WO2013136736A1 - フェライト系ステンレス鋼 - Google Patents

フェライト系ステンレス鋼 Download PDF

Info

Publication number
WO2013136736A1
WO2013136736A1 PCT/JP2013/001462 JP2013001462W WO2013136736A1 WO 2013136736 A1 WO2013136736 A1 WO 2013136736A1 JP 2013001462 W JP2013001462 W JP 2013001462W WO 2013136736 A1 WO2013136736 A1 WO 2013136736A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion resistance
less
stainless steel
steel
cold
Prior art date
Application number
PCT/JP2013/001462
Other languages
English (en)
French (fr)
Inventor
孝 寒川
福田 國夫
正崇 吉野
太田 裕樹
尾形 浩行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013527406A priority Critical patent/JP5376099B1/ja
Priority to EP13761131.5A priority patent/EP2826878B1/en
Priority to CN201380014308.5A priority patent/CN104169451B/zh
Priority to ES13761131.5T priority patent/ES2632781T3/es
Priority to KR20147024894A priority patent/KR20140127862A/ko
Priority to US14/384,300 priority patent/US20150023832A1/en
Publication of WO2013136736A1 publication Critical patent/WO2013136736A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel (ferritic stainless steel) excellent in surface properties and corrosion resistance of a welded portion with austenitic stainless steel.
  • SUS304 (18% Cr-8% Ni) (Japanese Industrial Standard, JIS G 4305), an austenitic stainless steel, is widely used because of its excellent corrosion resistance. It is expensive because it contains a large amount. For this reason, stainless steel described in Patent Document 1 has been developed as a steel type having excellent corrosion resistance equivalent to SUS304.
  • the component composition is mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.04% or less, S: 0.00. 02% or less, Al: 0.1% or less, Cr: 20.5% or more, 22.5% or less, Cu: 0.3% or more, 0.8% or less, Ni: 1.0% or less, Ti: 4 ⁇ (C% + N%) or more, 0.35% or less, Nb: 0.01% or less, N: 0.03% or less, C + N: 0.05% or less, the balance being Fe and inevitable impurities
  • a ferritic stainless steel sheet is disclosed.
  • ferritic stainless steels such as JIS-SUS444 and JIS-SUS430J1L are less susceptible to stress corrosion cracking (Stress Corking Cracking sensitivity) than austenitic stainless steel, and do not contain Ni, which has a large price fluctuation. It is widely used as a material for automobile exhaust system members, water tanks, and building materials.
  • ferritic stainless steel is inferior in workability, in particular, elongation, compared to austenitic stainless steel. Therefore, austenitic stainless steel is used for difficult-to-work parts that cannot be molded with ferritic stainless steel. Therefore, austenitic stainless steel and ferritic stainless steel are often combined into a single component.
  • each member is mostly joined by welding, and as a welding method, TIG welding (Tungsten Inert Gas welding) is mainly used, and the welded part (weld zone) is as good as the base material. Corrosion resistance is required.
  • Patent Document 1 has good corrosion resistance in welds of the same steel type. However, when TIG welding is performed with a different steel type such as SUS304, there is a problem that the corrosion resistance of the welded portion may be lower than that of the base material.
  • C and N in the steel combine with Cr in the thermal history during welding and precipitate at the grain boundaries as Cr carbides (chromium carbides such as Cr 23 C 6 ) or Cr nitrides (chromium nitrides CrN 2 etc.).
  • Cr carbides chromium carbides such as Cr 23 C 6
  • Cr nitrides chromium nitrides CrN 2 etc.
  • Ti and N in the molten steel may react during solidification to precipitate as TiN.
  • This TiN is poor in ductility at high temperature, and becomes a flaw in the hot rolling process and the surface properties are deteriorated.
  • the wrinkles generated in this way are deep and do not disappear even by hot-rolled sheet annealing, pickling, subsequent cold rolling, cold-rolled sheet annealing, pickling, etc.
  • the surface is called a so-called titanium stringer (stringer caused by titanium nitrides), and the surface properties of the cold-rolled annealed pickling plate are significantly deteriorated.
  • both the front and back surfaces are generally shielded with an inert gas, and welding is performed under the condition that a thin oxide film called temper color is not formed as much as possible on the weld. Then, this gas shield is not sufficient, and there is a problem that the sensitization described above is promoted by the mixing of nitrogen in the air.
  • the present invention has been made in view of such circumstances, and provides a ferritic stainless steel having excellent surface properties and excellent corrosion resistance of a welded part when welded to not only ferritic stainless steel but also austenitic stainless steel. With the goal.
  • the present inventors have conducted a thorough investigation and examination on the influence of the chemical composition of steel on the corrosion resistance of the base metal part and the welded part and the surface properties of the steel sheet (titanium stringer). The following findings were obtained.
  • Nb nitride precipitates at a temperature higher than the temperature at which Ti nitride precipitates. In the subsequent cooling process, this Nb nitride becomes a nucleation site of Ti carbonitride, and the effect of preventing sensitization by Ti is promoted.
  • the main cause of titanium stringers is due to coarse TiN present in the extreme surface layer portion of the steel sheet. By optimizing the Ti content, generation of titanium stringer soot can be prevented.
  • Ni-based austenitic stainless steel has good corrosion resistance in the weld zone, and can produce cold-rolled annealed pickled plates with good surface quality without surface grinding with hot-rolled annealed pickled plates. It was found that an inexpensive ferritic stainless steel was obtained compared to The present invention has been made based on the above findings, and the gist thereof is as follows.
  • the ferritic stainless steel of the present invention is suitable for kitchen equipment, building interior materials, industrial machinery, automobile parts and the like because it is excellent in corrosion resistance and surface properties of the welded portion even when welded with austenitic stainless steel.
  • C 0.003 to 0.015%
  • C is likely to combine with Cr to form Cr carbide, and if Cr carbide is formed in the heat affected zone during welding, it causes grain boundary corrosion. Therefore, C is preferably as low as possible. Therefore, C is set to 0.015% or less. On the other hand, even if it is too low, a great amount of time is required for refining, so the C content is in the range of 0.003 to 0.015%. From the viewpoint of the corrosion resistance of the welded portion, the range is preferably 0.003 to 0.012%. More preferably, it is in the range of 0.003 to 0.010%.
  • Si 0.05-0.30% Since Si is an element useful as a deoxidizer, it is set to 0.05% or more. On the other hand, if it exceeds 0.30%, the pickling property of the cold-rolled sheet in the high-speed pickling method used in the carbon steel line is deteriorated, and the productivity is lowered. Therefore, the Si amount is in the range of 0.05 to 0.30%. Preferably it is 0.05 to 0.20% of range.
  • Mn 0.10 to 0.35% Since Mn has a deoxidizing action, it contains 0.10% or more. Further, since it is an austenite former element, it promotes the formation of a martensite phase in a welded part (hereinafter referred to as a different steel type welded part) with austenitic stainless steel. However, when added in excess, it combines with S present in the steel to form MnS, which is a soluble sulfide, and reduces the corrosion resistance, so the Mn content is 0.10 to 0.35%. The range. Preferably it is 0.10 to 0.25% of range.
  • P 0.06% or less
  • the P content is 0.06% or less. From the viewpoint of corrosion resistance, it is preferably 0.04% or less.
  • S 0.02% or less S is an element harmful to corrosion resistance.
  • MnS is formed to become a starting point of pitting corrosion, and the corrosion resistance is deteriorated. Such an effect becomes remarkable when it exceeds 0.02%.
  • the amount of S is made into 0.02% or less. From the viewpoint of corrosion resistance, it is preferably 0.01% or less. More preferably, it is 0.006% or less.
  • Cr 17.0 to 19.0% Cr is an element indispensable for forming a passive film on the surface of stainless steel and increasing the corrosion resistance of the base material. In order to obtain good corrosion resistance, addition of 17.0% or more is necessary. However, if the addition exceeds 19.0%, martensite is not generated at the welded zone of the different steel type with SUS304, and the corrosion resistance cannot be prevented. For this reason, the Cr content is in the range of 17.0 to 19.0%. Preferably it is 17.5 to 18.5% of range.
  • Ni Over 0.10% to 0.30% Ni is an element that contributes to the improvement of crevice corrosion resistance. Furthermore, since it is an austenite phase formation promoting element like Mn, it promotes the formation of the martensite phase in the welded zone of the different steel types. However, if added over 0.30%, the SCC sensitivity becomes high and is also an expensive element. For this reason, the Ni content is in the range of more than 0.10% to 0.30%. Preferably it is 0.20 to 0.30% of range.
  • Ti 0.10 to 0.40% As described above, Ti is an indispensable element for ensuring the corrosion resistance of a welded portion of a different steel type with austenitic stainless steel. However, if it is added excessively, the amount of TiN precipitation increases and titanium stringer wrinkles become prominent. If surface grinding of the hot-rolled annealed pickled plate is not performed, the product plate (cold-rolled annealed pickled plate) It becomes impossible to maintain the surface property of the film. For this reason, the Ti amount is set to a range of 0.10 to 0.40%. From the viewpoint of the corrosion resistance of the dissimilar steel welds, it is preferably in the range of 0.20 to 0.40%.
  • Nb 0.005% to less than 0.050%
  • Nb preferentially forms carbonitride over Cr and Ti.
  • the production of Nb carbonitride begins at a temperature higher than the temperature at which Ti carbonitride is produced in the weld metal and the heat affected zone. In the subsequent cooling process, although the reason is not clear, Ti carbonitride contained in a large amount is generated with Nb carbonitride as a nucleation site.
  • the lower limit of the Nb amount of the present invention is set to 0.005% or more.
  • the recrystallization temperature of the cold-rolled sheet increases, so that it is necessary to anneal at a high temperature in order to obtain sufficient mechanical properties. For this reason, the oxide film produced
  • the Nb content is in the range of 0.005% to less than 0.050%. From the viewpoint of the corrosion resistance of the dissimilar steel welds, it is preferably in the range of 0.010% to less than 0.050%.
  • Mo less than 0.20% Mo strengthens the passivation film and significantly improves the corrosion resistance. However, it is a ferrite phase formation promoting element, and even when added in a small amount, a martensite phase is not generated in a welded zone of a different steel type with austenitic stainless steel. Therefore, sensitization occurs in the welded portion of the different steel type as a ferrite phase. Sensitization occurs. Therefore, the Mo amount is less than 0.20%. Moreover, since Mo reduces the toughness of a hot-rolled sheet, it is preferably less than 0.10%. The lower limit of Mo is 0.
  • N 0.005 to 0.015%
  • N is likely to combine with Cr to form Cr nitride.
  • Cr nitride When Cr nitride is formed in the welded zone and the heat-affected zone during welding, it causes intergranular corrosion, so lower N is desirable.
  • the N content is in the range of 0.005 to 0.015%. From the viewpoint of the corrosion resistance of the dissimilar steel welds, it is preferably in the range of 0.005 to 0.012%, more preferably in the range of 0.005 to 0.010%.
  • Cu 0.30 to 0.50%
  • Cu is an element that enhances corrosion resistance, particularly corrosion resistance when an aqueous solution or weakly acidic water droplets adhere. This is because Cu is once dissolved in an aqueous solution or water droplet and then reattached to the surface of the ground iron to suppress dissolution of the ground iron.
  • the amount of Cu exceeds 0.50%, hot workability deteriorates, and at the time of hot rolling, a Cu-like hydrated oxide called red scale is generated on the hot rolled slab, resulting in surface defects. It can also be a cause. Therefore, the Cu amount is set in the range of 0.30 to 0.50%. From the viewpoint of hot workability, it is preferably in the range of 0.30 to 0.40%.
  • Mg less than 0.0005%
  • Mg is an impurity mainly mixed from bricks in the converter. Furthermore, Mg serves as a starting point for a wide variety of inclusions, and also serves as a nucleation site for other inclusions. Moreover, since it is hard to re-dissolve even if annealing etc. are performed, the surface property of a hot-roll annealing pickling board and a product board (cold-rolling annealing pickling board) is deteriorated. Therefore, the Mg content is less than 0.0005%. In order to maintain good surface properties, it is preferably less than 0.0003%.
  • the above is the basic chemical component of the present invention, and the balance consists of Fe and unavoidable impurities.
  • Al and Sb are added as selective elements from the viewpoint of preventing sensitization of TIG welding gas shields and dissimilar steel welds. May be.
  • Zr and V may be added as selective elements for the purpose of improving the corrosion resistance of the different steel type welds.
  • Ca 0.0020% or less is acceptable, but not limited thereto.
  • Al 0.02 to 0.50%
  • Al is an element that is particularly important when the gas shield for TIG welding is insufficient.
  • TIG welding it is common to perform welding by gas shielding the back surface.
  • the gas shield is not sufficient, and N in the atmosphere may be mixed into the molten pool.
  • the amount of C and N exceeds the solid solubility limit of the martensite phase, sensitization cannot be completely prevented with Ti alone.
  • the Al content is preferably in the range of 0.02 to 0.50%.
  • a more preferable lower limit is 0.10%, and further preferably 0.15%.
  • a more preferred upper limit is 0.30%.
  • Sb 0.005 to 0.30%
  • Sb has an effect of trapping N mixed in from the atmosphere when the gas shield of TIG welding is insufficient, and it is a better element to add in the case of a complex shaped structure.
  • the Sb content is preferably in the range of 0.005 to 0.30%. From the viewpoint of surface properties on the product plate (cold-roll annealed pickling plate), it is more preferably in the range of 0.005 to 0.10%.
  • Zr 0.05 to 0.60%
  • Zr is an element that forms carbonitride preferentially over Cr as with Ti, and improves the corrosion resistance of welds of the same steel type and different steel types.
  • Zr is more expensive than Ti, and when Zr is added excessively, an intermetallic compound is generated and the toughness of the hot-rolled sheet is deteriorated. Therefore, when Zr is added, the amount of Zr is preferably in the range of 0.05 to 0.60%. More preferably, it is in the range of 0.15 to 0.35%.
  • V 0.02 to 0.50%
  • V is an element that forms carbonitride preferentially over Cr and improves the corrosion resistance of welds of the same and different steel types. However, the effect is smaller than Ti. It is also an expensive element. Therefore, when V is added, the V amount is preferably in the range of 0.02 to 0.50%. More preferably, it is in the range of 0.02 to 0.05%.
  • the steel having the above-mentioned preferred component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
  • the steel material is then heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled without heating to form a hot-rolled sheet.
  • the hot-rolled sheet is usually subjected to hot-rolled sheet annealing at 800 to 1100 ° C. for 1 to 10 minutes, but depending on the application, the hot-rolled sheet annealing may be omitted.
  • the sheet is cold-rolled by cold rolling, and then finish-annealed to obtain a product sheet.
  • Cold rolling is desirably performed at a rolling reduction of 50% or more from the viewpoints of stretchability, bendability, press formability, and shape correction.
  • the finish annealing of cold-rolled sheets is generally performed according to surface finish No. JIS G0203. In the case of a 2B finished product, it is preferable to perform annealing at 800 to 950 ° C. from the viewpoint of ensuring good mechanical properties and pickling properties.
  • the annealing temperature at this time is preferably 800 to 900 ° C.
  • finish annealing by BA annealing is effective for a member at a location where more gloss is required.
  • polishing or the like is performed in order to obtain better surface properties after cold rolling and after processing.
  • these hot-rolled sheets were subjected to hot-rolled sheet annealing at 950 ° C. for 1 minute in the air, and then the surface was subjected to shot blasting of glass beads, and then in a 20% by mass sulfuric acid solution at a temperature of 80 ° C. After dipping for 120 seconds, pickling was performed by dipping in a mixed acid composed of 15% by mass nitric acid and 3% by mass hydrofluoric acid at a temperature of 55 ° C. for 60 seconds, and descaling was performed.
  • a cold rolled sheet having a thickness of 1.0 mm was formed by cold rolling, and annealing was performed at 900 ° C. for 1 minute in an open air furnace to obtain a cold rolled annealed sheet.
  • This cold-rolled annealed sheet was subjected to electrolytic pickling for 3 seconds at 3 A / dm 2 using a steel plate as an anode at 80 ° C. and 20 mass% NaSO 4 three times, and then 5 mass% nitric acid and 3 mass% fluoride.
