WO2013133467A1 - 판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법 - Google Patents

판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법 Download PDF

Info

Publication number
WO2013133467A1
WO2013133467A1 PCT/KR2012/001888 KR2012001888W WO2013133467A1 WO 2013133467 A1 WO2013133467 A1 WO 2013133467A1 KR 2012001888 W KR2012001888 W KR 2012001888W WO 2013133467 A1 WO2013133467 A1 WO 2013133467A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball mill
carbon
aluminum
ball
graphite material
Prior art date
Application number
PCT/KR2012/001888
Other languages
English (en)
French (fr)
Inventor
이영희
소강표
금동훈
박영우
박종길
정준철
최용호
Original Assignee
성균관대학교 산학협력단
주식회사 대유신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120024193A external-priority patent/KR101393424B1/ko
Priority claimed from KR1020120024194A external-priority patent/KR101347630B1/ko
Application filed by 성균관대학교 산학협력단, 주식회사 대유신소재 filed Critical 성균관대학교 산학협력단
Priority to JP2014503585A priority Critical patent/JP5723058B2/ja
Priority to EP12805555.5A priority patent/EP2687485A4/en
Priority to CN201280001011.0A priority patent/CN103562130A/zh
Priority to US13/647,833 priority patent/US20130237404A1/en
Publication of WO2013133467A1 publication Critical patent/WO2013133467A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent

Definitions

  • the present invention relates to a method for producing a plate-shaped carbon nanoparticles and a method for producing an aluminum-carbon composite material using the same, and more particularly, to a method for producing a plate-shaped carbon nanoparticles consisting of a single layer to several tens of carbon atomic layers and aluminum using the same It relates to a method for producing a carbon composite material.
  • Carbon material is a material composed mainly of carbon atoms, and has been widely used in nature and has been used as a carbon material such as charcoal and ink for a long time. Carbon materials are classified into four materials along with metals, ceramics, and polymers, as they are used in high-tech industries because they have properties such as ultra high temperature, light weight, and abrasion resistance.
  • the carbon material may have a compound form combined with other elements in addition to the form of carbon alone. Since the electrical and mechanical properties vary depending on the form of bonding with other elements, it can be used in various fields according to the purpose. Therefore, various carbon products are produced at present.
  • Carbon alone is a material made of carbon fiber, graphite, nano-carbon materials (carbon nanotubes, graphene, carbon nanoplates, fullerenes, etc.).
  • Nanocarbon materials have good thermal, electrical, and mechanical properties and are expected to be applied in as many areas as general carbon materials.
  • the two-dimensional structure of graphene or plate-shaped carbon nanoparticles has unique advantages over other carbon allotropees in terms of their electrical and electronic applications, as well as their unique physical properties. That is, due to the two-dimensional structure, there is an advantage that the electronic circuit can be configured by introducing a general semiconductor process of the top-down method represented by printing, etching, and the like.
  • Nanocarbon materials have very high specific surface areas and thus have unique physical and chemical properties that are not seen in bulk.
  • New concept high-efficiency / multifunctional products that take advantage of the characteristics of these nanomaterials are continuously being developed, and their application fields are gradually expanding.
  • Aluminum is used for a variety of purposes, from foils used in kitchens to disposable tableware, windows, cars, aircraft and spacecraft.
  • the characteristics of aluminum are as light as 1/3 of the weight of iron, and excellent strength when alloyed with other metals.
  • a chemically stable oxide film is present on the aluminum surface, corrosion is prevented from progressing due to moisture, oxygen, or the like.
  • aluminum has been used in automobiles and aircraft.
  • aluminum parts are lighter than conventional steel parts, thereby reducing their own loads, and this has the effect of gaining benefits that can contribute to reducing fuel consumption by reducing the weight of the vehicle body.
  • such aluminum has only about 40% of tensile strength compared to iron, and when used as a structural material, the thickness of the structural aluminum tube or plate becomes very thick, which results in excessive material costs and excessive material costs. Problems will arise.
  • a carbon material for example, a carbon nano material
  • a carbon material is difficult to disperse due to interactions between van der Waals forces between materials, making it difficult to uniformly disperse in aluminum.
  • the carbon material and aluminum is not mixed well due to the difference in surface tension between the carbon material and aluminum.
  • One object of the present invention is to provide a method for producing plate-shaped carbon nanoparticles using mechanical shear force.
  • Another object of the present invention is to provide an aluminum-carbon composite material using the plate-shaped carbon nanoparticles prepared by the above method.
  • the method of manufacturing the plate-shaped carbon nanoparticles for achieving the above object of the present invention is a graphite material and ball mill in a ball mill container rotatably coupled to a disk rotatable in a first direction in a second direction opposite to the first direction.
  • Putting the ball ; Rotating the disk and the ball mill container for a predetermined time such that the ball mill ball rubs against the wall surface of the ball mill container so that the ball mill ball itself rotates to apply mechanical shear force to the graphite material; And separating the plate-shaped carbon nanoparticles prepared from the graphite material.
  • the graphite material is selected from the group consisting of plate-shaped artificial graphite material, powder-shaped artificial graphite material, lump-shaped artificial graphite material, plate-shaped natural graphite material, powder-shaped natural graphite material and lump-shaped natural graphite material. It may include at least one.
  • Rotating the disk and the ball mill container to apply mechanical shear force to the graphite material may be performed in a non-oxidizing atmosphere.
  • the ratio of the rotational speed of the ball mill vessel to the rotational speed of the disk may be 30% or more and 70% or less of the critical angular velocity ratio.
  • the rotation speed of the disk and the ball mill ball may be 150 rpm or more and 500 rpm or less.
  • the release agent may include at least one selected from the group consisting of a surfactant, an organic material, and an inorganic material capable of increasing friction between the graphite material and the ball mill ball.
  • the surfactant may include at least one selected from the group consisting of SDS, NaDDBs, and CTAB
  • the organic material may include at least one selected from the group consisting of sugar and DNA
  • the inorganic material may be aluminum. It may include.
  • a method of manufacturing an aluminum-carbon composite material comprising: combining an aluminum powder with a carbon material to produce an aluminum-carbon mixed powder; Applying a mechanical shearing force to the aluminum-carbon mixed powders to produce modified aluminum-carbon mixed powders; And sintering the modified aluminum-carbon mixed powders.
  • the preparing of the aluminum-carbon mixed powder may include mixing the carbon material with the solvent and then performing ultrasonic treatment; And adding ultrasonic powder to the ultrasonicated mixed solution and then ultrasonicating the mixture.
  • the carbon material may include at least one of a group consisting of graphite plates, graphite fibers, carbon fibers, carbon nanofibers, and carbon nanotubes.
  • the aluminum powders may be added such that the carbon material is about 0.1 to 50 wt.% Based on the weight of the aluminum powders.
  • the manufacturing of the modified aluminum-carbon mixed powders may include the aluminum-carbon mixed powders and the ball mill ball in a ball mill container rotatably coupled to a disk rotatable in a first direction in a second direction opposite to the first direction. Injecting; And rotating the disc and the ball mill container for a predetermined time such that the ball mill ball rubs against the wall surface of the ball mill container so that the ball mill ball itself rotates to apply mechanical shearing force to the aluminum-carbon mixed powders.
  • the ratio of the rotational speed of the ball mill vessel to the rotational speed of the disk may be 30% or more and 70% or less of the critical angular velocity ratio.
  • the rotation speed of the disk may be 150 rpm or more and 500 rpm or less.
  • the sintering of the modified aluminum-carbon mixed powders may include filling the mold with the modified aluminum-carbon mixed powders; And heating the modified aluminum-carbon mixed powders to a temperature of 500 to 700 ° C. while applying a pressure of 10 MPa to 100 MPa to the modified aluminum-carbon mixed powders filled in the mold.
  • the manufacturing method of the plate-shaped carbon nanoparticles according to the embodiment of the present invention it is possible to produce a plate-shaped carbon nanoparticles in a short time in a relatively simple process.
  • high temperatures are not required to produce plate-shaped carbon nanoparticles, which can result in a lot of energy savings.
  • the carbon material is uniformly dispersed, but also the carbon material and aluminum have a laminated structure, thereby producing an aluminum-carbon composite material having excellent mechanical properties.
  • the aluminum-carbon composite material is light in weight, has excellent mechanical strength, and is applicable to automobile parts used in the present, and may also be used as a material for aircraft, spacecraft, ships, and the like requiring high strength.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a plate-shaped carbon nanoparticles according to an embodiment of the present invention.
  • FIG. 2 is a plan view for explaining a ball mill device.
  • Figure 3 is a schematic diagram for explaining the force acting on the ball mill ball injected into the ball mill container.
  • FIG. 4 is a flowchart illustrating a method of manufacturing plate-shaped carbon nanoparticles according to another embodiment of the present invention.
  • FIG. 5 is an electron micrograph of the graphite material without the ball mill process and the electrons of the graphite material subjected to the ball mill process for 0.5 hours, 1 hour, 2 hours, 4 hours and 6 hours, respectively, according to the method shown in FIG. Micrographs.
  • FIG. 6 is an X-ray diffraction measurement graph of plate-shaped carbon nanoparticles prepared by the method shown in FIG. 1.
  • FIG. 7 is an electron micrograph of the graphite material without the ball mill process and the electrons of the graphite material subjected to the ball mill process for 0.5 hours, 1 hour, 2 hours, 4 hours and 6 hours, respectively, according to the method shown in FIG. Micrographs.
  • FIG. 8 is an X-ray diffraction measurement graph of plate-shaped carbon nanoparticles prepared by the method shown in FIG. 4.
  • FIG. 9 is an electron micrograph taken after dispersing the plate-shaped carbon nanoparticles prepared on PET in a spin coating method to see the shape of the plate-shaped carbon nanoparticles made by the method shown in FIG. 4.
  • FIG. 11 is a flowchart illustrating a method of manufacturing an aluminum-carbon composite material according to an embodiment of the present invention.
  • 16 is electron micrographs (1,000 ⁇ ) of modified aluminum-carbon mixed powders after a ball mill process.
  • 17 is a photograph for explaining the microstructure of the aluminum material without carbon material and the aluminum-carbon composite material containing 0.05 wt.% Carbon material.
  • FIG. 19 shows a sample of aluminum material (RAW), an aluminum-carbon composite material sample (Al-0.1 wt% C, Example 2) having a carbon material content of 0.1 wt.%, And a carbon material content of 0.3 wt.%. It is a graph showing the result of measuring the tensile strength of the aluminum-carbon composite sample (Al-0.3wt% C, Example 3).
  • Example 20 is a graph showing the results of measuring the tensile strength of the aluminum-carbon composite materials prepared according to Comparative Example 1, Example 2, Comparative Example 2 and Example 3.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a plate-shaped carbon nanoparticles according to an embodiment of the present invention
  • Figure 2 is a plan view for explaining the ball mill device
  • Figure 3 is applied to the ball mill ball in the ball mill container It is a schematic diagram to explain the power.
  • the graphite material and the ball mill ball are added to the ball mill container 130 rotatably coupled to the disk 110.
  • the disk 100 may rotate in a first direction X with respect to a first central axis (hereinafter, referred to as an 'orbital axis') positioned at the center 'O' of the disk 100.
  • the ball mill container 130 may be coupled to an edge of the disk 110, and may be coupled to the edge of the disc 110 in a first direction based on a second center axis (hereinafter, referred to as a 'rotation axis') located at the center 'A1' of the ball mill container 130. It can rotate in the 2nd direction Y which is the opposite direction to (X). That is, the ball mill container 130 may revolve with respect to the revolution axis by the rotation of the disc 110, and may be rotated by the rotation of the ball mill container 130 itself with respect to the rotation axis. .
  • the graphite material may be artificially produced graphite material or natural graphite material.
  • the graphite material applied to the present invention is not particularly limited in the shape and size of the plate-like graphite material, the graphite powder in the form of powder, the graphite material in the form of agglomerate, and the like.
  • Graphite materials generally have a hexagonal crystal structure and have a structure in which a plurality of layers are laminated.
  • the material of the ball mill ball is not particularly limited, but a ball mill ball made of polyimide may be used to effectively apply friction to the graphite material and not excessively damage the graphite material.
  • the size of the ball mill ball may be appropriately selected in consideration of the shear force to be applied to the graphite material.
  • the ball mill ball may have a diameter of about 3 to 50mm. If the size of the ball mill ball is less than 3mm, there may be a problem that the mass of the ball mill ball is too small so that the mechanical shear force applied to the graphite material is smaller than the required value. On the contrary, when the size of the ball mill ball exceeds 50 mm, excessively large shear force or impact may be applied to the graphite material, thereby causing a problem in that the graphite material is broken.
  • the mixing amount of the graphite material and the ball mill ball may be appropriately controlled, it is preferable to mix the graphite material and the ball mill ball so that the weight of the ball mill ball is larger than the weight of the graphite material in order to apply mechanical shear force to the whole graphite material.
  • the disk 110 and the ball mill container 130 may be rotated such that the ball mill ball introduced into the ball mill container 130 applies a mechanical shear force to the graphite material.
  • the ball mill ball in the ball mill vessel 130 may (i) make motion with another ball mill ball, graphite material or inner wall of the ball mill vessel 130, or (ii) another ball mill ball, graphite material or ball mill vessel.
  • the state of contact with the inner wall of the 130 may be a friction motion by the rotation of the ball mill ball, that is, a motion to apply a mechanical shear force.
  • the above-mentioned forces are controlled so that the ball mill ball applies mechanical shear force to the graphite material. Control of these forces can be controlled by adjusting the rotational speed of the disk 110 and the ball mill container 130.
  • the ball mill ball is subjected to various movements by the action of the forces described above. Specifically, when the rotation speed of the ball mill container 130 is gradually increased while rotating the ball mill container 130 while the disk 110 rotates at a constant speed, the rotation speed of the ball mill container 130 is the first speed. In the first section below, the second section below the first speed and above the second speed, and the third section above the second speed, the ball mill ball may perform different movements.
  • the first centrifugal force Fr due to the revolution of the ball mill container 130 acts largely on the ball mill ball.
  • the rotational movement is made about the revolution axis at the point farthest from the revolution axis.
  • the inner wall of the ball mill container 130 applies a friction force to the ball mill ball by the rotation of the ball mill container 130, the ball mill ball rotates itself.
  • the first centrifugal force due to the revolution of the ball mill container 130 and the second centrifugal force due to the rotation of the ball mill container 130 interact with each other.
  • the ball mill ball is moved to the space inside the ball mill container 130 to make a motion to collide with the wall surface of the ball mill container.
  • the second centrifugal force due to the rotation of the ball mill container 130 is largely actuated so that the ball mill ball is rotated in contact with the wall surface of the ball mill container 130.
  • the rotational movement is based on. In this case, since friction between the inner wall of the ball mill container 130 and the ball mill ball hardly occurs, rotation of the ball mill ball itself hardly occurs.
  • the ball mill ball is moved in the same manner as the first section to control the rotational speed of the disk 110 and the ball mill container 130 to apply a mechanical shear force to the graphite material.
  • the ball mill ball acts on the ball mill ball located closest to the revolution axis in the space inside the ball mill container 130.
  • the revolution centrifugal force (Fr) should be greater than the rotation centrifugal force (Fp).
  • the orbital centrifugal force (Fr) acting on the ball mill ball located closest to the revolving axis of the ball mill vessel 130 may be represented by Equation 1 below, and the ball mill vessel 130 is located closest to the revolving axis of the ball mill vessel 130.
  • the rotating centrifugal force (Fp) acting on the ball mill ball can be expressed by the following Equation 2.
  • Equation 1 and 2 'm' represents the weight of the ball mill ball, 'R' represents the distance between the revolution axis and the rotation axis, that is, the revolution radius, 'Lc' ball mill ball at the radius of the ball mill vessel
  • w1 is the rotational angular velocity
  • w2 is the rotational angular velocity
  • 'w2 / w1' is the critical angular velocity ratio 'rc'
  • the critical angular velocity ratio 'rc' may be derived from Equations 1 and 2 and may be expressed as Equation 3 below.
  • the ratio of the rotation speed to the idle speed can be controlled to be about 30 to 70% of the critical angular velocity ratio.
  • the ratio of the rotation speed to the revolution speed (w2 / w1) is the critical angular velocity ratio (rc Should be about 70% or less). That is, when the ratio of the rotational speed to the rotational speed (w2 / w1) exceeds 70% of the critical angular velocity ratio (rc), the influence of the centrifugal force caused by the rotation increases, which causes the ball mill ball to mainly collide with the graphite material.
  • the ratio of the rotation speed to the revolution speed (w2 / w1) is less than 30% of the critical angular velocity ratio (rc)
  • the rotational speed of the ball mill ball itself is low, the mechanical shear force applied to the graphite material is too small, As a result, the graphite material may not be peeled off.
  • the mechanical shear force applied to the graphite material by the ball mill ball is affected by the rotational speed of the ball mill ball itself, which is determined by the rotational speed. That is, as the rotation speed of the ball mill container increases, the rotation speed of the ball mill ball itself increases.
  • the mechanical shearing force applied to the graphite material by the ball mill ball is also affected by the pressure at which the ball mill ball presses the graphite material, which is influenced by the revolving speed of the ball mill container 130. That is, as the revolution speed of the ball mill container 130 increases, the pressure for the ball mill ball to pressurize the graphite material increases.
  • the revolution speed of the ball mill vessel can be adjusted to be about 150 to 500 rpm.
  • the ball mill vessel 130 interior is preferably maintained in a non-oxidizing atmosphere during the ball mill process.
  • the inside of the ball mill vessel may be maintained in a non-oxidizing atmosphere by purging argon (Ar) gas after being maintained in a vacuum.
  • the prepared plate carbon nanoparticles may be separated and recovered.
  • the manufactured plate carbon nanoparticles may have a thickness of about 20 to 1000 nm. In order to manufacture such plate-shaped carbon nanoparticles, when the ball mill process is performed by adding only the graphite material and the ball mill ball to the ball mill vessel, it is preferable to proceed with the ball mill process for about 6 hours or more.
  • FIG. 4 is a flowchart illustrating a method of manufacturing plate-shaped carbon nanoparticles according to another embodiment of the present invention.
  • the stripping agent is further mixed in addition to the graphite material and the ball mill ball, and these are added to a ball mill container (S210), and the prepared plate carbon nanoparticles are washed.
  • S240 is substantially the same as the manufacturing method of the plate-shaped carbon nanoparticles described with reference to FIG. Therefore, hereinafter, the peeling activator and the cleaning step will be mainly described, and the description of the remaining steps will be omitted.
  • the release activator can increase the friction between the graphite material and the ball mill ball.
  • the release agent may be a surfactant, an organic material, or an inorganic material that can increase the friction between the graphite material and the ball mill ball.
  • the surfactant that can be used as the release agent may be selected from SDS, NaDDBs, CTAB, etc.
  • the organic material that may be used as the release agent may be selected from sugar, DNA, etc., may be used as the release agent
  • the inorganic material may be aluminum.
  • the plate-shaped carbon nanoparticles can be produced even if the ball mill process is performed for a short time.
