CN114725778A - 量子点激光器的制作方法 - Google Patents

量子点激光器的制作方法 Download PDF

Info

Publication number
CN114725778A
CN114725778A CN202210375524.3A CN202210375524A CN114725778A CN 114725778 A CN114725778 A CN 114725778A CN 202210375524 A CN202210375524 A CN 202210375524A CN 114725778 A CN114725778 A CN 114725778A
Authority
CN
China
Prior art keywords
layer
type
gan
quantum dot
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210375524.3A
Other languages
English (en)
Other versions
CN114725778B (zh
Inventor
张鹏
陆书龙
杨文献
顾颖
邱海兵
张雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN202210375524.3A priority Critical patent/CN114725778B/zh
Publication of CN114725778A publication Critical patent/CN114725778A/zh
Application granted granted Critical
Publication of CN114725778B publication Critical patent/CN114725778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/02MBE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种量子点激光器的制作方法,包括:MOCVD设备中,在衬底上依次生长n型限制层和n型波导层,获得初步样品;将初步样品转移至MBE设备中,然后在n型波导层上依次生长量子点有源区、p型波导层、电子限制层、p型限制层和p型接触层。本发明结合了MOCVD工艺成本低、生长速率高和MBE工艺在低维材料生长好,p‑GaN上制备的优势,制备出的氮化镓基量子点激光器具有高温稳定性,低阈值电流密度等特性。