  • Descaling was carried out by immersing in a mixed acid composed of an acid at a temperature of 55 ° C. for 30 seconds to obtain a cold-rolled annealed pickled plate.
  • the surface property of the obtained cold-rolled annealed pickling plate was visually determined.
  • the surface of the cold-rolled annealed pickling plate after descaling with the pickling material and # 600 polishing paper Two types of samples of the abrasives polished were prepared.
  • TIG welded part test was performed on the same test material.
  • two plates collected from each specimen were joined by TIG welding, and their surfaces were polished with # 600 abrasive paper to obtain a corrosion resistance evaluation sample of the same steel type welded part.
  • TIG welding test with SUS304 was performed on each specimen.
  • a plate taken from each test material and a SUS304 plate having a thickness of 1.0 mm were joined by TIG welding, and their surfaces were polished with # 600 abrasive paper to evaluate the corrosion resistance of different steel type welds. A sample was used.
  • the TIG welding test conditions for the same steel type and different steel type were as follows. The welding current was controlled so that the back bead width was 3 mm or more, and the evaluation surface was the back bead surface.
  • Welding voltage 10V
  • Welding current 90-110A
  • Welding speed 600mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar 20 L / min
  • a salt spray cycle test (CCT, neutral salt spray cyclic corrosion) according to JIS H 8502 (1999) using the obtained base material (as-washed material, abrasive), the same steel type welded part, and a different steel type welded part sample. test).
  • CCT has 15 cycles with 5% by weight NaCl solution spraying (35 ° C., 2 h) ⁇ drying (60 ° C., 4 h, relative humidity 20-30%) ⁇ wetting (40 ° C., 2 h, relative humidity 95% or more) as one cycle. Cycled.
  • Table 2 The criteria for each test are as follows.
  • the above was evaluated as “x”, and “ ⁇ ” and “ ⁇ ” were determined to be acceptable, and “ ⁇ ” and “ ⁇ ” were determined to be unacceptable.
  • the component composition was within the range of the present invention, and the corrosion resistance and the surface properties were excellent for any of the evaluation items.
  • No. 9 had a large surface area and was inferior in corrosion resistance.
  • No. 10 had a large surface area of the welded part of the different steel type and was inferior in corrosion resistance. This is thought to be due to the fact that the amount of Cr, which is an element that promotes the formation of ferrite, is high, so that the weld of the different steel type does not become martensite.
  • a cold-rolled sheet having a thickness of 1.0 mm is formed by cold rolling, annealed in a coke oven gas combustion atmosphere with an air ratio of 1.3 at 900 ° C. for 2 minutes, and at a temperature of 80 ° C. and 20 mass% NaSO 4 .
  • Electrolytic descaling for 10 seconds at 3 A / dm 2 with a steel plate as the anode was performed three times, and then immersed in a mixed acid composed of 5 mass% nitric acid and 3 mass% hydrofluoric acid at a temperature of 55 ° C. for 30 seconds.
  • descaling was performed to obtain a cold-rolled annealed pickling plate.
  • Example 1 the surface properties of the cold-rolled annealed pickling plate thus obtained were visually determined.
  • a base material, the same steel type welded portion, and a different steel type welded portion sample were prepared in the same manner as in Example 1, and a salt spray cycle test (CCT) was performed in accordance with JIS H 8502 (1999) in the same manner as in Example 1.
  • CCT salt spray cycle test
  • Table 4 shows the obtained results.
  • the determination criteria for each test were the same as in Example 1.
  • the component composition was within the range of the present invention, and the corrosion resistance and the surface properties were excellent for any of the evaluation items.
  • No. 19 has a Mo amount of 0.40%, which is higher than the range of the present invention.
  • No. 20 had a Cr content of 19.5%, which is higher than the range of the present invention. This is thought to be because the welded zone of the different steel types does not become martensite because the amount of Mo and Cr that are ferrite phase formation promoting elements are high.
  • Comparative Example No. No. 21 has an Si content of 0.33% and an Nb content of 0.003%, both of which are outside the scope of the present invention.
  • Comparative Example No. 22 since the Si amount was 0.45% and the Mg amount was 0.0010%, both of which exceeded the scope of the present invention, some scale residue was confirmed, and the corrosion resistance after cold rolling annealing pickling was inferior. .
  • these hot-rolled sheets were subjected to hot-rolled sheet annealing at 950 ° C. for 1 minute in the air, and then the surface was subjected to shot blasting treatment of glass beads. After dipping for 2 seconds, it was pickled and descaled by dipping for 60 seconds in a mixed acid composed of 15% by mass nitric acid and 3% by mass hydrofluoric acid at a temperature of 55 ° C.
  • a cold rolled sheet having a thickness of 1.0 mm is formed by cold rolling, and annealing is performed at 900 ° C. for 1 minute in a reducing atmosphere (H 2 : 5 vol%, N 2 : 95 vol%, dew point ⁇ 40 ° C.).
  • a cold-rolled annealed plate was obtained.
  • This cold-rolled annealed plate was descaled by performing electrolysis twice (10 A / dm 2 for 2 seconds) using a steel plate as an anode in a solution comprising a temperature of 50 ° C., 15 mass% nitric acid and 0.5 mass% hydrochloric acid. The cold-rolled annealed pickling plate was obtained.
  • the surface property of the obtained cold-rolled annealed pickling plate was visually determined.
  • the pickling material of the cold-rolled annealed pickled plate after descaling and the abrasive whose surface was polished with # 600 abrasive paper as in Example 1 were used.
  • Two types of base material corrosion resistance evaluation samples were prepared. Furthermore, when producing a different steel type weld sample with the same steel type and SUS304, assuming that the gas shield was incomplete during TIG welding, both the front bead side and the back bead side were shielded with Ar + 20 vol% N 2 . A welding test using gas was performed.
  • the welding conditions were as follows, and the evaluation surface was the back bead surface.
  • Welding voltage 10V
  • Welding current 90-110A
  • Welding speed 600 mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar + 20 vol% N 2 20 L / min
  • the salt spray cycle test was performed according to JIS H8502 (1999) using the obtained base material, the same steel type welded part, and a different steel type welded part sample.
  • CCT has 15 cycles with 5% by weight NaCl solution spraying (35 ° C., 2 h) ⁇ drying (60 ° C., 4 h, relative humidity 20-30%) ⁇ wetting (40 ° C., 2 h, relative humidity 95% or more) as one cycle. Cycled.
  • the results obtained are shown in Table 6. The determination criteria are the same as in the first embodiment.
  • Inventive example No. Nos. 23 to 28 were excellent in both corrosion resistance and surface properties for any of the evaluation items.
  • No. with addition of Al, Sb, Zr, V Nos. 25 to 28 were very excellent in corrosion resistance even in the welded part of different steel type with SUS304.
  • No. which is a comparative example Since No. 29 had a Cr content of 16.7%, which was lower than the range of the present invention, the rust area was large and the corrosion resistance was poor.
  • Comparative Example No. No. 30 had a Cr content of 19.7%, which is higher than the range of the present invention. This is thought to be due to the fact that the amount of Cr, which is a ferrite phase formation promoting element, is high, so that the weld of the different steel type does not become martensite.
  • Comparative Example No. No. 31 has an Si content of 0.36% and an Mo content of 0.40%, both exceeding the scope of the present invention, and some scale residue is confirmed on the surface of the base material, and the corrosion resistance after cold rolling annealing pickling is also In addition to being inferior, corrosion resistance was also inferior even in the welded part of different steel type with SUS304, particularly when the gas shield was insufficient.
  • Comparative Example No. No. 32 has an Si content of 0.50% and an Nb content of 0.10%, both exceeding the scope of the present invention.
  • the scale residue is confirmed on the surface of the base material, and the corrosion resistance after cold rolling annealing pickling is inferior. It was.
  • the ferritic stainless steel plate having good corrosion resistance of the base metal, corrosion resistance of the same steel type welded portion, corrosion resistance of the different steel type welded portion with SUS304, and surface properties of the cold-rolled annealed pickled plate is hot rolled. It became clear that an annealed pickling plate could be obtained without grinding.

Abstract

 表面性状およびオーステナイト系ステンレス鋼との溶接部の耐食性に優れるフェライト系ステンレス鋼を提供する。 質量%で、C:0.003~0.015%、Si:0.05~0.30%、Mn:0.10~0.35%、P:0.06%以下、S:0.02%以下、Cr:17.0~19.0%、Ni:0.10%超~0.30%、Ti:0.10~0.40%、Nb:0.005%~0.050%未満、Mo:0.20%未満、N:0.005~0.015%、Cu:0.30~0.50%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。

Description

フェライト系ステンレス鋼
 本発明は、表面性状およびオーステナイト系ステンレス鋼(austenitic stainless steel)との溶接部の耐食性に優れたフェライト系ステンレス鋼(ferritic stainless steel)に関するものである。
 ステンレス鋼の中では、その優れた耐食性により、オーステナイト系ステンレス鋼のSUS304(18%Cr-8%Ni)(日本工業規格、JIS G 4305)が広く使われているが、この鋼種は、Niを多量に含むため高価である。このため、SUS304相当の優れた耐食性を持つ鋼種として、特許文献1に記載のステンレス鋼が開発された。
 特許文献1には、成分組成として、mass%で、C:0.03%以下、Si:1.0%以下、Mn:0.5%以下、P:0.04%以下、S:0.02%以下、Al:0.1%以下、Cr:20.5%以上、22.5%以下、Cu:0.3%以上、0.8%以下、Ni:1.0%以下、Ti:4×(C%+N%)以上、0.35%以下、Nb:0.01%以下、N:0.03%以下、C+N:0.05%以下を含有し、残部がFeおよび不可避的不純物からなるフェライト系ステンレス鋼板が開示されている。
 また、JIS-SUS444、JIS-SUS430J1L等のフェライト系ステンレス鋼も、オーステナイト系ステンレス鋼と比較して、応力腐食割れ感受性(Stress Corrosion Cracking sensitivity)が小さく、価格変動の大きいNiを含まない等の特徴を有し、自動車の排気系部材の材料や水タンク、建築材料として広く使用されている。
 しかし、一般にはフェライト系ステンレス鋼はオーステナイト系ステンレス鋼よりも加工性、特に伸びが劣ることから、フェライト系ステンレス鋼では成型できない難加工性部品にはオーステナイト系ステンレス鋼が使用されている。そのため、オーステナイト系ステンレス鋼とフェライト系ステンレス鋼とを組み合わせて、一つの構成品とする場合が多い。この場合、各部材は溶接により結合される場合がほとんどであり、溶接方法としては、主にTIG溶接(Tungsten Inert Gas welding)が用いられ、溶接部(weld zone)にも母材と同様に良好な耐食性が求められる。
特開2007-77496号公報 特開平8-10823号公報
 特許文献1に開示されたフェライト系ステンレス鋼は、同一鋼種での溶接部は良好な耐食性を有する。しかし、SUS304等の異鋼種とTIG溶接した場合、溶接部の耐食性が母材より低下する場合が生じるという問題がある。
 これは、溶接時の熱履歴で鋼中のC、NがCrと結合してCr炭化物(chromium carbides例えばCr23等)、またはCr窒化物(chromium nitrides CrN等)として粒界に析出することにより、粒界近傍に母材よりCr濃度が低くなるCr欠乏層(chromium deplation layer)が生じる、いわゆる鋭敏化(sensitization)をおこし、その耐食性を劣化させることによるものである。
 一般的に、鋭敏化による溶接部での耐食性劣化を防ぐために、鋼中のC、Nを低減するとともに、適量のTiを添加して、C、NをTi炭窒化物として固定して、Cr炭化物、Cr窒化物の生成を防止する方法が取られる。この方法により、特許文献1に開示されたフェライト系ステンレス鋼板同士でのTIG溶接部は、良好な耐食性を示す。
 しかし、このフェライト系ステンレス鋼板のC含有量が0.01%程度なのに対して、SUS304等はC含有量が0.04~0.05%と高いために、通常、SUS304等の高C含有ステンレス鋼との接合で、同様のTi添加で鋭敏化を防止するためには、Ti添加量を1.0%程度までに高めなければならなくなる。
 しかし、フェライト系ステンレス鋼にTiを1.0%程度まで添加すると、凝固中に溶鋼中のTiとNが反応して、TiNとなって析出することがある。このTiNは高温での延性に乏しく、熱延工程での疵となり表面性状が悪化する。このようにして発生した疵は深く、熱延板焼鈍、酸洗、その後の冷間圧延、冷延板焼鈍、酸洗などでも消えることがないので、グラインダー研削等で熱延焼鈍酸洗板の表面を多量に削る処理を行わない限り、いわゆるチタンストリンガー(stringer caused by titanium nitrides)と呼ばれる表面疵となり、冷延焼鈍酸洗板での表面性状を著しく劣化させる。
 また、TIG溶接の場合、表、裏面とも一般に不活性ガスでシールドし、溶接部にテンパーカラー(temper color)と呼ばれる薄い酸化皮膜が極力形成しないような条件で溶接が行われるが、実際の工程では、このガスシールドは十分でなく、空気中の窒素の混入により、先に述べた鋭敏化が助長されてしまうという問題がある。
 また、高価なTiを多量に添加することは、高価なNiを用いないという鋼種の利点を損なうことになるという問題もある。
 本発明はかかる事情に鑑みてなされたものであり、表面性状に優れるとともにフェライト系ステンレス鋼のみならずオーステナイト系ステンレス鋼と溶接した場合にも溶接部の耐食性が優れるフェライト系ステンレス鋼を提供することを目的とする。
 本発明者らは、上記した課題を達成するために、母材部と溶接部の耐食性に及ぼす鋼の化学成分の影響、および鋼板の表面性状(チタンストリンガー疵)について、綿密な調査、検討を行って、以下の知見を得た。
 (1)フェライト相促進元素の濃度を適正化することにより、オーステナイト系ステンレス鋼との溶接部の組織をマルテンサイト相(marutensite phase)とすると、鋭敏化を防止できる。これはマルテンサイト相のC、Nの固溶限が大きいためである。
 (2)極微量のNbを添加すると、Ti窒化物が析出する温度より高温で、Nb窒化物が析出する。その後の冷却過程でこのNb窒化物がTi炭窒化物の核生成サイトとなり、Tiによる鋭敏化防止効果が促進される。
 (3)一般的にNbを添加すると鋼板の再結晶温度が上昇するが、極微量のNbの添加であれば、鋼板の再結晶温度を上げる弊害はほとんどなく、例えば特許文献2に開示されるような炭素鋼のラインを用いた安価な高速酸洗手法が適用できる。
 (4)溶接時にガスシールドが不完全で大気中のNが溶接部に混入しても、鋼に適量のAlを含有させておけば、溶接部にAlNが生成して鋭敏化を防止できる。また、鋼に適量のSbを含有させておけば、溶接部にSbとNの化合物が生成して鋭敏化を防止できる。
 (5)チタンストリンガー疵の主たる原因は、鋼板の極表層部に存在する粗大なTiNに起因している。Ti含有量を最適化することにより、チタンストリンガー疵の発生を防止できる。
 以上より、溶接部においても良好な耐食性を有し、熱延焼鈍酸洗板で表面研削を行うことなく、良好な表面品質の冷延焼鈍酸洗板を製作でき、Ni系のオーステナイト系ステンレス鋼に比較して安価なフェライト系ステンレス鋼が得られることを知見した。
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
 [1]質量%で、C:0.003~0.015%、Si:0.05~0.30%、Mn:0.10~0.35%、P:0.06%以下、S:0.02%以下、Cr:17.0~19.0%、Ni:0.10%超~0.30%、Ti:0.10~0.40%、Nb:0.005%~0.050%未満、Mo:0.20%未満、N:0.005~0.015%、Cu:0.30~0.50%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
 [2]さらに、質量%で、Al:0.02~0.50%を含有することを特徴とする前記[1]に記載のフェライト系ステンレス鋼。
 [3]質量%で、Al:0.10~0.50%である前記[2]に記載のフェライト系ステンレス鋼。
 [4]さらに、質量%で、Sb:0.005~0.30%を含有することを特徴とする前記[1]乃至[3]の何れかに記載のフェライト系ステンレス鋼。
 [5]さらに、質量%で、Zr:0.05~0.60%、V:0.02~0.50%の一種または二種を含有することを特徴とする前記[1]乃至[4]の何れかに記載のフェライト系ステンレス鋼。
 本発明のフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と溶接しても、溶接部の耐食性および表面性状に優れるので、厨房機器、建築内装材、産業機械、自動車部品などに好適である。
 以下に本発明の各構成要件の限定理由について説明する。
 1.成分組成について
 はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
 C:0.003~0.015%
 Cは、Crと結合してCr炭化物を形成しやすく、溶接時に熱影響部(Heat Affected Zone)にCr炭化物が形成されると粒界腐食の原因となるので、Cは低い程望ましい。そこで、Cは0.015%以下とする。一方、低すぎても精錬において多大な時間を必要とするため、C量は、0.003~0.015%の範囲とする。溶接部の耐食性の観点から、好ましくは、0.003~0.012%の範囲である。より好ましくは0.003~0.010%の範囲である。
 Si:0.05~0.30%
 Siは脱酸剤として有用な元素であるので、0.05%以上とする。一方、0.30%を超えると、炭素鋼ラインで用いられる高速酸洗方法においての冷延板の酸洗性を劣化させ、生産性を低下させる。よって、Si量は0.05~0.30%の範囲とする。好ましくは0.05~0.20%の範囲である。
 Mn:0.10~0.35%
 Mnは、脱酸作用があるので0.10%以上含有する。また、オーステナイト相促進元素(austenite former element)であるので、オーステナイト系ステンレス鋼との溶接部(以下異鋼種溶接部と呼ぶ)のマルテンサイト相の形成を促進させる。しかし、過剰に添加した場合、鋼中に存在するSと結合して、可溶性硫化物(soluble sulfides)であるMnSを形成し、耐食性を低下させるので、Mn量は0.10~0.35%の範囲とする。好ましくは0.10~0.25%の範囲である。
 P:0.06%以下
 Pは、0.06%を超えると耐食性に有害なばかりか、固溶強化(solid solution strengthening)により加工性を低下させる。よって、P量は0.06%以下とする。耐食性の観点から、好ましくは0.04%以下である。
 S:0.02%以下
 Sは、耐食性に有害な元素である。特に、Mnと同時に存在する場合、MnSを形成して孔食の起点となり、耐食性を劣化させる。このような作用は、0.02%を超えると顕著になる。このため、S量は0.02%以下とする。耐食性の観点から、好ましくは、0.01%以下である。より好ましくは0.006%以下である。
 Cr:17.0~19.0%
 Crは、ステンレスの表面に不動態皮膜を形成させ、母材の耐食性を上げるのに不可欠な元素である。良好な耐食性を得るためには17.0%以上の添加が必要である。しかし、19.0%を超えての添加はSUS304との異鋼種溶接部でマルテンサイトが生成しなくなり耐食性低下を防止できなくなる。このため、Cr量は17.0~19.0%の範囲とする。好ましくは17.5~18.5%の範囲である。
 Ni:0.10%超~0.30%
 Niは、耐隙間腐食性(crevice corrosion resistance)の改善に寄与する元素である。さらには、Mnと同じく、オーステナイト相生成促進元素であるので、異鋼種溶接部のマルテンサイト相の形成を促進させる。しかし、0.30%を超えて添加するとSCC感受性が高くなり、また高価な元素でもある。このため、Ni量は0.10%超~0.30%の範囲とする。好ましくは0.20~0.30%の範囲である。
 Ti:0.10~0.40%
 Tiは前述したように、オーステナイト系ステンレス鋼との異鋼種溶接部の耐食性を確保するために必要不可欠な元素である。しかし、過剰に添加し過ぎると、TiNの析出量が増加してチタンストリンガー疵が顕著となり、熱延焼鈍酸洗板の表面研削等を行わないと、製品板(冷延焼鈍酸洗板)での表面性状を良好に保つことができなくなる。このため、Ti量は、0.10~0.40%の範囲とする。異鋼種溶接部の耐食性の観点から、好ましくは0.20~0.40%の範囲である。
 Nb: 0.005%~0.050%未満
 Nbの微量添加も、本発明に関する重要な要素の一つである。Nbは、Cr、Tiよりも優先的に炭窒化物を形成する。特に異鋼種溶接部においては、溶融池(weld metal)および熱影響部において、Ti炭窒化物が生成する温度よりも高温でNb炭窒化物の生成が始まる。後の冷却過程においては、理由は明らかではないが、Nb炭窒化物を核生成サイトとして、多量に含まれるTiの炭窒化物が生成する。つまり、微量のNb添加によって、Ti炭窒化物の生成が促進されることから、Nbを含有しない場合に比べ、異鋼種溶接部の溶融池、熱影響部のTiによるC、Nの固定能力が強固になり、より有効に鋭敏化が防止される。このため、本発明のNb量の下限を0.005%以上とする。一方、過剰にNbを添加すると、冷間圧延板の再結晶温度(recrystallization temperature)が上昇するため、十分な機械的性質を得るためには、高温で焼鈍する必要がある。このため、Nbを無添加とした場合に比べ、仕上焼鈍(finishing annealing)時に生成する酸化皮膜が厚く成長する。このため、前述した炭素鋼ラインで用いられる高速酸洗方法における冷延板の酸洗性を劣化させ、生産性を低下させる。よって、Nb量は0.005%~0.050%未満の範囲とする。異鋼種溶接部の耐食性の観点から、好ましくは0.010%~0.050%未満の範囲である。
 Mo:0.20%未満
 Moは、不動態皮膜(passivation film)を強固にし、耐食性を顕著に向上させる。しかし、フェライト相生成促進元素であり、微量の添加によっても、オーステナイト系ステンレス鋼との異鋼種溶接部にマルテンサイト相が生成しなくなる。そのため、異鋼種溶接部がフェライト相となって鋭敏化が発生する。鋭敏化が発生する。よって、Mo量は0.20%未満とする。また、Moは熱延板の靭性を低下させることから、好ましくは0.10%未満である。なお、Moの下限は0とする。
 N:0.005~0.015%
 Nは、Crと結合してCr窒化物を形成しやすい。溶接時、異鋼種溶接部および熱影響部にCr窒化物が形成すると粒界腐食(intergranular corrosion)の原因となるので、Nは低いほど望ましい。また、チタンストリンガー疵の原因となるTiNの析出量を低減するために、できるだけ減らした方が良い。しかし、低すぎても精錬において多大な時間が必要となるため、N量は0.005~0.015%の範囲とする。異鋼種溶接部の耐食性の観点から、好ましくは0.005~0.012%の範囲であり、より好ましくは0.005~0.010%の範囲である。
 Cu:0.30~0.50%
 Cuは、耐食性、特に水溶液中や弱酸性の水滴が付着した場合の耐食性を高める元素である。これは、Cuが水溶液や水滴に一度溶解した後、地鉄表面に再付着して、地鉄の溶解を抑えるためである。しかし、Cu量が0.50%を超えると、熱間加工性が低下することに加え、熱延時に赤スケールと呼ばれるCu起因の水あめ状酸化物が熱延スラブ上に生成し、表面欠陥の原因ともなる。よって、Cu量は0.30~0.50%の範囲とする。熱間加工性の観点から、好ましくは0.30~0.40%の範囲である。
 Mg:0.0005%未満
 Mgは、主に転炉の中のレンガより混入する不純物である。さらに、Mgは多種多様の介在物の起点となり、他の介在物の核生成サイトにもなる。また、焼鈍などを行っても再固溶しにくいため、熱延焼鈍酸洗板、製品板(冷延焼鈍酸洗板)の表面性状を劣化させる。よって、Mg量は0.0005%未満とする。良好な表面性状を保つために、好ましくは0.0003%未満である。
 以上が本発明の基本化学成分であり、残部はFe及び不可避的不純物からなるが、更に、TIG溶接のガスシールドと異鋼種溶接部の鋭敏化防止の観点からAl、Sbを選択元素として添加してもよい。更に、異鋼種溶接部の耐食性向上の目的でZr、Vを選択元素として添加してもよい。なお不可避的不純物としては、例えば、Ca:0.0020%以下が許容できるが、これに限らない。
 Al:0.02~0.50%
 Alは、TIG溶接のガスシールドが不十分な場合に、特に重要となる元素である。前述したように、TIG溶接の場合、裏面をガスシールドして溶接するのが一般的である。しかし、異鋼種溶接部の形状が複雑な場合には、ガスシールドが十分ではなく、大気中のNが溶融池に混入する場合がある。この場合、C、N量がマルテンサイト相の固溶限(solid solubility limit)を超えると、Tiのみでは鋭敏化を完全に防止できなくなる。このような場合、あらかじめAlを添加しておくのが鋭敏化防止に効果的である。これは、Alが溶融池に混入したNをAlNとして固定するためである。この効果はAlを0.02%以上含有することにより得られる。しかし、0.50%を超えてAlを含有すると、スラブ段階で非金属系介在物が生成し、熱延板、冷延板の表面性状が劣化する原因となる。よって、Alを含有する場合は、Al量は0.02~0.50%の範囲とすることが好ましい。より好ましい下限は、0.10%、さらに好ましくは、0.15%である。より好ましい上限は0.30%である。
 Sb:0.005~0.30%
 SbもAlと同様に、TIG溶接のガスシールドが不十分な場合に、大気中から混入するNを捕らえる効果があり、複雑な形状の構成体の場合には、添加したほうが良い元素である。しかし、Sbを過剰に添加すると、スラブ段階で非金属系介在物が生成し、熱延板、冷延板の表面性状が劣化する原因となる。よって、Sbを添加する場合は、Sb量は0.005~0.30%の範囲とすることが好ましい。製品板(冷延焼鈍酸洗板)での表面性状の観点から、より好ましくは0.005~0.10%の範囲である。
 Zr:0.05~0.60%
 Zrは、Tiと同様にCrよりも優先的に炭窒化物を形成し、同鋼種、異鋼種溶接部の耐食性を向上させる元素である。しかし、Zrは、Tiよりも高価であるうえ、Zrを過剰に添加すると、金属間化合物を生成し、熱延板の靭性を劣化させる。よって、Zrを添加する場合は、Zr量は0.05~0.60%の範囲とすることが好ましい。より好ましくは0.15~0.35%の範囲である。
 V:0.02~0.50%
 Vも、Tiと同様にCrよりも優先的に炭窒化物を形成し、同鋼種、異鋼種溶接部の耐食性を向上させる元素である。しかし、その効果はTiよりも小さい。また、高価な元素でもある。このため、Vを添加する場合は、V量は0.02~0.50%の範囲とすることが好ましい。より好ましくは、0.02~0.05%の範囲である。
 2.製造条件について
 次に、本発明鋼の好適製造方法について説明する。上記した好適成分組成の鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により、鋼素材(スラブ)とする。この鋼素材を、その後1100~1250℃で1~24時間の加熱をするか、あるいは加熱することなく直接、熱間圧延して熱延板とする。
 熱延板には、通常、800~1100℃で1~10分の熱延板焼鈍が施されるが、用途によっては熱延板焼鈍を省略してもよい。ついで、熱延板酸洗後、冷間圧延により冷延板としたのち、仕上焼鈍を施して、製品板とする。冷間圧延は、伸び性、曲げ性、プレス成形性および形状矯正の観点から、50%以上の圧下率で行うことが望ましい。冷延板の仕上焼鈍は、一般的にはJIS G0203の表面仕上げNo.2B仕上げ品の場合、良好な機械的性質の確保、および酸洗性の観点から800~950℃で焼鈍を行うのが好ましい。
 しかし、タンデム圧延-CAL(tandem cold rolling and continuous annealing line)による高生産性の冷間圧延製品の場合には、炭素鋼のラインを利用した前述の炭素鋼焼鈍酸洗ラインの高速酸洗(特許文献2参照)を用いた安価プロセスによる製造が最も好ましく、この際の焼鈍温度は800~900℃で行うのが好ましい。また、より光沢が求められる箇所の部材には、BA焼鈍による仕上焼鈍が有効である。また、前述したが、冷間圧延後、および加工後に更に良好な表面性状を得るために、研磨等を施しても何ら問題は無い。
 以下、実施例に基づいて、本発明をさらに詳しく説明する。
 表1に示す発明例No.1~8および33、比較例No.9~12の組成を有する鋼を50kg小型真空溶解炉で溶製した。これらの鋼塊を、Arガスでパージした炉内で1150℃に加熱後、熱間圧延を施して、板厚4.0mmの熱延板とした。
 ついで、これらの熱延板に大気中で、950℃で1分間の熱延板焼鈍を施した後、表面をガラスビーズのショットブラスト処理を行った後、温度80℃の20質量%硫酸溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸からなる温度55℃の混合酸中に60秒浸漬することにより酸洗を行い、脱スケールを行った。
 さらに、冷間圧延により板厚1.0mmの冷間圧延板とし、大気開放炉で、900℃で1分間の焼鈍を行い、冷延焼鈍板を得た。この冷延焼鈍板を、温度80℃、20質量%NaSO中で鋼板を陽極とした3A/dmで10秒の電解酸洗を三回行った後、5質量%硝酸および3質量%弗酸からなる温度55℃の混合酸に30秒間浸漬することにより、脱スケールを行い、冷延焼鈍酸洗板を得た。
Figure JPOXMLDOC01-appb-T000001
 
まず、得られた冷延焼鈍酸洗板の表面性状の判定を目視で行った。
ついで、得られた冷延焼鈍酸洗板を供試材として、母材耐食性評価用のサンプルとして、脱スケール後の冷延焼鈍酸洗板の酸洗まま材と#600番の研磨紙で表面を研磨した研磨材の2種類のサンプルを作製した。
 さらに、同じ供試材に対して、同材でのTIG溶接部試験を行った。この試験では、それぞれの供試材から採取した2枚の板をTIG溶接で接合し、それらの表面を#600番の研磨紙で研磨して、同鋼種溶接部耐食性評価サンプルとした。
 また、各供試材に対して、SUS304との異鋼種TIG溶接試験を行った。この試験では、各供試材から採取した板と板厚1.0mmのSUS304の板をTIG溶接で接合し、それらの表面を#600番の研磨紙で研磨して、異鋼種溶接部耐食性評価サンプルとした。同鋼種、異鋼種TIG溶接試験条件は、ともに下記の通りで、裏ビード幅(width of the back bead)が3mm以上になるように溶接電流を制御し、評価面は裏ビード面とした。
  溶接電圧: 10V
  溶接電流: 90~110A
  溶接速度: 600mm/min
  電極: 1.6mmタングステン電極
  シールドガス:表ビード側(front bead side) Ar 20L/min
         裏ビード側(back bead side) Ar 20L/min
得られた母材(酸洗まま材、研磨材)、同鋼種溶接部、異鋼種溶接部サンプルを用いて、JIS H 8502(1999)に準じて塩水噴霧サイクル試験(CCT、neutral salt spray cyclic corrosion test)を行った。CCTは、5質量%NaCl溶液噴霧(35℃、2h)→乾燥(60℃、4h、相対湿度20~30%)→湿潤(40℃、2h、相対湿度95%以上)を1サイクルとして、15サイクル実施した。得られた結果を表2に示す。
なお、各試験の判定基準は以下の通りである。
 (a)冷延酸洗焼鈍後の外観: 表面欠陥(ヘゲ(scab)、ピンホール(pin hole)、線ヘゲ(linear scab)、チタンストリンガー疵、白筋模様(white streak)の色異常)がある部分の長さの板全長に対する割合で判断し、欠陥率5%未満を◎、欠陥率5%以上10%未満を○、欠陥率10%以上20%未満を△、欠陥率20%以上を×とし、◎と○を合格、△と×を不合格と判定した。
 (b)酸洗まま材および♯600番研磨材のCCT結果: 15サイクル試験後の発錆面積が、発銹率(Rust area ratio)10%未満を◎、発銹率10%以上20%未満を○、発銹率20%以上30%未満を△、発銹率30%以上を×とし、◎と○を合格、△と×を不合格と判定した。
 (c)同鋼種溶接部耐食性試験結果: 同鋼種でTIG突合せ溶接を行い、#600番の研磨紙で溶接部のテンパーカラーを除去後、CCT15サイクル後の溶接部の発銹率10%未満を◎、発銹率10%以上20%未満を○、発銹率20%以上30%未満を△、発銹率30%以上を×とし、◎と○を合格、△と×を不合格と判定した。
 (d)異鋼種溶接部耐食性試験結果: SUS304とTIG突合せ溶接を行い、#600番の研磨紙で溶接部のテンパーカラーを除去後、CCT15サイクル後の溶接部の発銹率10%未満を◎、発銹率10%以上20%未満を○、発銹率20%以上30%未満を△、発銹率30%以上を×とし、◎と○を合格、△と×を不合格と判定した。
Figure JPOXMLDOC01-appb-T000002
 
 発明例であるNo.1~8および33は、成分組成が本発明の範囲内であり、いずれの評価項目に対しても、耐食性、表面性状ともに優れていた。
一方、Cr量が16.2%と低い比較例No.9は、発銹面積が多く、耐食性が劣っていた。
また、Cr量が19.4%と高い比較例No.10は、異鋼種溶接部の発銹面積が多く、耐食性が劣っていた。これは、フェライト生成促進元素であるCr量が高いため、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
また、Ti量が0.07%と少ない比較例No.11は、異鋼種溶接部の発銹面積が多く、耐食性が劣っていた。
さらに、Si量とNb量が本発明範囲を超える比較例No.12では、母材の表面に若干のスケール残りが確認され、冷延焼鈍酸洗後の耐食性が劣っていた。
 次に、表3に示す発明例No.13~18、比較例No.19~22の成分組成を有するフェライト系ステンレス鋼を150tonVOD(Vacuum Oxygen Decaburization)で溶製した後、連続鋳造でスラブに鋳造した。これを1150℃の温度に加熱して熱間圧延を行い、板厚4.0mmの熱延コイルとした。次いで、950℃で1~5分間、空気比1.3のコークス炉ガス燃焼雰囲気中で焼鈍し、表面を鉄球ビーズのショットブラスト処理(shot blasting)を行った後、温度80℃の20質量%硫酸溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸からなる温度55℃の混合酸中に60秒浸漬することにより酸洗して、脱スケールを行い、熱延焼鈍酸洗コイルとした。さらに、冷間圧延により板厚1.0mmの冷延板とし、900℃で2分間、空気比1.3のコークス炉ガス燃焼雰囲気中で焼鈍し、温度80℃、20質量%NaSO中で鋼板を陽極とした3A/dmで10秒の電解酸洗(electrolytic descaling)を三回行った後、5質量%硝酸および3質量%弗酸からなる温度55℃の混合酸に30秒間浸漬することにより脱スケールを行い、冷延焼鈍酸洗板を得た。
Figure JPOXMLDOC01-appb-T000003
 
 まず、こうして得られた冷延焼鈍酸洗板の表面性状の判定を目視で行った。
次いで、実施例1と同様に母材、同鋼種溶接部、異鋼種溶接部サンプルを作成して、実施例1と同様にJIS H 8502(1999)に準じて塩水噴霧サイクル試験(CCT)を行って、耐食性評価試験を行った。得られた結果を表4に示す。なお、各試験の判定基準は、実施例1と同様とした。
Figure JPOXMLDOC01-appb-T000004
 
 発明例であるNo.13~18は、成分組成が本発明の範囲内であり、いずれの評価項目に対しても、耐食性、表面性状ともに優れていた。
 一方、比較例であるNo.19は、Mo量が0.40%と本発明範囲より高いため、同じく、比較例であるNo.20はCr量が19.5%と本発明範囲より高いため、異鋼種溶接部の発銹面積が多く、耐食性が劣っていた。これは、フェライト相生成促進元素であるMo量およびCr量が高いために、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
 また、比較例No.21は、Si量が0.33%、Nb量が0.003%といずれも本発明の範囲を外れており、同じく、比較例No.22は、Si量が0.45%、Mg量が0.0010%といずれも本発明範囲を超えているため、若干のスケール残りが確認され、冷延焼鈍酸洗後の耐食性が劣っていた。 
 表5に示す発明例No.23~28、比較例No.29~32の成分組成を有する鋼を50kg小型真空溶解炉で溶製した。これらの鋼塊をArガスでパージした炉内で1150℃に加熱後、熱間圧延を行い、板厚4.0mmの熱延板とした。
 ついで、これらの熱延板を大気中で、950℃で1分間の熱延板焼鈍を施した後、表面をガラスビーズのショットブラスト処理を行い、温度80℃の20質量%硫酸溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸からなる温度55℃の混合酸中に60秒浸漬することにより、酸洗して脱スケールを行った。
 さらに、冷間圧延により板厚1.0mmの冷間圧延板とし、還元性雰囲気(H:5vol%,N:95vol%、露点-40℃)で、900℃で1分間の焼鈍を行い、冷延焼鈍板を得た。この冷延焼鈍板を、温度50℃、15質量%硝酸および0.5質量%塩酸からなる溶液中で鋼板を陽極とした電気分解(10A/dmで2秒)を2回行う脱スケールを行い、冷延焼鈍酸洗板を得た。
Figure JPOXMLDOC01-appb-T000005
 
 まず、得られた冷延焼鈍酸洗板の表面性状の判定を目視で行った。
次いで、冷延焼鈍酸洗板を供試材として、実施例1と同様に脱スケール後の冷延焼鈍酸洗板の酸洗まま材と#600番の研磨紙で表面を研磨した研磨材の2種類の母材耐食性評価用サンプルを作製した。
さらに、同鋼種およびSUS304との異鋼種溶接サンプルを作製するにあたり、TIG溶接の際にガスシールドが不完全であった場合を想定して、表ビード側、裏ビード側ともにAr+20vol%Nのシールドガスを用いた溶接試験を行った。
 溶接条件は下記の通りで、評価面は裏ビード面とした。
  溶接電圧  :10V
  溶接電流  :90~110A
  溶接速度  :600mm/min
  電極    :1.6mmタングステン電極
  シールドガス:表ビード側 Ar+20vol%N  20L/min
         裏ビード側 Ar+20vol%N  20L/min
 得られた母材、同鋼種溶接部、異鋼種溶接部サンプルを用いて、JIS H 8502(1999)に準じて塩水噴霧サイクル試験(CCT)を行った。CCTは、5質量%NaCl溶液噴霧(35℃、2h)→乾燥(60℃、4h、相対湿度20~30%)→湿潤(40℃、2h、相対湿度95%以上)を1サイクルとして、15サイクルを行った。得られた結果を表6に示す。なお、判定基準は、実施例1と同様である。
Figure JPOXMLDOC01-appb-T000006
 
 発明例であるNo.23~28は、いずれの評価項目に対しても、耐食性、表面性状ともに優れていた。Al、Sb,Zr、Vを添加したNo.25~28は、SUS304との異鋼種溶接部においても、耐食性が非常に優れていた。
一方、比較例であるNo.29はCr量が16.7%と本発明の範囲よりも低いため、発銹面積が多く耐食性が劣っていた。
 また、比較例No.30はCr量が19.7%と本発明の範囲よりも高いため、異鋼種溶接部の発銹面積が多く耐食性が劣っていた。これは、フェライト相生成促進元素であるCr量が高いため、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
 また、比較例No.31はSi量が0.36%、Mo量が0.40%といずれも本発明範囲を超えており、母材の表面に若干のスケール残りが確認され、冷延焼鈍酸洗後の耐食性も劣っていたことに加え、特にガスシールドが不十分な場合のSUS304との異鋼種溶接部においても耐食性が劣っていた。
 さらに、比較例No.32はSi量が0.50%、Nb量も0.10%といずれも本発明範囲を超えており、母材の表面にスケール残りが確認され、冷延焼鈍酸洗後の耐食性が劣っていた。
 以上より、本発明例では、母材の耐食性、同鋼種溶接部の耐食性、SUS304との異鋼種溶接部の耐食性、冷延焼鈍酸洗板の表面性状も良好なフェライト系ステンレス鋼板が、熱延焼鈍酸洗板を研削することなく得ることができることが明らかになった。
 器物、厨房機器、建築内外装材、建築金具、エレベーター・エスカレーター内装材、家電、自動車部品等を中心に、耐食性が要求される部材として好適である。

Claims (5)

  1.  質量%で、C:0.003~0.015%、Si:0.05~0.30%、Mn:0.10~0.35%、P:0.06%以下、S:0.02%以下、Cr:17.0~19.0%、Ni:0.10%超~0.30%、Ti:0.10~0.40%、Nb:0.005%~0.050%未満、Mo:0.20%未満、N:0.005~0.015%、Cu:0.30~0.50%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
  2.  さらに、質量%で、Al:0.02~0.50%を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。
  3.  質量%で、Al:0.10~0.50%である請求項2に記載のフェライト系ステンレス鋼。
  4.  さらに、質量%で、Sb:0.005~0.300%を含有することを特徴とする請求項1乃至3の何れかに記載のフェライト系ステンレス鋼。
  5.  さらに、質量%で、Zr:0.05~0.60%、V:0.02~0.50%の一種または二種を含有することを特徴とする請求項1乃至4の何れかに記載のフェライト系ステンレス鋼。
     
     
PCT/JP2013/001462 2012-03-13 2013-03-07 フェライト系ステンレス鋼 WO2013136736A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013527406A JP5376099B1 (ja) 2012-03-13 2013-03-07 フェライト系ステンレス鋼
EP13761131.5A EP2826878B1 (en) 2012-03-13 2013-03-07 Ferritic stainless steel
CN201380014308.5A CN104169451B (zh) 2012-03-13 2013-03-07 铁素体系不锈钢
ES13761131.5T ES2632781T3 (es) 2012-03-13 2013-03-07 Acero inoxidable ferrítico
KR20147024894A KR20140127862A (ko) 2012-03-13 2013-03-07 페라이트계 스테인리스강
US14/384,300 US20150023832A1 (en) 2012-03-13 2013-03-07 Ferritic stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-055308 2012-03-13
JP2012055308 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013136736A1 true WO2013136736A1 (ja) 2013-09-19

Family

ID=49160669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001462 WO2013136736A1 (ja) 2012-03-13 2013-03-07 フェライト系ステンレス鋼

Country Status (8)

Country Link
US (1) US20150023832A1 (ja)
EP (1) EP2826878B1 (ja)
JP (1) JP5376099B1 (ja)
KR (1) KR20140127862A (ja)
CN (1) CN104169451B (ja)
ES (1) ES2632781T3 (ja)
TW (1) TWI510645B (ja)
WO (1) WO2013136736A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
WO2015015735A1 (ja) * 2013-07-29 2015-02-05 Jfeスチール株式会社 溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2015105045A1 (ja) * 2014-01-08 2015-07-16 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
WO2015105046A1 (ja) * 2014-01-08 2015-07-16 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
JP2022514575A (ja) * 2018-12-21 2022-02-14 オウトクンプ オサケイティオ ユルキネン フェライト系ステンレス鋼

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608460T3 (es) * 2011-12-27 2017-04-11 Jfe Steel Corporation Acero inoxidable ferrítico
JP6137089B2 (ja) * 2014-09-02 2017-05-31 Jfeスチール株式会社 冷延鋼板の製造方法および冷延鋼板の製造設備
KR102177522B1 (ko) 2016-06-10 2020-11-12 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용 스테인리스 강판의 제조 방법
JP6323623B1 (ja) 2016-06-10 2018-05-16 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
CN113385897A (zh) * 2021-06-11 2021-09-14 山西太钢不锈钢股份有限公司 一种铁素体不锈钢薄壁焊管的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810823A (ja) 1994-06-24 1996-01-16 Kawasaki Steel Corp ステンレス冷延鋼帯の焼鈍・脱スケール方法
JPH11106875A (ja) * 1997-08-05 1999-04-20 Kawasaki Steel Corp 深絞り性と耐リジング性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2003201547A (ja) * 2001-10-31 2003-07-18 Jfe Steel Kk 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法
JP2007077496A (ja) 2005-08-17 2007-03-29 Jfe Steel Kk 耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2007119856A (ja) * 2005-10-28 2007-05-17 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
JP2008038183A (ja) * 2006-08-03 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp 耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼
JP2010116619A (ja) * 2008-11-14 2010-05-27 Nippon Steel & Sumikin Stainless Steel Corp 加熱後耐食性に優れた自動車排気系部材用省Mo型フェライト系ステンレス鋼

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145906A (ja) * 1992-11-02 1994-05-27 Kawasaki Steel Corp 耐凝縮水腐食性に優れたフェライト系ステンレス鋼
EP1514949B1 (en) * 2002-06-17 2015-05-27 JFE Steel Corporation FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
CA2650469C (en) * 2006-05-09 2014-02-11 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
IN2014KN00959A (ja) * 2011-11-30 2015-10-09 Jfe Steel Corp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810823A (ja) 1994-06-24 1996-01-16 Kawasaki Steel Corp ステンレス冷延鋼帯の焼鈍・脱スケール方法
JPH11106875A (ja) * 1997-08-05 1999-04-20 Kawasaki Steel Corp 深絞り性と耐リジング性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2003201547A (ja) * 2001-10-31 2003-07-18 Jfe Steel Kk 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法
JP2007077496A (ja) 2005-08-17 2007-03-29 Jfe Steel Kk 耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2007119856A (ja) * 2005-10-28 2007-05-17 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
JP2008038183A (ja) * 2006-08-03 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp 耐すきま腐食性、成形性に優れたフェライト系ステンレス鋼
JP2010116619A (ja) * 2008-11-14 2010-05-27 Nippon Steel & Sumikin Stainless Steel Corp 加熱後耐食性に優れた自動車排気系部材用省Mo型フェライト系ステンレス鋼

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
WO2015015735A1 (ja) * 2013-07-29 2015-02-05 Jfeスチール株式会社 溶接部の耐食性に優れたフェライト系ステンレス鋼
JP5700182B1 (ja) * 2013-07-29 2015-04-15 Jfeスチール株式会社 溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2015105045A1 (ja) * 2014-01-08 2015-07-16 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
WO2015105046A1 (ja) * 2014-01-08 2015-07-16 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
JP5862846B2 (ja) * 2014-01-08 2016-02-16 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
JP5987996B2 (ja) * 2014-01-08 2016-09-07 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
JPWO2015105045A1 (ja) * 2014-01-08 2017-03-23 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
JP2022514575A (ja) * 2018-12-21 2022-02-14 オウトクンプ オサケイティオ ユルキネン フェライト系ステンレス鋼
JP7464606B2 (ja) 2018-12-21 2024-04-09 オウトクンプ オサケイティオ ユルキネン フェライト系ステンレス鋼の製造方法

Also Published As

Publication number Publication date
EP2826878B1 (en) 2017-05-10
ES2632781T3 (es) 2017-09-15
EP2826878A1 (en) 2015-01-21
JPWO2013136736A1 (ja) 2015-08-03
US20150023832A1 (en) 2015-01-22
CN104169451B (zh) 2017-11-28
KR20140127862A (ko) 2014-11-04
CN104169451A (zh) 2014-11-26
EP2826878A4 (en) 2015-02-25
JP5376099B1 (ja) 2013-12-25
TW201348463A (zh) 2013-12-01
TWI510645B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5376099B1 (ja) フェライト系ステンレス鋼
JP5713118B2 (ja) フェライト系ステンレス鋼
JP5534119B1 (ja) フェライト系ステンレス鋼
US20090056838A1 (en) Ferritic Stainless Steel Sheet Having Excellent Corrosion Resistance and Method of Manufacturing the Same
CN109415784B (zh) 铁素体系不锈钢板
JP5903881B2 (ja) 溶接部の耐食性に優れたフェライト系ステンレス鋼
JP5205953B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5556951B2 (ja) フェライト系ステンレス鋼
JP5205951B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5205952B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5838929B2 (ja) オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2012172808A1 (ja) フェライト系ステンレス鋼
JP5168425B1 (ja) フェライト系ステンレス鋼
JP2016065319A (ja) 高強度鋼板の表面性状の評価方法および高強度鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527406

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024894

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14384300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201406110

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2013761131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013761131

Country of ref document: EP