WO2013133264A1 - 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法 - Google Patents

多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法 Download PDF

Info

Publication number
WO2013133264A1
WO2013133264A1 PCT/JP2013/055973 JP2013055973W WO2013133264A1 WO 2013133264 A1 WO2013133264 A1 WO 2013133264A1 JP 2013055973 W JP2013055973 W JP 2013055973W WO 2013133264 A1 WO2013133264 A1 WO 2013133264A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
well
quantum well
type semiconductor
Prior art date
Application number
PCT/JP2013/055973
Other languages
English (en)
French (fr)
Inventor
奈穂 板垣
正治 白谷
儀一郎 内田
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to KR1020147003978A priority Critical patent/KR101399441B1/ko
Priority to EP13757910.8A priority patent/EP2768029B1/en
Priority to US14/350,579 priority patent/US20150303334A1/en
Priority to CN201380004255.9A priority patent/CN103999232B/zh
Priority to JP2013530437A priority patent/JP5366279B1/ja
Publication of WO2013133264A1 publication Critical patent/WO2013133264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell, and more particularly to a multiple quantum well solar cell and a method for manufacturing a multiple quantum well solar cell.
  • This tandem solar cell structure is made by laminating solar cells of a wide bandgap material in order from the light-receiving surface side, and light in a wide range of wavelengths corresponding to the bandgap of each solar cell. Can be used.
  • FIG. 1 is a schematic view showing an example thereof.
  • a multiple quantum well solar cell includes an i-type semiconductor as an intermediate layer in a semiconductor pn junction region between a p-type semiconductor layer 2 and an n-type semiconductor layer 3 provided on a substrate 1.
  • Layer 4 is introduced, and electrode 7 is provided on n-type semiconductor layer 3 and electrode 8 is provided on p-type semiconductor layer 2.
  • the i-type semiconductor layer 4 includes a barrier layer 5 made of a semiconductor material that forms the p-type semiconductor layer 2 and the n-type semiconductor layer 3, and a well made of a semiconductor material having a narrow band gap than the semiconductor material. It is formed from layer 6.
  • light corresponding to between subbands formed in the well layer can also be used for photoelectric conversion. Therefore, since sunlight on the longer wavelength side contributes to the photoelectric effect, it is expected that the spectral sensitivity characteristic is improved and a high-output solar cell can be obtained.
  • the multiple quantum well structure described above has a large overlap between the electron wave function 11 and the hole wave function 12 in the well layer, and is an electron (e) that is a carrier generated by light absorption.
  • e electron
  • h holes
  • its recombination average lifetime is as short as 200 psec at a temperature of 125 K (see Non-Patent Document 2), and is generated by light absorption.
  • More than 70% of the carriers are recombined in the well layer before desorbing to the barrier layer. This high recombination probability is a factor that greatly reduces the efficiency of the multiple quantum well solar cell.
  • Wave function localization due to non-uniformity of quantum well size In order to prevent the localization of the wave function, it is necessary to suppress variation in the quantum well size within 10%.
  • a quantum well having a well width of 2 to 5 nm and a barrier layer width of 10 nm or less In order to form the intermediate band, a quantum well having a well width of 2 to 5 nm and a barrier layer width of 10 nm or less is required. However, in order to form these well uniformly, a very advanced fabrication technique is required.
  • a III-V compound semiconductor is mainly used as a constituent material. Since these are produced by a metal organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy (MBE) method, there is a problem that the manufacturing cost is high.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • an oxynitride semiconductor mainly composed of Zn which is an element other than the III-V compound, has high environmental stability and light receiving sensitivity in the visible light region.
  • a headline and a patent application are filed (see Patent Document 1).
  • the inventors of the present invention have found that in a multi-quantum well solar cell, the metal oxynitride constituting the barrier layer and the well layer is made of a crystal having a wurtzite atomic arrangement, and By generating a piezo electric field, carriers (electrons, holes) generated by light absorption in the quantum well can be desorbed from the well layer to the barrier layer before recombination, and the length of carriers in the well layer can be increased. It has been newly found that the lifetime can be improved, and that the multi-quantum well solar cell having a high photoelectric conversion efficiency can be manufactured by extending the lifetime of the carriers to contribute to power generation.
  • an object of the present invention is to suppress the recombination of carriers generated by light absorption in a multiple quantum well solar cell, to have a high photoelectric conversion efficiency and a low cost, and to the multiple quantum well solar cell. It is providing the manufacturing method of a well type solar cell.
  • a multiple quantum well solar cell having a substrate, a p-type semiconductor layer, a barrier layer, a well layer, an n-type semiconductor layer, and an electrode
  • the barrier layer and the well layer are made of a crystal having a wurtzite-type atomic arrangement, and the well layer is made of a metal oxynitride containing at least one element selected from In, Ga, and Al and a Zn element;
  • a multi-quantum well solar cell wherein a piezoelectric field is generated in the well layer.
  • the multiple quantum well solar cell according to (1), wherein the piezoelectric field is 1 MV / cm or more.
  • a ZnO buffer layer formed using a nitrogen addition crystallization method is provided between the substrate and the p-type semiconductor layer.
  • a method for producing a multiple quantum well solar cell including: The step of laminating the barrier layer uses a material in which the layer after lamination becomes a layer having a wurtzite atomic arrangement, In the step of laminating the well layer, a material containing at least one element selected from In, Ga, and Al and a Zn element is coherently grown to a thickness that generates a piezoelectric field, thereby forming a wurtzite atomic arrangement.
  • a method for producing a multiple quantum well solar cell characterized in that the layer has a strain having a strain.
  • the step of laminating the barrier layer and the well layer includes a step in which a lattice constant difference between a material forming the barrier layer (lattice constant a) and a material forming the well layer (lattice constant b) [(b ⁇ a / A) ⁇ 100] is carried out using a material having a content of 0.5 to 20%,
  • a piezoelectric electric field is generated in a well layer of an i-type semiconductor layer of a solar cell having a pin structure, thereby extending the life of carriers in the well layer and contributing to power generation without recombination of carriers. Therefore, a multiple quantum well solar cell having high photoelectric conversion efficiency can be provided.
  • a well-type solar cell can be provided.
  • a material containing at least one element selected from In, Ga, and Al and a Zn element is used for forming a quantum well structure, thereby generating a large piezoelectric field compared to a conventional material, and A layer can be formed by a sputtering method excellent in mass productivity, and a multi-quantum well solar cell can be provided at low cost.
  • the crystallinity of the film forming the barrier layer can be improved and the critical film thickness can be increased.
  • the coherent growth criticality of the well layer can be increased.
  • the film thickness increases and the recombination rate can be greatly reduced.
  • the p-type semiconducting layer and the barrier layer are formed of ZnO, the p-type semiconducting layer and the barrier layer can also be formed by a sputtering method, so that the process cost can be further reduced.
  • FIG. 1 is a diagram schematically illustrating a conventional multiple quantum well solar cell.
  • FIG. 2 is a diagram showing an outline of carrier recombination in a well layer of a conventional multiple quantum well solar cell.
  • FIG. 3 is a diagram showing an outline of a multiple quantum well solar cell of the present invention.
  • FIG. 4 is a diagram showing an outline of carrier recombination in the well layer of the multiple quantum well solar cell of the present invention.
  • FIG. 5 is a diagram showing the procedure of the nitrogen addition crystallization method.
  • FIG. 6 is a graph showing the recombination rate in the well layer.
  • FIG. 7 is a diagram showing an X-ray diffraction (105) plane reciprocal lattice map of a ZnInON film that is a well layer of the multiple quantum well solar cell of the present invention.
  • the metal oxynitride constituting the quantum well is made of a crystal having a wurtzite atomic arrangement, and generates a piezo electric field in the well layer.
  • carriers electrospray, holes
  • the life of the carriers in the well layer is extended, and the carriers contribute to power generation.
  • a high photoelectric conversion efficiency can be achieved.
  • the multiple quantum well solar cell and the method for producing the multiple quantum well solar cell of the present invention will be described more specifically.
  • quantum well structure means a structure including a barrier layer and a well layer
  • quantum well means a well portion of a well-type potential
  • well layer means Means a layer constituting a well portion in the well-type potential
  • FIG. 3 shows an example of the multiple quantum well solar cell of the present invention.
  • the substrate 1, the p-type semiconductor layer 2, the n-type semiconductor layer 3, and the p-type semiconductor layer 2 provided on the substrate 1 are shown.