Description

量子点激光器的制作方法
技术领域
本发明是关于半导体器件技术领域,特别是关于一种量子点激光器的制作方法。
背景技术
继第一代和第二代半导体后,被称为第三代宽禁带半导体材料的氮化镓(GaN)基半导体材料,因为具有宽的禁带宽度、高的热导率、大的击穿电场、高电子迁移率的优点,并且作为直接带隙的发光材料,逐渐进入大众的视野。其成员包括氮化铟、氮化镓和氮化铝及其合金化合物。通过对组分的调控,室温下四元合金化合物的禁带宽度在0.7eV~6.2eV的范围内连续可调,可以涵盖可见光波段,因而在光电子器件领域具有广泛的应用,可以用来制备发光二极管与激光器等。其中GaN基半导体激光器具有小体积、高效率、长寿命、快响应速率等优点,在生化医疗、紫外固化、可见光通信、激光显示、原子钟等领域应用广泛而备受人们的关注,有着重要的应用前景。
目前,主要靠金属有机物化学气相沉积(MOCVD)设备生长GaN基量子阱激光器外延结构,但是采用MOCVD设备生长的问题至少包括:低维材料生长的困难,有源区热退化问题,难以制备高质量的p-GaN层。而利用分子束外延(MBE)设备生长量子点激光器外延结构,其存在问题至少包括:成本高,生长速率慢,重复性低。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种量子点激光器的制作方法,其能够克服现有技术中无法制备高质量的p-GaN层等问题。
为实现上述目的,本发明的实施例提供了一种量子点激光器的制作方法,包括:
MOCVD设备中,在衬底上依次生长n型限制层和n型波导层,获得初步样品;
将初步样品转移至MBE设备中,然后在n型波导层上依次生长量子点有源区、p型波导层、电子限制层、p型限制层和p型接触层。
在本发明的一个或多个实施方式中,所述MOCVD设备和MBE设备之间真空互联。
在本发明的一个或多个实施方式中,所述量子点有源区为周期的InGaN量子点/GaN势垒层,或InGaN量子点。
在本发明的一个或多个实施方式中,所述衬底为GaN自支撑衬底。
在本发明的一个或多个实施方式中,所述衬底为蓝宝石衬底或Si衬底,所述方法还包括:在衬底和n型限制层之间通过MOCVD生长缓冲层,所述缓冲层为GaN缓冲层。
在本发明的一个或多个实施方式中,所述n型限制层为AlGaN/GaN超晶格结构,和/或所述n型波导层为InGaN,和/或所述p型波导层为InGaN,和/或所述电子限制层为AlGaN,和/或所述p型限制层为AlGaN/GaN超晶格结构,和/或所述p型接触层为GaN。
在本发明的一个或多个实施方式中,所述方法还包括:在n型限制层和n型波导层之间通过MOCVD生长n型间隔层,所述n型间隔层为GaN。
在本发明的一个或多个实施方式中,所述方法还包括:在电子限制层和p型波导层之间通过MBE生长p型间隔层,所述p型间隔层为GaN。
在本发明的一个或多个实施方式中,包括:MOCVD设备中,在n型GaN自支撑衬底上依次生长n型AlGaN/GaN限制层、n型GaN间隔层、n型InGaN波导层,获得初步样品;将初步样品转移至MBE设备中,然后在n型InGaN波导层上依次生长InGaN/GaN量子点有源区、p型InGaN波导层、p型GaN间隔层、AlGaN电子限制层、p型AlGaN/GaN限制层和p型GaN接触层。
在本发明的一个或多个实施方式中,包括:MOCVD设备中,在衬底上依次生长GaN缓冲层、n型AlGaN/GaN限制层和n型InGaN波导层,获得初步样品;将初步样品转移至MBE设备中,然后在n型InGaN波导层上依次生长InGaN量子点有源区、p型InGaN波导层、AlGaN电子限制层、p型AlGaN/GaN限制层和p型GaN接触层。
与现有技术相比,本发明结合了MOCVD工艺成本低、生长速率快和MBE工艺在低维材料生长好,p-GaN制备质量高的优势,制备出的氮化镓基量子点激光器具有高温稳定性,低阈值电流密度等特性。
附图说明
图1是根据本发明第1实施方式的量子点激光器的结构示意图;
图2是根据本发明第2实施方式的量子点激光器的结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
根据本发明优选实施方式的一种量子点激光器的制作方法,包括步骤:
步骤s1,MOCVD设备中,在衬底上依次生长n型限制层和n型波导层,获得初步样品;
步骤s2,将初步样品转移至MBE设备中,然后在n型波导层上依次生长量子点有源区、p型波导层、电子限制层、p型限制层和p型接触层。
本实施例中,MOCVD(金属有机化合物化学气相沉积)是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。金属有机化合物源(MO源)和非金属氢化物源均随载气注入反应室,在加热的衬底上发生沉积反应。通过控制气态源的通断时间和流量来控制外延层的厚度、组分、界面和掺杂浓度。其优点包括生长速率快、易于掺杂且掺杂均匀性好,生长工艺重复性好;产能高,成本相对较低;灵活性高,同一机台可用来生长不同的材料。
本实施例中,MBE(分子束外延)是一种基于物理反应过程的制备方法,其主要原理是将晶体材料在源炉进行加热,晶体分子以单质束流形式经过超高真空生长腔室到达预加热的基底,到达基底表面的热原子或分子经历吸附、表面横向迁移和排列沉积等过程形成晶体薄膜。量子点有源区的制备需要MBE的设备来生长,MBE设备的优势是低维材料的生长,量子点相比于量子阱的优势是极化电场小,量子限制斯塔克效应弱,辐射复合效率高,位错密度低。对于p型材料的话,MBE设备的生长腔为超高的真空环境,源材料采用为高纯度单质,能有效避免C、H和O等杂质的引入,制备的单晶材料具有极高的纯度。因此在制备p-GaN时候,能缓解Mg原子的补偿效应。
本实施例将MOCVD和MBE的优势互补,制备出高质量的GaN基量子点激光器。