  • the plate-shaped carbon nanoparticles may be prepared by performing a ball mill process for about 4 hours or more.
  • the plate-shaped carbon nanoparticles produced through the ball mill process may have a small amount of peeling activator. Therefore, the plate-shaped carbon nanoparticles prepared through the ball mill process may be cleaned to remove the stripping activator.
  • the plate-shaped carbon nanoparticles prepared through the ball mill process may remove the stripping activator.
  • the solvent and the stripping activator may be removed by filtering into a soluble solvent and then filtering. For example, when sugar is used as the peeling activator, the plate-shaped carbon nanoparticles prepared through the ball mill process may be added to distilled water (H20) to dissolve the sugar and then filtered to clean the plate-shaped carbon nanoparticles.
  • 5 is an electron micrograph of the graphite material without the ball mill process, and an electron micrograph of the graphite material subjected to the ball mill process for 0.5 hours, 1 hour, 2 hours, 4 hours and 6 hours, respectively, according to the method described above.
  • 6 is an X-ray diffraction measurement graph of carbon nanoplates prepared by the above method.
  • the graphite material is peeled off as the execution time of the ball mill process is produced plate carbon nanoparticles. Since the graphite material has a hexagonal lamination structure, a peak appears in the crystal plane [002] direction when the X-ray diffraction (XRD) is measured. The higher the peak intensity in the [002] direction, the better the crystallinity of the interlayer bonding structure of the graphite. The lower the peak intensity in the [002] direction, the more the graphite material is peeled off and the poorer the crystallinity of the interlayer bonding structure. it means.
  • XRD X-ray diffraction
  • the peak intensity in the [002] direction decreases as the ball mill process execution time increases.
  • the peak in the [002] direction hardly appears, which is a plate-shaped carbon nanostructure of a structure in which the graphite material is almost completely peeled off so that a single layer or several layers are laminated. It means that the particles are produced.
  • 7 is an electron micrograph of the graphite material without the ball mill process, and an electron micrograph of the graphite material subjected to the ball mill process for 0.5 hours, 1 hour, 2 hours, 4 hours and 6 hours, respectively, according to the method described above.
  • 8 is an X-ray diffraction measurement graph of the plate-shaped carbon nanoparticles prepared by the above method.
  • FIG. 9 is an electron micrograph taken after dispersing the plate-shaped carbon nanoparticles prepared on PET in a spin coating method to see the shape of the plate-shaped carbon nanoparticles made by the above method.
  • the carbon nanoplay was photographed at 50,000x and 100,000x, and it was confirmed that plate-shaped carbon nanoparticles having a size of about 100 to 200nm were prepared.
  • a plate-shaped nanoparticle was prepared in the same manner as in Example 2 except that the rotation speed was 400 rpm.
  • carbon nanoparticles were prepared in the same manner as in Example 2, except that zirconia (ZrO 2 ) balls having a diameter of 5 mm were used as the ball mill balls.
  • zirconia (ZrO 2 ) balls having a diameter of 5 mm were used as the ball mill balls.
  • the carbon nanoparticles prepared according to Comparative Example 2 is much thicker than the carbon nanoparticles shown in Figure 10 (b). This is due to the interaction between the centrifugal force due to the revolution and the centrifugal force due to the rotation, and the ball mill ball transfers the force mainly due to the collision rather than the mechanical shear force to the graphite material, and as a result, the graphite material was not effectively peeled off.
  • the ratio of the rotating angular velocity to the rotating angular velocity in Comparative Example 2 is '400/300'. That is, the ratio of the rotating angular velocity to the rotating angular velocity in Comparative Example 2 corresponds to about 95.2% of the ratio rc of the critical angular velocity.
  • the carbon nanoparticles prepared according to Comparative Example 3 have a very high degree of damage compared to the carbon nanoparticles shown in FIG. 10 (b). This is because the ball mill ball density of the polyimide material is 1.43 g / cm 3 , whereas the ball mill ball density of the zirconia material is 6.0 g / cm 3 , and a strong impact is transmitted to the graphite material by the zirconia ball mill.
  • FIG. 11 is a flowchart illustrating a method of manufacturing an aluminum-carbon composite material according to an embodiment of the present invention
  • FIG. 12 is a plan view illustrating a ball mill device
  • FIG. 13 is a ball mill ball inserted into a ball mill container. It is a schematic diagram to explain the power.
  • an aluminum-carbon mixed powder may be manufactured by bonding a carbon material to aluminum powders (S110).
  • the carbon material may first be dispersed in a solvent, and then the dispersion solution may be sonicated.
  • the carbon material at least one or more of graphite plates, graphite fibers, carbon fibers, carbon nanofibers, and carbon nanotubes may be used.
  • the carbon material may be a plate-shaped carbon nanoparticles prepared according to the method described above.
  • the solvent at least one or more of water, hexane, ethanol, methanol, propanol, ethylene glycol, amine and phenol may be used. Sonication may be performed for about 0.5 to 60 minutes.
  • This sonication not only uniformly disperses the carbon material but also can make functional groups including oxygen in the carbon material, for example, hydroxyl groups and the like.
  • the aluminum powders may then be added to the sonicated dispersion and sonicated again to precipitate the aluminum-carbon mixed powders.
  • the aluminum powders may have a diameter of about 100 nm to 1 mm.
  • Aluminum powders may be added so that the carbonaceous material is about 0.1 to 50 wt.% Relative to the weight of the aluminum powders.
  • Sonication to precipitate the aluminum-carbon mixed powders may be performed for about 0.5 to 60 minutes. This sonication may induce a bond between the aluminum and the functional group containing oxygen formed in the carbon material.
  • the precipitated aluminum-carbon mixed powders can then be separated and dried.
  • the modified aluminum-carbon mixed powders may be prepared by applying mechanical shearing force to the aluminum-carbon mixed powders (S120).
  • the aluminum-carbon mixed powders and the ball mill ball are placed in a ball mill container 130 rotatably coupled to the disk 110. You can put in.
  • the disk 110 may rotate in a first direction X with respect to a first central axis (hereinafter, referred to as an 'idle axis') positioned at the center 'O' of the disk 110.
  • the ball mill container 130 may be coupled to an edge of the disk 110, and may be coupled to the edge of the disc 110 in a first direction based on a second center axis (hereinafter, referred to as a 'rotation axis') located at the center 'A1' of the ball mill container 130. It can rotate in the 2nd direction Y which is the opposite direction to (X). That is, the ball mill container 130 may revolve with respect to the revolution axis by the rotation of the disc 110, and may be rotated by the rotation of the ball mill container 130 itself with respect to the rotation axis. .
  • the material of the ball mill ball is not particularly limited, but a ball mill ball made of zirconia may be used to effectively apply friction to aluminum-carbon mixed powders.
  • the size of the ball mill ball may be appropriately selected in consideration of the shear force to be applied to the aluminum-carbon mixed powders.
  • the ball mill ball may have a diameter of about 3 to 50mm.
  • the size of the ball mill ball is less than 3 mm, the mass of the ball mill ball is so small that the mechanical shear force applied to the aluminum-carbon mixed powders becomes smaller than the required value, and as a result, the carbon material bonded to the aluminum powder is oriented in a certain direction. Problems may arise that it is not possible or impossible to deform the aluminum powder into a constant plate shape.
  • the disk 110 and the ball mill container 130 may be rotated such that the ball mill ball introduced into the ball mill container 130 applies a mechanical shear force to the aluminum-carbon mixed powders.
  • the ball mill ball introduced into the ball mill container 130 is rotated by the first centrifugal force Fr and the ball mill container 130 due to the revolution of the ball mill container 130.
  • the second centrifugal force Fp is caused to act.
  • the first centrifugal force Fr acts in the direction away from the ball axis
  • the second centrifugal force Fp acts in the direction away from the axis.
  • the magnitude or direction of action of the first and second centrifugal forces Fr and Fp depends on the position of the ball mill ball.
  • the ball mill container 130 rotates while the disk 110 rotates, the ball mill ball rotates in the same direction as the ball mill container 130 by the friction force between the ball mill ball and the wall surface of the ball mill container 130.
  • the ball mill ball in the ball mill vessel 130 may (i) make motion with another ball mill ball, aluminum-carbon mixed powder or the inner wall of the ball mill vessel 130, or (ii) other ball mill ball, aluminum- In the state of contact with the carbon mixed powder or the inner wall of the ball mill container 130, it is possible to perform a rubbing motion by the rotation of the ball mill ball, that is, to apply a mechanical shear force.
  • the force is controlled so that the ball mill ball applies a mechanical shear force to the aluminum-carbon mixed powder while the ball mill ball is in contact with the aluminum-carbon mixed powder. Control of these forces can be controlled by adjusting the rotational speed of the disk 110 and the ball mill container 130.
  • the ball mill ball is subjected to various movements by the action of the forces described above. Specifically, when the rotation speed of the ball mill container 130 is gradually increased while rotating the ball mill container 130 while the disk 110 rotates at a constant speed, the rotation speed of the ball mill container 130 is the first speed. In the first section below, the second section below the first speed and above the second speed, and the third section above the second speed, the ball mill ball may perform different movements.
  • the first centrifugal force Fr due to the revolution of the ball mill container 130 acts largely on the ball mill ball.
  • the rotational movement is made about the revolution axis at the point farthest from the revolution axis.
  • the inner wall of the ball mill container 130 applies a friction force to the ball mill ball by the rotation of the ball mill container 130, the ball mill ball rotates itself.
  • the first centrifugal force due to the revolution of the ball mill container 130 and the second centrifugal force due to the rotation of the ball mill container 130 interact with each other.
  • the ball mill ball is moved to the space inside the ball mill container 130 to make a motion to collide with the wall surface of the ball mill container.
  • the second centrifugal force due to the rotation of the ball mill container 130 is largely actuated so that the ball mill ball is rotated in contact with the wall surface of the ball mill container 130.
  • the rotational movement is based on. In this case, since friction between the inner wall of the ball mill container 130 and the ball mill ball hardly occurs, rotation of the ball mill ball itself hardly occurs.
  • the ball mill ball moves in the same manner as the first section to control the rotational speed of the disk 110 and the ball mill container 130 to apply a mechanical shear force to the aluminum-carbon mixed powder.
  • the ball mill ball acts on the ball mill ball located closest to the revolution axis in the space inside the ball mill container 130.
  • the revolution centrifugal force (Fr) should be greater than the rotation centrifugal force (Fp).
  • the orbital centrifugal force (Fr) acting on the ball mill ball located closest to the revolving axis of the ball mill vessel 130 may be represented by Equation 4 below, and the ball mill vessel 130 is located closest to the revolving axis of the ball mill vessel 130.
  • the rotating centrifugal force (Fp) acting on the ball mill ball may be expressed by the following Equation 5.
  • Equations 4 and 5 'm' represents the weight of the ball mill ball, 'R' represents the distance between the revolution axis and the rotation axis, that is, the idle radius, 'Lc' ball mill ball at the radius of the ball mill vessel Where w1 is the rotational angular velocity and w2 is the rotational angular velocity.
  • 'w2 / w1' is the critical angular velocity ratio 'rc'
  • the critical angular velocity ratio 'rc' may be derived from Equations 1 and 2 and expressed as shown in Equation 6 below.
  • the ratio of the rotation speed to the revolution speed of the ball mill container 130 may be controlled to be about 30 to 70% of the critical angular velocity ratio.
  • the rotational centrifugal force rather than the rotating centrifugal force acts on the ball mill ball.
  • w1 should be about 70% or less of the critical angular velocity ratio rc. That is, when the ratio of the rotational speed to the rotational speed (w2 / w1) exceeds 70% of the critical angular velocity ratio (rc), the influence of the centrifugal force due to the rotation increases, so that the ball mill ball is mainly composed of aluminum-carbon mixed powders.
  • the mechanical shearing force applied to the aluminum-carbon mixed powder by the ball mill ball is also affected by the pressure at which the ball mill ball presses the aluminum-carbon mixed powder. ) Is affected by the idle speed. That is, as the revolution speed of the ball mill container 130 increases, the pressure for the ball mill ball to pressurize the graphite material increases.
  • the rotation speed of the disk in order for the ball mill ball to apply an appropriate size mechanical shear force to the aluminum-carbon mixed powder, can be adjusted to be about 150 to 500 rpm.
  • the inside of the ball mill vessel 110 is preferably maintained in an inert gas atmosphere during the ball mill process.
  • the ball mill process may be performed for about 5 minutes to 6 hours.
  • the aluminum-carbon mixed powders may be deformed to have a shape close to the plate shape, and the carbon material bonded to the aluminum powder surface may be in one direction. Can be aligned to extend.
  • the modified aluminum-carbon mixed powders may be sintered.
  • the modified aluminum-carbon mixed powders may first be filled into a mold. Subsequently, the modified aluminum-carbon mixed powders filled in the mold were sintered at a temperature of about 500 to 700 ° C. for about 1 minute to about 1 hour while applying a pressure of about 10 MPa to 100 MPa in a vacuum atmosphere to fill the mold. The modified aluminum-carbon mixed powders can be plastically modified. The final aluminum-carbon composite can then be separated from the mold. 14 is a schematic view of a sintering molding machine for sintering the modified aluminum-carbon mixed powders.
  • Aluminum powder and carbonaceous material were added to 20 ml of Hexane solvent and sonicated with a horn-type sonicator to prepare aluminum-carbon mixed powders. 2 g of aluminum powder was added, and carbon materials were added by 0.05 wt.% (Example 3), 0.1 wt.% (Example 4) and 0.3 wt.% (Example 5), respectively, based on the weight of the aluminum powder.
  • As the aluminum powder an aluminum powder product having a size of 3 ⁇ m purchased from the Japan Institute of High Purity Chemistry was used.
  • As a carbon material a nano graphite plate having a size of 100 to 500 nm manufactured by itself was used.
  • the modified aluminum-carbon mixed powders were put in a mold, and the upper and lower punches were fixed, compressed using a hydraulic press at a pressure of 50 MPa, and sintered at a temperature of 600 ° C. for about 30 minutes to prepare an aluminum-carbon composite material.
  • the atmosphere inside the mold sintering chamber was carried out in a vacuum of 10 -2 torr. 14 is a schematic view of a molding sintering machine.
  • FIG. 15 are electron micrographs of ultrasonic samples of aluminum.
  • the upper left photograph of FIG. 15 is an electron microscope photograph of a powder composed of only aluminum
  • the upper right, lower left and lower right photographs of FIG. 5 each have a concentration of 0.05 wt.% Of the nanographite plate (Example 3 )
  • the nanographite plate is uniformly dispersed and bonded to the surface of the aluminum powder.
  • FIG. 16 is an electron micrograph (1,000 ⁇ ) of a modified aluminum-carbon mixed powder after the ball mill process.
  • FIG. 16 is an electron micrograph of a modified aluminum-carbon mixed powder having a concentration of 0.1 wt.% (Example 4) of the nanographite plate.
  • the modified aluminum-carbon mixed powder may be formed by a ball mill ball. It can be seen that the shape is deformed into a plate shape due to the application of mechanical shear force.
  • FIG. 17 is a photograph for describing a microstructure of an aluminum material without a carbon material and an aluminum-carbon composite material containing 0.05 wt.% (Example 3). Specifically, the left photograph of FIG. 17 is a microstructure photograph (Olympus, GC51F) of the aluminum material without the carbon material, and the right photograph of FIG. 17 is a microstructure of the aluminum-carbon composite material containing 0.05 wt.% Of the carbon material. Structure picture. Referring to FIG. 17, in the aluminum-carbon composite material prepared according to Example 3 of the present invention, it was confirmed that the aluminum and the carbon material form a laminated structure.
  • Figure 18 (a) is a result of the confocal Raman (Witec, CRM 200) measurement of the aluminum-carbon composite material prepared by performing a ball mill process under the condition that the ball mill ball mainly impacts the aluminum-carbon mixed powder
  • 18 (b) is a confocal Raman (Witec Co., Ltd.) of an aluminum-carbon composite material manufactured by performing a ball mill process in which a ball mill ball applies mechanical shear force mainly to an aluminum-carbon mixed powder according to Example 3 of the present invention.
  • CRM 200 is the measurement result.
  • G mode shows a peak inherent in carbon material (G mode) as a yellow dot.
  • the aluminum-carbon composite material of FIG. 18B is not only uniformly dispersed in the carbon material as compared with the aluminum-carbon composite material of FIG. 18A, but also forms a laminated structure of aluminum and carbon material. Can be.
  • Table 3 shows a sample of aluminum material (RAW), a sample of aluminum-carbon composite material (Al-0.1wt% C, Example 4) having a carbon content of 0.1 wt.%, And a content of 0.3 wt.% Of a carbon material.
  • the tensile strength of the aluminum-carbon composite material sample (Al-0.3wt% C, Example 5) was measured.
  • FIG. 19 shows a sample of aluminum material (RAW) and aluminum having a content of 0.1 wt.% Aluminum.
  • Tensile strength of the carbon composite material sample (Al-0.1wt% C, Example 4) and the aluminum-carbon composite material sample (Al-0.3wt% C, Example 5) having a carbon content of 0.3 wt.% It is a graph showing the result of a measurement.
  • the specimen was extruded to ⁇ 2mm and processed into a test piece of 20mm gauge and a diameter of 1.3mm, and the resultant was tensioned at a speed of 0.1mm / min using a universal tensile tester (LLOYD instrument, LR30K). Measured.
  • Table 4 below shows the results of measuring the tensile strength of the aluminum-carbon composites prepared according to Comparative Example 4, Example 4, Comparative Example 5 and Example 5,
  • Figure 20 is Comparative Example 4,
  • Example 4 , Comparative Example 5 and Example 5 is a graph showing the results of measuring the tensile strength of the aluminum-carbon composite materials prepared.
  • the tensile strength was increased by 11.55% and the elongation was increased by 28.17% than the aluminum-carbon composite material according to Comparative Example 4.
  • the tensile strength was increased by 52.73% and the elongation was increased by 33.92% than the aluminum-carbon composite material according to Comparative Example 5. Therefore, it can be seen that the aluminum-carbon composite material according to the embodiment of the present invention has significantly improved mechanical properties than the aluminum-carbon composite material according to the comparative example.
  • the plate-shaped carbon nanoparticles can be manufactured in a large amount in a short time through a relatively simple process.
  • high temperatures are not required to produce plate-shaped carbon nanoparticles, which can result in a lot of energy savings.
  • the manufacturing method of the aluminum-carbon composite material described above it is possible to manufacture the aluminum-carbon composite material in a large amount through a relatively simple process.
  • the aluminum-carbon composite material prepared according to the above-described manufacturing method has a tensile strength strengthened due to the uniformly dispersed and carbon material forming a laminated structure with aluminum. Therefore, when using the aluminum-carbon composite material as a structural material, it is possible to manufacture a lightweight structure.