  • an i-type semiconductor layer 4 is introduced as an intermediate layer into a semiconductor pn junction region between the n-type semiconductor layer 3 and an electrode 7 on the n-type semiconductor layer 3 and an electrode 8 on the p-type semiconductor layer.
  • the i-type semiconductor layer 4 includes a barrier layer 5 formed of a semiconductor material that forms the p-type semiconductor layer 2 and the n-type semiconductor layer 3, and a well formed of a semiconductor material having a narrow band gap than the semiconductor material.
  • the well layer 6 is formed from the layer 6, and a piezoelectric field is generated due to the strain 9.
  • Examples of the material of the substrate 1 include sapphire, GaN, ZnO, Si, SiC, ScAlMgO 4 (SCAM), and Y-added stabilized ZrO 2 (YSZ) that are generally used for wurtzite crystal growth.
  • Examples of the material of the p-type semiconductor layer 2 include GaN, ZnInON, Si, ZnO, SiC, AlN, InN, and mixed crystals thereof. If necessary, a dopant such as magnesium, nitrogen, antimony, phosphorus, or boron may be added as appropriate depending on the material to be used.
  • Examples of the material of the n-type semiconductor layer 3 include GaN, ZnInON, Si, ZnO, SiC, AlN, InN, and mixed crystals thereof. If necessary, a dopant such as aluminum, gallium, boron, silicon, or phosphorus may be added as appropriate depending on the material to be used.
  • Examples of the material of the barrier layer 5 include GaN, ZnInON, ZnO, SiC, AlN, InN, and mixed crystals thereof.
  • the electrode 7 provided on the n-type semiconductor layer 3 is not particularly limited as long as it is used in the field, and examples thereof include aluminum, zinc oxide doped with aluminum, zinc oxide doped with gallium, and titanium / gold. It is done.
  • the electrode 8 provided on the p-type semiconductor layer 2 is not particularly limited as long as it is used in the field, and examples thereof include Au-nickel, platinum, ITO, silver and the like.
  • the well layer 6 of the present invention generates a piezo electric field due to the strain 9 as described above.
  • strain 9 By applying strain 9 to the well layer 6, as shown in FIG. 4, electrons (e) and holes (h) generated by absorbing light move in the direction of spatial separation by the piezoelectric field 13.
  • the electron wave function 11 and the hole wave function 12 are shifted from each other, and the electrons (e) and the holes (h) are hardly recombined. As a result, the photoelectric conversion efficiency is improved.
  • the well layer 6 is (1) a film formed of a material having a wurtzite crystal structure, (2) strain is applied, and (3) the piezo electric field is generated. It is necessary to make the generated film thickness.
  • the material that becomes the wurtzite type crystal structure is not particularly limited as long as it becomes the wurtzite type crystal structure, but from the viewpoint that the manufacturing cost can be kept low and a wide band gap can be obtained.
  • a material containing Zn and at least one element selected from In, Ga, and Al is preferable, and examples thereof include ZnInON, ZnGaON, ZnAlON, and InGaZnON.
  • the band gap can be adjusted by changing the composition of the material. For example, in the case of indium zinc oxynitride (ZnInON), the band gap is reduced when the ratio of In and nitrogen is increased, and the band gap is increased when the ratio of oxygen and Zn is increased. Specifically, a wide band gap modulation of about 1.3 to 3.0 eV is possible. Therefore, when the above material is used for the multiple quantum well solar cell of the present invention, light of a wide wavelength can be absorbed by controlling the band gap of the well layer 6 and the barrier layer 5. When the band gap of the well layer 6 is changed for each well layer 6, the layer closer to the sunlight incident surface is formed of a material having a larger band gap so that the incident light of sunlight reaches the lower well layer 6.
  • ZnInON indium zinc oxynitride
  • the piezo electric field is generated by piezoelectric polarization generated by the strain 9 of the crystal structure.
  • the strain 9 is applied to the well layer 6 by coherent growth using a material having a lattice constant larger than that of the barrier layer 5.
  • the coherent growth means that the atomic arrangement of the semiconductor expands and contracts due to a small difference in lattice constant between the materials forming the first layer and the second layer, and the crystal grows without causing crystal defects.
  • the crystal plane is not interrupted at the interface between the first layer and the second layer, or there is no lattice relaxation between them or only slight lattice relaxation is performed. Means.
  • coherent growth means a state in which a crystal grows as described above, and in such a crystal growth, sputtering method, pulse laser deposition method, MOCVD method, MBE method, HVPE method, electron beam deposition method.
  • a known method may be used for supplying the material for forming the layer, such as a vapor phase method of the above, or a combination thereof. That is, for example, in a normal sputtering method, the crystal grows with the lattice constant of the material, but the well layer 6 is coherently formed on the barrier layer 5 using a material larger than the lattice constant of the barrier layer 5.
  • the well layer 6 When grown, the well layer 6 grows with the lattice constant of the material of the barrier layer 5 or a slightly relaxed value, and as a result, the well layer 6 grows with a compressive strain in the in-plane direction. .
  • the difference in lattice constant [(ba ⁇ a / a) ⁇ 100] between the material forming the barrier layer 5 (lattice constant a) and the material forming the well layer 6 (lattice constant b) is about 0.5 to 20%. Preferably, it is 1 to 10%. If it is larger than 20%, coherent growth does not occur, and if it is smaller than 0.5%, the piezo electric field becomes 1 MV or less, the recombination suppressing effect is reduced, and the photoelectric conversion efficiency is deteriorated.
  • the critical film thickness of the well layer 6 where the piezoelectric field is generated depends on the difference in the lattice constant between the barrier layer 5 and the well layer 6. For example, when the difference in lattice constant is 20%, the thickness of the well layer 6 may be about 5 nm or less, and when it is 10%, it may be about 30 nm or less, and when 0.5%, the thickness is 100 nm or less. You can do it.
  • the piezoelectric field increases as the difference in lattice constant between the barrier layer 5 and the well layer 6 increases.
  • the critical film thickness decreases and the light cannot be absorbed sufficiently. Therefore, in order to improve the photoelectric conversion efficiency, the lattice constant and the critical film thickness may be set as appropriate within a suitable range.
  • the material for forming the well layer 6 of the present invention can change the lattice constant by about 10% by changing the composition ratio of the material. Therefore, when the barrier layer 5 and the well layer 6 are stacked in the c-axis direction, the elements constituting the material can be changed by adjusting the composition ratio of the material forming each well layer 6 to form the quantum well. In addition, it is possible to adjust the strength of the piezoelectric field generated by the distortion of the crystal lattice.
  • the present invention generates a piezo electric field, thereby moving the generated electrons (e) and holes (h) in a spatially dissociating direction and making recombination less likely to occur. If the piezo electric field is larger than 0, the photoelectric conversion efficiency is improved. However, as the piezo electric field is increased, the photoelectric conversion efficiency is further improved. Accordingly, the piezo electric field is preferably 1 MV / cm or more, more preferably 2 MV / cm or more, and particularly preferably 3 MV / cm or more.
  • the p-type semiconducting layer 2 and the barrier layer 5 of the present invention are preferably formed of the same material.
  • the crystallinity of the film forming the barrier layer 5 can be improved and the critical film thickness can be increased.
  • the coherent growth critical film thickness of the well layer 6 is increased and the recombination rate is increased.
  • the p-type semiconducting layer 2 and the barrier layer 5 can be formed of the same material as described above to obtain more preferable characteristics.
  • ZnO can be formed by a sputtering method, from the viewpoint of reducing process costs, Of the exemplified materials, the combination of ZnO is particularly preferred.
  • the quantum well structure of the present invention is applied to the i-type semiconductor layer of the solar cell having the pin structure as described above, and also applied to the p-type semiconductor layer or the n-type semiconductor layer of the solar cell having the pn structure. Also good.
  • the p-type semiconductor layer 2 is stacked on the substrate 1 using a known method such as a sputtering method, a pulse laser deposition method, an MOCVD method, an MBE method, an HVPE method, a vapor phase method of an electron beam evaporation method, or a combination thereof.
  • a buffer layer of ZnO film having excellent crystallinity is formed on the substrate 1 by using a nitrogen-added crystallization method.
  • the high-quality p-type semiconductor layer 2 can be formed also by a sputtering method that is low in temperature and excellent in mass productivity.
  • FIG. 5 shows the procedure of the nitrogen addition crystallization method.
  • step (1) the formation of crystal nuclei is suppressed by adding N, which is an impurity, to Zn, O, which are raw materials of the film, to form a ZnON film.
  • N which is an impurity
  • Zn, O which are raw materials of the film
  • argon gas and nitrogen gas are introduced into the sputtering apparatus while adjusting the gas flow rate.
  • nitrogen molecules are dissociated in the apparatus to generate nitrogen atoms, and a ZnON film is formed on the substrate.