所述MOCVD设备和MBE设备之间真空互联。真空互联通过超高真空管道把各功能设备相互连接,解决了传统超净间模式中难以解决的尘埃、表面氧化和吸附等污染问题。
量子点有源区为InGaN量子点/GaN势垒层,周期数为3-10个,GaN势垒层的厚度为5-15nm。
n型限制层为AlxGaN1-x/GaN,周期数100-300个,其中,0<x<1,AlGaN层的厚度2-4nm,GaN层的厚度为2-4nm,采用Si作为掺杂剂,掺杂浓度大于等于2×1018cm-2
n型波导层为InxGa1-xN,其中,0<x<1,厚度为50-300nm,采用Si作为掺杂剂,掺杂浓度大于等于1×1018cm-2
p型波导层为InxGa1-xN,其中,0<x<1,厚度为50-300nm,采用Mg作为掺杂剂,掺杂浓度大于等于1×1018cm-2
电子限制层为AlxGa1-xN,其中,0<x<1,厚度为10-20nm。
p型限制层为AlxGaN1-x/GaN,周期数100-300个,其中,0<x<1,AlGaN层的厚度2-4nm,GaN层的厚度为2-4nm,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2
p型接触层为GaN,厚度为20-100nm,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2
衬底为GaN自支撑衬底、Si或蓝宝石衬底。
一实施例中,还包括在n型限制层和n型波导层之间通过MOCVD生长n型GaN间隔层,n型GaN间隔层的厚度为5-20nm。采用Si作为掺杂剂,掺杂浓度大于等于1×1018cm-2
一实施例中,还包括在电子限制层和p型波导层之间通过MBE生长p型GaN间隔层,p型GaN间隔层的厚度为5-20nm。采用Mg作为掺杂剂,掺杂浓度大于等于1×1018cm-2
实施例1
参图1所示,量子点激光器100包括衬底11、缓冲层12、n型限制层13、n型波导层14、量子点有源区15、p型波导层16、电子限制层17、p型限制层18和p型接触层19。
衬底11为蓝宝石衬底或Si衬底;缓冲层12为掺杂的n-GaN,厚度为5μm,采用Si作为掺杂剂,掺杂浓度大于等于2×1018cm-2;n型限制层13为多个周期的Al0.15GaN0.85/GaN,整体厚度为1000nm,周期数为200个,采用Si作为掺杂剂,掺杂浓度大于等于2×1018cm-2;n型波导层14为In0.05Ga0.95N,厚度为100nm,采用Si作为掺杂剂,掺杂浓度大于等于1×1018cm-2;量子点有源区15为InGaN量子点,厚度为60nm;p型波导层16为In0.05Ga0.95N,厚度为80nm,采用Mg作为掺杂剂,掺杂浓度大于等于1×1019cm-2;电子限制层17为Al0.2Ga0.8N,厚度为20nm;p型限制层18为多个周期的Al0.15GaN0.85/GaN,整体厚度为750nm,周期数为150个,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2;p型接触层19为GaN,厚度为30nm,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2
该实施例中,n型限制层13、p型限制层18采用超晶格结构,其限制作用更强。
量子点激光器100的制作方法包括:
步骤s1,MOCVD设备中,在衬底11上依次生长缓冲层12、n型限制层13和n型波导层14,获得初步样品。
步骤s2,将初步样品通过真空互联转移至MBE设备中,然后在n型波导层14上依次生长量子点有源区15、p型波导层16、电子限制层17、p型限制层18和p型接触层19。
实施例2
参图2所示,量子点激光器200包括衬底21、n型限制层22、n型间隔层23、n型波导层24、量子点有源区25、p型波导层26、p型间隔层27、电子限制层28、p型限制层29和p型接触层210。
衬底21为n型GaN自支撑衬底;n型限制层22为多个周期的Al0.15GaN0.85/GaN,Al0.15GaN0.85层的厚度2.5nm,GaN层的厚度为2.5nm,周期数为200个,采用Si作为掺杂剂,掺杂浓度大于等于2×1018cm-2;n型GaN间隔层23的厚度为10nm。采用Si作为掺杂剂,掺杂浓度大于等于1×1018cm-2;n型波导层24为In0.05Ga0.95N,厚度为120nm,采用Si作为掺杂剂,掺杂浓度大于等于1×1018cm-2;量子点有源区25为多个周期的InGaN量子点/GaN势垒层,周期数为5个,每一GaN势垒层的厚度为5nm;p型波导层26为In0.05Ga0.95N,厚度为120nm,采用Mg作为掺杂剂,掺杂浓度大于等于1×1019cm-2;p型间隔层27的厚度为10nm,采用Si作为掺杂剂,掺杂浓度大于等于1×1019cm-2;电子限制层28为Al0.2Ga0.8N,厚度为15nm;p型限制层29为多个周期的Al0.15GaN0.85/GaN,Al0.15GaN0.85层的厚度2.5nm,GaN层的厚度为2.5nm,周期数为200个,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2;p型接触层210为GaN,厚度为30nm,采用Mg作为掺杂剂,掺杂浓度大于等于5×1019cm-2
该实施例中,n型限制层22、p型限制层29采用超晶格结构,其限制作用更强。
量子点激光器200的制作方法包括:
步骤s1,MOCVD设备中,在衬底21上依次生长n型限制层22、n型间隔层23、n型波导层24,获得初步样品。
步骤s2,将初步样品通过真空互联转移至MBE设备中,然后在n型波导层24上依次生长量子点有源区25、p型波导层26、p型间隔层27、电子限制层28、p型限制层29和p型接触层210。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