Abstract

판형 탄소 나노입자의 제조방법이 개시된다. 판형 탄소 나노입자를 제조하기 위하여, 우선 제1 방향으로 회전 가능한 디스크에 제2 방향으로 회전 가능하게 결합된 볼밀 용기에 흑연재료 및 볼밀볼을 투입할 수 있다. 이어서, 상기 볼밀볼이 상기 볼밀 용기의 벽면과 마찰하여 상기 볼밀볼 자체가 회전하여 상기 흑연재료에 기계적 전단력을 인가하도록 상기 디스크 및 상기 볼밀 용기를 소정 시간동안 회전시킬 수 있다. 그 후, 흑연 재료로부터 제조된 판형 탄소 나노입자를 분리할 수 있다. 이러한 판형 탄소 나노입자의 제조방법에 따르면, 비교적 간단한 공정을 통해 단시간에 대량적으로 판형 탄소 나노입자를 제조할 수 있다.

Description

판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법
본 발명은 판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법에 관한 것으로, 보다 상세하게는 단층 내지 수십개의 탄소 원자층으로 이루어지는 판형 탄소 나노입자를 제조하는 방법 및 이에 이용하여 알루미늄-탄소 복합재료를 제조하는 방법에 관한 것이다.
탄소 소재는 주성분이 탄소원자로 이루어진 소재로서, 자연계에 널리 존재하여 왔고 이미 오래 전부터 숯이나 먹과 같은 탄소재료로 활용되어 왔다. 탄소 소재는 특히 초고온성, 초경량성, 초내마모성 등과 같은 물성을 가지고 있어서 근래 첨단산업에서 활용이 급증하는 소재로서 금속, 세라믹, 고분자와 더불어 4대 재료로 분류되고 있다.
탄소 소재는 탄소 단독의 형태 이외에도 다른 원소와 결합한 화합물 형태를 가질 수 있다. 다른 원소들과 결합하는 형태에 따라 전기적, 기계적 특성 등이 다르므로 용도에 맞게 여러 분야에서 다양하게 이용 가능하다. 따라서 현재 공업적으로도 각종 탄소제품이 만들어지고 있다. 탄소 단독으로 이루어진 물질은 탄소섬유, 흑연, 나노탄소재료(탄소나노튜브, 그래핀, 카본나노판, 풀러렌 등) 등이 있다.
나노탄소재료는 열적, 전기적, 기계적 특성이 좋아 일반 탄소재료만큼 많은 영역에서 그 응용을 기대되고 있다. 특히, 그래핀 또는 판형 탄소 나노입자가 가지고 있는 이차원 구조는 독특한 물리적 성질과 더불어 전기-전자적 응용 측면에서 여타의 탄소 동소체들과는 다른 매우 독특한 장점을 가지고 있다. 즉, 이차원 구조로 인하여 인쇄, 식각 등으로 대표되는 Top-down방식의 일반적인 반도체 공정을 도입해서 전자회로를 구성할 수 있는 장점이 있다.
나노탄소재료는 매우 높은 비표면적을 가짐으로써 벌크 상태에서는 볼 수 없는 특이한 물리적, 화학적 특성을 가진다. 이러한 나노소재의 특성을 활용한 신개념 고효율/다기능 제품들이 계속적으로 개발되고 있으며, 그 응용 분야도 점차 넓어지고 있다.
알루미늄은 주방에서 사용하는 포일(foil)에서, 일회용 식기, 창문, 자동차, 항공기 및 우주선까지 생활에 다용도로 사용되고 있다. 알루미늄의 특성으로는 철의 중량의 1/3 정도로 가볍고, 다른 금속과 합금을 시킬 경우 뛰어난 강도를 갖는다. 또한 알루미늄 표면에는 화학적으로 안정한 산화막이 존재하여 수분이나 산소 등에 의해 부식이 진행되는 것이 방지되므로 화학적으로 안정하다. 이와 같은 이유로 알루미늄은 자동차와 항공기 등에 사용되어 왔다. 특히 자동차의 경우 알루미늄 부품은 기존의 철제 부품에 비하여 가벼워 자체의 하중을 줄일 수 있으며, 이것은 차체 무게의 경량화를 가져와 연비 감소에 기여할 수 있는 일거양득의 효과가 있다. 그러나 이와 같은 알루미늄은 철에 비해 인장 강도가 약 40 %정도밖에 되지 않아 구조용재로 사용할 경우 구조용 알루미늄 관이나 판재의 두께가 매우 두꺼워지고, 이는 결국 재료가 과다하게 소요되고, 과다한 재료비를 필요로 하는 문제점이 발생하게 된다.
이러한 문제점을 개선하기 위하여 인장 강도가 우수한 탄소 재료와 알루미늄의 복합재료를 제조하기 위한 연구가 활발하다. 탄소재료와 알루미늄과의 복합체를 제조하기 위해서는 해결되어야 하는 몇 가지 문제점들이 있다. 일례로, 탄소재료 예를 들면 탄소나노재료는 재료끼리의 반데르발스(van der Waals) 힘에 의한 상호 작용 때문에 분산이 쉽지 않아 알루미늄 내에 균일 분산시키기 어려운 문제점이 있다. 또한, 탄소재료와 알루미늄 사이에는 표면장력 차이로 인하여 탄소 재료와 알루미늄이 잘 섞이지 않는 문제점이 있다.
본 발명의 일 목적은 기계적 전단력을 이용하여 판형 탄소 나노입자를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기의 방법에 의해 제조된 판형 탄소 나노입자를 이용하여 알루미늄-탄소 복합재료를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 판형 탄소 나노입자의 제조방법은 제1 방향으로 회전 가능한 디스크에 상기 제1 방향과 반대 방향인 제2 방향으로 회전 가능하게 결합된 볼밀 용기에 흑연재료 및 볼밀볼을 투입하는 단계; 상기 볼밀볼이 상기 볼밀 용기의 벽면과 마찰하여 상기 볼밀볼 자체가 회전하여 상기 흑연재료에 기계적 전단력을 인가하도록 상기 디스크 및 상기 볼밀 용기를 소정 시간동안 회전시키는 단계; 및 상기 흑연 재료로부터 제조된 판형 탄소 나노입자를 분리하는 단계를 포함할 수 있다.
상기 흑연 재료는 판 형상의 인조 흑연 재료, 분말 형상의 인조 흑연재료, 덩어리 형상의 인조 흑연재료, 판 형상의 천연 흑연재료, 분말 형상의 천연 흑연 재료 및 덩어리 형상의 천연 흑연재료로 이루어진 그룹으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 디스크 및 상기 볼밀 용기를 회전시켜 상기 흑연재료에 기계적 전단력을 인가하는 단계는 비산화 분위기에서 수행될 수 있다.
상기 디스크의 회전속도에 대한 상기 볼밀 용기의 회전 속도의 비는 임계 각속도 비의 30% 이상 70% 이하일 수 있다. 또한, 상기 디스크 및 상기 볼밀볼의 회전 속도는 150 rpm 이상 500 rpm 이하일 수 있다.
상기 볼밀 용기에 상기 흑연재료 및 상기 볼밀볼을 투입하는 단계에 있어서, 상기 흑연재료와 상기 볼밀볼 사이의 마찰력을 증가시키는 박리활성제를 더 투입할 수 있다. 상기 박리활성제는 상기 흑연재료와 상기 볼밀볼 사이의 마찰력을 증가시킬 수 있는 계면활성제, 유기물질 및 무기물질로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있다. 상기 계면활성제는 SDS, NaDDBs 및 CTAB로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있고, 상기 유기물질은 설탕(sugar) 및 DNA로 이루어진 그룹으로부터 선택된 적어도 하나를 포함할 수 있으며, 상기 무기물질은 알루미늄을 포함할 수 있다. 상기 박리 활성제를 투입하는 경우, 상기 디스크 및 상기 볼밀 용기는 4시간 이상 회전될 수 있다.
상술한 본 발명의 다른 목적을 달성하기 위한 알루미늄-탄소 복합재료의 제조 방법은 알루미늄 분말들에 탄소재료를 결합시켜 알루미늄-탄소 혼합 분말을 제조하는 단계; 상기 알루미늄-탄소 혼합 분말들에 기계적 전단력을 인가하여 변형 알루미늄-탄소 혼합 분말들을 제조하는 단계; 및 상기 변형 알루미늄-탄소 혼합분말들을 소결성형하는 단계를 포함할 수 있다.
상기 알루미늄-탄소 혼합 분말을 제조하는 단계는 용매에 탄소 재료를 혼합한 후 초음파 처리하는 단계; 및 상기 초음파 처리된 혼합용액에 알루미늄 분말을 첨가한 후 초음파 처리하는 단계를 포함할 수 있다.
상기 탄소재료는 흑연판, 흑연섬유, 탄소섬유, 탄소나노섬유 및 탄소나노튜브로 이루어진 그룹 중 적어도 하나를 포함할 수 있다. 상기 알루미늄 분말들은 상기 탄소재료가 상기 알루미늄 분말들의 중량에 대해 약 0.1 내지 50 wt.% 정도가 되도록 첨가될 수 있다.
상기 변형 알루미늄-탄소 혼합 분말들을 제조하는 단계는 제1 방향으로 회전 가능한 디스크에 상기 제1 방향과 반대 방향인 제2 방향으로 회전 가능하게 결합된 볼밀 용기에 상기 알루미늄-탄소 혼합 분말들 및 볼밀볼을 투입하는 단계; 및 상기 볼밀볼이 상기 볼밀 용기의 벽면과 마찰하여 상기 볼밀볼 자체가 회전하여 상기 알루미늄-탄소 혼합 분말들에 기계적 전단력을 인가하도록 상기 디스크 및 상기 볼밀 용기를 소정 시간동안 회전시키는 단계를 포함할 수 있다. 상기 디스크의 회전속도에 대한 상기 볼밀 용기의 회전 속도의 비는 임계 각속도 비의 30% 이상 70% 이하일 수 있다. 상기 디스크의 회전 속도는 150 rpm 이상 500 rpm 이하일 수 있다.
상기 변형 알루미늄-탄소 혼합분말들을 소결성형하는 단계는 상기 변형 알루미늄-탄소 혼합 분말들을 금형에 충진하는 단계; 및 상기 금형에 충진된 상기 변형 알루미늄-탄소 혼합 분말들에 10MPa 내지 100MPa의 압력을 인가한 상태에서 상기 변형 알루미늄-탄소 혼합 분말들을 500 내지 700℃의 온도로 가열하는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 판형 탄소 나노입자의 제조방법에 따르면, 비교적 간단한 공정을 통해 단시간에 대량적으로 판형 탄소 나노입자를 제조할 수 있다. 또한, 판형 탄소 나노입자를 제조하기 위하여 고온이 필요하지 않으므로 많은 에너지의 절약을 가져올 수 있다.
본 발명의 실시예에 따라 알루미늄-탄소 복합재료를 제조하는 경우, 탄소재료가 균일하게 분산되어 있을 뿐만 아니라 탄소재료와 알루미늄이 적층 구조를 이루고 있어서 기계적 특성이 우수한 알루미늄-탄소 복합재료를 제조할 수 있다. 이러한 알루미늄-탄소 복합재료는 무게가 가볍고, 역학적 강도가 우수하여 현재 사용되는 자동차 부품에 적용가능하며, 고강도가 요구되는 항공기, 우주선, 선박 등의 소재로서도 활용될 수 있다.
도 1은 본 발명의 실시예에 따른 판형 탄소 나노입자를 제조하는 방법을 설명하기 위한 순서도이다.
도 2는 볼밀 장치를 설명하기 위한 평면도이다.
도 3은 볼밀 용기 내부에 투입된 볼밀볼에 작용하는 힘을 설명하기 위한 모식도이다.
도 4는 본 발명의 다른 실시예에 따른 판형 탄소 나노입자를 제조하는 방법을 설명하기 위한 순서도이다.
도 5는 볼밀 공정이 수행되지 않은 흑연재료의 전자현미경 사진과, 도 1에 도시된 방법에 따라 각각 0.5시간, 1시간, 2시간, 4시간 및 6시간 동안 볼밀 공정을 수행한 흑연 재료의 전자현미경 사진들이다.
도 6은 도 1에 도시된 방법으로 제조된 판형 탄소 나노입자의 X-선 회절 측정 그래프이다.
도 7은 볼밀 공정이 수행되지 않은 흑연재료의 전자현미경 사진과, 도 4에 도시된 방법에 따라 각각 0.5시간, 1시간, 2시간, 4시간 및 6시간 동안 볼밀 공정을 수행한 흑연 재료의 전자현미경 사진들이다.
도 8은 도 4에 도시된 방법으로 제조된 판형 탄소 나노입자의 X-선 회절 측정 그래프이다.
도 9는 도 4에 도시된 방법으로 만들어진 판형 탄소 나노입자의 형상을 보기 위해 PET 위에 제조된 판형 탄소 나노입자를 스핀코팅법(spin coating method)으로 분산 시킨 후 촬영한 전자현미경 사진이다.
도 10은 비교예 1에 따라 제조된 탄소 나노입자의 전자현미경 사진(a)과, 실시예 2에 따라 제조된 탄소 나노입자의 전자현미경 사진(b)과, 비교예 2에 따라 제조된 탄소 나노입자의 전자현미경 사진(c)과, 비교예 3에 따라 제조된 탄소 나노입자의 전자현미경 사진(a)이다.
도 11은 본 발명의 실시예에 따른 알루미늄-탄소 복합재료의 제조방법을 설명하기 위한 순서도이다.
도 12는 볼밀 장치를 설명하기 위한 평면도이다.
도 13은 볼밀 용기 내부에 투입된 볼밀볼에 작용하는 힘을 설명하기 위한 모식도이다.
도 14는 소결성형기의 모식도이다.
도 15는 초음파 처리된 알루미늄 시료들의 전자현미경 사진들이다.
도 16은 볼밀 공정 후의 변형 알루미늄-탄소 혼합 분말들의 전자현미경 사진들(1,000X)이다.
도 17은 탄소재료가 미첨가된 알루미늄 재료 및 탄소재료가 0.05wt.% 포함된 알루미늄-탄소 복합재료의 미세구조를 설명하기 위한 사진들이다.
도 18은 볼밀볼이 알루미늄-탄소 혼합분말에 주로 충격하도록 하는 조건의 볼밀 공정을 수행하여 제조된 알루미늄-탄소 복합재료의 공초점 라만(Witec社, CRM 200)측정 결과(a)와, 본 발명의 실시예 1에 따라 볼밀볼이 알루미늄-탄소 혼합분말에 주로 기계적 전단력을 인가하는 조건의 볼밀 공정을 수행하여 제조된 알루미늄-탄소 복합재료의 공초점 라만(Witec社, CRM 200)측정 결과(b)이다.
도 19는 알루미늄 재료의 샘플(RAW), 탄소재료의 함량이 0.1 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.1wt%C, 실시예 2) 및 탄소재료의 함량이 0.3 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.3wt%C, 실시예 3)의 인장강도를 측정한 결과를 나타내는 그래프이다.
도 20은 비교예 1, 실시예 2, 비교예 2 및 실시예 3에 따라 제조된 알루미늄-탄소 복합재료들의 인장강도를 측정한 결과를 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들에 대해서만 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
<판형 탄소 나노 입자의 제조방법>
도 1은 본 발명의 실시예에 따른 판형 탄소 나노입자를 제조하는 방법을 설명하기 위한 순서도이고, 도 2는 볼밀 장치를 설명하기 위한 평면도이며, 도 3은 볼밀 용기 내부에 투입된 볼밀볼에 작용하는 힘을 설명하기 위한 모식도이다.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따라 판형 탄소 나노입자를 제조하기 위하여, 우선 디스크(110)에 회전 가능하게 결합된 볼밀 용기(130)에 흑연재료 및 볼밀볼을 투입할 수 있다.(S110)
디스크(100)는 디스크(100)의 중심 ‘O’에 위치하는 제1 중심축(이하 ‘공전축’이라 함)을 기준으로 제1 방향(X)으로 회전할 수 있다. 볼밀 용기(130)는 디스크(110)의 가장 자리에 결합될 수 있고, 볼밀 용기(130)의 중심 ‘A1’에 위치하는 제2 중심축(이하 ‘자전축’이라 함)을 기준으로 제1 방향(X)과 반대 방향인 제2 방향(Y)으로 회전할 수 있다. 즉, 볼밀 용기(130)는 디스크(110)의 회전에 의해 공전축을 기준으로 공전(revolution)할 수 있고, 자전축을 기준으로 한 볼밀 용기(130) 자체의 회전에 의해 자전(rotation)할 수 있다.
흑연재료는 인공적으로 제조된 흑연 재료 또는 천연 흑연 재료일 수 있다. 본 발명에 적용되는 흑연 재료는 판 형상이 흑연재료, 분말 형상의 흑연재료, 덩어리 형상의 흑연 재료 등 그 형상 및 크기에 있어서 특별히 제한되지 않는다. 흑연재료는 일반적으로 육방정계의 결정구조를 가지고 있고, 복수개의 층이 적층된 구조를 가진다.
볼밀볼의 재질은 특별히 제한되지 않으나, 흑연재료에 효과적으로 마찰력을 인가하고, 흑연재료를 과도하게 손상시키지 않게 위하여 폴리이미드(Polyimide) 재질로 된 볼밀볼을 사용할 수 있다. 볼밀볼의 크기는 흑연재료에 인가되어야 하는 전단력을 고려하여 적절하게 선택될 수 있다. 일례로 볼밀볼은 약 3 내지 50mm의 직경을 가질 수 있다. 볼밀볼의 크기가 3mm 미만인 경우, 볼밀볼의 질량이 너무 작아서 흑연재료에 인가되는 기계적 전단력이 요구되는 값보다 작아지게 되는 문제점이 발생할 수 있다. 이와 달리, 볼밀볼의 크기가 50mm를 초과하는 경우, 흑연재료에 지나치게 큰 전단력 또는 충격을 인가하게 되어 흑연재료가 파손되는 문제점이 발생할 수 있다.
흑연재료와 볼밀볼의 혼합량은 적절히 조절될 수 있으나, 흑연재료 전체에 기계적 전단력을 인가하기 위하여 흑연재료의 중량보다 볼밀볼의 중량이 더 크도록 흑연재료와 볼밀볼을 혼합하는 것이 바람직하다.
이어서, 볼밀 용기(130)에 투입된 볼밀볼이 흑연재료에 기계적 전단력을 인가하도록 디스크(110) 및 볼밀 용기(130)를 회전시킬 수 있다.(S120)
도 2 및 도 3을 참조하면, 디스크(110) 및 볼밀 용기(130)가 회전하는 경우, 볼밀 용기(130) 내부에 투입된 볼밀볼에는 볼밀 용기(130)의 공전으로 인한 제1 원심력(Fr)과 볼밀 용기(130)의 자전으로 인한 제2 원심력(Fp)이 작용하게 된다. 제1 원심력(Fr)은 볼밀볼이 공전축으로부터 멀어지는 방향으로 작용하고, 제2 원심력(Fp)은 볼밀볼이 자전축으로부터 멀어지는 방향으로 작용한다. 이러한 제1 및 제2 원심력(Fr, Fp)의 크기 또는 작용방향은 볼밀볼의 위치에 따라 달라진다. 또한, 디스크(110)가 회전하는 상태에서 볼밀 용기(130)가 회전하는 경우, 볼밀볼과 볼밀 용기(130) 벽면 사이의 마찰력에 의해 볼밀볼이 볼밀 용기(130)와 동일한 방향으로 회전하게 된다. 이러한 힘들의 작용에 의해 볼밀 용기(130) 내의 볼밀볼은 (i)다른 볼밀볼, 흑연재료 또는 볼밀 용기(130)의 내벽과 충돌하는 운동을 하거나 (ii)다른 볼밀볼, 흑연재료 또는 볼밀 용기(130)의 내벽과 접촉한 상태에서 해당 볼밀볼의 회전에 의해 마찰하는 운동, 즉, 기계적 전단력을 인가하는 운동을 할 수 있다. 본 발명에 있어서는 볼밀볼이 흑연재료와 접촉한 상태에서 볼밀볼이 흑연재료에 기계적 전단력을 인가하도록 상기의 힘들을 제어한다. 이러한 힘들의 제어는 디스크(110)와 볼밀 용기(130)의 회전 속도를 조절함으로써 제어할 수 있다.
디스크(110)와 볼밀 용기(130)의 회전 속도에 따라, 볼밀볼은 위에서 설명된 힘들의 작용에 의해 다양한 운동을 하게 된다. 구체적으로, 일정한 속도로 디스크(110)가 회전하는 상태에서 볼밀 용기(130)를 자전시키면서 볼밀 용기(130)의 자전 속도를 점진적으로 증가시키는 경우, 볼밀 용기(130)의 자전 속도가 제1 속도 미만인 제1 구간, 제1 속도 이상 제2 속도 미만인 제2 구간 및 제2 속도 이상인 제3 구간에서 볼밀볼은 서로 다른 운동을 하게 된다.
볼밀 용기(130)의 자전 속도가 제1 속도 미만인 제1 구간에서는, 볼밀 용기(130)의 공전에 의한 제1 원심력(Fr)이 볼밀볼에 크게 작용하고, 그 결과, 볼밀볼은 볼밀 용기(130)의 내부 공간 중 공전축으로부터 가장 멀리 위치하는 지점에서 공전축을 기준으로 회전 운동을 하게 된다. 이 경우, 볼밀 용기(130)의 자전에 의하여 볼밀 용기(130)의 내벽은 볼밀볼에 마찰력을 인가하므로, 볼밀볼은 자체적으로 회전하게 된다.
볼밀 용기(130)의 자전 속도가 제1 속도 이상 제2 속도 미만인 제2 구간에서는, 볼밀 용기(130)의 공전에 의한 제1 원심력과 볼밀 용기(130)의 자전에 의한 제2 원심력이 상호 작용하여 볼밀볼이 볼밀 용기(130) 내부의 공간을 이동하여 볼밀 용기의 벽면과 충돌하는 운동을 하게 된다.
볼밀 용기(130)의 자전 속도가 제2 속도 이상인 제3 구간에서는, 볼밀 용기(130)의 자전에 의한 제2 원심력이 크게 작용하여 볼밀볼은 볼밀 용기(130)의 벽면과 접촉한 상태에서 자전축을 기준으로 한 회전 운동을 하게 된다. 이 경우, 볼밀 용기(130)의 내벽과 볼밀볼 사이의 마찰은 거의 발생하지 않으므로, 볼밀볼 자체의 회전은 거의 발생하지 않는다.
본 발명에 있어서는, 볼밀볼이 상기 제1 구간과 같이 운동하여 흑연재료에 기계적 전단력을 인가할 수 있도록 디스크(110)와 볼밀 용기(130)의 회전 속도를 제어한다. 볼밀 용기(130) 내부의 볼밀볼이 자전축을 중심으로 한 회전 운동을 하지 않도록 하기 위해서는, 도 3에 도시된 바와 같이, 최소한 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)이 자전 원심력(Fp)보다 커야 한다. 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)은 하기 ‘식 1’로 표현될 수 있고, 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 자전 원심력(Fp)은 하기 식 2로 표현될 수 있다.
[식 1]
Figure PCTKR2012001888-appb-I000001
[식 2]
Figure PCTKR2012001888-appb-I000002
상기 식 1 및 식 2에 있어서, ‘m’은 볼밀볼의 무게를 나타내고, ‘R’은 공전축과 자전축 사이의 거리, 즉, 공전 반경을 나타내고, ‘Lc’는 볼밀 용기의 반경에서 볼밀볼의 반경을 뺀 값을 나타내고, ‘w1’은 공전 각속도를 나타내며, ‘w2’는 자전 각속도를 나타낸다.
공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)이 상기 볼밀볼에 작용하는 자전 원심력(Fp)과 동일한 경우에 있어서의 공전 각속도(w1)에 대한 자전 각속도(w2)의 비(ratio) ‘w2/w1’를 임계 각속도 비 ‘rc’라 한다면, 임계 각속도 비 ‘rc’는 상기 ‘식 1’ 및 ‘식 2’로부터 유도되어 하기 ‘식 3’과 같이 표현될 수 있다.
[식 3]
Figure PCTKR2012001888-appb-I000003
본 발명에 있어서, 공전 속도에 대한 자전 속도의 비는 임계 각속도 비의 약 30 내지 70%가 되도록 제어될 수 있다. 볼밀볼에 자전 원심력보다는 공전 원심력이 크게 작용하여 볼밀볼이 흑연재료와 충돌하기 보다는 흑연 재료에 주로 기계적 전단력을 인가하기 위해서는 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 약 70% 이하가 되어야 한다. 즉, 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 70%를 초과하는 경우, 자전에 의한 원심력의 영향이 증가하여 볼밀볼이 주로 흑연재료와 충돌하는 운동을 하게 된다. 또한, 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 30% 미만인 경우, 볼밀볼 자체의 회전 속도가 낮아서 흑연재료에 인가되는 기계적 전단력이 너무 작아지게 되고, 그 결과 흑연재료가 박리되지 않는 문제점이 발생할 수 있다. 볼밀볼에 의해 흑연 재료에 인가되는 기계적 전단력은 볼밀볼 자체의 회전 속도에 영향을 받는데, 볼밀볼 자체의 회전 속도는 자전 속도에 의해 결정된다. 즉, 볼밀 용기의 자전 속도가 증가할수록 볼밀볼 자체의 회전 속도가 증가한다.
볼밀볼에 의해 흑연재료에 인가되는 기계적 전단력은 또한 볼밀볼이 흑연재료를 가압하는 압력에도 영향을 받는데, 볼밀볼이 흑연재료를 가압하는 압력은 볼밀 용기(130)의 공전 속도에 영향을 받는다. 즉, 볼밀 용기(130)의 공전 속도가 증가할수록 볼밀볼이 흑연재료를 가압하는 압력이 증가한다. 본 발명에 있어서는, 볼밀볼이 흑연재료에 적당한 크기의 기계적 전단력을 인가하도록 하기 위하여, 볼밀 용기의 공전 속도는 약 150 내지 500 rpm이 되도록 조절될 수 있다.
볼밀볼이 흑연재료에 주로 기계적 전단력(shearing force)을 인가하는 경우, 흑연재료는 복수개의 층들이 적층된 구조를 가지고 있고 층간 결합력이 상대적으로 약하므로, 볼밀볼에 의해 전단력이 인가된 흑연재료는 각각의 층으로 박리될 수 있다.
볼밀 공정 동안 흑연 재료가 산화되는 것을 방지하기 위하여, 볼밀 용기(130) 내부는 볼밀 공정 동안 비산화 분위기로 유지되는 것이 바람직하다. 예를 들면, 흑연 재료가 산화되는 것을 방지하기 위하여, 볼밀 용기 내부는 진공으로 유지된 후 아르곤(Ar) 가스를 퍼징하여 비산화 분위기로 유지될 수 있다.
이어서, 제조된 판형 탄소 나노입자를 분리하여 회수할 수 있다.(S130) 제조된 판형 탄소 나노입자는 약 20 내지 1000 nm 두께를 가질 수 있다. 이러한 판형 탄소 나노입자를 제조하기 위하여, 흑연 재료와 볼밀볼만 볼밀 용기에 투입하여 볼밀 공정을 진행하는 경우 약 6시간 이상 동안 볼밀 공정을 진행하는 것이 바람직하다.
도 4는 본 발명의 다른 실시예에 따른 판형 탄소 나노입자를 제조하는 방법을 설명하기 위한 순서도이다.
도 4를 참조하면, 본 실시예에 따른 판형 탄소 나노입자의 제조 방법은 흑연 재료와 볼밀볼 외에 박리활성제를 더 혼합한 후 이들을 볼밀 용기에 투입하고(S210), 제조된 판형 탄소 나노입자를 세정한다(S240)는 것을 제외하는 도 1을 참조하여 설명한 판형 탄소 나노입자의 제조방법과 실질적으로 동일하다. 따라서 이하에서는 박리 활성제와 세정 단계에 대해 주로 설명하고, 나머지 공정에 대한 설명은 생략한다.
박리 활성제는 흑연재료와 볼밀볼 사이의 마찰력을 증가시킬 수 있다. 구체적으로, 박리활성제는 상기 흑연재료와 상기 볼밀볼 사이의 마찰력을 증가시킬 수 있는 계면활성제, 유기물질 또는 무기물질일 수 있다. 일례로, 박리활성제로 사용될 수 있는 계면활성제는 SDS, NaDDBs, CTAB 등으로부터 선택될 수 있고, 박리활성제로 사용될 수 있는 유기물질로는 sugar, DNA 등으로부터 선택될 수 있으며, 박리활성제로 사용될 수 있는 무기물질로는 알루미늄일 수 있다.
박리 활성제를 투입하여 흑연 재료와 볼밀볼 사이의 마찰력을 증가시키는 경우, 짧은 시간 동안 볼밀 공정을 수행하더라도 판형 탄소 나노입자가 제조될 수 있다. 구체적으로, 박리 활성제를 투입하여 판형 탄소 나노입자를 제조하는 경우, 약 4시간 이상 동안 볼밀 공정을 진행하면 판형 탄소 나노입자를 제조할 수 있다.
볼밀 공정을 통해 제조된 판형 탄소 나노입자에는 박리 활성제가 소량 남아있을 수 있다. 따라서, 볼밀 공정을 통해 제조된 판형 탄소 나노입자는 박리 활성제를 제거하기 위하여 세정될 수 있다.(S240) 판형 탄소 나노입자를 세정하기 위하여, 볼밀 공정을 통해 제조된 판형 탄소 나노입자는 박리 활성제를 용해할 수 있는 용매(solvent)에 투입한 뒤 필터링을 통하여 용매 및 박리 활성제를 제거할 수 있다. 일례로, 박리 활성제로 설탕을 사용할 경우, 볼밀 공정을 통해 제조된 판형 탄소 나노입자를 증류수(H20)에 투입하여 설탕을 용해시킨 뒤 필터링하여 판형 탄소 나노입자를 세정할 수 있다.
[실시예 1]
흑연 재료 2g과 볼밀볼 300g을 강철 볼밀 용기에 넣고 산화를 막기 위해 진공(10-2torr)에서 유지 후 아른곤(Ar) 가스를 퍼징하여 볼밀 공정을 수행하여 판형 탄소 나노입자를 제조하였다. 이때, 흑연 재료는 alfar aesar사 natural, 200mesh를 사용하였고, 볼밀볼은 폴리이미드 재질의 직경이 약 5mm인 볼을 사용하였다. 볼밀 용기의 회전속도는 200rpm이었고, 디스크의 회전속도는 300rpm이었다.
도 5는 볼밀 공정이 수행되지 않은 흑연재료의 전자현미경 사진과, 상기의 방법에 따라 각각 0.5시간, 1시간, 2시간, 4시간 및 6시간 동안 볼밀 공정을 수행한 흑연 재료의 전자현미경 사진들이고, 도 6은 상기 방법으로 제조된 카본나노판의 X-선 회절 측정 그래프이다.
도5를 참조하면, 볼밀 공정 수행 시간이 증가함에 따라 흑연 재료가 박리되어 판형 탄소 나노입자가 제조되는 것을 확인할 수 있었다. 흑연 재료는 육방 정계의 적층 구조를 가지므로, X-선 회절(XRD) 측정 시 결정면 [002] 방향에서 피크(peak)가 나타난다. [002] 방향에서의 피크 강도가 높을수록 흑연의 층간 결합 구조의 결정성이 좋은 것을 의미하고, [002] 방향에서의 피크 강도가 낮을수록 흑연 재료가 박리되어 층간 결합구조의 결정성이 나쁜 것을 의미한다.
도 6을 참조하면, 볼밀 공정 수행 시간이 증가함에 따라 [002] 방향에서의 피크 강도가 감소하는 것을 확인할 수 있다. 특히, 볼밀 공정 수행 시간이 6시간인 경우, [002] 방향에서의 피크가 거의 나타나지 않음을 확인할 수 있고, 이는 흑연 재료가 거의 완전히 박리되어 단일 층 또는 수 개의 층이 적층된 구조의 판형 탄소 나노입자가 제조되었음을 의미한다.
[실시예 2]
흑연 재료 2g, 박리활성제 20g 및 볼밀볼 300g을 혼합한 후 이들을 강철 볼밀 용기에 넣고 산화를 막기 위해 진공에서 유지 후 Ar을 퍼징하여 볼밀 공정을 수행하여 판형 탄소 나노입자를 제조하였다. 이 때, 흑연 재료는 alfar aesar사 natural, 200mesh를 사용하였고, 박리활성제는 씨제이 제일제당 주식회사에서 제조한 KSH2003 제품을 사용하였으며, 볼밀볼은 폴리이미드 재질의 직경이 5mm인 볼을 사용하였다. 또한, 하기 표 1과 같은 스펙을 가진 볼밀 장치를 이용하여 볼밀 공정을 수행하였다.
표 1
공전축과 자전축 사이의 거리, R 170 mm
볼밀 용기 반경, r 60 mm
공전 속도 300 rpm
자전 속도 200 rpm
도 7은 볼밀 공정이 수행되지 않은 흑연재료의 전자현미경 사진과, 상기의 방법에 따라 각각 0.5시간, 1시간, 2시간, 4시간 및 6시간 동안 볼밀 공정을 수행한 흑연 재료의 전자현미경 사진들이고, 도 8은 상기 방법으로 제조된 판형 탄소 나노입자의 X-선 회절 측정 그래프이다.
도 7 및 도 8을 참조하면, 볼밀 공정 수행 시간이 증가함에 따라 흑연 재료가 박리되어 판형 탄소 나노입자가 제조되는 것을 확인할 수 있었다. 특히, 박리활성제가 투입됨에 따라 판형 탄소 나노입자의 제조 시간이 단축됨을 확인할 수 있다. 구체적으로, 도 8을 참조하면, 볼밀 공정 시간이 4시간 이상인 경우, [002] 방향에서의 피크가 나타나지 않음을 확인할 수 있다. 즉, 박리 활성제를 투입하는 경우 박리 활성제를 투입하지 않은 경우보다 판형 탄소 나노입자를 제조하기 위한 볼밀 공정 수행 시간을 약 2시간 이상 단축할 수 있음을 확인할 수 있다.
도 9는 상기의 방법으로 만들어진 판형 탄소 나노입자의 형상을 보기 위해 PET 위에 제조된 판형 탄소 나노입자를 스핀코팅법(spin coating method)으로 분산 시킨 후 촬영한 전자현미경 사진이다.
도 9를 참조하면, 볼밀 공정을 약 4시간 수행 후 카본 나노플레이를 50,000x, 100,000x로 촬영한 결과 약 100 내지 200nm 크기의 판형 탄소 나노입자가 제조되었음을 확인할 수 있었다.
[비교예 1, 2 및 3]
비교예 1로서, 자전 속도를 100rpm으로 한 것을 제외하고는 실시예 2와 동일하게 탄소 나노입자를 제조하였다.
비교예 2로서, 자전 속도를 400rpm으로 한 것을 제외하고는 실시예 2와 동일하게 판형 나노입자를 제조하였다.
비교예 3으로서, 볼밀볼로서 5mm의 직경을 가진 지르코니아(ZrO2) 볼을 사용한 것을 제외하고는 실시예 2와 동일하게 탄소 나노입자를 제조하였다.
도 10은 비교예 1에 따라 제조된 탄소 나노입자의 전자현미경 사진(a)과, 실시예 2에 따라 제조된 탄소 나노입자의 전자현미경 사진(b)과, 비교예 2에 따라 제조된 탄소 나노입자의 전자현미경 사진(c)과, 비교예 3에 따라 제조된 탄소 나노입자의 전자현미경 사진(d)이다.
도 10을 참조하면, 도 10의 (b)에 나타난 탄소 나노입자에 비해 비교예 1에 따라 제조된 탄소 나노입자에서는 볼밀에 의한 박리 또는 분쇄가 거의 이루어 지지 않았음을 확인할 수 있다. 이는 자전의 속도가 너무 느려 볼밀볼이 흑연재료에 충분한 기계적 전단력을 인가하지 못하였기 때문이다. 식 3 및 표 1을 이용하여 계산하면, 표 1에 나타난 볼밀 장비에서의 임계 각속도 비(rc)는 ‘1.4’이고, 비교예 2에서의 공전 각속도에 대한 자전 각속도의 비는 ‘100/300’이다. 즉, 비교예 1에서의 공전 각속도에 대한 자전 각속도의 비는 임계 각속도의 비(rc)의 약 23.8%에 불과하다.
도 10의 (c)를 참조하면, 도 10의 (b)에 나타난 탄소 나노입자에 비해 비교예 2에 따라 제조된 탄소 나노입자의 두께가 훨씬 더 두꺼운 것을 확인할 수 있다. 이는 공전에 의한 원심력과 자전에 의한 원심력 상호 작용하여 볼밀볼이 흑연재료에 기계적 전단력보다는 주로 충돌에 의한 힘을 전달하였고, 그 결과 흑연재료가 효과적으로 박리되지 않았기 때문이다. 비교예 2에서의 공전 각속도에 대한 자전 각속도의 비는 ‘400/300’이다. 즉, 비교예 2에서의 공전 각속도에 대한 자전 각속도의 비는 임계 각속도의 비(rc)의 약 95.2%에 해당한다.
도 10의 (d)를 참조하면, 도 10의 (b)에 나타난 탄소 나노입자에 비해 비교예 3에 따라 제조된 탄소 나노입자는 손상의 정도가 매우 큰 것을 확인할 수 있다. 이는 폴리이미드 재질의 볼밀볼 밀도가 1.43g/cm3임에 반하여, 지르코니아 재질의 볼밀볼 밀도는 6.0g/cm3로서, 지르코니아 재질의 볼밀에 의해 흑연재료에 강한 충격이 전달되었기 때문이다.
<알루미늄-탄소 복합재료의 제조방법>
도 11은 본 발명의 실시예에 따른 알루미늄-탄소 복합재료의 제조방법을 설명하기 위한 순서도이고, 도 12는 볼밀 장치를 설명하기 위한 평면도이며, 도 13은 볼밀 용기 내부에 투입된 볼밀볼에 작용하는 힘을 설명하기 위한 모식도이다.
도 11 내지 도 13을 참조하면, 본 발명의 실시예에 따라 알루미늄-탄소 복합재료를 제조하기 위하여, 우선 알루미늄 분말들에 탄소 재료를 결합시켜 알루미늄-탄소 혼합분말들을 제조할 수 있다(S110).
알루미늄 분말들에 탄소 재료를 결합시키기 위하여, 우선 용매 내에 탄소 재료를 분산시킨 후, 분산용액을 초음파 처리할 수 있다. 탄소 재료로는 흑연판, 흑연섬유, 탄소섬유, 탄소나노섬유 및 탄소나노튜브 중 적어도 하나 이상이 사용될 수 있다. 일례로, 탄소 재료로는 앞에서 설명된 방법에 따라 제조된 판형 탄소 나노 입자를 사용할 수 있다. 용매로는 물, 헥산, 에탄올, 메탄올, 프로판올, 에틸렌글라이콜, 아민 및 페놀 중 적어도 하나 이상이 사용될 수 있다. 초음파 처리는 약 0.5분 내지 60분 동안 수행될 수 있다. 이러한 초음파 처리는 탄소 재료를 균일하게 분산시킬 뿐만 아니라 탄소 재료에 산소를 포함하는 작용기, 예를 들면, 하이드록실기 등을 만들 수 있다. 이어서, 초음파 처리된 분산용액 내에 알루미늄 분말들을 첨가하고 다시 초음파 처리하여 알루미늄-탄소 혼합 분말들을 침전시킬 수 있다. 알루미늄 분말들은 약 100 nm 내지 1 mm의 직경을 가질 수 있다. 알루미늄 분말들은 탄소재료가 알루미늄 분말들의 중량에 대해 약 0.1 내지 50 wt.% 정도가 되도록 첨가될 수 있다. 알루미늄-탄소 혼합 분말들을 침전시키기 위한 초음파 처리는 약 0.5분 내지 60분 동안 수행될 수 있다. 이러한 초음파 처리는 탄소 재료에 형성된 산소를 포함하는 작용기와 알루미늄 사이에 결합을 유도할 수 있다. 그 후, 침전된 알루미늄-탄소 혼합 분말들을 분리하여 건조시킬 수 있다.
알루미늄-탄소 혼합분말들을 제조한 후, 알루미늄-탄소 혼합분말들에 기계적 전단력을 인가하여 변형 알루미늄-탄소 혼합분말들을 제조할 수 있다(S120).
다시 도 1 내지 도 3을 참조하면, 알루미늄-탄소 혼합분말들에 기계적 전단력을 인가하기 위하여, 디스크(110)에 회전 가능하게 결합된 볼밀 용기(130)에 알루미늄-탄소 혼합분말들 및 볼밀볼을 투입할 수 있다. 디스크(110)는 디스크(110)의 중심 ‘O’에 위치하는 제1 중심축(이하 ‘공전축’이라 함)을 기준으로 제1 방향(X)으로 회전할 수 있다. 볼밀 용기(130)는 디스크(110)의 가장 자리에 결합될 수 있고, 볼밀 용기(130)의 중심 ‘A1’에 위치하는 제2 중심축(이하 ‘자전축’이라 함)을 기준으로 제1 방향(X)과 반대 방향인 제2 방향(Y)으로 회전할 수 있다. 즉, 볼밀 용기(130)는 디스크(110)의 회전에 의해 공전축을 기준으로 공전(revolution)할 수 있고, 자전축을 기준으로 한 볼밀 용기(130) 자체의 회전에 의해 자전(rotation)할 수 있다.
볼밀볼의 재질은 특별히 제한되지 않으나, 알루미늄-탄소 혼합분말들에 효과적으로 마찰력을 인가하도록 지르코니아 재질로 된 볼밀볼을 사용할 수 있다. 볼밀볼의 크기는 알루미늄-탄소 혼합분말들에 인가되어야 하는 전단력을 고려하여 적절하게 선택될 수 있다. 일례로 볼밀볼은 약 3 내지 50mm의 직경을 가질 수 있다. 볼밀볼의 크기가 3mm 미만인 경우, 볼밀볼의 질량이 너무 작아서 알루미늄-탄소 혼합분말들에 인가되는 기계적 전단력이 요구되는 값보다 작아지게 되고, 그 결과 알루미늄 분말에 결합된 탄소 재료를 일정한 방향을 배향할 수 없거나 알루미늄 분말을 일정한 판 형상으로 변형시킬 수 없게 되는 문제점이 발생할 수 있다. 이와 달리, 볼밀볼의 크기가 50mm를 초과하는 경우, 알루미늄-탄소 혼합분말들에 지나치게 큰 전단력 또는 충격을 인가하게 되어 알루미늄-탄소 혼합분말들의 파손을 야기할 가능성이 있다. 이어서, 볼밀 용기(130)에 투입된 볼밀볼이 알루미늄-탄소 혼합분말들에 기계적 전단력을 인가하도록 디스크(110) 및 볼밀 용기(130)를 회전시킬 수 있다.
디스크(110) 및 볼밀 용기(130)가 회전하는 경우, 볼밀 용기(130) 내부에 투입된 볼밀볼에는 볼밀 용기(130)의 공전으로 인한 제1 원심력(Fr)과 볼밀 용기(130)의 자전으로 인한 제2 원심력(Fp)이 작용하게 된다. 제1 원심력(Fr)은 볼밀볼이 공전축으로부터 멀어지는 방향으로 작용하고, 제2 원심력(Fp)은 볼밀볼이 자전축으로부터 멀어지는 방향으로 작용한다. 이러한 제1 및 제2 원심력(Fr, Fp)의 크기 또는 작용방향은 볼밀볼의 위치에 따라 달라진다. 또한, 디스크(110)가 회전하는 상태에서 볼밀 용기(130)가 회전하는 경우, 볼밀볼과 볼밀 용기(130) 벽면 사이의 마찰력에 의해 볼밀볼이 볼밀 용기(130)와 동일한 방향으로 회전하게 된다. 이러한 힘들의 작용에 의해 볼밀 용기(130) 내의 볼밀볼은 (i)다른 볼밀볼, 알루미늄-탄소 혼합분말 또는 볼밀 용기(130)의 내벽과 충돌하는 운동을 하거나 (ii)다른 볼밀볼, 알루미늄-탄소 혼합분말 또는 볼밀 용기(130)의 내벽과 접촉한 상태에서 해당 볼밀볼의 회전에 의해 마찰하는 운동, 즉, 기계적 전단력을 인가하는 운동을 할 수 있다. 본 발명에 있어서는 볼밀볼이 알루미늄-탄소 혼합분말과 접촉한 상태에서 볼밀볼이 알루미늄-탄소 혼합분말에 기계적 전단력을 인가하도록 상기의 힘들을 제어한다. 이러한 힘들의 제어는 디스크(110)와 볼밀 용기(130)의 회전 속도를 조절함으로써 제어할 수 있다.
디스크(110)와 볼밀 용기(130)의 회전 속도에 따라, 볼밀볼은 위에서 설명된 힘들의 작용에 의해 다양한 운동을 하게 된다. 구체적으로, 일정한 속도로 디스크(110)가 회전하는 상태에서 볼밀 용기(130)를 자전시키면서 볼밀 용기(130)의 자전 속도를 점진적으로 증가시키는 경우, 볼밀 용기(130)의 자전 속도가 제1 속도 미만인 제1 구간, 제1 속도 이상 제2 속도 미만인 제2 구간 및 제2 속도 이상인 제3 구간에서 볼밀볼은 서로 다른 운동을 하게 된다.
볼밀 용기(130)의 자전 속도가 제1 속도 미만인 제1 구간에서는, 볼밀 용기(130)의 공전에 의한 제1 원심력(Fr)이 볼밀볼에 크게 작용하고, 그 결과, 볼밀볼은 볼밀 용기(130)의 내부 공간 중 공전축으로부터 가장 멀리 위치하는 지점에서 공전축을 기준으로 회전 운동을 하게 된다. 이 경우, 볼밀 용기(130)의 자전에 의하여 볼밀 용기(130)의 내벽은 볼밀볼에 마찰력을 인가하므로, 볼밀볼은 자체적으로 회전하게 된다.
볼밀 용기(130)의 자전 속도가 제1 속도 이상 제2 속도 미만인 제2 구간에서는, 볼밀 용기(130)의 공전에 의한 제1 원심력과 볼밀 용기(130)의 자전에 의한 제2 원심력이 상호 작용하여 볼밀볼이 볼밀 용기(130) 내부의 공간을 이동하여 볼밀 용기의 벽면과 충돌하는 운동을 하게 된다.
볼밀 용기(130)의 자전 속도가 제2 속도 이상인 제3 구간에서는, 볼밀 용기(130)의 자전에 의한 제2 원심력이 크게 작용하여 볼밀볼은 볼밀 용기(130)의 벽면과 접촉한 상태에서 자전축을 기준으로 한 회전 운동을 하게 된다. 이 경우, 볼밀 용기(130)의 내벽과 볼밀볼 사이의 마찰은 거의 발생하지 않으므로, 볼밀볼 자체의 회전은 거의 발생하지 않는다.
본 발명에 있어서는, 볼밀볼이 상기 제1 구간과 같이 운동하여 알루미늄-탄소 혼합분말에 기계적 전단력을 인가할 수 있도록 디스크(110)와 볼밀 용기(130)의 회전 속도를 제어한다. 볼밀 용기(130) 내부의 볼밀볼이 자전축을 중심으로 한 회전 운동을 하지 않도록 하기 위해서는, 도 3에 도시된 바와 같이, 최소한 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)이 자전 원심력(Fp)보다 커야 한다. 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)은 하기 ‘식 4’로 표현될 수 있고, 볼밀 용기(130) 내부 공간 중 공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 자전 원심력(Fp)은 하기 ‘식 5’로 표현될 수 있다.
[식 4]
Figure PCTKR2012001888-appb-I000004
[식 5]
Figure PCTKR2012001888-appb-I000005
상기 식 4 및 식 5에 있어서, ‘m’은 볼밀볼의 무게를 나타내고, ‘R’은 공전축과 자전축 사이의 거리, 즉, 공전 반경을 나타내고, ‘Lc’는 볼밀 용기의 반경에서 볼밀볼의 반경을 뺀 값을 나타내고, ‘w1’은 공전 각속도를 나타내며, ‘w2’는 자전 각속도를 나타낸다.
공전축에 가장 가깝게 위치한 볼밀볼에 작용하는 공전 원심력(Fr)이 상기 볼밀볼에 작용하는 자전 원심력(Fp)과 동일한 경우에 있어서의 공전 각속도(w1)에 대한 자전 각속도(w2)의 비(ratio) ‘w2/w1’를 임계 각속도 비 ‘rc’라 한다면, 임계 각속도 비 ‘rc’는 상기 ‘식 1’ 및 ‘식 2’로부터 유도되어 하기 ‘식 6’과 같이 표현될 수 있다.
[식 6]
Figure PCTKR2012001888-appb-I000006
본 발명에 있어서, 볼밀 용기(130)의 공전 속도에 대한 자전 속도의 비는 임계 각속도 비의 약 30 내지 70%가 되도록 제어될 수 있다. 볼밀볼에 자전 원심력보다는 공전 원심력이 크게 작용하여 볼밀볼이 알루미늄-탄소 혼합분말들과 충돌하기 보다는 알루미늄-탄소 혼합분말들에 주로 기계적 전단력을 인가하기 위해서는 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 약 70% 이하가 되어야 한다. 즉, 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 70%를 초과하는 경우, 자전에 의한 원심력의 영향이 증가하여 볼밀볼이 주로 알루미늄-탄소 혼합분말들과 충돌하는 운동을 하게 된다. 또한, 공전 속도에 대한 자전 속도의 비(w2/w1)가 임계 각속도 비(rc)의 30% 미만인 경우, 볼밀볼 자체의 회전 속도가 낮아서 흑연재료에 인가되는 기계적 전단력이 너무 작아지게 되고, 그 결과 알루미늄 분말에 결합된 탄소 재료를 일정한 방향을 배향할 수 없거나 알루미늄 분말을 일정한 판 형상으로 변형시킬 수 없게 되는 문제점이 발생할 수 있다. 볼밀볼에 의해 알루미늄-탄소 혼합분말에 인가되는 기계적 전단력은 볼밀볼 자체의 회전 속도에 영향을 받는데, 볼밀볼 자체의 회전 속도는 볼밀 용기의 자전 속도에 의해 결정된다. 즉, 볼밀 용기의 자전 속도가 증가할수록 볼밀볼 자체의 회전 속도가 증가한다.
볼밀볼에 의해 알루미늄-탄소 혼합분말에 인가되는 기계적 전단력은 또한 볼밀볼이 알루미늄-탄소 혼합분말을 가압하는 압력에도 영향을 받는데, 볼밀볼이 알루미늄-탄소 혼합분말을 가압하는 압력은 볼밀 용기(130)의 공전 속도에 영향을 받는다. 즉, 볼밀 용기(130)의 공전 속도가 증가할수록 볼밀볼이 흑연재료를 가압하는 압력이 증가한다. 본 발명에 있어서는, 볼밀볼이 알루미늄-탄소 혼합분말에 적당한 크기의 기계적 전단력을 인가하도록 하기 위하여, 디스크의 회전 속도는 약 150 내지 500 rpm이 되도록 조절될 수 있다.
알루미늄-탄소 혼합 분말들이 산화되는 것을 방지하기 위하여, 볼밀 용기(110) 내부는 볼밀 공정 동안 비활성 기체 분위기로 유지되는 것이 바람직하다. 볼밀 공정은 약 5분 내지 6시간 동안 수행될 수 있다. 상기에서 설명한 바와 같이, 알루미늄-탄소 혼합 분말들에 기계적 전단력이 인가되는 경우, 알루미늄-탄소 혼합 분말들은 그 형상이 판 형상에 가깝게 변형될 수 있고, 알루미늄 분말 표면에 결합된 탄소 재료는 일 방향으로 연장되도록 정렬될 수 있다.
다시 도 11을 참조하면, 알루미늄-탄소 혼합분말들에 기계적 전단력을 인가한 후, 변형 알루미늄-탄소 혼합분말들을 소결성형할 수 있다.
변형 알루미늄-탄소 혼합 분말들을 소결성형하기 위하여, 우선 변형 알루미늄-탄소 혼합 분말들을 금형에 충진할 수 있다. 이어서, 진공 분위기 하에서 상하에서 약 10MPa 내지 100MPa의 압력을 인가한 상태에서 금형에 충진된 변형 알루미늄-탄소 혼합 분말들을 약 1 분 내지 약 1시간 동안 약 500 내지 700℃의 온도로 소결하여 금형에 충진된 변형 알루미늄-탄소 혼합 분말들을 소성변형시킬 수 있다. 그 후, 최종 알루미늄-탄소 복합재료를 금형으로부터 분리할 수 있다. 도 14는 변형 알루미늄-탄소 혼합 분말들을 소결성형하기 위한 소결성형기의 모식도이다.
[실시예 3, 4 및 5]
헥센(Hexane) 용매 20ml에 알루미늄 분말과 탄소재료를 첨가하고 혼 타입(horn-type)의 초음파처리기로 초음파 처리하여 알루미늄-탄소 혼합 분말들을 제조하였다. 알루미늄 분말은 2g 첨가하였고, 탄소재료는 알루미늄 분말의 중량에 대해 0.05wt.%(실시예 3), 0.1wt.%(실시예 4) 및 0.3wt.%(실시예 5)만큼 각각 첨가하였다. 알루미늄 분말로는 고순도화학연구소(japan)에서 구매한 크기 3㎛의 알루미늄 분말 제품을 사용하였다. 탄소재료로는 자체 제조한 100 ~ 500 nm 크기를 가지는 나노 흑연판을 사용하였다.
이어서, 상기 제조된 알루미늄-탄소 혼합 분말들 2g과 볼밀볼 300g을 탄소강으로 제조된 볼밀 용기(제이분체사)에 넣고 알루미늄-탄소 혼합 분말들에 기계적 전단력을 인가하기 위한 볼밀 공정을 수행하여 변형 알루미늄-탄소 혼합 분말들을 제조하였다. 볼밀 공정에 사용된 볼밀 장비는 하기 표 2의 스펙을 가진 장치를 사용하였다. 볼밀 공정은 알루미늄의 산화를 막기 위해 진공(10-2torr)에서 유지 후 아르곤(Ar)을 퍼징하여 약 2시간 동안 수행하였다. 볼밀볼로는 약 5mm의 직경을 가진 지르코니아 볼을 사용하였다.
표 2
공전축과 자전축 사이의 거리, R 170 mm
볼밀 용기 반경, r 60 mm
공전 속도 300 rpm
자전 속도 200 rpm
식 6, 표 2 및 볼밀볼의 직경 등을 이용하여 계산하면, 표 2에 나타난 볼밀 장비에서의 임계 각속도 비(rc)는 ‘1.4’임을 알 수 있다. 즉, 실시예 3, 4 및 5에서의 볼밀 용기의 공전 속도에 대한 자전 속도의 비는 ‘200/300’으로서, 임계 각속도 비(rc)의 약 47.6%인 조건에서 볼밀 공정이 수행되었다.
이어서, 변형 알루미늄-탄소 혼합 분말들을 몰드에 넣고 상하부 펀치를 고정 시킨 뒤 유압프레스를 이용하여 50MPa의 압력으로 압축한 후, 600℃의 온도에서 약 30분 소결하여 알루미늄-탄소 복합재료를 제조하였다. 이때 성형소결기 챔버 내부 분위기는 10-2torr의 진공상태에서 수행되었다. 도 14는 성형소결기의 모식도이다.
[실험예 1: 실시예 3의 특성 평가]
도 15는 초음파 처리된 알루미늄 시료들의 전자현미경 사진들이다. 구체적으로, 도 15의 좌측 상단의 사진은 알루미늄만으로 이루어진 분말의 전자현미경 사진이고, 도 5의 우측 상단, 좌측 하단 및 우측 하단의 사진들은 나노 흑연판의 농도가 각각 0.05 wt.%(실시예 3), 0.1 wt.%(실시예 4) 및 0.3 wt.%(실시예 5)인 알루미늄-탄소 혼합 분말의 전자현미경 사진들이다. 도 15의 우측 상단, 좌측 하단 및 우측 하단의 사진들을 참조하면, 알루미늄 분말의 표면에 나노 흑연판이 균일하게 분산되어 결합된 것을 확인할 수 있다.
도 16은 볼밀 공정 후의 변형 알루미늄-탄소 혼합 분말의 전자현미경 사진(1,000X)이다. 도 16은 나노 흑연판의 농도가 0.1 wt.%(실시예 4)에 해당하는 변형 알루미늄-탄소 혼합 분말의 전자현미경 사진으로서, 도 16을 참조하면, 변형 알루미늄-탄소 혼합 분말들은 볼밀볼에 의한 기계적 전단력의 인가로 인하여 그 형상이 판 형상으로 변형된 것을 확인할 수 있다.
도 17은 탄소재료가 미첨가된 알루미늄 재료 및 탄소재료가 0.05wt.%(실시예 3) 포함된 알루미늄-탄소 복합재료의 미세구조를 설명하기 위한 사진들이다. 구체적으로, 도 17의 좌측 사진은 탄소재료가 미첨가된 알루미늄 재료의 미세구조 사진(Olympus, GC51F)이고, 도 17의 우측 사진은 탄소재료가 0.05 wt.% 포함된 알루미늄-탄소 복합재료의 미세구조 사진이다. 도 17을 참조하면, 본 발명의 실시예 3에 의해 제조된 알루미늄-탄소 복합재료에서는 알루미늄과 탄소재료가 적층구조를 형성하는 것을 확인 할 수 있었다.
도 18의 (a)는 볼밀볼이 알루미늄-탄소 혼합분말에 주로 충격하도록 하는 조건의 볼밀 공정을 수행하여 제조된 알루미늄-탄소 복합재료의 공초점 라만(Witec사, CRM 200)측정 결과이고, 도 18의 (b)는 본 발명의 실시예 3에 따라 볼밀볼이 알루미늄-탄소 혼합분말에 주로 기계적 전단력을 인가하는 조건의 볼밀 공정을 수행하여 제조된 알루미늄-탄소 복합재료의 공초점 라만(Witec사, CRM 200)측정 결과이다. 공초점 라만 측정시 G mode는 탄소재료 고유의 피크(peak)를(G mode) 노란색 점으로 나타난다. 도 18의 (b)의 알루미늄-탄소 복합재료는 도 18의 (a)의 알루미늄-탄소 복합재료에 비해 탄소 재료가 균일하게 분산되어 있을 뿐만 아니라 알루미늄과 탄소재료의 적층구조를 형성하고 있음을 알 수 있다.
표 3은 알루미늄 재료의 샘플(RAW), 탄소재료의 함량이 0.1 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.1wt%C, 실시예 4) 및 탄소재료의 함량이 0.3 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.3wt%C, 실시예 5)의 인장강도를 측정한 결과를 나타내고, 도 19는 알루미늄 재료의 샘플(RAW), 탄소재료의 함량이 0.1 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.1wt%C, 실시예 4) 및 탄소재료의 함량이 0.3 wt.%인 알루미늄-탄소 복합재료 샘플(Al-0.3wt%C, 실시예 5)의 인장강도를 측정한 결과를 나타내는 그래프이다. 샘플들의 기계적 특성을 측정하기 위해 시편을 Φ 2mm로 압출하여 표점거리 20mm, 지름 1.3mm 시험편으로 가공하여 만능인장시험기(LLOYD instrument사, LR30K)를 이용하여 0.1mm/min의 속도로 인장한 결과를 측정하였다.
표 3
Sample TensileStress(MPa) 인장강도증가율(%) Elongation(%) 연신률 증가율(%)
Raw 1(600℃, 0.5h) 142.76 - 8.93 -
Al-0.1wt%C(630℃, 0.5h) 164.30 15.09 12.92 44.68
Raw 2(600℃, 3.0h) 172.85 - 11.86 -
Al-0.3wt%C(600℃, 3.0h) 233.07 34.84 12.24 3.20
표 3 및 도 19를 참조하면, 600℃에서 30분간 성형소결하여 알루미늄과 탄소의 적층구조를 가지고 탄소 재료의 함량이 0.1wt%인 알루미늄-탄소 복합재료(실시예 4)의 경우 알루미늄 재료(Raw 1)에 비해 인장강도 15% 및 연신률 45%가 증가되는 것을 확인할 수 있었다. 또한 600℃에서 3시간 성형소결하여 알루미늄과 탄소의 적층구조를 가지고 탄소 재료의 함량이 0.3wt%인 알루미늄-탄소 복합재료(실시예 5)의 경우 알루미늄 재료(Raw 2)에 비해 인장강도 35% 및 연신률 3%가 증가되는 것을 확인할 수 있었다.
[비교예 4 및 5]
비교예 4에서는 임계 각속도 비(rc=1.4)가 되도록 볼밀 용기의 공전 속도에 대한 자전 속도의 비(ratio)를 조절하여 볼밀 공정을 수행하였다는 것을 제외하고는 실시예 4와 동일한 방법으로 알루미늄-탄소 복합재료를 제조하였다.
비교예 5에서는 임계 각속도 비(rc=1.4)가 되도록 볼밀 용기의 공전 속도에 대한 자전 속도의 비(ratio)를 조절하여 볼밀 공정을 수행하였다는 것을 제외하고는 실시예 5와 동일한 방법으로 알루미늄-탄소 복합재료를 제조하였다.
하기 ‘표 4’는 비교예 4, 실시예 4, 비교예 5 및 실시예 5에 따라 제조된 알루미늄-탄소 복합재료들의 인장강도를 측정한 결과를 나타내고, 도 20은 비교예 4, 실시예 4, 비교예 5 및 실시예 5에 따라 제조된 알루미늄-탄소 복합재료들의 인장강도를 측정한 결과를 나타내는 그래프이다.
표 4
Sample TensileStress(MPa) 인장강도증가율(%) Elongation(%) 연신률 증가율(%)
비교예 4 147.29 - 8.93 -
실시예 4 164.30 11.55 12.92 28.17
비교예 5 152.60 - 11.86 -
실시예 5 233.07 52.73 12.24 33.92
표 4 및 도 20을 참조하면, 실시예 4에 따른 알루미늄-탄소 복합재료는 비교예 4에 따른 알루미늄-탄소 복합재료보다 인장강도는 11.55% 증가하였고, 연신률은 28.17% 증가하였다. 또한, 실시예 5에 따른 알루미늄-탄소 복합재료는 비교예 5에 따른 알루미늄-탄소 복합재료보다 인장강도는 52.73% 증가하였고, 연신률은 33.92% 증가하였다. 따라서, 본 발명의 실시예에 따른 알루미늄-탄소 복합재료는 비교예에 따른 알루미늄-탄소 복합재료보다 현저하게 향상된 기계적 특성을 가짐을 알 수 있다.
상술한 판형 탄소 나노입자의 제조방법에 따르면, 비교적 간단한 공정을 통해 단시간에 대량적으로 판형 탄소 나노입자를 제조할 수 있다. 또한, 판형 탄소 나노입자를 제조하기 위하여 고온이 필요하지 않으므로 많은 에너지의 절약을 가져올 수 있다.
상술한 알루미늄-탄소 복합재료의 제조방법에 따르면, 비교적 간단한 공정을 통해 대량적으로 알루미늄-탄소 복합재료를 제조할 수 있다. 또한, 상기의 제조방법에 따라 제조된 알루미늄-탄소 복합재료는 균일하게 분산되고 알루미늄과 적층구조를 이루는 탄소재료로 인하여 강화된 인장강도를 가진다. 따라서, 상기 알루미늄-탄소 복합재료를 구조용 소재로 사용하는 경우, 경량화된 구조물을 제조할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (17)

  1. 제1 방향으로 회전 가능한 디스크에 상기 제1 방향과 반대 방향인 제2 방향으로 회전 가능하게 결합된 볼밀 용기에 흑연재료 및 볼밀볼을 투입하는 단계;
    상기 볼밀볼이 상기 볼밀 용기의 벽면과 마찰하여 상기 볼밀볼 자체가 회전하여 상기 흑연재료에 기계적 전단력을 인가하도록 상기 디스크 및 상기 볼밀 용기를 소정 시간동안 회전시키는 단계; 및
    상기 흑연 재료로부터 제조된 탄소 나노입자를 분리하는 단계를 포함하는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  2. 제1항에 있어서, 상기 흑연 재료는 판 형상의 인조 흑연 재료, 분말 형상의 인조 흑연재료, 덩어리 형상의 인조 흑연재료, 판 형상의 천연 흑연재료, 분말 형상의 천연 흑연 재료 및 덩어리 형상의 천연 흑연재료로 이루어진 그룹으로부터 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  3. 제1항에 있어서, 상기 디스크 및 상기 볼밀 용기를 회전시켜 상기 흑연재료에 기계적 전단력을 인가하는 단계는 비산화 분위기에서 수행되는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  4. 제1항에 있어서, 상기 디스크의 회전속도에 대한 상기 볼밀 용기의 회전 속도의 비는 임계 각속도 비의 30% 이상 70% 이하인 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  5. 제4항에 있어서, 상기 디스크의 회전 속도는 150 rpm 이상 500 rpm 이하인 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  6. 제1항에 있어서, 상기 볼밀 용기에 상기 흑연재료 및 상기 볼밀볼을 투입하는 단계에 있어서, 상기 흑연재료와 상기 볼밀볼 사이의 마찰력을 증가시키는 박리활성제를 더 투입하는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  7. 제6항에 있어서, 상기 박리활성제는 상기 흑연재료와 상기 볼밀볼 사이의 마찰력을 증가시킬 수 있는 계면활성제, 유기물질 및 무기물질로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하고,
    상기 계면활성제는 SDS, NaDDBs 및 CTAB로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하고,
    상기 유기물질은 설탕(sugar) 및 DNA로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하며,
    상기 무기물질은 알루미늄을 포함하는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  8. 제7항에 있어서, 상기 분리된 판형 탄소 나노입자를 상기 박리 활성제를 용해할 수 있는 용매를 이용하여 세정하는 단계를 더 포함하는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  9. 제7항에 있어서, 상기 디스크 및 상기 볼밀 용기는 4시간 이상 회전되는 것을 특징으로 하는 판형 탄소 나노입자의 제조방법.
  10. 알루미늄 분말들에 탄소재료를 결합시켜 알루미늄-탄소 혼합 분말을 제조하는 단계;
    상기 알루미늄-탄소 혼합 분말들에 기계적 전단력을 인가하여 변형 알루미늄-탄소 혼합 분말들을 제조하는 단계; 및
    상기 변형 알루미늄-탄소 혼합분말들을 소결성형하는 단계를 포함하는 알루미늄-탄소 복합재료의 제조 방법.
  11. 제10항에 있어서, 상기 알루미늄-탄소 혼합 분말을 제조하는 단계는,
    용매에 탄소 재료를 혼합한 후 초음파 처리하는 단계; 및
    상기 초음파 처리된 혼합용액에 알루미늄 분말을 첨가한 후 초음파 처리하는 단계를 포함하는 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  12. 제11항에 있어서, 상기 탄소재료는 흑연판, 흑연섬유, 탄소섬유, 탄소나노섬유 및 탄소나노튜브로 이루어진 그룹 중 적어도 하나를 포함하는 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  13. 제11항에 있어서, 상기 알루미늄 분말들은 상기 탄소재료가 상기 알루미늄 분말들의 중량에 대해 약 0.1 내지 50 wt.% 정도가 되도록 첨가되는 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  14. 제10항에 있어서, 상기 변형 알루미늄-탄소 혼합 분말들을 제조하는 단계는,
    제1 방향으로 회전 가능한 디스크에 상기 제1 방향과 반대 방향인 제2 방향으로 회전 가능하게 결합된 볼밀 용기에 상기 알루미늄-탄소 혼합 분말들 및 볼밀볼을 투입하는 단계; 및
    상기 볼밀볼이 상기 볼밀 용기의 벽면과 마찰하여 상기 볼밀볼 자체가 회전하여 상기 알루미늄-탄소 혼합 분말들에 기계적 전단력을 인가하도록 상기 디스크 및 상기 볼밀 용기를 소정 시간동안 회전시키는 단계를 포함하는 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  15. 제14항에 있어서, 상기 디스크의 회전속도에 대한 상기 볼밀 용기의 회전 속도의 비는 임계 각속도 비의 30% 이상 70% 이하인 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  16. 제15항에 있어서, 상기 디스크의 회전 속도는 150 rpm 이상 500 rpm 이하인 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
  17. 제14항에 있어서, 상기 변형 알루미늄-탄소 혼합분말들을 소결성형하는 단계는,
    상기 변형 알루미늄-탄소 혼합 분말들을 금형에 충진하는 단계; 및
    상기 금형에 충진된 상기 변형 알루미늄-탄소 혼합 분말들에 10MPa 내지 100MPa의 압력을 인가한 상태에서 상기 변형 알루미늄-탄소 혼합 분말들을 500 내지 700℃의 온도로 가열하는 단계를 포함하는 것을 특징으로 하는 알루미늄-탄소 복합재료의 제조 방법.
PCT/KR2012/001888 2012-03-09 2012-03-15 판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법 WO2013133467A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014503585A JP5723058B2 (ja) 2012-03-09 2012-03-15 板型炭素ナノ粒子製造方法及びそれを用いたアルミニウム‐炭素の複合材料の製造方法
EP12805555.5A EP2687485A4 (en) 2012-03-09 2012-03-15 METHOD FOR PRODUCING PLANAR CARBON NANOPARTICLES, AND PROCESS FOR PRODUCING ALUMINUM / CARBON COMPOSITE MATERIAL USING THE SAME
CN201280001011.0A CN103562130A (zh) 2012-03-09 2012-03-15 板状碳纳米粒子的制造方法及利用其的铝-碳复合材料的制造方法
US13/647,833 US20130237404A1 (en) 2012-03-09 2012-10-09 Method of producing carbon nanoparticles and method of producing aluminum-carbon composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0024193 2012-03-09
KR1020120024193A KR101393424B1 (ko) 2012-03-09 2012-03-09 알루미늄-탄소 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-탄소 복합재료
KR1020120024194A KR101347630B1 (ko) 2012-03-09 2012-03-09 판형 탄소 나노입자 제조방법 및 이에 의해 제조된 판형 탄소 나노입자
KR10-2012-0024194 2012-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/647,833 Continuation US20130237404A1 (en) 2012-03-09 2012-10-09 Method of producing carbon nanoparticles and method of producing aluminum-carbon composite material

Publications (1)

Publication Number Publication Date
WO2013133467A1 true WO2013133467A1 (ko) 2013-09-12

Family

ID=49116930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001888 WO2013133467A1 (ko) 2012-03-09 2012-03-15 판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법

Country Status (4)

Country Link
EP (1) EP2687485A4 (ko)
JP (1) JP5723058B2 (ko)
CN (1) CN103562130A (ko)
WO (1) WO2013133467A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085886B (zh) * 2014-07-28 2015-11-04 嵇天浩 石墨烯及其制备方法
WO2017134316A1 (es) * 2016-02-01 2017-08-10 Eficiencia Energética Aplicada, S.L. Procedimiento de obtención de un producto grafénico, producto grafénico y su uso
CN105776196A (zh) * 2016-03-22 2016-07-20 中国石油大学(北京) 一种快速剥离装置及生产石墨烯的方法
CN108817381A (zh) * 2018-05-14 2018-11-16 兰州交通大学 一种低膨胀片状石墨/碳纳米管/铝复合材料的制备方法
KR20200050549A (ko) * 2018-11-02 2020-05-12 현대자동차주식회사 리튬공기전지용 양극, 그 제조방법 및 이를 포함하는 리튬공기전지
CN114875261B (zh) * 2022-06-02 2022-10-28 哈尔滨工业大学 耐蚀铝碳复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328454A (ja) * 2005-05-24 2006-12-07 Nissei Plastics Ind Co 金属粉末とカーボンナノ材料の混合方法、カーボンナノ複合金属材料の製造方法及びカーボンナノ複合金属材料
KR20090075651A (ko) * 2009-06-08 2009-07-08 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체
KR20090114091A (ko) * 2008-04-29 2009-11-03 성균관대학교산학협력단 급속 가열 방법을 이용한 알루미늄과 탄소 재료 복합체 및이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446863C (zh) * 2005-12-31 2008-12-31 白日忠 纳米鳞片的制备方法及其专用设备
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
KR100907334B1 (ko) * 2008-01-04 2009-07-13 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체
EP2275385B1 (en) * 2009-07-15 2015-11-04 Friedrich-Alexander-Universität Erlangen-Nürnberg Method of producing platelets comprising a layered material
JP5663237B2 (ja) * 2010-08-26 2015-02-04 株式会社イノアック技術研究所 炭素材料複合化粒子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328454A (ja) * 2005-05-24 2006-12-07 Nissei Plastics Ind Co 金属粉末とカーボンナノ材料の混合方法、カーボンナノ複合金属材料の製造方法及びカーボンナノ複合金属材料
KR20090114091A (ko) * 2008-04-29 2009-11-03 성균관대학교산학협력단 급속 가열 방법을 이용한 알루미늄과 탄소 재료 복합체 및이의 제조방법
KR20090075651A (ko) * 2009-06-08 2009-07-08 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체

Also Published As

Publication number Publication date
JP5723058B2 (ja) 2015-05-27
JP2014519461A (ja) 2014-08-14
EP2687485A4 (en) 2015-12-16
EP2687485A1 (en) 2014-01-22
CN103562130A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2013133467A1 (ko) 판형 탄소 나노입자 제조방법 및 이를 이용한 알루미늄-탄소 복합재료의 제조방법
Wang et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process
JP2019506358A (ja) グラフェン強化無機マトリックス複合物のケミカルフリー製造
Jiang et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution
Wang et al. Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole
Kondoh et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites
KR100906746B1 (ko) 탄소재료를 알루미늄 속에 캡슐화하는 방법
KR101797110B1 (ko) 금속-함유 그래핀 하이브리드 복합체 및 이의 제조 방법
KR20180094874A (ko) 그래핀 보강 중합체 매트릭스 복합체의 무 화학물질 제조
WO2010090479A2 (ko) 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조 방법
Silvain et al. Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications
WO2010081423A1 (zh) 基于石墨烯的导电膜及其制备方法
CN102642833A (zh) 使用纳米碳化硅涂层硬化碳材料界面的方法
US20130237404A1 (en) Method of producing carbon nanoparticles and method of producing aluminum-carbon composite material
WO2018056595A1 (ko) 단일벽 탄소나노튜브 강화 금속기지 복합재료 제조를 위한 방전 플라즈마 소결 방법 및 이에 의해 제조된 복합재료
CN110372410B (zh) 一种金属-陶瓷复合材料及其制备方法
EP3941889A1 (en) Ceramic composite
WO2020213753A1 (ko) 알루미늄계 클래드 방열판의 제조방법 및 이에 의해 제조된 알루미늄계 클래드 방열판
Zeng et al. Microstructure, wettability, and mechanical properties of ADC12 alloy reinforced with TiO2-coated carbon nanotubes
WO2013018981A1 (ko) 그래핀/세라믹 나노복합분말 및 그의 제조방법
KR101494626B1 (ko) 내마모성이 우수한 그래핀-알루미나-지르코니아 복합체의 제조방법
Li et al. Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites
KR20160101556A (ko) 고농도 그래핀 분산액의 제조 방법
WO2010056077A9 (ko) 고경도 피복 분말 및 그 제조 방법
WO2019198918A1 (ko) 육방정 질화붕소 나노플레이트렛/금속 나노 복합 분말 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014503585

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012805555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012805555

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE