、凸部47の上面が封止部材43に接合される。このため、各凹部46はそれぞれ独立して外部にある空気から遮断されている。
 なお、シリコン基板41は、凹凸構造42の凸部47を透過するX線48を吸収しない程度の厚さに設けられている。このため、凹部46を透過するX線49と凸部47を透過するX線48とは、互いに位相差を有するが、線量はほぼ同じである。
 封止部材43は、例えばホウケイ酸ガラスからなるガラス基板であり、周縁部42bと凸部47の上面に接合される。後述するように封止部材43と、周縁部42b及び凸部47の上面との接合は、真空中で行われるので、凹部46内は真空になるが、封止部材43は、周縁部42b及び凸部47の上面と陽極接合により隙間なく強固に接合されているので、封止部材43と周縁部42b及び凸部47の上面と封止部材43との接合界面から外部の空気等が凹部46内に流入することはない。
 以下、第1グリッド13の製造方法を説明する。第1グリッド13を製造するときには、まず、図4に示すように、平行平板状のシリコン基板41にレジストを塗布し、凹凸構造42に対応するレジストパターン51を形成する(レジストパターン形成工程)。次いで、レジストパターン51をマスクにして、図5に示すようにシリコン基板41の表面をエッチングし、凹凸構造42を形成する(エッチング工程)。
 そして、図6に示すように、凹凸構造42が形成されたシリコン基板41の表面に封止部材43を当接させ、加熱しつつ、封止部材43が陰極になるように直流電圧を印加することにより、凹凸構造42の周縁部42b及び凸部47の上面と封止部材43を陽極接合することにより(接合工程)、第1グリッド13が完成する。接合工程は、真空チャンバ等を用いることにより、凹凸構造42や封止部材43の周囲を真空にした状態で行う。なお、陽極接合は、ガラスと導体(半導体あるいは金属)を接合する接合方法であり、接合界面にではガラスと導体の共有結合が形成される。
 上述のように、第1グリッド13は、シリコン基板41の表面に凹凸構造42が設けられていることにより、凹部46を透過するX線と凸部47を透過するX線との間に所定位相差を生じさせる。シリコン基板41は、金等の金属薄膜と比較すればX線の吸収能は極めて低く、X線画像の撮影においてシリコン基板41によるX線の吸収はほぼ無視することができる。このため、第1グリッド13は、X線の線量を部分的に変化させずに、凹部46及び凸部47の位置に応じて透過するX線に部分的に所定位相差を生じさせることができる。
 さらに、第1グリッド13は、凹凸構造42の上面を封止部材43で封止し、外部から隔絶されており、また、凹部46は真空に保たれている。このため、第1グリッド13の凹凸構造42は、空気中に含まれる酸素や水蒸気等に接することによる経時劣化を抑えることができる。
 また、位相型グリッドの凹凸構造42は非常に微細であり、アスペクト比も高いので、表面に付着した僅かなゴミを取り除くために気体を吹き付けるだけでも破損してしまうことすらある。このため、凹凸構造42が露呈されている通常の位相型グリッドは、凹凸構造を破損させないために、位相型グリッドの製造中あるいは製造後にX線画像撮影装置10に組み込む作業時等において、特別な作業装置や極めてクリーンな環境を必要とするので、凹凸構造42が露呈された位相型グリッドは高コストである。
 一方、上述の第1グリッド13は、凹凸構造42が封止されているので、取り扱いに一定の注意は必要ではあるが、凹凸構造42が露呈されている位相型グリッドのような特殊環境や特殊装置は不要である。このため、第1グリッド13は、凹凸構造42が露呈された位相型グリッドよりも、低コストに製造可能である。また、封止部材43上にゴミ等が付着した場合に、これを除くためにエアを吹き付けるなどしても凹凸構造42は破損しないので、封止部材43があることにより、第1グリッド13の完成後に第1グリッド13が破損する機会は低減される。
 なお、第1グリッド13を平行平板状に形成し、平行平板状のままX線画像撮影システム10に用いているが、X線源11から照射されるX線はコーンビーム状に広がるので、図7に示すように、X線のコーンビーム状の広がりに応じて第1グリッド13をX方向に湾曲させて用いることが好ましい。
 このように、第1グリッド13を湾曲させる場合、凸部47の上面が封止部材43と接合されていると、湾曲により凸部47が傾倒する等して、凹凸構造42が破損することがある。このため、図8に示す第1グリッド50のように、凸部47の上面が封止部材43と接合しないように、封止部材43の凹凸構造42(特に凸部47)に対応する部分を薄くしておくことにより、凸部47の上面と封止部材43の間に隙間を設けることが好ましい。こうすると、凹凸構造42の破損せずに第1グリッド13を湾曲させることができる。
 第1グリッド50は、例えば次のように製造することができる。
 まず、図9に示すように、平行平板状の封止部材43の表面に、周縁部42bに対応するレジストパターン52を形成し、図10に示すように、封止部材43の表面をエッチングして溝53を形成する。溝53を形成するエッチングは、例えば、フッ酸を含む溶液によるウェットエッチングで行うことができる。その後、レジストパターン52を除去し、図11に示すように、溝53と凹凸構造42が向き合うように封止部材43とシリコン基板41を周縁部42bで当接させ、陽極接合により接合する。なお、シリコン基板41への凹凸構造42の形成方法は、前述と同様である(図4,図5参照)。
 封止部材43の凹凸構造42に対応する箇所を薄くして封止部材43と凸部47の上面の間に隙間を設けているが、図12に示す第1グリッド60のように、封止部材43を平板状のままにし、周縁部42bに対して、凸部47の厚さを薄くすることにより、凸部47と封止部材43の間に隙間を設けても良い。
 第1グリッド60は、例えば次のように製造することができる。
 図13に示すように、まず、シリコン基板41の表面に周縁部42bに対応するレジストパターン(図示しない)を形成し、これをマスクとしてシリコン基板41をエッチングすることにより、凹部26及び凸部47からなるグリッド部42aの位置に対応した溝54を形成する。このとき、溝54は例えば、凸部47の上面と封止部材43との間隔に応じた深さにしておく。
 次いで、図14に示すように、溝54の上に、レジストを塗布し、凸部47及び周縁部42bに対応するレジストパターン56を形成する。こうすると、レジストパターン56には、凸部47に対応する部分と周縁部に対応する部分とで、予め形成した溝54の深さに対応する段差が形成される。このため、図15に示すように、レジストパターン56をマスクとしてシリコン基板41の表面をさらにエッチングすると、凸部47よりも周縁部42bが厚い(周縁部42bよりも凸部47が薄い)凹凸構造42を形成される。
 その後、図16に示すように、封止部材43をシリコン基板41に接合する接合工程は前述の実施形態と同様にして行う。これにより、封止部材43は周縁部42bの上面と当接させると、凸部47の上面は封止部材43と接触しないので、封止部材43は周縁部42bの上面でだけシリコン基板41と接合される。
 なお、凸部47と封止部材43の間に隙間を設ける場合に、封止部材43を一部薄くし、あるいは周縁部42bに対して凸部47を薄くしているが、これらを組み合わせて、封止部材43を一部薄くし、かつ、周縁部42bに対して凸部47を薄くすることによって、凸部47と封止部材43の間に隙間を設けても良い。
 なお、図7,図8,図12で示したように、凹凸構造42及び封止部材43がある面が凸になるように第1グリッド13,50,60を湾曲させる場合、シリコン基板41と封止部材43の歪の大きさを比較すれば、封止部材43の歪みが大きい。このため、封止部材43がシリコン基板41よりも硬いと、封止部材43が破損することがあるので、凹凸構造42及び封止部材43がある面が凸になるように第1グリッド13を湾曲させる場合には封止部材43がシリコン基板41よりも柔らかいことが好ましい。より具体的には、封止部材43のヤング率がシリコン基板41のヤング率よりも小さい範囲内で封止部材43の材料を選定することが好ましい。凹凸構造42を形成する基板をシリコン以外の材料からなる基板にする場合にも同様である。
 さらに、図7,図8,図12で示したのとは逆に、凹凸構造42及び封止部材43がある面が凹になるように第1グリッド13,50,60を湾曲させても、第1グリッド13は機能する。このため、凹凸構造42及び封止部材43がある面が凹になるように第1グリッド13を湾曲させる場合には、上述とは逆に、シリコン基板41が封止部材43よりも柔らかいことが好ましい。この場合、封止部材43のヤング率がシリコン基板41のヤング率よりも大きい範囲内で封止部材43の材料を選定すれば良い。当然ながら、封止部材43の材料等を任意に決定し、封止部材43のヤング率がシリコン基板41のヤング率よりも小さい場合には、凹凸構造42及び封止部材43がある面を凸になるように湾曲させ、封止部材43のヤング率がシリコン基板41のヤング率よりも大きい場合には、凹凸構造42及び封止部材43がある面が凹になるように湾曲させれば良い。
 なお、第1グリッド13を湾曲させるときに、凸部47と封止部材43の間に隙間を設けているが、周縁部42b及び凸部47の上面と封止部材43との間にレジスト等を介入させることによって第1グリッド13を湾曲させた時に発生する応力を緩和させても良い。この場合、封止部材43とシリコン基板41を陽極接合のような強固な接合により接合して凹凸構造42を密閉することができないが、凹凸構造42の経時劣化を抑制するために少なくとも少なくとも凹部46への空気の流入を防ぐ事ができる程度の接着力で接着されていれば良い。
 なお、第1グリッド13は、真空状態で凹凸構造42を設けたシリコン基板41に封止部材43を接合して凹凸構造42を封止されているが、窒素ガスや希ガス雰囲気下で凹凸構造42を封止し、凹部46に窒素ガス等を封入しても良い。凹凸構造42が空気中にさらされていることによる経時劣化は、主に空気中に含まれる酸素や水蒸気との接触によるものであるから、上述のようにシリコン基板41と反応性の低い気体を凹部46に充填しておく場合にも、真空にする場合と同様に経時劣化を抑えることができる。
 封止された凹凸構造42の内部(凹部46)を真空にしておく場合、凹凸構造42の内外の圧力差があるので、X線の吸収をより抑えるために封止部材43やシリコン基板41を薄くすると、僅かな変形や衝撃等により破損しやすいことがあるが、封止された凹凸構造42の内圧が大気圧と釣り合うように窒素ガス等を封入しておけば、封止部材43やシリコン基板41を薄くしても破損し難い第1グリッド13を得ることができる。
 また、凹部46に充填するガスは、ヘリウムや水素、窒素、あるいはこれらの混合気体等、空気よりも軽い気体であることが好ましい。このように、空気よりも軽い気体を凹部46に充填しておくと、所定深さ(厚さ)の凹部46及び凸部47について空気が充填されている場合と比較すると、より位相差を大きくすることが可能である。このため、凹部46を浅く、凸部47を薄くすることができるので、第1グリッド13の製造が容易になる。また、第1グリッド13が薄くなれば、第1グリッド13によるX線の吸収や散乱を低減される。
 なお、凹部46に充填するガスは、空気でもよい。凹部46に充填するガスが空気の場合は、充填した空気に含まれる酸素や水蒸気の分、凹凸構造42が経時劣化するが、封止部材43で封止されていることにより外部の空気との入れ替えが起きないので、凹部46に封入された空気に含まれる酸素や水蒸気によって凹凸構造42が劣化した後に、さらに経時劣化が進むことがない。このため、凹部46に空気を充填する場合も、経時劣化を抑えることができる。
 なお、封止部材43にホウケイ酸ガラスからなるガラス基板を用いるが、封止部材43は凹凸構造42と接合可能であり、凹凸構造42を封止することができれば任意の材料を用いることができる。例えば、封止部材43にシリコン基板を用いても良い。封止部材43にシリコン基板を用いる場合には、接合工程において、陽極接合の代わりに、いわゆるシリコン接合や常温接合により、凹凸構造42を形成したシリコン基板41と封止部材とを接合することができる。
 また、陽極接合によりシリコン基板41と封止部材43を接合する場合には、封止部材43がイオン導電性基板であることが必要である。封止部材43には、上述のホウケイ酸ガラス(パイレックス(登録商標)やテンパックス(登録商標))の他に、ソーダガラス、カリウムソーダ鉛ガラス、アルミノシリケート、ベータアルミナ、ジルコニア等を用いることができる。
 また、封止部材43として有機フィルムや有機基板を、凹凸構造42を形成したシリコン基板41に貼り付けることも可能である。この場合、貼付け時の熱や有機フィルム及び有機基板の伸縮性による応力によって凹凸構造42が破損してしまうことがある。このため、封止部材43として有機フィルムや有機基板を用いる場合には、第1グリッドを湾曲させない場合であっても、図8や図12の第1グリッド50,60のように、凸部47が封止部材43と接触しないようにすることが好ましい。封止部材43として利用可能な有機材料は、比較的剛性が保てる材料であることが好ましく、例えばポリイミド、PEEK、PET、PEN、アクリル等を使用することができる。
 なお、封止部材43に有機材料を用いると、シリコン基板41との密着不良によって凹部46に空気が流入して経時劣化の抑止効果が得られないことがあるので、陽極接合等によってシリコン基板41と強固に接合可能なガラス基板やシリコン基板等の無機材料を封止部材43として用いることがより好ましい。
 さらに、凹凸構造42を形成したシリコン基板41とガラス基板である封止部材43を陽極接合によって接合し、あるいは封止部材43にシリコン基板を用いるときには封止部材と凹凸構造42を形成したシリコン基板41をシリコン接合によって接合しているが、拡散接合によって封止部材43とシリコン基板41を接合しても良い。具体的には周縁部42bの上面と封止部材43の対応する部分に金属薄膜を成膜しておき、互いの金属薄膜を当接させ、加熱及び加圧すれば、金属薄膜同士の拡散接合によって封止部材43とシリコン基板41を接合することができる。但し、金属薄膜は、極めて薄く設けたとしてもシリコン基板やガラス基板に比べてX線吸収性が高いので、凸部47の上面に金属薄膜を設けることは避けるべきである。
 なお、シリコン基板41の表面に凹凸構造42を設けているが、凹凸構造42を設ける基板は一様なシリコン基板41でなくても良い。例えば、図17に示すように、シリコン基板41の代わりに、シリコン基板62とガラス基板63の接合基板64を用いて第1グリッド70を形成しても良い。この場合、凹部46は、例えばガラス基板63をエッチストッパとし、シリコン基板62を貫通してガラス基板63が露呈されるように形成される。こうすると、シリコン基板41に所定深さの凹部46を設ける場合と比較して、各凹部62の深さのばらつきがなくなるので、凹部46を透過するX線と凸部47を透過するX線の間に、より正確な位相差を発生させることができる。
 なお、熱膨張係数の差が大きい材料を接合すると、熱膨張が発生した時に発生する応力によって破損してしまうことがあるが、封止部材43とガラス基板63を同じ材料にすれば熱膨張係数の差が緩和されるので、熱膨張による破損を防ぐことができる。シリコンの熱膨張係数は3.0×10-6/℃、ホウケイ酸ガラスの熱膨張係数は3.2×10-6/℃なので、シリコン基板41と封止部材43の熱膨張係数はほぼ等しいが、上述のようにシリコン基板62とガラス基板63の接合基板を用いれば、より確実に熱膨張による破損を防ぐことができる。
 また、図17では、凸部47の上面が封止部材43に接合されているが、封止部材43を一部薄くして凸部47と封止部材43の間に隙間を設けても良いし、凸部47を周縁部42bよりも薄くして凸部47と封止部材43の間に隙間を設けても良い。
 なお、シリコン基板62とガラス基板63は陽極接合により接合可能であり、接合基板64を用いる場合も、その後の第1グリッド70の製造方法は前述の製造方法と同様である。
 なお、シリコン基板41の表面に凹凸構造42を形成するエッチング工程では、深堀り用のエッチングが好適である。深堀用のエッチングには、例えば、ボッシュプロセスと呼ばれるドライエッチングが好適である。ボッシュプロセスは、例えば、シリコン(シリコン基板41)をエッチングするSFガスと、保護膜を形成するためのCガスとを用いるエッチング方法である。SFガスでシリコン基板41をエッチングすると深さ方向だけでなく、横方向にもエッチングが進行するため、これだけでは第2グリッド14のようにアスペクト比が大きい溝を形成することができない。このため、ボッシュプロセスでは、SFガスで所定時間エッチングした後、Cガスに切り換え、プラズマにより生成されるCFのポリマーを凹部46内に付着させて保護膜を形成する。そして、再びSFガスによりエッチングを行う。このボッシュプロセスによれば、底面に比べて側面のエッチング速度は低いため、ほぼ底面だけをエッチングして凹部46を深堀りすることができる。
 また、例えば、シリコン単結晶の面方位によってエッチング速度が異なる異方性のウェットエッチングで凹部46を形成しても良い。
 また、被検体HをX線源と第1グリッドとの間に配置しているが、被検体Hを第1グリッドと第2グリッドとの間に配置してもよい。この場合にも同様に位相コントラスト画像が生成される。また、上記実施形態では、線源グリッドを設けているが、線源グリッドを省略してもよい。
 本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。

Claims (13)

  1.  凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させるグリッド部と、前記グリッド部の周囲に設けられた凸状の周縁部とが表面に形成された基板と、
     少なくとも前記周縁部と当接して前記グリッド部を封止する封止部材と、
     を備える放射線画像撮影用グリッド。
  2.  前記凸部と前記封止部材の間に隙間がある請求の範囲第1項記載の放射線画像撮影用グリッド。
  3.  前記凸部の上面が前記封止部材と接合されている請求の範囲第1項記載の放射線画像撮影用グリッド。
  4.  前記グリッド部は前記封止部材によって真空に封止されている請求の範囲第1項記載の放射線画像撮影用グリッド。
  5.  前記グリッド部は前記封止部材によって空気または空気よりも軽い気体を充填して封止されている請求の範囲第1項記載請求項1~3のいずれか1項に記載の放射線画像撮影用グリッド。
  6.  前記基板と前記封止部材は陽極接合により接合されている請求の範囲第1項記載の放射線画像撮影用グリッド。
  7.  前記基板はシリコン基板であり、前記封止部材はイオン導電性基板である請求の範囲第6項記載の放射線画像撮影用グリッド。
  8.  前記基板と前記封止部材はともにシリコン基板である請求の範囲第1項記載の放射線画像撮影用グリッド。
  9.  前記封止部材のヤング率が前記基板のヤング率よりも小さく、前記封止部材がある側の面が凸になるように湾曲されている請求の範囲第1項記載の放射線画像撮影用グリッド。
  10.  前記封止部材のヤング率が前記基板のヤング率よりも大きい、前記封止部材がある側の面が凹になるように湾曲されている請求の範囲第1項記載の放射線画像撮影用グリッド。
  11.  前記基板は、所定材料からなる第1基板と、前記封止部材と同じ材料からなる第2基板との接合基板であり、
     前記グリッド部及び前記周縁部は、前記第1基板に形成される請求の範囲第1項記載の放射線画像撮影用グリッド。
  12.  所定材料からなる基板の表面をエッチングして、凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させるグリッド部と、前記グリッド部の周囲に設けられた凸状の周縁部とを前記基板の表面に形成するエッチング工程と、
     封止部材を少なくとも前記周縁部に当接させ、前記基板と前記封止部材を接合し、前記グリッド部を封止する接合する接合工程と、
     を備える放射線画像撮影用グリッドの製造方法。
  13.  放射線源から照射される放射線を、位相型の放射線画像撮影用グリッドを介して撮影し、位相コントラスト画像を生成する放射線画像撮影システムにおいて、
     前記放射線画像撮影用グリッドが、凹部を透過する放射線と凸部を透過する放射線との間に所定位相差を発生させるグリッド部と、前記グリッド部の周囲に設けられた凸状の周縁部が表面に形成された基板と、
     少なくとも前記周縁部と当接して前記グリッド部を封止する封止部材と、
     を備える放射線画像撮影システム。
PCT/JP2013/055162 2012-03-13 2013-02-27 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム WO2013136986A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-055537 2012-03-13
JP2012055537A JP2013188286A (ja) 2012-03-13 2012-03-13 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Publications (1)

Publication Number Publication Date
WO2013136986A1 true WO2013136986A1 (ja) 2013-09-19

Family

ID=49160902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055162 WO2013136986A1 (ja) 2012-03-13 2013-02-27 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Country Status (2)

Country Link
JP (1) JP2013188286A (ja)
WO (1) WO2013136986A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139731A (ja) * 2021-03-12 2022-09-26 日本電子株式会社 X線検出器及び窓部製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102654A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X線画像システム及びx線画像プログラム
JP2009244260A (ja) * 2008-03-13 2009-10-22 Canon Inc X線位相イメージングに用いられる位相格子、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム
JP2011047748A (ja) * 2009-08-26 2011-03-10 Canon Inc X線用位相格子及びその製造方法
JP2011069818A (ja) * 2009-08-31 2011-04-07 Canon Inc X線撮像装置に用いる格子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102654A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X線画像システム及びx線画像プログラム
JP2009244260A (ja) * 2008-03-13 2009-10-22 Canon Inc X線位相イメージングに用いられる位相格子、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム
JP2011047748A (ja) * 2009-08-26 2011-03-10 Canon Inc X線用位相格子及びその製造方法
JP2011069818A (ja) * 2009-08-31 2011-04-07 Canon Inc X線撮像装置に用いる格子の製造方法

Also Published As

Publication number Publication date
JP2013188286A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
CN102460237B (zh) 倾斜光栅和用于生产倾斜光栅的方法
CN103515404A (zh) 放射线检测装置及其制造方法和成像系统
KR100841123B1 (ko) 산란방지와 콜리메이팅을 수행하기 위한 장치를 제조하여 x-방사선 또는 감마 검출기에 제공하는 방법
WO2012026223A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2011122506A1 (en) Grid for radiation imaging and method for producing the same
CN106461794B (zh) X射线探测器面板
US20120099706A1 (en) Grid for radiography and manufacturing method thereof, and radiation imaging system
WO2013136986A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2013129308A1 (ja) 放射線画像撮影用吸収型グリッド及びその製造方法、並びに放射線画像撮影システム
WO2004012207A2 (en) Optical device for high energy radiation
US20120148029A1 (en) Grid for use in radiation imaging, method for producing the same, and radiation imaging system
US20120051509A1 (en) Grid for radiography and manufacturing method thereof, and radiation imaging system
WO2013129309A1 (ja) 放射線画像撮影用吸収型グリッド及びその製造方法、並びに放射線画像撮影システム
JP5204880B2 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
JP2012149982A (ja) 放射線画像撮影用格子ユニット及び放射線画像撮影システム、並びに格子体の製造方法
JP2011174966A (ja) 液晶表示装置の製造方法
WO2013099652A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2014039569A (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
JP2017203695A (ja) 放射線撮像装置及び放射線撮像システム
JP2012122840A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
TW201947277A (zh) 光控濾光片
TWI690942B (zh) 閃爍器板及放射線檢測器
WO2012053342A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
CN104903971A (zh) 闪烁器面板的制造方法、闪烁器面板以及放射线检测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761911

Country of ref document: EP

Kind code of ref document: A1