1.一种量子点激光器的制作方法,其特征在于,包括:
MOCVD设备中,在衬底上依次生长n型限制层和n型波导层,获得初步样品;
将初步样品转移至MBE设备中,然后在n型波导层上依次生长量子点有源区、p型波导层、电子限制层、p型限制层和p型接触层。
2.如权利要求1所述的量子点激光器的制作方法,其特征在于,所述MOCVD设备和MBE设备之间真空互联。
3.如权利要求1所述的量子点激光器的制作方法,其特征在于,所述量子点有源区为周期的InGaN量子点/GaN势垒层,或InGaN量子点。
4.如权利要求3所述的量子点激光器的制作方法,其特征在于,所述衬底为GaN自支撑衬底。
5.如权利要求3所述的量子点激光器的制作方法,其特征在于,所述衬底为蓝宝石衬底或Si衬底。
所述方法还包括:在衬底和n型限制层之间通过MOCVD生长缓冲层,所述缓冲层为GaN缓冲层。
6.如权利要求3所述的量子点激光器的制作方法,其特征在于,所述n型限制层为AlGaN/GaN超晶格结构,和/或
所述n型波导层为InGaN,和/或
所述p型波导层为InGaN,和/或
所述电子限制层为AlGaN,和/或
所述p型限制层为AlGaN/GaN超晶格结构,和/或
所述p型接触层为GaN。
7.如权利要求3所述的量子点激光器的制作方法,其特征在于,所述方法还包括:在n型限制层和n型波导层之间通过MOCVD生长n型间隔层,所述n型间隔层为GaN。
8.如权利要求3所述的量子点激光器的制作方法,其特征在于,所述方法还包括:在电子限制层和p型波导层之间通过MBE生长p型间隔层,所述p型间隔层为GaN。
9.如权利要求1所述的量子点激光器的制作方法,其特征在于,包括:
MOCVD设备中,在n型GaN自支撑衬底上依次生长n型AlGaN/GaN限制层、n型GaN间隔层、n型InGaN波导层,获得初步样品;
将初步样品转移至MBE设备中,然后在n型InGaN波导层上依次生长InGaN/GaN量子点有源区、p型InGaN波导层、p型GaN间隔层、AlGaN电子限制层、p型AlGaN/GaN限制层和p型GaN接触层。
10.如权利要求1所述的量子点激光器的制作方法,其特征在于,包括:
MOCVD设备中,在衬底上依次生长GaN缓冲层、n型AlGaN/GaN限制层和n型InGaN波导层,获得初步样品;
将初步样品转移至MBE设备中,然后在n型InGaN波导层上依次生长InGaN量子点有源区、p型InGaN波导层、AlGaN电子限制层、p型AlGaN/GaN限制层和p型GaN接触层。
CN202210375524.3A 2022-04-11 2022-04-11 量子点激光器的制作方法 Active CN114725778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210375524.3A CN114725778B (zh) 2022-04-11 2022-04-11 量子点激光器的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210375524.3A CN114725778B (zh) 2022-04-11 2022-04-11 量子点激光器的制作方法

Publications (2)

Publication Number Publication Date
CN114725778A true CN114725778A (zh) 2022-07-08
CN114725778B CN114725778B (zh) 2023-09-08

Family

ID=82243223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210375524.3A Active CN114725778B (zh) 2022-04-11 2022-04-11 量子点激光器的制作方法

Country Status (1)

Country Link
CN (1) CN114725778B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489175B1 (en) * 2001-12-18 2002-12-03 Wenbin Jiang Electrically pumped long-wavelength VCSEL and methods of fabrication
CN1894799A (zh) * 2003-09-05 2007-01-10 点度量技术有限公司 具有纳米级外延过生长的量子点光电器件以及制造方法
US20100276665A1 (en) * 2007-02-09 2010-11-04 Wang Nang Wang Production of semiconductor devices
US20130259079A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan GaN-Based Quantum Dot Visible Laser
CN110534626A (zh) * 2019-09-04 2019-12-03 苏州辰睿光电有限公司 一种超晶格量子点结构及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489175B1 (en) * 2001-12-18 2002-12-03 Wenbin Jiang Electrically pumped long-wavelength VCSEL and methods of fabrication
CN1894799A (zh) * 2003-09-05 2007-01-10 点度量技术有限公司 具有纳米级外延过生长的量子点光电器件以及制造方法
US20100276665A1 (en) * 2007-02-09 2010-11-04 Wang Nang Wang Production of semiconductor devices
US20130259079A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan GaN-Based Quantum Dot Visible Laser
CN110534626A (zh) * 2019-09-04 2019-12-03 苏州辰睿光电有限公司 一种超晶格量子点结构及其制作方法

Also Published As

Publication number Publication date
CN114725778B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
KR100507610B1 (ko) 질화물 반도체 나노상 광전소자 및 그 제조방법
JP2003023220A (ja) 窒化物半導体素子
KR20120043313A (ko) 화합물 반도체 장치 및 그 제조 방법
WO2019015217A1 (zh) 一种深紫外led
CN111916537A (zh) 非极性AlGaN基深紫外LED外延片及制备方法
CN111739989A (zh) AlGaN基深紫外LED外延片及制备方法
CN109860358A (zh) 一种氮化镓基发光二极管外延片及其制备方法
CN111900237A (zh) 一种紫外led芯片及其制作方法
CN114709309A (zh) 一种外延片、外延片制备方法以及发光二极管
Lei et al. A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD
CN103022286A (zh) 一种级联GaN基LED外延片及其制备方法
WO2013133264A1 (ja) 多重量子井戸型太陽電池及び多重量子井戸型太陽電池の製造方法
CN111477727A (zh) 一种改善电流扩展层的led芯片及制作方法
CN114725778B (zh) 量子点激光器的制作方法
CN113410350B (zh) 深紫外发光元件及其制备方法
CN212323021U (zh) 非极性AlGaN基深紫外LED外延片
KR20120029256A (ko) 반도체 발광소자 및 이를 제조하는 방법
CN111525003B (zh) 一种在m面氮化镓基板上生长蓝色发光二极管的外延方法
CN112563380A (zh) Si衬底的AlGaN基深紫外LED外延片及制备方法
US9859457B2 (en) Semiconductor and template for growing semiconductors
CN114464709A (zh) 一种led外延片、外延生长方法及led芯片
CN112271240A (zh) 一种AlGaN基深紫外LED外延片及制备方法
CN213816182U (zh) Si衬底的AlGaN基深紫外LED外延片
CN104241458A (zh) 一种垒宽可变的氮化镓基led外延片的制备方法
CN113394315B (zh) 深紫外发光元件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant