WO2013136979A1 - 回路接続材料、及びそれを用いた実装体の製造方法 - Google Patents

回路接続材料、及びそれを用いた実装体の製造方法 Download PDF

Info

Publication number
WO2013136979A1
WO2013136979A1 PCT/JP2013/055046 JP2013055046W WO2013136979A1 WO 2013136979 A1 WO2013136979 A1 WO 2013136979A1 JP 2013055046 W JP2013055046 W JP 2013055046W WO 2013136979 A1 WO2013136979 A1 WO 2013136979A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
coupling agent
silane coupling
adhesive
parts
Prior art date
Application number
PCT/JP2013/055046
Other languages
English (en)
French (fr)
Inventor
浩史 浜地
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR20147028179A priority Critical patent/KR20140142285A/ko
Publication of WO2013136979A1 publication Critical patent/WO2013136979A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a circuit connecting material in which conductive particles are dispersed, and a method of manufacturing a mounting body using the same.
  • anisotropic conductive films are used for mounting components such as semiconductors on a printed circuit board.
  • ACF Anisotropic Conductive Film
  • a driving IC integrated circuit
  • COG chip-on-glass
  • a transparent conductive film having high transparency such as IZO (Indium Zinc Oxide) or ITO (Indium Tin Oxide) is formed on a connection surface, and a transparent insulating film such as SiN x is formed on the peripheral surface of the wiring.
  • IZO Indium Zinc Oxide
  • ITO Indium Tin Oxide
  • a phosphoric acid ester compound is added to improve the adhesion to the transparent conductive film that is a metal wiring, and the adhesion to the transparent insulating film that is an inorganic substance is increased.
  • blended the silane coupling agent is used (for example, refer patent document 1, 2).
  • the present invention has been proposed in view of such a conventional situation, and provides a circuit connection material having excellent storage stability and a method of manufacturing a mounting body using the circuit connection material.
  • the circuit connection material according to the present invention is characterized by having a first adhesive layer containing a silane coupling agent, conductive particles, and a second adhesive layer containing a phosphate compound. To do.
  • the manufacturing method of the mounting body which concerns on this invention contains the 1st contact bonding layer containing a silane coupling agent and electroconductive particle on the electrode of a 1st electronic component, and a phosphate ester compound.
  • An anisotropic conductive film having a second adhesive layer, a second electronic component, and a step of arranging the second electronic component in order so that the first adhesive layer is on the first electronic component; And a step of pressing with a pressure-bonding head from the upper surface of the component.
  • the present invention can prevent the silane coupling agent from being hydrolyzed by mixing the phosphoric acid ester compound and the silane coupling agent separately in each layer of the circuit connection material having a two-layer structure. Storage stability can be obtained.
  • the first adhesive layer containing the silane coupling agent contains conductive particles, the adhesion with the first electronic component can be improved at the time of pressure bonding. The particle capture rate can be improved.
  • FIG. 1 is a diagram for explaining an improvement in adhesion to an inorganic substance by a silane coupling agent.
  • FIG. 2 is a plan view showing a part of the connection portion of the liquid crystal panel.
  • FIG. 1 is a diagram for explaining an improvement in adhesion to an inorganic substance by a silane coupling agent.
  • the silane coupling agent has an organic functional group and a hydrolyzable group in one molecule, and dehydrates and condenses with the hydroxyl group of the inorganic material at the time of pressure bonding, thereby improving the adhesion with the inorganic material. Can be improved.
  • This silane coupling agent is hydrolyzed by moisture in the air and becomes oligomerized by partial condensation during long-term storage, and the hydroxyl group is reduced by the time of pressure bonding, resulting in a decrease in adhesion.
  • hydrolysis of the silane coupling agent is promoted in the presence of an acid catalyst such as a phosphate ester compound.
  • the circuit connecting material in the present embodiment has a first adhesive layer containing a silane coupling agent and conductive particles, and a second adhesive layer containing a phosphate ester compound.
  • conductive particles are dispersed in an adhesive composition containing a silane coupling agent.
  • an adhesive composition containing a silane coupling agent for example, if the first adhesive layer is placed on a glass substrate coated with a silicon nitride film and pressure-bonded, high adhesion to the silicon nitride film can be obtained, and further, the conductive particles are high. Particle capture rate can be obtained.
  • silane coupling agent examples include methacrylic, vinyl, epoxy, styryl, acrylic, amino, ureido, mercapto, sulfide, and isocyanate.
  • a methacrylic silane coupling agent is preferably used in the present embodiment.
  • the addition amount of the silane coupling agent is usually 0.01 to 5 parts by mass with respect to 100 parts by mass of the adhesive composition.
  • the conductive particles include metal particles such as nickel, gold, and copper, and resin core particles that are plated with nickel, copper, gold, palladium, and the like.
  • the average particle size of the conductive particles is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of connection reliability.
  • the average particle density of the conductive particles in the adhesive composition, from the viewpoint of connection reliability and insulation reliability, is preferably 1000 to 50000 / mm 2, more preferably from 5,000 to 30,000 pieces / mm 2 .
  • the adhesive composition of the first adhesive layer contains a film-forming resin, a polymerizable resin, and a polymerization initiator.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • the film-forming resin include various resins such as phenoxy resin, polyester urethane resin, polyester resin, polyurethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. It may be used. Among these, phenoxy resin is preferably used from the viewpoints of film formation state, connection reliability, and the like.
  • the content of the film-forming resin is usually 30 to 80 parts by mass, preferably 40 to 70 parts by mass with respect to 100 parts by mass of the adhesive composition.
  • the polymerizable resin is a radical polymerizable resin, a cationic polymerizable resin, or the like, and can be appropriately selected depending on the application.
  • the radical polymerizable resin is a substance having a functional group that is polymerized by radicals, and examples thereof include epoxy acrylate, urethane acrylate, and polyester acrylate. These may be used alone or in combination of two or more. good. Among these, epoxy acrylate is preferably used in the present embodiment.
  • the content of the radical polymerizable resin is usually 10 to 60 parts by mass, preferably 20 to 50 parts by mass with respect to 100 parts by mass of the adhesive composition.
  • radical polymerization initiator in the case of using a radical polymerizable resin, a known one can be used, and among them, an organic peroxide can be preferably used.
  • organic peroxides include peroxyketals, diacyl peroxides, peroxydicarbonates, peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like. It may be used in combination, or two or more types may be used in combination. Among these, peroxyketals are preferably used in the present embodiment.
  • the content of the radical polymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the radical adhesive composition.
  • a monofunctional epoxy compound such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a naphthalene type epoxy resin, a novolac type epoxy resin alone or in combination.
  • an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a naphthalene type epoxy resin, a novolac type epoxy resin alone or in combination.
  • a cationic curing agent in which a cationic species causes the epoxy group at the end of the epoxy resin to open and self-crosslinks the epoxy resins.
  • cationic curing agents include onium salts such as aromatic sulfonium salts, aromatic diazonium salts, iodonium salts, phosphonium salts, and selenonium salts.
  • an aromatic sulfonium salt is suitable as a cationic curing agent because of its excellent reactivity at low temperatures and a long pot life.
  • the second adhesive layer is an adhesive composition containing a phosphate ester compound.
  • a phosphate ester compound for example, high adhesion can be obtained to a liquid crystal panel on which a transparent conductive film, which is a metal wiring such as IZO (Indium Zinc Oxide) or ITO (Indium Tin Oxide), is formed.
  • IZO Indium Zinc Oxide
  • ITO Indium Tin Oxide
  • Examples of the phosphoric acid ester compound include phosphoric acid (meth) acrylate having a phosphoric acid ester skeleton. Specific examples thereof include mono (2-methacryloyloxyethyl) acid phosphate and di (2-methacryloyloxyethyl). Examples include acid phosphate diphenyl (2-acryloyloxyethyl) phosphate, diphenyl (2-methacryloyloxyethyl) phosphate, and phenyl (2-acryloyloxyethyl) phosphate. These may be used alone or in combination of two or more. Among these, mono (2-methacryloyloxyethyl) acid phosphate is preferably used in the present embodiment.
  • the content of the phosphate ester compound is usually 0.01 to 5 parts by mass with respect to 100 parts by mass of the composition.
  • the adhesive composition of the second adhesive layer contains a film-forming resin, a polymerizable resin, and a polymerization initiator, similarly to the first adhesive layer.
  • the film-forming resin, the polymerizable resin, and the polymerization initiator are the same as those of the first resin, and the melt viscosity between the first adhesive layer and the second adhesive layer, the lowest melt viscosity reaching temperature, etc. It is preferable to reduce the difference.
  • the difference between the melt viscosity of the first adhesive layer and the melt viscosity of the second adhesive layer is preferably 1000 Pa ⁇ s or less.
  • the difference between the minimum melt viscosity attainment temperature of the first adhesive layer and the minimum melt viscosity attainment temperature of the second adhesive layer is 15 ° C. or less.
  • a method for manufacturing an anisotropic conductive film made of the above-described circuit connecting material will be described.
  • a second adhesive layer containing a phosphate ester compound is formed on a first adhesive layer containing a silane coupling agent and conductive particles. To do.
  • a step of generating a first adhesive layer containing a silane coupling agent and conductive particles a step of generating a second adhesive layer containing a phosphate ester compound, A step of attaching the adhesive layer and the second adhesive layer.
  • the film-forming resin, the polymerizable resin, the polymerization initiator, the silane coupling agent, and the conductive particles are dissolved in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the release substrate has a laminated structure in which, for example, a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), etc. While preventing drying of the resin in the anisotropic conductive material, the shape of the resin is maintained.
  • a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), etc. While preventing drying of the resin in the anisotropic conductive material, the shape of the resin is maintained.
  • the anisotropic conductive material applied on the release substrate is dried by a heat oven, a heat drying apparatus or the like. As a result, a first adhesive layer having a thickness of about 5 to 50 ⁇ m can be obtained.
  • the step of generating the second adhesive layer is similar to the first adhesive layer, in which a film-forming resin, a polymerizable resin, a polymerization initiator, and a phosphate ester compound are dissolved in a solvent, After adjusting the resin composition of this adhesive layer, this is apply
  • the release sheet of the second adhesive layer is peeled off and attached on the first adhesive layer.
  • the first adhesive layer and the second adhesive layer are attached and manufactured.
  • the present invention is not limited to this, and after forming one adhesive layer, the other adhesive layer is formed.
  • the resin composition of the adhesive layer may be applied and dried.
  • the electronic component mounting method includes a first adhesive layer containing a silane coupling agent and conductive particles on the electrode of the first electronic component, and a phosphoric ester compound.
  • An anisotropic conductive film having two adhesive layers and a second electronic component arranged in order so that the first adhesive layer is on the first electronic component; and from the upper surface of the second electronic component And a step of pressing with a pressure-bonding head.
  • the first electronic component like a glass substrate IZO (Indium Zinc Oxide) IZO coating glass film is coated on a glass substrate such as SiN x SiN x coating glass (silicon nitride) film is coated is It is done.
  • the second electronic component include COF (Chip On Film) and IC (Integrated Circuit).
  • FIG. 2 is a plan view showing a part of the connection portion of the liquid crystal panel.
  • a transparent conductive film 11 such as IZO (Indium Zinc Oxide) or ITO (Indium Tin Oxide) is formed on the connection portion 10 of the liquid crystal panel, and a transparent insulating film such as SiN x is formed on the peripheral surface thereof. 12 is formed.
  • IZO Indium Zinc Oxide
  • ITO Indium Tin Oxide
  • the first adhesive layer containing the silane coupling agent and the conductive particles is brought into contact with the connection portion 10 of the liquid crystal panel and pressure-bonded, high adhesion to the transparent insulating film 12 is obtained.
  • a high particle capture rate of the conductive particles can be obtained.
  • a phosphate ester compound can be made to act on the transparent conductive film 11 of a liquid crystal panel.
  • Example> Examples of the present invention will be described below.
  • an anisotropic conductive film having a first adhesive layer containing a silane coupling agent and conductive particles and a second adhesive layer containing a phosphate ester compound is produced, and storage stability is obtained.
  • An accelerated test was conducted. Further, the influence of the adhesive strength on the melt viscosity and the minimum melt viscosity attainment temperature of the first adhesive layer and the second adhesive layer was examined.
  • the present invention is not limited to these examples.
  • the storage stability acceleration test measurement of adhesive strength, measurement of melt viscosity and minimum melt viscosity arrival temperature were performed as follows.
  • melt viscosity and minimum melt viscosity temperature Anisotropic conductive films were stacked to a thickness of 500 ⁇ m, and using a melt viscometer (HAAKE Rheoless RS-150, manufactured by Thermo Fisher Scientific), the temperature elevation temperature was 10 ° C./min, the frequency was 1 Hz, and the applied pressure was 1 N. The measurement was performed under the conditions of a measurement temperature range of 30 to 180 ° C.
  • Example 1 (Preparation of first adhesive layer) Composition comprising 70 parts by mass of phenoxy resin (product name: YP-50, manufactured by Tohto Kasei Co., Ltd.) and 30 parts by mass of radical polysynthetic resin (product name: EB-600, manufactured by Daicel Cytec Co., Ltd.) Inside, conductive particles (product name: AUL705, manufactured by Sekisui Chemical Co., Ltd.) having an average particle size of 5 ⁇ m were dispersed so as to have a particle density of 10,000 particles / mm 2 .
  • phenoxy resin product name: YP-50, manufactured by Tohto Kasei Co., Ltd.
  • radical polysynthetic resin product name: EB-600, manufactured by Daicel Cytec Co., Ltd.
  • conductive particles product name: AUL705, manufactured by Sekisui Chemical Co., Ltd.
  • reaction initiator product name: Perhexa C, manufactured by Nippon Oil & Fats Co., Ltd.
  • silane coupling agent product name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phenoxy resin (product name: YP-50, manufactured by Tohto Kasei Co., Ltd.) in terms of solid content is 60 parts by mass
  • product name: Perhexa C, manufactured by NOF Corporation is 40 parts by mass
  • product name: Perhexa C, manufactured by NOF Corporation is 40 parts by mass
  • phosphate ester acrylate product name: P-2M, manufactured by Kyoei Chemical Co., Ltd.
  • a first adhesive layer having a thickness of 10 ⁇ m and a second adhesive layer having a thickness of 10 ⁇ m were attached to produce an anisotropic conductive film having a two-layer structure.
  • Table 1 shows the evaluation results of Example 1.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 1320 Pa ⁇ s, respectively, and the minimum melt viscosity attainment temperatures of the first adhesive layer and the second adhesive layer are And 117 ° C. and 110 ° C., respectively.
  • the adhesive strengths before and after the storage stability acceleration test were 8.0 N / cm and 7.8 N / cm, respectively.
  • reaction initiator product name: Perhexa C, manufactured by NOF Corporation
  • silane coupling agent product name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.
  • phosphate ester acrylate product name: P-2M (manufactured by Kyoei Chemical Co., Ltd.) was added to prepare 2 parts by mass, and this adhesive composition was applied onto a PET film using a bar coater, dried in an oven, and a 10 ⁇ m thick first adhesive layer Was made.
  • (Second adhesive layer) 60 parts by mass of phenoxy resin (product name: YP-50, manufactured by Toto Kasei Co., Ltd.) in terms of solid content, 40 parts by mass (product name: EB-600, manufactured by Daicel Cytec Co., Ltd.), reaction initiator (product name: Perhexa C, Japan) 2 parts by mass of Yushi Co., Ltd., 2 parts by mass of silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) and 2 parts by mass of phosphate ester acrylate (product name: P-2M, manufactured by Kyoei Chemical Co., Ltd.)
  • the adhesive composition configured as follows was applied onto a PET film using a bar coater and dried in an oven to produce a second adhesive layer having a thickness of 10 ⁇ m.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the first adhesive layer and the second adhesive layer.
  • Table 1 shows the evaluation results of Comparative Example 1.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 1320 Pa ⁇ s, respectively, and the lowest melt viscosity reaching temperatures of the first adhesive layer and the second adhesive layer are And 117 ° C. and 110 ° C., respectively.
  • the adhesive strength before and after the storage stability acceleration test was 7.9 N / cm and 2.3 N / cm, respectively.
  • Example 1 As shown in Table 1, in Comparative Example 1 in which a silane coupling agent and a phosphate ester compound were blended in both the first adhesive layer and the second adhesive layer, the adhesive strength decreased after the acceleration test. On the other hand, in Example 1 in which the phosphoric ester compound and the silane coupling agent were separately added to each of the first adhesive layer and the second adhesive layer, the adhesive strength did not decrease after the acceleration test. Therefore, according to Example 1, it turned out that the outstanding storage stability can be obtained.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the second adhesive layer.
  • Table 1 shows the evaluation results of Example 2.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 830 Pa ⁇ s, respectively, and the minimum melt viscosity attainment temperatures of the first adhesive layer and the second adhesive layer are And 117 ° C. and 112 ° C., respectively.
  • the adhesive strength before and after the storage stability acceleration test was 8.1 N / cm and 7.9 N / cm, respectively.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the second adhesive layer.
  • Table 1 shows the evaluation results of Comparative Example 2.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 530 Pa ⁇ s, respectively, and the minimum melt viscosity reaching temperature of the first adhesive layer and the second adhesive layer is And 117 ° C. and 108 ° C., respectively.
  • the adhesive strengths before and after the storage stability acceleration test were 2.8 N / cm and 2.5 N / cm, respectively.
  • Comparative Example 2 having a large difference in melt viscosity between the first adhesive layer and the second adhesive layer could not obtain high adhesive strength before the acceleration test.
  • the difference in melt viscosity between the first adhesive layer and the second adhesive layer is 1000 Pa ⁇ s or less as in Examples 1 and 2, the first adhesive layer and the second adhesive layer are It mixed well and was able to obtain high adhesive strength.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the second adhesive layer.
  • Table 3 shows the evaluation results of Example 3.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 1320 Pa ⁇ s, respectively, and the lowest melt viscosity reaching temperatures of the first adhesive layer and the second adhesive layer are And 117 ° C. and 102 ° C., respectively.
  • the adhesive strength before and after the storage stability acceleration test was 8.2 N / cm and 8.0 N / cm, respectively.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the second adhesive layer.
  • Table 3 shows the evaluation results of Comparative Example 3.
  • the melt viscosities of the first adhesive layer and the second adhesive layer are 1830 Pa ⁇ s and 1320 Pa ⁇ s, respectively, and the lowest melt viscosity reaching temperatures of the first adhesive layer and the second adhesive layer are And 117 ° C. and 97 ° C., respectively.
  • the adhesive strength before and after the storage stability acceleration test was 3.2 N / cm and 2.8 N / cm, respectively.
  • An anisotropic conductive film and a mounted body were produced in the same manner as in Example 1 except for the second adhesive layer.
  • Table 3 shows the evaluation results of Comparative Example 4.
  • the melt viscosity of the first adhesive layer and the second adhesive layer is 1830 Pa ⁇ s and 530 Pa ⁇ s, respectively, and the lowest melt viscosity reaching temperature of the first adhesive layer and the second adhesive layer is And 117 ° C. and 98 ° C., respectively.
  • the adhesive strength before and after the storage stability acceleration test was 3.2 N / cm and 2.8 N / cm, respectively.
  • Comparative Example 3 having a large difference in the ultimate temperature of the minimum melt viscosity between the first adhesive layer and the second adhesive layer could not obtain a high adhesive strength before the acceleration test. Furthermore, Comparative Example 4 having a large difference in melt viscosity between the first adhesive layer and the second adhesive layer could not obtain high adhesive strength before the acceleration test.
  • the first adhesive layer and the second adhesive layer are set to have a temperature difference of 15 ° C. or less between the first adhesive layer and the second adhesive layer as in Examples 1 to 3, so that The layers were well mixed and high adhesion strength was obtained.

Abstract

 優れた貯蔵安定性を有する回路接続材料、及びそれを用いた実装体の製造方法を提供する。シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する。2層構造の回路接続材料のそれぞれの層にリン酸エステル化合物とシランカップリング剤を分けて配合することにより、シランカップリング剤が加水分解するのを防ぎ、優れた貯蔵安定性を得ることができる。また、シランカップリング剤を含有する第1の接着層に導電性粒子が含まれているため、圧着時、第1の電子部品との密着性を向上させるとともに導電性粒子の粒子捕捉率を向上させることができる。

Description

回路接続材料、及びそれを用いた実装体の製造方法
 本発明は、導電性粒子が分散された回路接続材料、及びそれを用いた実装体の製造方法に関する。本出願は、日本国において2012年3月12日に出願された日本特許出願番号特願2012-054831を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 従来、異方性導電フィルム(ACF:Anisotropic Conductive Film)は、プリント基板に半導体などの部品を装着させるために使用されている。例えば、LCD(Liquid Crystal Display)パネルの製造においては、画素をコントロールする駆動IC(集積回路)をガラス基板に接合する、いわゆるチップ・オン・グラス(COG)などに用いられている。
 また、近年、液晶パネルにおいて、接続面にIZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)などの透過度が高い透明導電膜が形成され、配線の周囲表面にSiNなどの透明絶縁膜が形成されたものが普及している。
 このような液晶パネルを異方性導電接続する場合、金属配線である透明導電膜との密着性を向上させるためにリン酸エステル化合物を配合するとともに、無機物である透明絶縁膜との密着性を向上させるためにシランカップリング剤を配合した異方性導電フィルムが用いられる(例えば、特許文献1、2参照。)。
 しかしながら、特許文献1、2の技術のように、リン酸エステル化合物とシランカップリング剤を合わせて配合すると、保管中にリン酸エステルが酸触媒として作用し、シランカップリング剤を加水分解させてしまい、圧着時の透明絶縁膜への密着性が低下してしまう。
特開2004-43603号公報 特開2009-277769号公報
 本発明は、このような従来の実情に鑑みて提案されたものであり、優れた貯蔵安定性を有する回路接続材料、及びそれを用いた実装体の製造方法を提供する。
 本件発明者は、鋭意検討を行った結果、2層構造の回路接続材料のそれぞれの層にリン酸エステル化合物とシランカップリング剤を分けて配合することにより、貯蔵安定性が改善されることを見出した。
 すなわち、本発明に係る回路接続材料は、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有することを特徴とする。
 また、本発明に係る実装体の製造方法は、第1の電子部品の電極上に、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する異方性導電フィルム、第2の電子部品を、前記第1の接着層が前記第1の電子部品上となるように順に配置する工程と、前記第2の電子部品の上面から圧着ヘッドにて押圧する工程とを有することを特徴とする。
 本発明は、2層構造の回路接続材料のそれぞれの層にリン酸エステル化合物とシランカップリング剤を分けて配合することにより、シランカップリング剤が加水分解するのを防ぐことができ、優れた貯蔵安定性を得ることができる。また、シランカップリング剤を含有する第1の接着層に導電性粒子が含まれているため、圧着時、第1の電子部品との密着性を向上させることができ、さらに、導電性粒子の粒子捕捉率を向上させることができる。
図1は、シランカップリング剤による無機物に対する密着性の向上を説明するための図である。 図2は、液晶パネルの接続部の一部を示す平面図である。
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.回路接続材料及びその製造方法
2.実装体の製造方法
3.実施例
 <1.回路接続材料及びその製造方法>
 図1は、シランカップリング剤による無機物に対する密着性の向上を説明するための図である。図1に示すように、シランカップリング剤は、一分子中に有機官能基と加水分解基を有しており、圧着時に無機材料の水酸基と脱水縮合することにより、無機材料との密着性を向上させることができる。
 このシランカップリング剤は、長期保管により、空気中の水分によって加水分解が進行して部分的縮合によりオリゴマー化してしまい、圧着時までに水酸基が減少して密着力が減少してしまう。また、シランカップリング剤の加水分解は、リン酸エステル化合物などの酸触媒存在下で促進されてしまう。
 これに対し、本実施の形態における回路接続材料は、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する。これにより、シランカップリング剤とリン酸エステル化合物の接触を防ぐことができ、シランカップリング剤の加水分解を抑制することができる。よって、本実施の形態における回路接続材料は、優れた貯蔵安定性を有する。
 第1の接着層は、シランカップリング剤を含有する接着剤組成物に導電性粒子が分散されている。これにより、例えば、第1の接着層をシリコン窒化膜がコーティングされたガラス基板に配置して圧着すれば、シリコン窒化膜に対して高い密着力を得ることができ、さらに、導電性粒子の高い粒子捕捉率を得ることができる。
 シランカップリング剤としては、メタクリル系、ビニル系、エポキシ系、スチリル系、アクリル系、アミノ系、ウレイド系、メルカプト系、スルフィド系、イソシアネート系などが挙げられる。具体的には、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらの中でも、本実施の形態では、メタクリル系シランカップリング剤が好ましく用いられる。また、シランカップリング剤の添加量は、接着剤組成物100質量部に対して、通常0.01~5質量部である。
 導電性粒子としては、例えば、ニッケル、金、銅などの金属粒子、樹脂コア粒子にニッケル、銅、金、パラジウムなどのめっきを施したものなどが用いられる。また、導電性粒子の平均粒径は、接続信頼性の観点から、好ましくは1~20μm、より好ましくは2~10μmである。また、接着剤組成物中の導電性粒子の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは1000~50000個/mm、より好ましくは5000~30000個/mmである。
 また、第1の接着層の接着剤組成物は、膜形成樹脂と、重合性樹脂と、重合開始剤とを含有する。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂が挙げられ、これらは単独で用いても、2種類以上を組み合わせて用いても良い。これらの中でも膜形成状態、接続信頼性などの観点からフェノキシ樹脂が好適に用いられる。膜形成樹脂の含有量は、接着剤組成物100質量部に対して、通常30~80質量部、好ましくは40~70質量部である。
 重合性樹脂は、ラジカル重合性樹脂、カチオン重合性樹脂などであり、用途に応じて適宜選択することができる。
 ラジカル重合性樹脂は、ラジカルにより重合する官能基を有する物質であり、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートなどが挙げられ、これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらの中でも、本実施の形態では、エポキシアクリレートが好ましく用いられる。ラジカル重合性樹脂の含有量は、接着剤組成物100質量部に対して、通常10~60質量部、好ましくは20~50質量部である。
 ラジカル重合性樹脂を使用する場合のラジカル重合開始剤は、公知のものを使用することができ、中でも有機過酸化物を好ましく使用することができる。有機過酸化物としては、パーオキシケタール類、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、ジアルキルパーオキサイド類、ハイドロパーオキサイド類、シリルパーオキサイド類などが挙げられ、これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらの中でも、本実施の形態では、パーオキシケタール類が好ましく用いられる。ラジカル重合開始剤の含有量は、ラジカル系の接着剤組成物100質量部に対して、通常0.1~30質量部、好ましくは1~20質量部である。
 カチオン重合性樹脂は、1官能性エポキシ化合物、含複素環エポキシ樹脂、脂肪族系エポキシ樹脂などを用いることができる。特にビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂を単独又は混合して用いることが好ましい。
 カチオン重合性樹脂を使用する場合のカチオン硬化剤は、カチオン種がエポキシ樹脂末端のエポキシ基を開環させ、エポキシ樹脂同士を自己架橋させるものを用いることができる。このようなカチオン硬化剤としては、芳香族スルホニウム塩、芳香族ジアゾニウム塩、ヨードニウム塩、ホスホニウム塩、セレノニウム塩等のオニウム塩を挙げることができる。特に、芳香族スルホニウム塩は、低温での反応性に優れ、ポットライフが長いため、カチオン硬化剤として好適である。
 次に、第2の接着層について説明する。第2の接着層は、リン酸エステル化合物を含有する接着剤組成物である。リン酸エステル化合物により、例えば、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)などの金属配線である透明導電膜が形成された液晶パネルに対して高い密着力を得ることができる。
 リン酸エステル化合物としては、リン酸エステル骨格を有するリン酸(メタ)アクリレートなどが挙げられ、具体的には、例えば、モノ(2-メタクリロイルオキシエチル)アシッドホスフェート、ジ(2-メタクリロイルオキシエチル)アシッドホスフェートジフェニル(2-アクリロイルオキシエチル)ホスフェート、ジフェニル(2-メタクリロイルオキシエチル)ホスフェート、フェニル(2-アクリロイルオキシエチル)ホスフェート等が挙げられる。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらの中でも、本実施の形態では、モノ(2-メタクリロイルオキシエチル)アシッドホスフェートが好ましく用いられる。リン酸エステル化合物の含有量は、組成物100質量部に対して、通常0.01~5質量部である。
 また、第2の接着層の接着剤組成物は、第1の接着層と同様に、膜形成樹脂と、重合性樹脂と、重合開始剤とを含有する。また、膜形成樹脂、重合性樹脂、及び重合開始剤は、第1の樹脂と同様なものを使用し、第1の接着層と第2の接着層との溶融粘度、最低溶融粘度到達温度などの差を小さくすることが好ましい。
 具体的には、第1の接着層の溶融粘度と、第2の接着層の溶融粘度との差が1000Pa・s以下であることが好ましい。また、第1の接着層の最低溶融粘度到達温度と、第2の接着層の最低溶融粘度到達温度との差が15℃以下であることが好ましい。これにより、例えば液晶パネルとCOF(Chip On Film)とを圧着させる際、第1の接着層と第2の接着層とが良く混ざり合い、液晶パネル側の配線とCOF側の配線の両者にリン酸エステル化合物を作用させることができる。
 次に、上述した回路接続材料からなる異方性導電フィルムの製造方法について説明する。本実施の形態における異方性導電フィルムの製造方法は、シランカップリング剤と、導電性粒子とを含有する第1の接着層上に、リン酸エステル化合物を含有する第2の接着層を形成する。
 具体的には、シランカップリング剤と、導電性粒子とを含有する第1の接着層を生成する工程と、リン酸エステル化合物を含有する第2の接着層を生成する工程と、第1の接着層と第2の接着層とを貼り付ける工程とを有する。
 第1の接着層を生成する工程では、膜形成樹脂と、重合性樹脂と、重合開始剤と、シランカップリング剤と、導電性粒子とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。第1の接着層の樹脂組成物を調整後、バーコーター、塗布装置などを用いて剥離基材上に塗布する。剥離基材は、例えば、シリコーンなどの剥離剤をPET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などに塗布した積層構造からなり、異方性導電材料中の樹脂の乾燥を防ぐとともに、樹脂の形状を維持する。
 次に、剥離基材上に塗布された異方性導電材料を熱オーブン、加熱乾燥装置などにより乾燥させる。これにより、厚さ5~50μm程度の第1の接着層を得ることができる。
 また、第2の接着層を生成する工程は、第1の接着層と同様に、膜形成樹脂と、重合性樹脂と、重合開始剤と、リン酸エステル化合物とを溶剤に溶解させ、第2の接着層の樹脂組成物を調整後、これを剥離シート上に塗布し、溶剤を揮発させて第2の接着層を得る。
 次に、第1の接着層と第2の接着層とを貼り付ける工程では、第2の接着層の剥離シートを剥離して第1の接着層上に貼り付ける。
 このように第1の接着層と第2の接着層とを貼り付けることにより、剥離基材上に第1の接着層と第2の接着層とがこの順に積層された異方性導電フィルムを得ることができる。
 なお、上述の実施の形態では、第1の接着層と第2の接着層とを貼り付けて製造することとしたが、これに限られるものではなく、一方の接着層を形成後、他方の接着層の樹脂組成物を塗布し、乾燥させて製造しても良い。
 <2.実装体の実装方法>
 次に、上述した回路接続材料を用いた電子部品の実装方法について説明する。本実施の形態における電子部品の実装方法は、第1の電子部品の電極上に、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する異方性導電フィルム、第2の電子部品を、第1の接着層が第1の電子部品上となるように順に配置する工程と、第2の電子部品の上面から圧着ヘッドにて押圧する工程とを有する。これにより、第1の電子部品の電極と第2の電子部品の電極とを導電性粒子を介して接続するとともに、異方性導電フィルムを硬化させることができる。
 ここで、第1の電子部品としては、ガラス基板にIZO(Indium Zinc Oxide)膜がコーティングされたIZOコーティングガラス、ガラス基板にSiN(シリコン窒化)膜がコーティングされたSiNコーティングガラスなどが挙げられる。また、第2の電子部品としては、COF(Chip On Film)、IC(Integrated Circuit)などが挙げられる。
 図2は、液晶パネルの接続部の一部を示す平面図である。図2に示すように、液晶パネルの接続部10には、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)などの透明導電膜11が形成され、その周囲表面にSiNなどの透明絶縁膜12が形成されている。
 本実施の形態では、シランカップリング剤と導電性粒子とを含有する第1の接着層を液晶パネルの接続部10上に接触させて圧着するため、透明絶縁膜12対して高い密着力を得ることができ、さらに、導電性粒子の高い粒子捕捉率を得ることができる。また、第1の接着層と第2の接着層とが良く混ざり合うため、液晶パネルの透明導電膜11にリン酸エステル化合物を作用させることができる。
 <3.実施例>
 以下、本発明の実施例について説明する。ここでは、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する異方性導電フィルムを作製し、貯蔵安定性加速試験を行った。また、第1の接着層と第2の接着層の溶融粘度及び最低溶融粘度到達温度に対する接着強度の影響について調べた。なお、本発明はこれらの実施例に限定されるものではない。
 貯蔵安定性加速試験、接着強度の測定、溶融粘度及び最低溶融粘度到達温度の測定は、次のように行った。
 [貯蔵安定性加速試験]
 異方性導電フィルムを30℃-80%RHのオーブンにて8時間フィルムエージングを行った。そして、エージング後の異方性導電フィルムを用いて実装体を作製し、接着強度を測定した。
 [接着強度の測定]
 ガラス基板とCOF(Chip On Film)の実装体の初期の接着強度について、引っ張り試験機(品番:RTC1201、AND社製)を用いて測定した。測定速度を50mm/secとし、COFを90度方向に引き上げた時の接着強度を測定した。
 [溶融粘度及び最低溶融粘度到達温度の測定]
 異方性導電フィルムを500μmの厚みになるように重ね合わせ、溶融粘度計(HAAKE Rheostress RS-150、Thermo Fisher Scientific社製)を用いて、昇温温度10℃/min、周波数1Hz、加圧力1N、測定温度範囲30~180℃の条件で測定を行った。
 <3.1 貯蔵安定性について>
 [実施例1]
 (第1の接着層の作製)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で70質量部、及びラジカル重合成樹脂(品名:EB-600、ダイセルサイテック社製)を30質量部で構成された組成物中に、平均粒子径5μmの導電性粒子(品名:AUL705、積水化学工業社製)を粒子密度10000個/mmになるよう分散させた。次いで、反応開始剤(品名:パーヘキサC、日本油脂社製)を2質量部、及びシランカップリング剤(品名:KBM-503、信越化学工業製)を2質量部加えて調整した。この接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第1の接着層を作製した。
 (第2の接着層の作製)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、(品名:パーヘキサC、日本油脂社製)を2質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 (異方性導電フィルムの作製)
 厚さ10μmの第1の接着層と、厚さ10μmの第2の接着層とを貼り付け、2層構造の異方性導電フィルムを作製した。
 (実装体の作製)
 評価用ガラス基板(IZO(Indium Zinc Oxide)250nmコーティングガラス)に1.5mm幅にスリットされた異方性導電フィルムを、150μm厚の緩衝材(ポリテトラフルオロエチレン)を用い、1.5mm幅のツールの仮圧着機にて70℃-1MPa-1secの条件で仮圧着した。次いで、評価用COF(50μmP、Cu8μmt-Snメッキ、38μmt)を同圧着機にて80℃-0.5MPa-0.5secの条件で仮固定し、最後に190℃-2MPa-10secの条件にて1.5mm幅のツールを用いた本圧着機で圧着し、実装体を作製した。
 (評価結果)
 表1に、実施例1の評価結果を示す。実施例1において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、1320Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、110℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ8.0N/cm、7.8N/cmであった。
 [比較例1]
 (第1の接着層)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を70質量部、ラジカル重合成樹脂(品名:EB-600、ダイセルサイテック社製)を30質量部で構成された組成物中に、平均粒子径5μmの導電性粒子(品名:AUL705、積水化学工業社製)を粒子密度10000個/mmになるよう分散させた。次いで、反応開始剤(品名:パーヘキサC、日本油脂社製)を2質量部、シランカップリング剤(品名:KBM-503、信越化学工業製)を2質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部加えて調整し、この接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第1の接着層を作製した。
 (第2の接着層)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を2質量部、シランカップリング剤(品名:KBM-503、信越化学工業製)を2質量部及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第1の接着層及び第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表1に、比較例1の評価結果を示す。比較例1において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、1320Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、110℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ7.9N/cm、2.3N/cmであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第1の接着層及び第2の接着層の両方にシランカップリング剤及びリン酸エステル化合物を配合した比較例1は、加速試験後に接着強度が低下した。一方、第1の接着層及び第2の接着層のそれぞれにリン酸エステル化合物とシランカップリング剤を分けて配合した実施例1は、加速試験後に接着強度が低下しなかった。よって、実施例1によれば、優れた貯蔵安定性を得ることができることが分かった。
 <3.2 溶融粘度の差について>
 [実施例2]
 (第2の接着層)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で50質量部、(品名:EB-600、ダイセルサイテック社製)を50質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を2質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表1に、実施例2の評価結果を示す。実施例2において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、830Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、112℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ8.1N/cm、7.9N/cmであった。
 [比較例2]
 (第2の接着層)
 フェノキシ樹脂(品名:YP-70、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を2質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表1に、比較例2の評価結果を示す。比較例2において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、530Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、108℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ2.8N/cm、2.5N/cmであった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第1の接着層と第2の接着層との溶融粘度の差が大きい比較例2は、加速試験前において高い接着強度を得ることができなかった。一方、実施例1,2のように第1の接着層と第2の接着層との溶融粘度の差を1000Pa・s以下とすることにより、第1の接着層と第2の接着層とが良く混ざり合い、高い接着強度を得ることができた。
 <3.3 最低溶融粘度到達温度の差について>
 [実施例3]
 (第2の接着層)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を3質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表3に、実施例3の評価結果を示す。実施例3において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、1320Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、102℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ8.2N/cm、8.0N/cmであった。
 [比較例3]
 (第2の接着層)
 フェノキシ樹脂(品名:YP-50、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を5質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表3に、比較例3の評価結果を示す。比較例3において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、1320Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、97℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ3.2N/cm、2.8N/cmであった。
 [比較例4]
 (第2の接着層)
 フェノキシ樹脂(品名:YP-70、東都化成社製)を固形分換算で60質量部、(品名:EB-600、ダイセルサイテック社製)を40質量部、反応開始剤(品名:パーヘキサC、日本油脂社製)を5質量部、及びリン酸エステルアクリレート(品名:P-2M、共栄化学社製)を2質量部として構成された接着剤組成物をPETフィルム上にバーコーターを用いて塗布し、オーブンで乾燥させ、厚さ10μmの第2の接着層を作製した。
 第2の接着層以外は、実施例1と同様にして、異方性導電フィルム及び実装体を作製した。
 (評価結果)
 表3に、比較例4の評価結果を示す。比較例4において、第1の接着層及び第2の接着層の溶融粘度は、それぞれ1830Pa・s、530Pa・sであり、第1の接着層及び第2の接着層の最低溶融粘度到達温度は、それぞれ117℃、98℃であった。また、貯蔵安定性の加速試験前及び加速試験後の接着強度は、それぞれ3.2N/cm、2.8N/cmであった。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、第1の接着層と第2の接着層との最低溶融粘度の到達温度の差が大きい比較例3は、加速試験前において高い接着強度を得ることができなかった。さらに、第1の接着層と第2の接着層との溶融粘度の差が大きい比較例4も、加速試験前において高い接着強度を得ることができなかった。一方、実施例1乃至3のように第1の接着層と第2の接着層との最低溶融粘度の到達温度の差を15℃以下とすることにより、第1の接着層と第2の接着層とが良く混ざり合い、高い接着強度を得ることできた。
 10 接続部、11 透明導電膜、12 透明絶縁膜

Claims (6)

  1.  シランカップリング剤と、導電性粒子とを含有する第1の接着層と、
     リン酸エステル化合物を含有する第2の接着層と
     を有する回路接続材料。
  2.  前記第1の接着層の溶融粘度と、前記第2の接着層の溶融粘度との差が1000Pa・s以下である請求項1に記載の回路接続材料。
  3.  前記第1の接着層の最低溶融粘度到達温度と、第2の接着層の最低溶融粘度到達温度との差が15℃以下である請求項1又は2に記載の回路接続材料。
  4.  前記第1の接着剤及び前記第2の接着剤は、ラジカル重合性樹脂と、ラジカル重合開始剤とを含有する請求項1乃至3のいずれか1項に記載の回路接続材料。
  5.  第1の電子部品の電極上に、シランカップリング剤と、導電性粒子とを含有する第1の接着層と、リン酸エステル化合物を含有する第2の接着層とを有する異方性導電フィルム、第2の電子部品を、前記第1の接着層が前記第1の電子部品上となるように順に配置する工程と、
     前記第2の電子部品の上面から圧着ヘッドにて押圧する工程と
     を有する実装体の製造方法。
  6.  前記第1の電子部品が、シリコン窒化膜がコーティングされたガラス基板である請求項5に記載の実装体の製造方法。
PCT/JP2013/055046 2012-03-12 2013-02-27 回路接続材料、及びそれを用いた実装体の製造方法 WO2013136979A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20147028179A KR20140142285A (ko) 2012-03-12 2013-02-27 회로 접속 재료, 및 그것을 사용한 실장체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012054831A JP5934528B2 (ja) 2012-03-12 2012-03-12 回路接続材料、及びそれを用いた実装体の製造方法
JP2012-054831 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136979A1 true WO2013136979A1 (ja) 2013-09-19

Family

ID=49160895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055046 WO2013136979A1 (ja) 2012-03-12 2013-02-27 回路接続材料、及びそれを用いた実装体の製造方法

Country Status (4)

Country Link
JP (1) JP5934528B2 (ja)
KR (1) KR20140142285A (ja)
TW (1) TWI548718B (ja)
WO (1) WO2013136979A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034645A (ko) * 2013-09-26 2015-04-03 데쿠세리아루즈 가부시키가이샤 접속 필름, 접속 구조체, 접속 구조체의 제조 방법, 접속 방법
JP2017203165A (ja) * 2017-07-12 2017-11-16 デクセリアルズ株式会社 接続フィルム、接続フィルムの製造方法、接続構造体、接続構造体の製造方法及び接続方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184521A (ja) 2015-03-26 2016-10-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池
TWI718199B (zh) 2015-11-04 2021-02-11 日商昭和電工材料股份有限公司 接著劑組成物及結構體
KR102608218B1 (ko) 2015-11-04 2023-11-30 가부시끼가이샤 레조낙 접착제 조성물 및 구조체
WO2017090693A1 (ja) 2015-11-25 2017-06-01 日立化成株式会社 接着剤組成物及び構造体
CN113571926A (zh) 2016-10-11 2021-10-29 昭和电工材料株式会社 连接结构体、电路连接构件和粘接剂组合物
JP7039984B2 (ja) * 2017-12-14 2022-03-23 昭和電工マテリアルズ株式会社 回路接続用接着剤組成物及び回路接続構造体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234083A (ja) * 1998-10-13 2000-08-29 Sumitomo Bakelite Co Ltd 異方導電性接着剤の製造方法及びその方法により製造された接着剤を用いて製作された電子機器
JP2001254058A (ja) * 2000-01-06 2001-09-18 Sumitomo Bakelite Co Ltd 異方導電性接着剤
JP2004043603A (ja) * 2002-07-10 2004-02-12 Bridgestone Corp 異方性導電フィルム
JP2005120220A (ja) * 2003-10-16 2005-05-12 Bridgestone Corp 異方性導電フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459032B (en) * 1998-03-18 2001-10-11 Sumitomo Bakelite Co An anisotropic conductive adhesive and method for preparation thereof and an electronic apparatus using said adhesive
KR101683312B1 (ko) * 2008-09-30 2016-12-06 데쿠세리아루즈 가부시키가이샤 이방성 도전 접착제 및 그것을 사용한 접속 구조체의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234083A (ja) * 1998-10-13 2000-08-29 Sumitomo Bakelite Co Ltd 異方導電性接着剤の製造方法及びその方法により製造された接着剤を用いて製作された電子機器
JP2001254058A (ja) * 2000-01-06 2001-09-18 Sumitomo Bakelite Co Ltd 異方導電性接着剤
JP2004043603A (ja) * 2002-07-10 2004-02-12 Bridgestone Corp 異方性導電フィルム
JP2005120220A (ja) * 2003-10-16 2005-05-12 Bridgestone Corp 異方性導電フィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034645A (ko) * 2013-09-26 2015-04-03 데쿠세리아루즈 가부시키가이샤 접속 필름, 접속 구조체, 접속 구조체의 제조 방법, 접속 방법
JP2015067627A (ja) * 2013-09-26 2015-04-13 デクセリアルズ株式会社 接続フィルム、接続構造体、接続構造体の製造方法、接続方法
KR102297021B1 (ko) * 2013-09-26 2021-09-02 데쿠세리아루즈 가부시키가이샤 접속 필름, 접속 구조체, 접속 구조체의 제조 방법, 접속 방법
JP2017203165A (ja) * 2017-07-12 2017-11-16 デクセリアルズ株式会社 接続フィルム、接続フィルムの製造方法、接続構造体、接続構造体の製造方法及び接続方法

Also Published As

Publication number Publication date
JP5934528B2 (ja) 2016-06-15
KR20140142285A (ko) 2014-12-11
JP2013191625A (ja) 2013-09-26
TW201343872A (zh) 2013-11-01
TWI548718B (zh) 2016-09-11

Similar Documents

Publication Publication Date Title
JP5934528B2 (ja) 回路接続材料、及びそれを用いた実装体の製造方法
US9023464B2 (en) Connecting film, and joined structure and method for producing the same
TWI593774B (zh) 各向異性導電膜及藉由其所黏合的半導體裝置
CN106471077B (zh) 粘接膜和使用了粘接膜的半导体封装体
JP2011159486A (ja) 異方性導電フィルム、接合体及び接続方法
JP5643623B2 (ja) 異方性導電材料及びその製造方法
WO2012169498A1 (ja) 異方性導電材料
KR20210134875A (ko) 접착제 조성물 및 접속체
KR101944125B1 (ko) 회로 접속 재료 및 그것을 사용한 접속 방법 그리고 접속 구조체
TWI686820B (zh) 導電材料及連接構造體
KR102113551B1 (ko) 회로 접속 재료, 및 이것을 사용한 실장체의 제조 방법
WO2022220285A1 (ja) 硬化剤、接着剤組成物、回路接続用接着剤フィルム、接続構造体及び接続構造体の製造方法
TWI814761B (zh) 接著劑膜
WO2016052130A1 (ja) 異方性導電フィルム、及び接続方法
JP2006022231A (ja) 異方導電性接着剤および異方導電性接着剤フィルム
TWI795388B (zh) 接著劑膜
JP5539039B2 (ja) 異方性導電フィルム及びその製造方法
JP2004352785A (ja) 異方導電性接着剤
JP2018090705A (ja) 異方性導電フィルム、これを含む積層フィルム、およびこれらの製造方法
KR102207300B1 (ko) 이방성 도전 필름, 그의 경화물 및 그의 제조 방법
JP4581060B2 (ja) 異方導電性フィルム
TWI623569B (zh) 各向異性導電膜和使用其的顯示裝置
JP2023165190A (ja) 積層体、積層体の製造方法、及び、接続構造体の製造方法
KR20230135612A (ko) 필름상 접착제 및 접속 구조체의 제조 방법
TW202413567A (zh) 各向異性導電膜、連接結構體及連接結構體之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761749

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147028179

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13761749

Country of ref document: EP

Kind code of ref document: A1