  • the pressure in the apparatus is preferably 0.3 to 2.7 Pa, and 0.3 Pa to 1. 33 Pa is more preferable, and 0.3 Pa to 0.6 Pa is particularly preferable.
  • step (3) ZnO crystals are grown by supplying Zn and O as materials, and a buffer layer of the ZnO film is formed.
  • step (3) N may be supplied. At this time, there is an effect that the migration of the raw material elements Zn and O is promoted by the N atoms adsorbed on the film growth surface.
  • the barrier layer 5 is stacked by sputtering, pulse laser deposition, MOCVD, MBE, HVPE, electron beam deposition, or a combination thereof. Is done.
  • the film thickness of the well layer 6 needs to be equal to or less than the above critical film thickness, and the film thickness can be adjusted by controlling the film formation time.
  • the substrate temperature when forming the well layer 6 can be set as appropriate.
  • the energy of the particles incident on the film growth surface is high, so migration on the film growth surface is promoted, and a high-quality metal oxynitride film can be formed even at low temperatures. is there.
  • the film forming speed is low, the above effect becomes remarkable.
  • the film forming rate is set to 10 nm / min or less, a metal oxynitride crystal having excellent crystallinity can be formed even when the substrate temperature when forming the well layer 6 is 300 ° C. or less.
  • the sputtering method is cheaper in apparatus and running cost than other film forming methods.
  • the well layer 6 can be formed by a sputtering method, and there is an advantage that the solar cell of the present invention can be provided at low cost.
  • a source gas containing N atoms in the gas phase for example, N 2 , NH 3 , NO, etc.
  • N 2 , NH 3 , NO, etc. is introduced according to the desired nitrogen concentration in the film.
  • irradiation with N radicals using a radical source or the like is also effective when it is desired to increase the nitrogen concentration in the film.
  • the barrier layer 5 is stacked on the well layer 6 in the same manner as the barrier layer 5 is stacked on the p-type semiconductor layer 2.
  • the well layer 6 is coherently grown on the barrier layer 5 by the above-described method, and the quantum well structure can be formed by repeating this procedure.
  • the difference in the composition ratio of the material forming each well layer 6 and the lattice constant of the material forming the barrier layer 5 may be adjusted as appropriate so that a desired piezoelectric field strength can be obtained.
  • the composition ratio of the material forming each well layer 6 may be modulated for each layer. In this case, it is preferable to adjust so that a band gap becomes large toward the sunlight incident side. Thereby, light corresponding to the band gap of each well layer 6 can be efficiently absorbed.
  • the n-type semiconductor layer 3 is laminated on the barrier layer 5 by sputtering or the like.
  • mold solar cell of this invention is produced by providing the electrode 7 and the electrode 8 by an electron beam vapor deposition method or sputtering method. As described above, the electrode 8 may be provided after the p-type semiconductor layer 2 is stacked.
  • Example 1 ⁇ ZnInON multiple quantum well solar cell>
  • a ZnO buffer film was formed on a sapphire substrate 1 having a thickness of 450 ⁇ m by using a nitrogen addition crystallization method.
  • a sputtering method was used to form the film, and argon gas and nitrogen gas were introduced into the sputtering apparatus while adjusting the gas flow rate so that the pressure was 0.3 Pa.
  • nitrogen molecules were dissociated in the apparatus to generate nitrogen atoms, and a ZnON film was formed on the substrate.
  • the substrate temperature was 700 ° C.
  • p-type semiconductor layer 2 was formed by stacking GaN having a lattice constant of 0.319 nm by MOCVD. Magnesium was used as the p-type dopant.
  • the substrate temperature was set to 1150 ° C., trimethyl gallium (TMG) as a Ga raw material, ammonia as an N raw material, cyclopentadienyl magnesium (Cp 2 Mg) as a magnesium raw material, and a GaN layer having a thickness of 5 ⁇ m were laminated.
  • TMG trimethyl gallium
  • Cp 2 Mg cyclopentadienyl magnesium
  • GaN layer having a thickness of 5 ⁇ m were laminated.
  • annealing was performed at 800 ° C. in a nitrogen atmosphere for the purpose of activating magnesium.
  • the barrier layer 5 was formed by stacking ZnO having a lattice constant of 0.325 nm by a sputtering method.
  • the film thickness of the barrier layer 5 was 12 nm.
  • the well layer 6 was coherently grown until it was. This film thickness is sufficiently smaller than the critical film thickness at which lattice relaxation occurs.
  • a sputtering target material source
  • a 2-inch sintered body having a ZnO composition and a 2-inch sintered body having an In composition each having a purity of 99.9%
  • the distance between the target and the substrate was about 12 cm
  • the substrate temperature during film formation was 300 ° C.
  • the stacking of the barrier layer 5 and the well layer 6 was repeated by the above procedure until the barrier layer 5 became 30 layers.
  • the n-type semiconductor layer 3 was formed on the barrier layer 5 by laminating ZnO by a sputtering method.
  • Aluminum was used for the n-type dopant.
  • a sputtering target material source
  • a 2-inch sintered body purity 99.9%
  • the substrate temperature during film formation was 300 ° C.
  • FIG. 6 shows the recombination rate in the quantum well (ZION).
  • the recombination rate showed a lower value than Comparative Example 2 (InGaAs) and Comparative Example 3 (InGaN) described later, and as a result, the photoelectric conversion efficiency was improved.
  • the dislocation defect density in the ZnInON film of the well layer 6 was as high as 10 10 cm ⁇ 2 , but the recombination rate was greatly increased by the strong piezoelectric field (3.2 MV / cm) in the well layer 6. It was possible to reduce it.
  • Example 2 ⁇ InGaAs multiple quantum well solar cell> GaAs is used for the p-type semiconductor layer 2, GaAs is used for the barrier layer 5, InGaAs is used for the well layer 6, and GaAs is used for the n-type semiconductor layer 3. Since the GaAs and InGaAs cannot be stacked by sputtering, the MBE method is used for fabrication. Except for the above, a multiple quantum well solar cell was fabricated in the same manner as in Example 1. When a quantum well having a barrier height of about 0.2 eV, a well width of 3 nm, and a barrier layer width of 12 nm was formed, the recombination rate in the well layer 6 was as shown in FIG.
  • Example 3 ⁇ InGaN multiple quantum well solar cell> Example 1 except that GaN is used for the p-type semiconductor layer 2, GaN is used for the barrier layer 5, InGaN is used for the well layer 6, GaN is used for the n-type semiconductor layer 3, and MOCVD is used to fabricate the GaN and InGaN.
  • a multi-quantum well solar cell was fabricated.
  • a piezoelectric field 1.5 MV / cm was generated by making the thickness of the well layer 6 smaller than the critical thickness at which lattice relaxation occurs.
  • the recombination rate in the quantum well was higher than that of Example 1 as shown in FIG. It turned out to be high. From this, when coherent growth is performed using the material of the present invention as the material of the well layer 6, a higher piezo electric field can be generated in the well layer 6 compared to the conventional material, and the recombination rate is greatly increased. It was confirmed that it could be reduced.
  • the barrier layer 5 was formed by stacking ZnO having a lattice constant of 0.325 nm by a sputtering method.
  • the film thickness of the barrier layer 5 was 30 nm.
  • the well layer 6 was coherently grown until it was.
  • the use of ZnO, which is the same material as the barrier layer 5, for the p-type semiconductor layer 2 is considered to improve the crystallinity of the ZnO film forming the barrier layer 5 and increase the critical film thickness.
  • FIG. 7 shows an X-ray diffraction reciprocal lattice map in the ZnInON (105) plane. It was confirmed that the lattice constant in the (100) direction of the ZnInON film completely coincided with ZnO, and coherent growth was achieved.
  • the sputtering target (material source) and sputtering conditions were the same as in Example 1. Thereafter, the stacking of the barrier layer 5 and the well layer 6 was repeated in the same procedure as in Example 1, and finally an electrode was provided to produce a multiple quantum well solar cell of Example 2.
  • the fabricated quantum well had a barrier height of about 0.2 eV, a well layer thickness of 30 nm, a barrier layer thickness of 30 nm, and a piezoelectric field of 1 MV / cm.
  • the maximum recombination rate in the well layer was 10 ⁇ 17 cm ⁇ 3 s ⁇ 1 , which was one digit lower than that in Example 1. This is because the value of the overlap integral of the wave function is lowered by increasing the thickness of the well layer (3 nm ⁇ 30 nm).
  • the p-type semiconductor layer 2 and the barrier layer 5 from the same material, the coherent growth critical film thickness of the well layer 6 is increased, and the recombination rate can be significantly reduced. Further, since the ZnO film can be formed by a sputtering method, using ZnO as a combination of materials for the p-type semiconductor layer 2 and the barrier layer 5 is advantageous from the viewpoint of reducing process costs.
  • the multiple quantum well solar cell of the present invention can photoelectrically convert light of a wide wavelength with high efficiency, and the production method of the present invention enables mass production of multiple quantum well solar cells at low cost. Useful for becoming popular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 多重量子井戸型太陽電池における光吸収によって生成したキャリアの再結合を抑制し、高い光電変換効率を有する多重量子井戸型太陽電池を、低コストで提供する。 基板、p型半導体層、障壁層、井戸層、n型半導体層及び電極を有する多重量子井戸型太陽電池において、前記障壁層及び井戸層がウルツ鉱型の原子配置を有する結晶からなり、且つ前記井戸層がIn、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む金属酸窒化物から構成され、前記井戸層においてピエゾ電界が発生していることを特長とする多重量子井戸型太陽電池により、光吸収によって生成したキャリアの再結合を抑制し、高い光電変換効率を有する多重量子井戸型太陽電池を、低コストで提供することができる。

Description

多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法
 本発明は、太陽電池、特に、多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法に関する。
 現在、太陽電池の多くはSiを材料としているが、その材料がもつ禁制帯幅に対応した波長範囲の光しか利用できないため、単一材料による太陽電池ではその変換効率には限界がある。そのため、光電変換効率を高めるための試みとして、禁制帯幅の異なる複数の材料を用いたタンデム型太陽電池の構造が考案されている。このタンデム型太陽電池の構造は、受光面側から順に禁制帯幅の広い材料の太陽電池セルを積層するものであり、各々の太陽電池セルのもつ禁制帯幅に対応した広い範囲の波長の光を利用することが可能である。
 また、広い範囲の波長の光を利用する他の技術として、量子井戸を利用した太陽電池の構造が提案されている(非特許文献1参照)。この構造の太陽電池は多重量子井戸構造を有する太陽電池(以下「多重量子井戸型太陽電池」と記載することもある。)と呼ばれており、図1は、その一例を示す概略図である。図1に示すように、多重量子井戸型太陽電池は、基板1の上に設けられたp型半導体層2とn型半導体層3との間の半導体pn接合領域に、中間層としてi型半導体層4を導入し、n型半導体層3の上に電極7及びp型半導体層2の上に電極8を備えた構造を有する。i型半導体層4は、上記p型半導体層2とn型半導体層3を形成する半導体材料で形成された障壁層5、及び前記半導体材料より狭い禁制帯幅を有する半導体材料で形成された井戸層6から形成されている。
 上記の多重量子井戸構造を採用することで、開放電圧を低下させることなく、pn接合を形成する半導体材料の禁制帯幅に対応した光のみならず、井戸層を形成する半導体材料の禁制帯幅や井戸層内に形成されたサブバンド間に対応した光をも光電変換に利用できる。したがって、より長波長側の太陽光が光電効果に寄与するので、分光感度特性が向上し高出力の太陽電池が得られると期待されている。
 しかしながら、上記の多重量子井戸構造は、図2に示すように、井戸層内での電子波動関数11と正孔波動関数12の重なりが大きく、光吸収により生成されたキャリアである電子(e)、正孔(h)の大部分が井戸の外に脱離する前に再結合してしまうという問題がある。例えば、障壁高さが約0.15eV、井戸幅2.5nmのInGaAs/GaAs量子井戸の場合、その再結合平均寿命は温度125Kで200psecと短く(非特許文献2参照)、光吸収により生成されたキャリアの70%以上が障壁層へ脱離する前に井戸層内で再結合する。この高い再結合確率が多重量子井戸型太陽電池の効率を大きく低下させる要因になっている。
 多重量子井戸型太陽電池の高い再結合確率を解決する手段として、障壁層厚さを10nm以下まで薄くし、量子井戸間を結合させることで中間バンドを形成する手法が提案されている(非特許文献3)。このとき、量子井戸内で生成されたキャリアはトンネル効果により再結合が生じる前にミニバンド中を高速で移動するため、出力電流が大幅に増大すると考えられている。
 しかしながら、実際には、以下2つの要因により波動関数が局在化し効率が低下するため、中間バンド型太陽電池の実現には課題がある。
(1)量子井戸サイズの不均一性による波動関数局在化:波動関数の局在化を防ぐには量子井戸サイズのばらつきを10%以内に抑える必要がある。中間バンドを形成するためには井戸幅2-5nm、障壁層幅10nm以下の量子井戸が必要であるが、これらを高均一に形成するためには非常に高度な作製技術が要求される。
(2)内蔵電界による波動関数局在化:中間バンドが形成しても太陽電池の内蔵電界が大きい場合、量子井戸間の共鳴トンネル現象が静電ポテンシャルによって破綻し、波動関数が局在化する。量子井戸数を増やし内蔵電界を10kV/cm程度もしくはそれ以下にすることにより中間バンドは維持されるが、量子井戸数増加に伴い再結合確率が増加するという問題がある。
 また、多重量子井戸型太陽電池を構成する材料としては、主にIII-V化合物半導体を構成材料としている。これらは、有機金属気相成長(MOCVD)法や分子線ビームエピタキシー(MBE)法により作製されるため、製造コストが高いという問題がある。
 そのため、本発明者らは、III-V化合物以外の元素であるZnを主成分とする酸窒化物半導体が、高い対環境安定性を有し、可視光領域に受光感度を有することを新たに見出し、特許出願を行っている(特許文献1参照)。
特開2009-275236号公報
Journal of Applied Physics,Vol.67,p3490,1990 P.Michler,et al.,Phys.Rev.B,46,7280,1992 A.Luque and A.Marti,Phys.Rev.Lett.78,5014,1997
 しかしながら、前記酸窒化物半導体を多重量子井戸型太陽電池に適用しても、太陽光の受光により生成したキャリアの大部分は量子井戸の外に脱離する前に再結合してしまい、光変換効率の問題を解決することはできなかった。
 本発明者らは、鋭意研究を行ったところ、多重量子井戸型太陽電池において、障壁層及び井戸層を構成する金属酸窒化物がウルツ鉱型の原子配置を有する結晶からなり、且つ井戸層にピエゾ電界を発生させることで、量子井戸内で光吸収によって生成したキャリア(電子、正孔)が再結合する前に井戸層から障壁層へ脱離することができ、井戸層内におけるキャリアの長寿命化が図られること、そして、長寿命化されたキャリアが発電に寄与することで、高い光電変換効率を有する多重量子井戸型太陽電池を作製できることを新たに見出した。
 すなわち、本発明の目的は、多重量子井戸型太陽電池における光吸収によって生成したキャリアの再結合を抑制し、高い光電変換効率を有し且つ低コストの多重量子井戸型太陽電池、及び該多重量子井戸型太陽電池の製造方法を提供することである。
 本発明は、以下に示す、多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法である。
(1)基板、p型半導体層、障壁層、井戸層、n型半導体層及び電極を有する多重量子井戸型太陽電池において、
 前記障壁層及び井戸層がウルツ鉱型の原子配置を有する結晶からなり、且つ前記井戸層がIn、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む金属酸窒化物から構成され、
 前記井戸層においてピエゾ電界が発生していることを特徴とする多重量子井戸型太陽電池。
(2)前記ピエゾ電界が、1MV/cm以上であることを特徴とする上記(1)に記載の多重量子井戸型太陽電池。
(3)前記井戸層が、コヒーレント成長により形成された層であることを特徴とする上記(1)又は(2)に記載の多重量子井戸型太陽電池。
(4)前記障壁層を形成する材料(格子定数a)と前記井戸層を形成する材料(格子定数b)の格子定数差[(b-a/a)×100]が、0.5~20%であることを特徴とする上記(1)~(3)の何れか一に記載の多重量子井戸型太陽電池。
(5)前記障壁層及び前記井戸層が交互に複数層形成され、且つ各井戸層がバンドギャップの異なる材料から形成されることを特徴とする上記(1)~(4)の何れか一に記載の多重量子井戸型太陽電池。
(6)前記井戸層が、太陽光入射側に向かってバンドギャップが順に大きくなる材料から形成されることを特徴とする上記(5)に記載の多重量子井戸型太陽電池。
(7)前記基板と前記p型半導体層の間に、窒素添加結晶化法を用いて形成されたZnOのバッファー層を有することを特徴とする上記(1)~(6)の何れか一に記載の多重量子井戸型太陽電池。
(8)前記p型半導体層及び前記障壁層が、同じ材料で形成されることを特徴とする上記(1)~(7)の何れか一に記載の多重量子井戸型太陽電池。
(9)前記p型半導体層及び前記障壁層が、ZnOで形成されることを特徴とする上記(8)に記載の多重量子井戸型太陽電池。
(10)基板上に、p型半導体層、障壁層、井戸層、障壁層、n型半導体層の順に各層を積層する工程、
 前記p型半導体層上に電極を設ける工程、
 前記n型半導体層上に電極を設ける工程、
を含む多重量子井戸型太陽電池の製造方法において、
 前記障壁層を積層する工程は、積層後の層がウルツ鉱型の原子配置を有する層となる材料が用いられ、
 前記井戸層を積層する工程は、In、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む材料をピエゾ電界が発生する膜厚にコヒーレント成長させることで、ウルツ鉱型の原子配置を有する歪をもった層となることを特徴とする多重量子井戸型太陽電池の製造方法。
(11)前記障壁層の上に前記井戸層を積層する工程が、スパッタリング法により行われることを特徴とする上記(10)に記載の多重量子井戸型太陽電池の製造方法。
(12)前記障壁層及び前記井戸層を積層する工程が、前記障壁層を形成する材料(格子定数a)と前記井戸層を形成する材料(格子定数b)の格子定数差[(b-a/a)×100]が、0.5~20%である材料を用いて行われることを特徴とする上記(10)又は(11)に記載の多重量子井戸型太陽電池の製造方法。
(13)前記障壁層及び前記井戸層を積層する工程が交互に複数回行われ、且つ前記井戸層を積層する各工程が、バンドギャップが異なる材料を用いて行われることを特徴とする上記(10)~(12)の何れか一に記載の多重量子井戸型太陽電池の製造方法。
(14)前記井戸層を積層する工程が、太陽光入射側に向かってバンドギャップが順に大きくなる材料を用いて行われることを特徴とする上記(13)に記載の多重量子井戸型太陽電池の製造方法。
(15)前記基板上に前記p型半導体層を積層する工程の前に、窒素添加結晶化法を用いてZnOのバッファー層を形成する工程を更に有することを特徴とする上記(10)~(14)の何れか一に記載の多重量子井戸型太陽電池の製造方法。
(16)前記p型半導体層及び前記障壁層が、同じ材料で形成されることを特徴とする上記(10)~(15)の何れか一に記載の多重量子井戸型太陽電池の製造方法。
(17)前記p型半導体層及び前記障壁層が、ZnOで形成されることを特徴とする上記(16)に記載の多重量子井戸型太陽電池の製造方法。
 本発明は、pin構造を有する太陽電池のi型半導体層の井戸層にピエゾ電界を発生させることで、井戸層内におけるキャリアの長寿命化が図られ、キャリアは再結合せずに発電に寄与することから、高い光電変換効率を有する多重量子井戸型太陽電池を提供することができる。
 また、pin接合を構成する半導体の禁制帯幅に対応する波長のみならず、井戸層の禁制帯幅や井戸層内に形成されたサブバンド間に対応した光をも光電変換に利用できる多重量子井戸型太陽電池を提供することができる。
 本発明では、In、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む材料を量子井戸構造の形成に用いることで、従来の材料と比較して大きなピエゾ電界を発生させること、及び量産性に優れたスパッタリング法により層を形成することができ、低コストで多重量子井戸型太陽電池を提供することができる。
 更に、p型半導体性層及び障壁層を同じ材料にすることで、障壁層を形成する膜の結晶性が向上し、臨界膜厚を大きくすることができ、その結果、井戸層のコヒーレント成長臨界膜厚が増加し、再結合レートを大幅に低下することができる。また、p型半導体性層及び障壁層をZnOで形成すると、p型半導体性層及び障壁層もスパッタリング法により形成できるため、よりプロセスコストを低減することができる。
図1は、従来の多重量子井戸型太陽電池の概略を示す図である。 図2は、従来の多重量子井戸型太陽電池の井戸層内におけるキャリアの再結合の概略を示す図である。 図3は、本発明の多重量子井戸型太陽電池の概略を示す図である。 図4は、本発明の多重量子井戸型太陽電池の井戸層内におけるキャリアの再結合の概略を示す図である。 図5は、窒素添加結晶化法の手順を示す図である。 図6は、井戸層内での再結合レートを示すグラフである。 図7は、本発明の多重量子井戸型太陽電池の井戸層であるZnInON膜のX線回折(105)面逆格子マップを示す図である。
 本発明は、多重量子井戸型太陽電池において、量子井戸を構成する金属酸窒化物がウルツ鉱型の原子配置を有する結晶からなり、且つ井戸層にピエゾ電界を発生させることで、量子井戸内で光吸収によって生成したキャリア(電子、正孔)が再結合する前に井戸層から障壁層へ脱離することで、井戸層内におけるキャリアの長寿命化が図られ、キャリアが発電に寄与することで、高い光電変換効率が達成できることを特徴としている。以下、本発明の多重量子井戸型太陽電池、及び多重量子井戸型太陽電池の製造方法についてさらに具体的に説明する。
 なお、本発明において、「量子井戸構造」とは、障壁層と井戸層を含む構造を意味し、「量子井戸」とは、井戸型ポテンシャルの井戸の部分を意味し、「井戸層」とは、井戸型ポテンシャルにおいて井戸の部分を構成する層を意味する。
 図3は、本発明の多重量子井戸型太陽電池の一例を示しており、基板1、該基板1の上に設けられたp型半導体層2、n型半導体層3、前記p型半導体層2及びn型半導体層3との間の半導体pn接合領域に、中間層としてi型半導体層4を導入し、n型半導体層3の上に電極7、p型半導体層の上に電極8を備えた構造を有する。i型半導体層4は、前記p型半導体層2及びn型半導体層3を形成する半導体材料で形成された障壁層5、及び前記半導体材料より狭い禁制帯幅を有する半導体材料で形成された井戸層6から形成されており、井戸層6は、歪9がかかることでピエゾ電界が発生している。
 基板1の材料としては、ウルツ鉱型結晶成長に一般的に用いられるサファイアやGaN、ZnO、Si、SiC、ScAlMgO4(SCAM)、Y添加安定化ZrO2(YSZ)等が挙げられる。
 p型半導体層2の材料としては、GaN、ZnInON、Si、ZnO、SiC、AlN、InN、およびそれらの混晶等が挙げられる。なお、必要に応じて、マグネシウム、窒素、アンチモン、リン、ボロン等のドーパントを、用いる材料に応じて適宜追加してもよい。
 n型半導体層3の材料としては、GaN、ZnInON、Si、ZnO、SiC、AlN、InN、およびそれらの混晶等が挙げられる。なお、必要に応じて、アルミニウム、ガリウム、ボロン、シリコン、リン等のドーパントを、用いる材料に応じて適宜追加してもよい。
 障壁層5の材料としては、GaN、ZnInON、ZnO、SiC、AlN、InN、およびそれらの混晶等が挙げられる。
 n型半導体層3上に設ける電極7は、当該分野で用いられるものであれば特に限定されず、例えば、アルミ、アルミをドープした酸化亜鉛、ガリウムをドープした酸化亜鉛、チタン/金等が挙げられる。また、p型半導体層2上に設ける電極8も、当該分野で用いられるものであれば特に限定されず、例えば、Au-ニッケル、プラチナ、ITO、銀等が挙げられる。
 本発明の井戸層6は、上記の通り、歪9がかかることでピエゾ電界が発生することが重要である。井戸層6に歪9をかけることで、図4に示す通り、光を吸収して発生した電子(e)と正孔(h)は、ピエゾ電界13により空間的に乖離する方向に移動するため、電子波動関数11と正孔波動関数12にずれが生じ、電子(e)と正孔(h)は再結合がし難くなり、その結果として、光電変換効率が向上する。
 ピエゾ電界を発生させるためには、井戸層6が、(1)ウルツ鉱型の結晶構造になる材料で形成された膜であること、(2)歪が与えられること、(3)ピエゾ電界を発生する膜厚にすること、が必要である。
 ウルツ鉱型の結晶構造になる材料としては、ウルツ鉱型の結晶構造になるものであれば特に限定はされないが、製造コストを低く抑えられ、且つ広範囲なバンドギャップが得られるとの観点から、In、Ga、Alから選択される少なくとも1つの元素と、Znを含む材料が好ましく、ZnInON、ZnGaON、ZnAlON、InGaZnON等が挙げられる。
 バンドギャップは、上記材料の組成を変えることで調整することができる。例えばインジウム亜鉛酸窒化物(ZnInON)の場合、Inと窒素の割合を多くするとバンドギャップが小さくなり、酸素とZnの割合を多くすると、バンドギャップは大きくなる。具体的には、約1.3~3.0eVまでの広範囲のバンドギャップの変調が可能である。従って上記材料を本発明の多重量子井戸型太陽電池に用いた場合、井戸層6および障壁層5のバンドギャップを制御することで幅広い波長の光を吸収することができる。井戸層6のバンドギャップを井戸層6毎に変える場合、太陽光の入射光がより下の井戸層6まで届くようにするため、太陽光の入射面に近い層ほどバンドギャップの大きな材料から形成されることが望ましい。バンドギャップの大きな井戸層6では、入射された太陽光の内、バンドギャップの大きな光のみが光電変換され、次の井戸層6で、その次にバンドギャップが大きな光が光電変換されることで、入射光はバンドギャップの大きな光から順次光電変換され、下層の井戸層6まで効率的に活用することできる。また、直接遷移型のバンドギャップに起因した大きな光吸収係数(104-5cm-1)を有するため薄膜化が可能であり、低コスト化が可能である。
 ピエゾ電界は、結晶構造の歪9によって生じた圧電分極により発生する。井戸層6に歪9を与えるには、障壁層5の格子定数より大きな格子定数をもつ材料を用いて、コヒーレント成長させることで達成される。なお、コヒーレント成長とは、第1層と第2層を形成する材料の格子定数の差がわずかであることに起因して、半導体の原子配列が伸縮し、結晶欠陥を生じずに結晶成長することで、いいかえると、第1層と第2層との界面で結晶の面が途切れない、あるいは両者の間で格子緩和が全くされていない又はわずかの格子緩和が行われているのみである状態を意味する。
 また、コヒーレント成長とは、前記のように結晶が成長する状態を意味し、そのような結晶成長であれば、スパッタリング法、パルスレーザー蒸着法、MOCVD法、MBE法、HVPE法、電子ビーム蒸着法の気相法、もしくはそれらの組み合わせなど、層を形成するための材料の供給方法は公知の方法でよい。つまり、例えば、通常のスパッタリング法では、材料が持っている格子定数で結晶は成長していくが、障壁層5の上に、障壁層5の格子定数より大きな材料を用いて井戸層6をコヒーレント成長させると、井戸層6は障壁層5の材料の格子定数又はわずかに緩和された値で成長し、その結果、井戸層6は面内方向に圧縮歪が入った状態で成長することになる。障壁層5を形成する材料(格子定数a)と井戸層6を形成する材料(格子定数b)の格子定数差[(b-a/a)×100]は、0.5~20%程度が好ましく、より好ましくは1~10%である。20%より大きいとコヒーレント成長が生じず、0.5%より小さいとピエゾ電界が1MV以下となり、再結合抑制効果が小さくなり光電変換効率が悪くなる。
 ピエゾ電界が発生する井戸層6の臨界膜厚は、障壁層5と井戸層6の格子定数の差に依存する。例えば、格子定数の差が20%の場合は井戸層6の膜厚は約5nm以下にすればよく、10%の場合は約30nm以下にすればよく、0.5%の場合は、100nm以下にすればよい。なお、ピエゾ電界は、障壁層5と井戸層6の格子定数の差が大きいほど強くなるが、一方で、格子定数の差が大きくなるほど臨界膜厚が薄くなり、光を十分吸収できなくなる。したがって、光電変換効率を向上させるためには、格子定数と臨界膜厚を好適な範囲になるよう適宜設定すればよい。
 また、本発明の井戸層6を形成するための材料は、材料の組成比を変えることで格子定数を10%程度変化させることもできる。そのため、c軸方向に障壁層5と井戸層6を積層する際に、各井戸層6を形成する材料の組成比を調整して量子井戸を形成することで、材料を構成する元素を変えることなく、結晶格子の歪みによって発生するピエゾ電界の強さを調整することが可能である。
 本発明は、ピエゾ電界を発生させることで、発生した電子(e)と正孔(h)を空間的に乖離する方向に移動させ、再結合を生じにくくすることから、ピエゾ電界が発生、つまり、ピエゾ電界が0より大きければ光電変換効率は向上するが、ピエゾ電界を大きくすればするほど光電変換効率は更に向上する。したがって、ピエゾ電界は、1MV/cm以上であることが好ましく、2MV/cm以上がより好ましく、3MV/cm以上が特に好ましい。
 また、本発明のp型半導体性層2及び障壁層5は、同じ材料で形成することが好ましい。同じ材料にすることで、障壁層5を形成する膜の結晶性が向上し、臨界膜厚を大きくすることができ、その結果、井戸層6のコヒーレント成長臨界膜厚が増加し、再結合レートを大幅に低下することができる。p型半導体性層2及び障壁層5は、上記のとおり同じ材料で形成することでより好ましい特性が得られるが、ZnOはスパッタリング法により形成できるため、プロセスコストの低減という観点からは、上記に例示した材料の中で、ZnOの組み合わせが特に好ましい。
 なお、本発明の量子井戸構造は、上記のpin構造を有する太陽電池のi型半導体層に適用される他、pn構造を有する太陽電池のp型半導体層、又はn型半導体層に適用してもよい。
 次に、本発明の多重量子井戸型太陽電池の製造方法について説明する。
 本発明の多重量子井戸型太陽電池は、基板1の上にp型半導体層2を積層し、次いで、障壁層5、井戸層6、障壁層5の順に積層し、最後にn型半導体層3を積層し、電極7及び電極8を設けることで作製される。なお、電極8はp型半導体層2を積層した後に設けてもよい。また、障壁層5及び井戸層6の積層は、繰り返してもよい。
 基板1上へのp型半導体層2の積層は、スパッタリング法、パルスレーザー蒸着法、MOCVD法、MBE法、HVPE法、電子ビーム蒸着法の気相法、もしくはそれらの組み合わせなど公知の方法を用いることができるが、p型半導体層2を基板1上に積層する前に、窒素添加結晶化法を用いて結晶性にすぐれたZnO膜のバッファー層を基板1上に形成することで、その後のp型半導体層2の積層の際に、低温で且つ量産性に優れたスパッタリング法によっても高品質なp型半導体層2を形成することができる。
 図5は窒素添加結晶化法の手順を示す。先ず、工程(1)において、膜の原料であるZn、Oに、不純物であるNを添加することで結晶核の生成を抑制してZnON膜を形成する。スパッタリングによりZnON膜を形成する場合、スパッタリング装置には、ガス流量を調整しながらアルゴンガスと窒素ガスを導入する。アルゴンガスと窒素ガスの混合比率は、例えば[N]/([Ar]+[N])=0.01~0.8とすることができる。スパッタリング装置内に窒素を導入することにより、装置内で窒素分子が解離して窒素原子が生じ、ZnON膜が基板上に形成される。ここで、スパッタリング装置内の圧力が高すぎると、スパッタリング装置内に導入した窒素分子が解離せず、窒素原子が発生しないことから、ZnOの結晶核が多く基板上に形成されるので好ましくない。この段階で、ZnOの結晶核を多数形成せず、ZnO結晶核密度の小さいZnON膜を形成するためには、装置内の圧力は0.3~2.7Paが好ましく、0.3Pa~1.33Paがより好ましく、0.3Pa~0.6Paが特に好ましい。
 次に、工程(2)において、温度を室温から800℃に調整することでNを脱着して結晶核を形成する。なお、(1)と(2)の工程は同時に行われても良い。
 そして、工程(3)において、材料であるZn、Oを供給することでZnO結晶が成長し、ZnO膜のバッファー層が形成される。工程(3)において、Nを供給しても良い。この時、膜成長表面に吸着したN原子により、原料元素ZnおよびOのマイグレーションが促進されるという効果がある。
 p型半導体層2が積層された後は、スパッタリング法、パルスレーザー蒸着法、MOCVD法、MBE法、HVPE法、電子ビーム蒸着法の気相法、もしくはそれらの組み合わせなどにより、障壁層5が積層される。
 障壁層5上への井戸層6は、上記の通り、コヒーレント成長で形成されることが重要である。コヒーレント成長は、井戸層6の膜厚を上記の臨界膜厚以下にする必要があり、膜厚は、成膜時間を制御することで調整することができる。
 井戸層6形成時の基板温度は適宜設定できる。中でもスパッタリング法を用いた場合、膜成長面に入射してくる粒子のエネルギーが高いため、膜成長表面でのマイグレーションが促進され、低温でも高品質な金属酸窒化物膜を形成することが可能である。特に製膜速度が小さい場合、上記効果は顕著となる。具体的には製膜速度を10nm/min以下にすることで、井戸層6形成時の基板温度が300℃以下でも、結晶性に優れた金属酸窒化物結晶を形成することができる。またスパッタリング法は他の製膜手法に比べて装置およびランニングコストが安価である。本発明の井戸層6を形成するための材料を用いることで、スパッタリング法により井戸層6を形成することができ、本発明の太陽電池が低コストで提供できるというメリットもある。金属酸窒化物形成中に、所望の膜中窒素濃度に応じて、気相中にN原子を含む原料ガス(例えばN2、NH3、NOなど)を導入する。このときラジカル源等を用いてNラジカルを照射することも、膜中窒素濃度を大きくしたい場合に効果的である。
 井戸層6上への障壁層5の積層は、上記のp型半導体層2上への障壁層5の積層と同様の方法で行われる。次いで、障壁層5の上に、上記の方法で井戸層6をコヒーレント成長させ、この手順を繰り返すことで、量子井戸構造を形成することができる。製造の際には、所望のピエゾ電界強度が得られるよう、各井戸層6を形成する材料の組成比、障壁層5を形成する材料の格子定数の差を適宜調整すればよい。この時、各井戸層6を形成する材料の組成比を層毎に変調してもよい。この場合、太陽光が入射する側に向かってバンドギャップが大きくなるように調整するのが好ましい。これにより各井戸層6のバンドギャップに対応した光を効率良く吸収することが出来る。
 井戸層6及び障壁層5の積層を所望回数繰り返した後、障壁層5の上にスパッタリング法等によりn型半導体層3を積層する。そして、電子ビーム蒸着法又はスパッタリング法により電極7及電極8を設けることで、本発明の多重量子井戸型太陽電池が作製される。なお、上記のとおり、電極8は、p型半導体層2を積層した後に設けてもよい。
 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。
(実施例1)
<ZnInON多重量子井戸型太陽電池>
 厚さ450μmのサファイア基板1の上に、窒素添加結晶化法を用いて、ZnOのバッファー膜を形成した。膜の形成には、スパッタリング法を用い、スパッタリング装置には、圧力が0.3Paとなるように、ガス流量を調整しながらアルゴンガスと窒素ガスを導入した。アルゴンガスと窒素ガスの流量は、[N]=2sccm、[Ar]=20sccmとした。スパッタリング装置内に窒素を導入することにより、装置内で窒素分子が解離して窒素原子が生じ、ZnON膜が基板上に形成された。基板温度は700℃とした。
 次に、格子定数0.319nmのGaNをMOCVD法で積層してp型半導体層2を形成した。p型ドーパントにはマグネシウムを用いた。基板温度を1150℃とし、Ga原料としてトリメチルガリウム(TMG)を、N原料としてアンモニアを、マグネシウム原料としてシクロペンタジエニルマグネシウム(CpMg)を流しGaN層を5μm積層した。成膜後、マグネシウムの活性化を目的として、窒素雰囲気中800℃でアニールを行った。
 次に、格子定数0.325nmのZnOをスパッタリング法で積層して障壁層5を形成した。障壁層5の膜厚は12nmとした。次に、格子定数0.329nmのZnInON(組成比(元素比) Zn:In=O:N=85:15、Zn+In:O+N=1:1)を障壁層5の上に、膜厚が3nmになるまで井戸層6をコヒーレント成長させた。この膜厚は格子緩和が生じる臨界膜厚よりも十分小さな値である。スパッタリングターゲット(材料源)としては、ZnO組成を有する2インチ焼結体およびIn組成を有する2インチ焼結体(それぞれ純度99.9%)を用いた。なお、ターゲットと基板との距離は約12cm、成膜時の基板温度は300℃とした。ZnInON膜は、0.3Paのアルゴン窒素混合ガス雰囲気中で成膜され、アルゴンガスと窒素ガスの流量は、[N]=3sccm、[Ar]=22sccmとした。
 次いで、上記の手順で障壁層5及び井戸層6の積層を、障壁層5が30層となるまで繰り返した。
 次に、障壁層5の上に、ZnOをスパッタリング法で積層してn型半導体層3を形成した。n型ドーパントには、アルミニウムを用いた。スパッタリングターゲット(材料源)として、ZnO:Al23(Al23:2質量%)組成を有する2インチ焼結体(純度99.9%)を用いた。成膜時の基板温度は300℃とした。ZnO膜は、0.3Paのアルゴンガス雰囲気中で成膜され、アルゴンガスの流量は、[Ar]=22.5sccmとした。
 最後に、n型半導体層3上にZnO:Alをスパッタリング法で積層して電極7を形成し、p型半導体層2上にNi/Au積層膜を電子ビーム蒸着法で積層して電極8を形成し、多重量子井戸型太陽電池を作製した。作製された量子井戸の障壁高さは約0.2eV、井戸層の膜厚3nm、障壁層の膜厚12nm、ピエゾ電界は3.2MV/cmであった。
 図6に量子井戸内での再結合レートを示す(ZION)。図6に示されているように、後述する比較例2(InGaAs)、比較例3(InGaN)と比較して、再結合レートは低い値を示し、その結果、光電変換効率が向上した。この時、井戸層6のZnInON膜中の転位欠陥密度は1010cm-2と高い値を示していたが、井戸層6内における強いピエゾ電界(3.2MV/cm)により再結合レートを大幅に低減することが出来た。
(比較例1)
<ZnInON多重量子井戸型太陽電池>
 井戸層6の材料として、特許文献1に記載されているZnInON(組成比(元素比) Zn:In=O:N=65:35、 Zn+In:O+N=1:1)を用い、井戸層6の膜厚を、ピエゾ電界が発生する臨界膜厚以上の50nmとした以外は、実施例1と同様に多重量子井戸型太陽電池を作製した。井戸層6はピエゾ電界を発生しなかったことから、井戸層6内で殆どの光生成キャリアが再結合した。
(比較例2)
<InGaAs多重量子井戸型太陽電池>
 p型半導体層2にGaAs、障壁層5にGaAs、井戸層6にInGaAs、n型半導体層3にGaAsを用い、上記GaAsおよびInGaAsはスパッタリング法で積層できないことから、作製にMBE法を用いた以外は、実施例1と同様に多重量子井戸型太陽電池を作製した。障壁高さが約0.2eV、井戸幅3nm、障壁層幅12nmの量子井戸を形成したところ、井戸層6内での再結合レートは図6に示すようになった。このときInGaAs膜中の転位欠陥密度は105cm-2と低い値を示していたが、量子井戸内における電子―正孔波動関数の重なりが大きく、高い再結合レートを示していた。なお、比較例2では、GaAs(001面)の圧電定数が非常に小さいため、井戸層6内に格子定数差による歪みが発生してもピエゾ電界は発生しなかった。
(比較例3)
<InGaN多重量子井戸型太陽電池>
 p型半導体層2にGaN、障壁層5にGaN、井戸層6にInGaN、n型半導体層3にGaNを用い、上記GaNおよびInGaNの作製にMOCVD法を用いた以外は、実施例1と同様に多重量子井戸型太陽電池を作製した。比較例3のGaN/InGaN量子井戸構造において、井戸層6の膜厚を格子緩和が生じる臨界膜厚より小さくすることで、ピエゾ電界(1.5MV/cm)を発生させた。障壁高さが約0.2eV、井戸幅3nm、障壁層幅12nmの量子井戸を形成したところ、量子井戸内での再結合レートは図6に示すように、実施例1の量子井戸に比べ、高くなることが分かった。このことから、井戸層6の材料として本発明の材料を用いてコヒーレント成長させると、従来の材料と比較して井戸層6内に高いピエゾ電界を発生させることができ、再結合レートを大幅に低下できることが確認された。
(実施例2)
<ZnInON多重量子井戸型太陽電池(p型半導体層及び障壁層:ZnO)>
 実施例1と同様の手順で、ZnON膜が形成した基板を形成した。次に、格子定数0.325nmのZnOをスパッタリング法で積層してp型半導体層2を形成した。成膜時の基板温度は700℃とした。ZnO膜は、0.3Paのアルゴン窒素酸素混合ガス雰囲気中で成膜され、アルゴンガス、窒素、酸素ガスの流量は、[Ar]=45sccm、[N]=7sccm、[O]=2sccmとした。p型ドーパントとして窒素を用い、窒素ガスをラジカル化することによりドープした。
 次に、格子定数0.325nmのZnOをスパッタリング法で積層して障壁層5を形成した。障壁層5の膜厚は30nmとした。次に、格子定数0.329nmのZnInON(組成比(元素比) Zn:In=O:N=85:15、Zn+In:O+N=1:1)を障壁層5の上に、膜厚が30nmになるまで井戸層6をコヒーレント成長させた。p型半導体層2に障壁層5と同じ材料であるZnOを用いることにより、障壁層5を形成するZnO膜の結晶性が向上し、臨界膜厚が大きくなったと考えられる。図7にZnInON(105)面におけるX線回折逆格子マップを示す。ZnInON膜の(100)方向の格子定数がZnOと完全に一致しており、コヒーレント成長していることが確認された。スパッタリングターゲット(材料源)及びスパッタリングの条件は、実施例1と同様に行った。その後、実施例1と同様の手順で障壁層5及び井戸層6の積層を繰り返し、最後に電極を設けて実施例2の多重量子井戸型太陽電池を作製した。
 作製された量子井戸の障壁高さは約0.2eV、井戸層の膜厚30nm、障壁層の膜厚30nm、ピエゾ電界は1MV/cmであった。このとき、井戸層における再結合レートは最大で10-17cm-3-1と実施例1に比べ、一桁低減させることが出来た。これは井戸層の膜厚の増大(3nm→30nm)により波動関数の重なり積分の値が低下したためである。
 上記の結果から、p型半導体層2及び障壁層5を同じ材料で形成することにより井戸層6のコヒーレント成長臨界膜厚が増加し、再結合レートを大幅に低下できることが分かった。また、ZnO膜はスパッタリング法により形成できるため、p型半導体層2及び障壁層5の材料の組み合わせとしてZnOを用いると、プロセスコストの低減という観点からも有利である。
 本発明の多重量子井戸型太陽電池は、幅広い波長の光を高効率に光電変換でき、また、本発明の製造方法により、多重量子井戸型太陽電池を低コストで量産できることから、太陽電池の更なる普及に有用である。

Claims (17)

  1.  基板、p型半導体層、障壁層、井戸層、n型半導体層及び電極を有する多重量子井戸型太陽電池において、
     前記障壁層及び井戸層がウルツ鉱型の原子配置を有する結晶からなり、且つ前記井戸層がIn、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む金属酸窒化物から構成され、
     前記井戸層においてピエゾ電界が発生していることを特徴とする多重量子井戸型太陽電池。
  2.  前記ピエゾ電界が、1MV/cm以上であることを特徴とする請求項1に記載の多重量子井戸型太陽電池。
  3.  前記井戸層が、コヒーレント成長により形成された層であることを特徴とする請求項1又は2に記載の多重量子井戸型太陽電池。
  4.  前記障壁層を形成する材料(格子定数a)と前記井戸層を形成する材料(格子定数b)の格子定数差[(b-a/a)×100]が、0.5~20%であることを特徴とする請求項1~3の何れか一項に記載の多重量子井戸型太陽電池。
  5.  前記障壁層及び前記井戸層が交互に複数層形成され、且つ各井戸層がバンドギャップの異なる材料から形成されることを特徴とする請求項1~4の何れか一項に記載の多重量子井戸型太陽電池。
  6.  前記井戸層が、太陽光入射側に向かってバンドギャップが順に大きくなる材料から形成されることを特徴とする請求項5に記載の多重量子井戸型太陽電池。
  7.  前記基板と前記p型半導体層の間に、窒素添加結晶化法を用いて形成されたZnOのバッファー層を有することを特徴とする請求項1~6の何れか一項に記載の多重量子井戸型太陽電池。
  8.  前記p型半導体層及び前記障壁層が、同じ材料で形成されることを特徴とする請求項1~7の何れか一項に記載の多重量子井戸型太陽電池。
  9.  前記p型半導体層及び前記障壁層が、ZnOで形成されることを特徴とする請求項8に記載の多重量子井戸型太陽電池。
  10.  基板上に、p型半導体層、障壁層、井戸層、障壁層、n型半導体層の順に各層を積層する工程、
     前記p型半導体層上に電極を設ける工程、
     前記n型半導体層上に電極を設ける工程、
    を含む多重量子井戸型太陽電池の製造方法において、
     前記障壁層を積層する工程は、積層後の層がウルツ鉱型の原子配置を有する層となる材料が用いられ、
     前記井戸層を積層する工程は、In、Ga、Alから選択される少なくとも1つの元素及びZn元素を含む材料をピエゾ電界が発生する膜厚にコヒーレント成長させることで、ウルツ鉱型の原子配置を有する歪をもった層となることを特徴とする多重量子井戸型太陽電池の製造方法。
  11.  前記障壁層の上に前記井戸層を積層する工程が、スパッタリング法により行われることを特徴とする請求項10に記載の多重量子井戸型太陽電池の製造方法。
  12.  前記障壁層及び前記井戸層を積層する工程が、前記障壁層を形成する材料(格子定数a)と前記井戸層を形成する材料(格子定数b)の格子定数差[(b-a/a)×100]が、0.5~20%である材料を用いて行われることを特徴とする請求項10又は11に記載の多重量子井戸型太陽電池の製造方法。
  13.  前記障壁層及び前記井戸層を積層する工程が交互に複数回行われ、且つ前記井戸層を積層する各工程が、バンドギャップが異なる材料を用いて行われることを特徴とする請求項10~12の何れか一項に記載の多重量子井戸型太陽電池の製造方法。
  14.  前記井戸層を積層する工程が、太陽光入射側に向かってバンドギャップが順に大きくなる材料を用いて行われることを特徴とする請求項13に記載の多重量子井戸型太陽電池の製造方法。
  15.  前記基板上に前記p型半導体層を積層する工程の前に、窒素添加結晶化法を用いてZnOのバッファー層を形成する工程を更に有することを特徴とする請求項10~14の何れか一項に記載の多重量子井戸型太陽電池の製造方法。
  16.  前記p型半導体層及び前記障壁層が、同じ材料で形成されることを特徴とする請求項10~15の何れか一項に記載の多重量子井戸型太陽電池の製造方法。
  17.  前記p型半導体層及び前記障壁層が、ZnOで形成されることを特徴とする請求項16に記載の多重量子井戸型太陽電池の製造方法。
PCT/JP2013/055973 2012-03-06 2013-03-05 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法 WO2013133264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147003978A KR101399441B1 (ko) 2012-03-06 2013-03-05 다중 양자 우물형 태양 전지 및 다중 양자 우물형 태양 전지의 제조 방법
EP13757910.8A EP2768029B1 (en) 2012-03-06 2013-03-05 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
US14/350,579 US20150303334A1 (en) 2012-03-06 2013-03-05 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
CN201380004255.9A CN103999232B (zh) 2012-03-06 2013-03-05 多量子阱太阳能电池及多量子阱太阳能电池的制造方法
JP2013530437A JP5366279B1 (ja) 2012-03-06 2013-03-05 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049805 2012-03-06
JP2012049805 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013133264A1 true WO2013133264A1 (ja) 2013-09-12

Family

ID=49116739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055973 WO2013133264A1 (ja) 2012-03-06 2013-03-05 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法

Country Status (7)

Country Link
US (1) US20150303334A1 (ja)
EP (1) EP2768029B1 (ja)
JP (1) JP5366279B1 (ja)
KR (1) KR101399441B1 (ja)
CN (1) CN103999232B (ja)
TW (1) TWI506802B (ja)
WO (1) WO2013133264A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079870A (ja) * 2013-10-17 2015-04-23 京セラ株式会社 太陽電池
JP2018012876A (ja) * 2016-07-22 2018-01-25 株式会社アルバック 酸化亜鉛化合物膜の成膜方法、および、酸化亜鉛化合物膜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518671A (ja) * 2018-03-19 2021-08-02 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー Iii族窒化物光電子デバイスおよび製造方法
JP2021034497A (ja) * 2019-08-22 2021-03-01 株式会社東芝 半導体発光デバイス
CN114203327A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 一种p-i-n结及制备方法、二极管和β核电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277865A (ja) * 2008-08-18 2008-11-13 Sony Corp 発光ダイオードの駆動方法、表示装置の駆動方法、電子機器の駆動方法および光通信装置の駆動方法
JP2009275236A (ja) 2007-04-25 2009-11-26 Canon Inc 酸窒化物半導体
JP2010186915A (ja) * 2009-02-13 2010-08-26 Panasonic Corp 太陽電池
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
JP2011238661A (ja) * 2010-05-06 2011-11-24 Sumitomo Bakelite Co Ltd 複合粒子、組成物、波長変換層および光起電装置。

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665977A (en) * 1994-02-16 1997-09-09 Sony Corporation Semiconductor light emitting device with defect decomposing and blocking layers
US6057561A (en) * 1997-03-07 2000-05-02 Japan Science And Technology Corporation Optical semiconductor element
GB0118150D0 (en) * 2001-07-25 2001-09-19 Imperial College Thermophotovoltaic device
US6716479B2 (en) * 2002-01-04 2004-04-06 Rutgers, The State University Of New Jersey Tailoring piezoelectric properties using MgxZn1-xO/ZnO material and MgxZn1-xO/ZnO structures
US7217882B2 (en) * 2002-05-24 2007-05-15 Cornell Research Foundation, Inc. Broad spectrum solar cell
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
CN1929153A (zh) * 2005-09-07 2007-03-14 中国科学院物理研究所 一种含有多量子阱结构的InGaN系宽谱太阳能电池
JP4435123B2 (ja) * 2006-08-11 2010-03-17 ソニー株式会社 表示装置の駆動方法
US7629532B2 (en) * 2006-12-29 2009-12-08 Sundiode, Inc. Solar cell having active region with nanostructures having energy wells
DE102009022900A1 (de) * 2009-04-30 2010-11-18 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275236A (ja) 2007-04-25 2009-11-26 Canon Inc 酸窒化物半導体
JP2008277865A (ja) * 2008-08-18 2008-11-13 Sony Corp 発光ダイオードの駆動方法、表示装置の駆動方法、電子機器の駆動方法および光通信装置の駆動方法
JP2010186915A (ja) * 2009-02-13 2010-08-26 Panasonic Corp 太陽電池
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
JP2011238661A (ja) * 2010-05-06 2011-11-24 Sumitomo Bakelite Co Ltd 複合粒子、組成物、波長変換層および光起電装置。

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. LUQUE; A. MARTI, PHYS. REV. LETT., vol. 78, 1997, pages 5014
JOURNAL OF APPLIED PHYSICS, vol. 67, 1990, pages 3490
P. MICHLER ET AL., PHYS. REV. B, vol. 46, 1992, pages 7280
See also references of EP2768029A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079870A (ja) * 2013-10-17 2015-04-23 京セラ株式会社 太陽電池
JP2018012876A (ja) * 2016-07-22 2018-01-25 株式会社アルバック 酸化亜鉛化合物膜の成膜方法、および、酸化亜鉛化合物膜

Also Published As

Publication number Publication date
EP2768029B1 (en) 2016-10-19
JP5366279B1 (ja) 2013-12-11
EP2768029A1 (en) 2014-08-20
TW201347211A (zh) 2013-11-16
JPWO2013133264A1 (ja) 2015-07-30
TWI506802B (zh) 2015-11-01
KR101399441B1 (ko) 2014-05-28
KR20140032499A (ko) 2014-03-14
US20150303334A1 (en) 2015-10-22
EP2768029A4 (en) 2015-07-01
CN103999232A (zh) 2014-08-20
CN103999232B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
KR101431658B1 (ko) 양자 점 구조물들을 이용한 반도체 구조물 및 소자들의 제조 방법들 및 관련된 구조물들
WO2011048809A1 (ja) 太陽電池およびその製造方法
JP5366279B1 (ja) 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
US8420431B2 (en) Solar cell
CN109065679A (zh) 一种发光二极管外延片及其制造方法
JP3589301B2 (ja) 量子層の構造
US9245748B2 (en) Methods for growing III-V materials on a non III-V material substrate
CN109065682B (zh) 一种发光二极管外延片及其制造方法
JP6335784B2 (ja) 可変バンドギャップ太陽電池
JP5742069B2 (ja) 太陽電池及びその製造方法
CN102185071B (zh) 一种非极性ZnO基发光器件及其制备方法
JP2013172072A (ja) 2接合太陽電池
CN108269866B (zh) 一种混合极性InGaN太阳能电池结构
US8653501B2 (en) Emitting device and manufacturing method therefor
JP2014120666A (ja) 窒化物半導体太陽電池、窒化物光−電気変換素子、窒化物半導体太陽電池を作製する方法
TW201305398A (zh) 以iii族氮化物為基礎的多層堆疊結構、帶有該多層堆疊結構的部件以及該多層堆疊結構的製造方法
CN114725778A (zh) 量子点激光器的制作方法
CN114914332A (zh) 半导体外延结构及其制备方法、半导体光电器件
Kawaguchi et al. Radial InP/InAsP quantum wells with high arsenic compositions on wurtzite-InP nanowires in the 1.3-µm region
CN108269877A (zh) 一种InGaN太阳能电池结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147003978

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350579

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013757910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013757910

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE