WO2013133028A1 - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
WO2013133028A1
WO2013133028A1 PCT/JP2013/054255 JP2013054255W WO2013133028A1 WO 2013133028 A1 WO2013133028 A1 WO 2013133028A1 JP 2013054255 W JP2013054255 W JP 2013054255W WO 2013133028 A1 WO2013133028 A1 WO 2013133028A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
circuit
coil
device side
Prior art date
Application number
PCT/JP2013/054255
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP13758558.4A priority Critical patent/EP2824799B1/en
Priority to CN201380012330.6A priority patent/CN104247206B/zh
Priority to KR1020147024951A priority patent/KR101685371B1/ko
Priority to JP2014503755A priority patent/JP5787027B2/ja
Publication of WO2013133028A1 publication Critical patent/WO2013133028A1/ja
Priority to US14/472,136 priority patent/US9478992B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • H04B5/24
    • H04B5/79
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process

Definitions

  • the present invention relates to a power transmission system including a power transmission device and a power reception device.
  • a conventional non-contact charging system includes, for example, a power transmission device including a primary coil in a charging stand and a portable electronic device including a secondary coil and a rechargeable battery as disclosed in Patent Document 1.
  • a power transmission device including a primary coil in a charging stand and a portable electronic device including a secondary coil and a rechargeable battery as disclosed in Patent Document 1.
  • the user places the portable electronic device on the power transmission device.
  • the primary side coil of the power transmission device and the secondary side coil of the portable electronic device are electromagnetically coupled (magnetic field coupling), and power is supplied to the charging device side to charge the secondary battery.
  • the power transmission coil and the power reception coil act as an insulating transformer using electromagnetic induction, and are merely used as a transformer using magnetic coupling.
  • transformers that use electromagnetic induction it is important to efficiently convert from electricity to magnetism and electricity by linking the magnetic flux generated by the current flowing in the primary winding to the secondary winding and flowing the current. ing.
  • the ratio of the magnetic flux interlinked with the secondary winding out of the magnetic flux generated by the current flowing through the primary winding is called (magnetic) coupling degree.
  • the power conversion efficiency is increased. Therefore, how to increase the magnetic coupling degree is important.
  • high power conversion efficiency cannot be obtained.
  • An object of the present invention is to provide a power transmission system that increases power conversion efficiency during power transmission without increasing the size of the apparatus.
  • the power transmission system of the present invention is configured as follows. (1) In a power transmission system including a power transmission device including a power transmission coil and a power reception device including a power reception coil,
  • the power transmission device includes a power transmission device-side resonance capacitor that constitutes a power transmission device-side resonance circuit together with the power transmission coil, and a switch that is electrically connected to the power transmission coil and includes a parallel connection circuit of a switch element, a diode, and a capacitor.
  • the power receiving device includes a power receiving device side resonance capacitor that forms a power receiving device side resonance circuit together with the power receiving coil, and a power receiving device side rectifier circuit that is connected to the power receiving coil and rectifies an alternating current generated in the power receiving coil.
  • An electromagnetic resonance coupling circuit is configured by a mutual inductance and a mutual capacitance that are equivalently formed between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate.
  • Power is transmitted from the power transmitting device to the power receiving device,
  • the energy reflected from the power transmission device without being transmitted is stored as resonance energy in the power transmission device side resonance circuit, Of the energy received by the power receiving device, the energy reflected without being supplied to the output is stored as resonance energy in the power receiving device side resonance circuit.
  • the power transmission device includes a power transmission device-side resonance capacitor that constitutes a power transmission device-side resonance circuit together with the power transmission coil, and a switch that is electrically connected to the power transmission coil and includes a parallel connection circuit of a switch element, a diode, and a capacitor.
  • the power receiving device includes a power receiving device side resonance capacitor that forms a power receiving device side resonance circuit together with the power receiving coil, and a power receiving device side rectifier circuit that is connected to the power receiving coil and rectifies an alternating current generated in the power receiving coil.
  • a magnetic resonance coupling circuit is configured by a mutual inductance formed equivalently between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate to form the power transmission device.
  • Power is transmitted to the power receiving device from The energy reflected from the power transmission device without being transmitted is stored as resonance energy in the power transmission device side resonance circuit, Of the energy received by the power receiving device, the energy reflected without being supplied to the output is stored as resonance energy in the power receiving device side resonance circuit.
  • the power transmission device includes a power transmission device side resonance inductor that forms a power transmission device side resonance circuit together with a power transmission device side resonance capacitor, and a parallel connection circuit of a switch element, a diode, and a capacitor that is electrically connected to the power transmission coil.
  • a power transmission device side alternating current generating circuit for generating alternating current to flow includes a power receiving device side resonance inductor that forms a power receiving device side resonance circuit together with the power receiving device side resonance capacitor, and a power receiving device side rectifier circuit that is connected to the power receiving coil and rectifies an alternating current generated in the power receiving coil.
  • An electric field resonance coupling circuit is configured by a mutual capacitance formed equivalently between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate to form the power transmission device.
  • Power is transmitted to the power receiving device from The energy reflected from the power transmission device without being transmitted is stored as resonance energy in the power transmission device side resonance circuit, Of the energy received by the power receiving device, the energy reflected without being supplied to the output is stored as resonance energy in the power receiving device side resonance circuit.
  • the power reception device includes an information transmission circuit that detects output information of the power reception device side rectifier circuit and transmits the output information to the power transmission device side,
  • the power transmission device preferably includes an output information receiving circuit that receives the output information, and a transmission power control circuit that controls the transmission power by controlling the power transmission device-side alternating current generation circuit according to the output information.
  • the information transmission circuit is a circuit that transmits the output information by wireless communication
  • the output information receiving circuit is a circuit that receives the output information by wireless communication.
  • the information transmission circuit is a circuit that converts the electrical signal into an optical signal and transmits the output information
  • the output information receiving circuit is a circuit that receives the output information by converting an optical signal into an electric signal.
  • the power transmission device side alternating current generation circuit may be configured to control transmission power by frequency control PFM (PulseulFrequency Modulation) that changes a switching frequency for turning on / off the switch circuit.
  • PFM PulseulFrequency Modulation
  • the power transmission device side alternating current generating circuit is ideally configured to generate a resonance current waveform by PWM (Pulse Width Modulation) which controls the time ratio by turning on / off the switch circuit at a fixed switching frequency.
  • PWM Pulse Width Modulation
  • the transmission power may be controlled by distorting the sine wave.
  • the power receiving device side rectifier circuit is preferably a synchronous rectifier circuit including a switch element.
  • the power receiving device preferably includes an operating frequency control circuit that controls an operating frequency (switching frequency) of the synchronous rectifier circuit, and is configured to control received power according to the operating frequency.
  • the power receiving device includes a control circuit that controls a circuit on the power receiving device side, and the control circuit is configured to operate with electric power received by the power receiving device.
  • the power receiving device side rectifier circuit acts as the power transmitting device side AC current generating circuit, and the power transmitting device side AC current generating circuit is It preferably functions as a power receiving device side rectifier circuit, and thus can transmit power in both directions.
  • a resonance capacitor is provided in parallel with the power transmission coil or the power reception coil.
  • the resonant capacitor is configured by a stray capacitance that is equivalent to an electric capacitance formed by electric field resonance formed between the power transmission coil and the power reception coil.
  • the resonant capacitor is composed of an equivalent mutual capacitance formed between the power transmission coil and the power reception coil.
  • the power transmission coil and the power reception coil are air-core inductors.
  • the mutual inductance is an equivalent excitation inductance generated by magnetic resonance coupling formed between the power transmission coil and the power reception coil.
  • inductance components of the power transmission coil or the power reception coil it is preferable to use a leakage inductance that does not participate in resonance coupling as an inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit.
  • the power transmission device-side alternating current generation circuit includes a plurality of the power transmission coils and the switch circuits, and is configured such that the power transmission coils and the switch circuits are electrically connected to each other. Therefore, it is preferable to sequentially perform the switching operation.
  • the power transmission device-side AC current generation circuit includes a plurality of the switch circuits, and is configured by electrically connecting the plurality of switch circuits to the power transmission coil. It is preferable to perform switching operations sequentially.
  • both the power transmission device side and the power reception device side are provided with LC resonance circuits, and the two LC resonance circuits are resonated, so that a magnetic field or an electric field or both resonance couplings are established between the power transmission coil and the power reception coil. It can be used for power transmission.
  • the resonance phenomenon only the active power is transmitted from the power transmission device side to the power reception device side, and the reactive power reflected without being transmitted is circulated in the respective LC resonance circuits on the power transmission device side and the power reception device side. Therefore, since it is stored as resonance energy, power loss can be made extremely small.
  • FIG. 1 is a circuit diagram of a power transmission system 111 according to the first embodiment.
  • FIG. 2 is a voltage / current waveform diagram of each part of the power transmission system 111 shown in FIG. 1.
  • FIG. 3A is a circuit diagram of a multiple resonance circuit including the electromagnetic resonance coupling circuit 90 shown in FIG. 1 and an electromagnetic resonance coupling circuit composed of resonance capacitors Cr and Crs.
  • FIG. 3B is an equivalent circuit diagram thereof.
  • FIG. 4 is a circuit diagram of the power transmission system 112 according to the second embodiment.
  • FIG. 5 is a circuit diagram of the power transmission system 113 according to the third embodiment.
  • FIG. 6 is a circuit diagram of the power transmission system 114 of the fourth embodiment.
  • FIG. 7 is a circuit diagram of the power transmission system 115 of the fifth embodiment.
  • FIG. 8 is a circuit diagram of the power transmission system 116 of the sixth embodiment.
  • FIG. 9 is a circuit diagram of the power transmission system 117 of the seventh embodiment.
  • FIG. 10 is a circuit diagram of the power transmission system 118 of the eighth embodiment.
  • FIG. 11 is a circuit diagram of the power transmission system 119 of the ninth embodiment.
  • FIG. 12 is a circuit diagram of the power transmission system 120 of the tenth embodiment.
  • FIG. 13 is a circuit diagram of the power transmission system 121 of the eleventh embodiment.
  • FIG. 14 is a circuit diagram of the power transmission system 122 of the twelfth embodiment.
  • FIG. 15 is a circuit diagram of the power transmission system 123 of the thirteenth embodiment.
  • FIG. 16 is a circuit diagram of a power transmission system 123A which is another configuration example of the thirteenth embodiment.
  • FIG. 17 is a circuit diagram of the power transmission system 124 of the fourteenth embodiment.
  • FIG. 18 is a circuit diagram of the power transmission system 125 of the fifteenth embodiment.
  • FIG. 19 is a circuit diagram of the power transmission system 126 of the sixteenth embodiment.
  • FIG. 20 is a circuit diagram of the power transmission system 127 of the seventeenth embodiment.
  • FIG. 21 is a circuit diagram of the power transmission system 128 according to the eighteenth embodiment.
  • FIG. 22 is a circuit diagram of the power transmission system 129 of the nineteenth embodiment.
  • FIG. 23 is a circuit diagram of the power transmission system 130 of the twentieth embodiment.
  • FIG. 24 is an example of a power transmission coil and a power reception coil used in the power transmission system of the twenty-first embodiment.
  • FIG. 25 is a diagram illustrating the frequency characteristics of the impedance of the electromagnetic resonance coupling circuit including the load in the power transmission system according to the twenty-second embodiment.
  • FIG. 26 is a voltage-current waveform diagram of each part of the power transmission system according to the twenty-second embodiment.
  • FIG. 1 is a circuit diagram of a power transmission system 111 according to the first embodiment.
  • the power transmission system 111 includes a power transmission device PSU and a power reception device PRU.
  • the power transmission system 111 is a system that includes an input power source Vi at the input unit of the power transmission device PSU and supplies stable DC energy to the load Ro of the power reception device PRU.
  • the power transmission device PSU is connected to the power transmission coil Lp, the power transmission device-side resonance capacitors Cr and Cp that constitute the power transmission device-side resonance circuit together with the power transmission coil Lp, and the switch element Q1, the diode Dds1, and the capacitor Cds1 in parallel.
  • An inductor Lf having an inductance value large enough to generate a current source that can be regarded as a direct current relative to an alternating current flowing through the power transmission coil Lp from the switch circuit S1 configured by the connection circuit and the input direct current voltage.
  • a power transmission device side AC current generation circuit (Lf, S1, Cr, Cp, Lp) for generating an AC current flowing through the power transmission coil Lp.
  • the inductance value of the inductor Lf is sufficiently larger than the inductance value of the power transmission coil Lp, becomes high impedance at the switching frequency, and the fluctuation of the flowing current is sufficiently small.
  • the power receiving device PRU is connected to the power receiving device side resonance capacitors Crs and Cs, which together with the power receiving coil Ls and the power receiving coil Ls constitute a power receiving device side resonance circuit, and the power receiving coil Ls, and rectifies the alternating current generated in the power receiving coil Ls.
  • the switch circuit S2 includes a switch element Q2, a diode and a capacitor connected in parallel.
  • the power transmission device PSU is provided with a switching control circuit 10 that controls the switch element Q1.
  • the power receiving device PRU is provided with a switching control circuit 20 and a transmission control circuit 50 for controlling the switch element Q2.
  • the transmission control circuit 50 receives a switching control signal (synchronization signal) for the switching element Q1 from the switching control circuit 10 and generates a control signal to be given to the switching control circuit 10 in order to control the received power of the power receiving device PRU. .
  • the switching control circuit 10 and the transmission control circuit 50 are transmitted in an electrically insulated state by the signal transmission means 30.
  • the power transmission coil Lp, the power reception coil Ls, and the resonance capacitors Cp and Cs constitute an electromagnetic resonance coupling circuit 90.
  • the electromagnetic resonance coupling circuit 90 and the resonance capacitors Cr and Crs constitute a double resonance circuit 40.
  • the characteristic configuration and operation of the power transmission system 111 are as follows.
  • a power transmission system using a power transmission coil Lp and a power reception coil Ls (1) A power transmission system using a power transmission coil Lp and a power reception coil Ls.
  • a ZVS (zero voltage switching) operation is performed in the switching element by performing a switching operation by setting the switching frequency higher than the resonance frequency of the multiple resonance circuit including the power transmission coil Lp and the power reception coil Ls. It is possible.
  • the power is transmitted when the switching frequency fs and the LC double resonance circuit (Lr-Cr, Lrs-Crs) resonate and resonate. Electric power is transmitted by a resonance phenomenon in the resonance circuit of the power transmission / reception circuit.
  • the output is detected, information is transmitted to the power transmission device side using a feedback circuit, and the transmission power is adjusted by controlling the power transmission device side alternating current generation circuit.
  • the output information is transmitted to the power transmission device using a wireless communication device in the feedback circuit.
  • the transmission power is controlled by frequency control PFM (PulsePFrequency Modulation) by changing the switching frequency.
  • PFM PulsePFrequency Modulation
  • the transmission power is controlled by PWM (Pulse Width Modulation) control that controls the on-time ratio of the switch element.
  • the power receiving device side can operate the control circuit with the received power.
  • the switching frequency can be switched between the forward direction and the reverse direction, and the transmission power is controlled by selecting an appropriate switching frequency in each of the forward direction and the reverse direction. It is possible to prevent malfunctions in power transmission.
  • a leakage inductance that is not involved in coupling is used as an inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit.
  • the capacitor provided in parallel with the power transmission coil Lp or the power reception coil Ls can be matched with the mutual capacitance formed between the power transmission coil Lp and the power reception coil Ls.
  • Power can be transmitted efficiently by forming electromagnetic resonance coupling using a magnetic material such as ferrite in the magnetic path formed by the power transmission coil and the power reception coil.
  • the operation of the power transmission system 111 shown in FIG. 1 is as follows.
  • the power transmission device side alternating current generation circuit causes an alternating current to flow through the power transmission coil Lp.
  • the switch element Q2 is turned on / off under the control of the switching control circuit 20
  • a voltage is induced in the power receiving coil Ls to rectify the flowing current into a direct current.
  • the switching control circuit 20 receives a switching control signal (synchronization signal) for the switch element Q1 from the switching control circuit 10 via the transmission control circuit 50, and performs synchronous rectification control of the switch element Q2.
  • switch elements having parasitic output capacitances and parasitic diodes such as MOSFETs are used as the switch elements Q1 and Q2, and the parasitic output capacitances and parasitic diodes are used.
  • the transmission control circuit 50 detects an output (voltage, current, or power) to the load Ro, and transmits feedback information to the power transmission apparatus PSU side via the signal transmission means 30.
  • a portion surrounded by a thick broken line constitutes an electromagnetic resonance coupling circuit 90
  • a portion surrounded by a thin broken line constitutes a multiple resonance circuit 40.
  • the parameter M1 shown in FIG. 1 indicates the mutual coefficient of magnetic resonance coupling, that is, the presence of mutual inductance
  • Mc indicates the mutual coefficient of electric field resonance coupling, that is, the presence of mutual capacitance.
  • the mutual coefficient M as the electromagnetic resonance coupling is configured by combining the mutual inductance Ml and the mutual capacitance Mc.
  • the double resonance circuit 40 including the electromagnetic resonance coupling circuit 90 resonates with two LC resonance circuits on the power transmission device side and the power reception device side.
  • a power transmission device side resonance circuit is configured by the resonance capacitor Cr of the power transmission device PSU and an equivalent resonance inductor (Lr: this Lr will be described later in an equivalent circuit) connected in series to the resonance capacitor Cr.
  • a power reception device side resonance circuit is configured by the resonance capacitor Crs of the power reception device PRU and an equivalent inductance connected in series (Lrs: this Lrs will be described later with an equivalent circuit).
  • the resonance circuit on the power transmission device side and the resonance circuit on the power reception device resonate to resonate each other, and two resonance couplings of a magnetic field due to mutual inductance and an electric field due to mutual capacitance between the power transmission coil Lp and the power reception coil Ls. Thus, power transmission is performed.
  • the capacitors Cp and Cs promote power transmission by electromagnetic resonance coupling. That is, the capacitors Cp and Cs and the mutual capacitance (Cm), which will be shown later as an equivalent circuit, constitute a power transmission circuit based on ⁇ -type electric field resonance coupling to transmit power.
  • the mutual capacitance Cm constitutes a power transmission circuit by electric field resonance coupling with the resonance capacitors Cr and Crs.
  • Both the resonant capacitors Cr and Crs also serve as capacitors for holding a DC voltage or blocking a DC current.
  • the resonance capacitor Cr is charged during the ON period of the switch element Q1, and the resonance capacitor Cr is discharged during the OFF period of the switch element Q1.
  • energy is supplied to the load Ro while discharging the resonant capacitor Crs by adding the voltage of the resonant capacitor Crs to the voltage generated in the power receiving coil Ls when the switch element Q2 is turned on.
  • the generated voltage charges the resonant capacitor Crs via the inductor Lfs to store electrostatic energy. That is, the voltage of the power receiving coil Ls generated during the conduction period of the switch element Q2 or Q1 is added to output energy to the load Ro.
  • the two resonance circuits on the power transmission device side and the power reception device side resonate at the switching frequency fs of the switch element Q1.
  • the double resonance circuit 40 includes two resonance circuits including the electromagnetic resonance coupling circuit 90 on the power transmission device side and the power reception device side.
  • the double resonance circuit 40 has a resonance frequency fr in which the reactance of the combined impedance of the double resonance circuit 40 is close to 0 and the size of the combined impedance is the smallest, and the switching frequency fs and the resonance frequency fr approach each other to resonate. As a result, the current flowing through each of the two resonance circuits increases, and the output power increases.
  • the switch element is turned on / off at a switching frequency fs higher than the resonance frequency fr of the entire double resonance circuit 40 that combines the power transmission device side resonance circuit including the electromagnetic resonance coupling circuit and the power reception device side resonance circuit,
  • the switching frequency fs approaches the resonance frequency fr and resonates, the current flowing into the multiple resonance circuit increases, and the output power increases.
  • the electromagnetic resonance coupling circuit 90 is configured by the mutual inductance and the mutual capacitance formed equivalently between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate. Then, power is transmitted from the power transmission device to the power reception device.
  • energy (reactive power) reflected without being transmitted from the power transmission device is stored as resonance energy in the power transmission device-side resonance circuit.
  • the energy (reactive power) reflected without being supplied to the output among the energy received by the power receiving apparatus is also stored as resonance energy in the power receiving apparatus side resonance circuit.
  • reflected power that does not become transmitted power with respect to incident power can be stored as resonance energy without causing energy loss.
  • FIG. 2 is a voltage-current waveform diagram of each part of the power transmission system 111 shown in FIG. With reference to FIG. 1 and FIG. 2, the operation
  • the resonance current is rectified by the synchronous rectification switch element Q2, the rectified and smoothed current is supplied to the load, and electric power is transmitted.
  • the resonance current is rectified by the synchronous rectification switch element Q2, the rectified and smoothed current is supplied to the load, and electric power is transmitted.
  • the resonance current is rectified by the synchronous rectification switch element Q2, the rectified and smoothed current is supplied to the load, and electric power is transmitted.
  • FIG. 3A is a circuit diagram of the multiple resonance circuit 40 including the equivalent electromagnetic resonance coupling composed of the electromagnetic resonance coupling circuit 90 and the resonance capacitors Cr and Crs shown in FIG.
  • FIG. 3B is an equivalent circuit diagram thereof.
  • the mutual inductance Lm is shown as an equivalent inductor that transmits electric power by magnetic resonance coupling between the power transmission coil Lp and the power reception coil Ls
  • the mutual capacitance Cm is electric field resonance coupling between the power transmission coil Lp and the power reception coil Ls. Is shown as an equivalent capacitor for transmitting power.
  • the input current iac in (t) to the electromagnetic resonance coupling circuit can be approximately expressed by the following equation where the amplitude of the resonance current is Iac.
  • iacin (t) Iacsin ( ⁇ st)
  • ⁇ s 2 ⁇ / Ts
  • a sine wave current iac in (t) is applied between the terminals 1-1 ′.
  • a current including each frequency component tends to flow between the terminals 1-1 ′, but the current waveform of a higher-order frequency component whose impedance is increased by the electromagnetic resonance coupling circuit is cut and a resonance operation is performed. Only the resonance current waveform of the switching frequency component mainly flows, and power can be transmitted efficiently.
  • a power transmission system that directly supplies power to a distant place can be configured, and a plurality of power conversion mechanisms can be reduced and a very simple configuration can be achieved. Can be achieved.
  • a leakage inductance that does not participate in resonance coupling can be used as an equivalent inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit. This eliminates the need for a resonant inductor component, thereby reducing the size and weight of the power transmission system device.
  • Each of the power transmission coil Lp and the power reception coil Ls forms an equivalent capacitor by electric field resonance, and can be used as a resonance capacitor. This eliminates the need for a capacitance component, thereby reducing the size and weight.
  • a ZVS (zero voltage switching) operation is performed in the switching element by setting the switching frequency to be higher than the resonance frequency of the multi-resonance circuit including the power transmission coil Lp and the power reception coil Ls. , Switching loss can be reduced.
  • the output power can be adjusted on the power transmission device side by being electrically insulated.
  • the output power can be adjusted on the power transmission device side by being electrically insulated.
  • Resonance current amplitude by frequency control PFM Pulse Frequency Modulation
  • the transmission power can be controlled by changing the power, and the power can be supplied appropriately according to the request of the electronic device to appropriately operate.
  • the waveform of the resonant current is distorted with respect to an ideal sine wave by PWM (Pulse Width Modulation) control that controls the power by fixing the switching frequency and controlling the on-time ratio of the switch element.
  • PWM Pulse Width Modulation
  • the transmission power can be controlled, and the electric power can be supplied appropriately according to the request of the electronic device to be appropriately operated.
  • the use frequency band can be limited by using a fixed switching frequency, and EMC countermeasures are facilitated. Also, the controllability for controlling the output can be improved.
  • a synchronous rectification circuit using a switching element having a small on-resistance on the power receiving device side can reduce rectification loss as compared with a case where a diode having a large forward voltage drop is used.
  • the operation of the synchronous rectifier circuit on the power receiving apparatus side can be controlled, and the transmission power on the power receiving apparatus side, not the power transmitting apparatus side, can be adjusted by controlling the operating frequency of the synchronous rectifier circuit on the power receiving apparatus side. It becomes possible.
  • the power receiving device side can operate the control circuit with the received power. There is no need to provide a power source on the power receiving apparatus side, and the apparatus can be reduced in size and weight.
  • power can be transmitted from the power receiving device side to the power transmitting device side, or the received power can be transmitted to another location using the power receiving device side as a relay point. . It can also be used as a relay system, and long-distance power transmission becomes possible by preparing and relaying a plurality of this apparatus.
  • the switching frequency can be switched for each direction in which power is desired to be transmitted, such as the forward direction and the reverse direction, and directivity and authentication can be performed to appropriately transmit power.
  • a specific location is set for each switching frequency, and power can be transmitted to a location suitable for the purpose. Therefore, by switching the switching frequency, it is possible to prevent crosstalk of power transmission and transmit power to a target remote place.
  • the capacitor provided in parallel with the power transmission coil or the power reception coil can match the mutual capacitance formed between the power transmission coil and the power reception coil, and can transmit power by setting an appropriate resonance frequency.
  • the capacitor provided in parallel with the power transmission coil or the power reception coil can form an efficient electric field resonance coupling circuit by matching with the mutual capacitance formed between the power transmission coil and the power reception coil. it can. Electric power can be transmitted more efficiently than when only magnetic resonance coupling is used.
  • the switching control circuit 20 receives the synchronization signal from the transmission control circuit 50. However, the induced voltage of the power receiving coil Ls is detected and the switch element Q2 is driven in synchronization with this. May be.
  • FIG. 4 is a circuit diagram of the power transmission system of the second embodiment.
  • FIG. 4 is a circuit diagram of the power transmission system 112. Unlike the power transmission system 111 shown in FIG. 1, mutual inductances Lmp and Lms, which are equivalent inductances involved in magnetic resonance coupling between the power transmission coil Lp and the power receiving coil Ls, and equivalent inductances not involved in magnetic resonance coupling. Certain leakage inductances Lr and Lrs are clearly shown. In addition, mutual capacitances Cm1 and Cm2 and leakage capacitances Cpp and Css, which are equivalent capacitances not involved in electric field resonance coupling, are also shown.
  • inductances Lmp, Lms, Lr, Lrs and capacitances Cm1, Cm2, Cpp, Css are constituted by an equivalent inductor of the power transmission coil Lp and the power reception coil Ls, or an equivalent capacitance of the resonance capacitor Cp and the resonance capacitor Cs. Alternatively, it may be constituted by a single electronic component, or may be synthesized with an equivalent inductance and an equivalent capacitance.
  • a switch element Q4 is provided instead of the inductor Lfs.
  • the switch elements Q3 and Q4 on the power receiving apparatus side are alternately rectified by being switched alternately with a dead time by a switching control circuit provided on the power receiving apparatus side.
  • This power transmission system 112 has the following effects.
  • the leakage inductance that is not involved in the resonance coupling is used as a resonance inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit, thereby eliminating the need for a resonant inductor component.
  • the power transmission system device can be reduced in size and weight.
  • a leakage capacitance that does not participate in resonance coupling is used as a resonance capacitor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit. Accordingly, the components of the resonant capacitor can be eliminated or reduced, and the power transmission system device can be reduced in size and weight.
  • FIG. 5 is a circuit diagram of the power transmission system 113.
  • the mutual capacitance Cm1 that is an equivalent capacitance involved in the electric field resonance coupling between the resonance capacitor Cp on the power transmission device side and the resonance capacitor Cs on the power reception device side.
  • Cm2 and leakage capacitances Cpp and Css which are equivalent capacitances not involved in electric field resonance coupling.
  • the electric field resonance coupling circuit 92 is formed in the power transmission system 113, the number of parts is smaller than that in the case of forming the electromagnetic field resonance coupling circuit, and the circuit can be configured with a simple circuit, and the following effects are obtained.
  • FIG. 6 is a circuit diagram of the power transmission system 114 of the fourth embodiment.
  • a rectifier diode D1 is provided on the power receiving apparatus side instead of the switch element Q2 that is a synchronous rectifier element. That is, the diode D1 constitutes a power receiving device side rectifier circuit.
  • the power receiving device PRU can be simply configured. Further, the rectifier diode D1 passes a current only in the forward direction, and no negative current flows through the power receiving device side rectifier circuit as compared with the power transmission system 111 of the first embodiment. For this reason, there is no current regenerated from the output side, the current circulating through the power receiving device side resonance circuit is reduced, and the conduction loss can be reduced.
  • FIG. 7 is a circuit diagram of the power transmission system 115 of the fifth embodiment.
  • the first embodiment differs from the power transmission system shown in FIG. 1 in the configuration on the power receiving device PRU side.
  • the center tap rectifier circuit is configured by the power receiving coils Ls1 and Ls2, the diodes D3 and D4, and the capacitor Co.
  • the configuration of the power transmission device PSU is the same as that shown in the first embodiment.
  • resonant capacitors Crsa and Crsb are configured by stray capacitances or single capacitors generated in the power receiving coils Ls1 and Ls2.
  • This power transmission system 115 uses two power receiving coils Ls1 and Ls2 and two rectifier diodes D3 and D4, so that the loss on the power receiving device side can be dispersed and the power loss can be reduced. Also, the number of rectifying elements is small compared to bridge rectification. In addition, since the parallel resonance circuit is configured on the power receiving device side, the voltage gain can be increased as compared with the case of the series resonance circuit configuration.
  • FIG. 8 is a circuit diagram of the power transmission system 116 of the sixth embodiment. Unlike the power transmission system shown in FIG. 7 in the fifth embodiment, in this example, a resonance capacitor Crs is provided on the power receiving device PRU side. By configuring the series resonance circuit on the power receiving device side in this manner, the current gain can be increased as compared with the case where the parallel resonance circuit is configured.
  • FIG. 9 is a circuit diagram of the power transmission system 117 of the seventh embodiment.
  • the first embodiment differs from the power transmission system shown in FIG. 1 in the configuration on the power receiving device PRU side.
  • a bridge rectifier circuit is connected to the power receiving coil Ls by diodes D3, D4, D7, D8 and a capacitor Co.
  • the configuration of the power transmission device PSU is the same as that shown in the first embodiment.
  • a resonant capacitor Crs (a capacitor corresponding to Cs in FIG. 1) is configured by a stray capacitance generated in the power receiving coil Ls or a single capacitor.
  • the withstand voltage of the rectifying element can be reduced as compared with the current transmission system shown in FIG. 8 in the sixth embodiment.
  • the voltage gain can be increased as compared with the case of the series resonance circuit configuration.
  • FIG. 10 is a circuit diagram of the power transmission system 118 of the eighth embodiment.
  • the position of the resonant capacitor Crs is different from that of the power transmission system shown in FIG. 9 in the seventh embodiment. For this reason, electromagnetic resonance operation can be performed at a predetermined resonance frequency by the capacitor Crs.
  • the current gain can be increased by configuring the series resonant circuit on the power receiving device side as compared with the case of configuring the parallel resonant circuit.
  • FIG. 11 is a circuit diagram of the power transmission system 119 of the ninth embodiment.
  • a rectification circuit having a bridge rectification configuration using four switch elements Qs1, Qs2, Qs3, and Qs4 is provided on the power receiving device PRU side.
  • the voltages applied to the switch elements Qs1, Qs2, Qs3, and Qs4 on the power receiving device PRU side are each halved compared to the first to eighth embodiments. Loss at can be reduced.
  • the rectification loss can be reduced by the synchronous rectification circuit as compared with the power transmission system shown in the eighth embodiment. Further, the breakdown voltage of the rectifying switch element can be reduced by the bridge configuration. In addition, since it is a rectifier circuit using switch elements, bidirectional power transmission is possible. Furthermore, it is possible to perform an electromagnetic resonance operation at a predetermined resonance frequency using the resonance capacitor Crs.
  • FIG. 12 is a circuit diagram of the power transmission system 120 of the tenth embodiment.
  • a rectifier circuit including two diodes D1 and D2 is provided on the power receiving device PRU side.
  • the configuration on the power receiving device PRU side can be simplified as compared with the ninth embodiment. Further, since the rectifier circuit is a passive circuit, a circuit for driving and controlling the rectifier circuit becomes unnecessary.
  • FIG. 13 is a circuit diagram of the power transmission system 121 of the eleventh embodiment.
  • capacitors Cr1 and Cr2 for dividing the voltage of the input power source Vi and capacitors Crs1 and Crs2 for dividing the output voltage Vo are provided. That is, the resonance capacitor Cr in the power transmission system shown in the first embodiment is divided into Cr1 and Cr2, and the resonance capacitor Crs is divided into Crs1 and Crs2.
  • the leakage inductances of the power transmission coil Lp and the power reception coil Ls are clearly shown as resonance inductors Lr and Lrs. Others are the same as those shown in FIG. 1 in the first embodiment.
  • the resonance frequency can be arbitrarily set, and the resonance operation becomes easy.
  • the capacitors Cr1 and Cr2 and the capacitors Crs1 and Crs2 play both roles of holding a DC voltage or blocking a DC current and acting as a series resonance capacitor.
  • FIG. 14 is a circuit diagram of the power transmission system 122 of the twelfth embodiment.
  • power transmission is performed by supplying a voltage generated in the capacitor Crs on the power receiving device side to the load.
  • the voltage supplied to the load is high compared to the configuration in which the current flowing through the capacitor on the power receiving device side is supplied to the load and the power supplied to the load is high, It becomes possible to perform power transmission efficiently.
  • FIG. 15 is a circuit diagram of the power transmission system 123 of the thirteenth embodiment.
  • a push-pull circuit including two FETs Q1 and Q2 is configured on the power transmission device side.
  • by switching the two FETs Q1 and Q2 alternately it is possible to form an electromagnetic resonance coupling circuit having a double frequency equivalently.
  • FIG. 16 is a circuit diagram of a power transmission system 123A, which is a configuration example different from the thirteenth embodiment.
  • a plurality of FETs Q1, Q2, Q3, and Q4 are included on the power transmission device side.
  • an electromagnetic resonance coupling circuit having a frequency equivalent to four times the switching frequency of one stone can be formed. That is, an n-times high frequency electromagnetic resonance coupling circuit can be formed equivalently by using an n-stone FET.
  • the coil can be made smaller or a capacitance with a small capacity can be used, so that the power transmission system can be reduced in size.
  • FIG. 17 is a circuit diagram of the power transmission system 124 of the fourteenth embodiment.
  • a magnetic material such as ferrite is used in the magnetic path forming the electromagnetic resonance coupling.
  • the degree of magnetic coupling is increased by using a magnetic material, and the power transmission efficiency can be increased. Moreover, electromagnetic waves (magnetic flux and electric flux) emitted into the space can be suppressed by ferrite.
  • FIG. 18 is a circuit diagram of the power transmission system 125 of the fifteenth embodiment.
  • a magnetic material such as ferrite is used in the magnetic path forming the electromagnetic resonance coupling.
  • the use of a magnetic material increases the degree of magnetic coupling and can increase power transmission efficiency.
  • electromagnetic waves (magnetic flux and electric flux) emitted into the space can be suppressed by ferrite.
  • FIG. 19 is a circuit diagram of the power transmission system 126 of the sixteenth embodiment.
  • the power transmission device PSU is provided with two resonance capacitors Cr1 and Cr2
  • the power reception device PRU is provided with two resonance capacitors Crs1 and Crs2.
  • a rectification circuit having a bridge rectification configuration including four switch elements Qs1, Qs2, Qs3, and Qs4 is provided on the power receiving device PRU side.
  • the power transmission coil Lp of the power transmission device PSU and the power reception coil Ls of the power reception device PRU are coils each having a magnetic core such as ferrite. Therefore, the use of a magnetic material increases the degree of magnetic coupling and can increase power transmission efficiency. Moreover, electromagnetic waves (magnetic flux and electric flux) emitted into the space can be suppressed by ferrite.
  • FIG. 20 is a circuit diagram of the power transmission system 127 of the seventeenth embodiment.
  • the power transmission system 127 includes a plurality of power transmission / reception devices PSU / PRU1, PSU / PRU2, PSU / PRU3, and PSU / PRU4 capable of bidirectional power transmission.
  • the second power transmission / reception device PSU / PRU2 that forms an electromagnetic resonance coupling correspondingly acts as a power reception device. Accordingly, power is transmitted from the first power transmitting / receiving device PSU / PRU1 to the second power transmitting / receiving device PSU / PRU2.
  • the load Ro of the second power transmission / reception device PSU / PRU2 includes a rechargeable battery and a charging circuit thereof.
  • the third power transmitting / receiving device PSU / PRU3 corresponds to the second power transmitting / receiving device PSU / PRU2, and when the second power transmitting / receiving device PSU / PRU2 functions as a power transmitting device, the third power transmitting / receiving device PSU / PRU3.
  • the PRU 3 functions as a power receiving device.
  • the second power transmission / reception device PSU / PRU2 uses the rechargeable battery as a power source.
  • load Ro2 of 3rd power transmission / reception apparatus PSU / PRU3 is provided with a charging battery and its charging circuit.
  • the fourth power transmission / reception device PSU / PRU4 corresponds to the third power transmission / reception device PSU / PRU3.
  • the third power transmission / reception device PSU / PRU3 functions as a power transmission device
  • the fourth power transmission / reception device PSU / PRU / The PRU 4 functions as a power receiving device.
  • the third power transmission / reception device PSU / PRU3 uses the rechargeable battery as a power source.
  • load Ro3 of 4th power transmission / reception apparatus PSU / PRU4 is a charging battery and its charging circuit.
  • the resonance frequency of the resonance circuit of the plurality of power receiving devices is made different and the power transmission device side is configured to perform the switching operation at the switching frequency according to the power transmission destination, Power can be selectively transmitted to the power receiving apparatus.
  • the switching frequency by switching the switching frequency according to the power transmission direction of the power transmission / reception device, it is possible to transmit power in the direction (location) that meets the purpose for each switching frequency. That is, by performing control such as switching the switching frequency, it is possible to select an appropriate electronic device or transmit power to an appropriate direction or place to prevent crosstalk of power transmission.
  • FIG. 21 is a circuit diagram of the power transmission system 128 according to the eighteenth embodiment.
  • a plurality of resonators are installed between the power transmission coil Lp and the power reception coil Ls4.
  • the first relay LC resonance circuit is configured by the power receiving coil (inductor) Ls1 and the capacitor Cs1
  • the second relay LC resonance circuit is configured by the power receiving coil (inductor) Ls2 and the capacitor Cs2.
  • the power receiving coil (inductor) Ls3 and the capacitor Cs3 constitute a third relay LC resonance circuit.
  • FIG. 22 is a circuit diagram of the power transmission system 129 of the nineteenth embodiment.
  • helical coils are used for the power transmission coil Lp and the power reception coil Ls, and central power feeding is performed. Therefore, the helical coil on the power transmission device side has an equivalent inductance L (Lp) and an equivalent capacitance C (Lp), and constitutes a resonance circuit.
  • the helical coil on the power receiving device side has an inductance L (Ls) and a capacitance C (Ls), and constitutes a resonance circuit.
  • the two helical coils have substantially the same winding axis (substantially coaxial), so that an electromagnetic resonance coupling circuit is formed between the helical coils.
  • Other configurations are the same as those shown in the first embodiment.
  • power transmission can be performed mainly by electromagnetic resonance coupling using a helically fed helical coil.
  • FIG. 23 is a circuit diagram of the power transmission system 130 of the twentieth embodiment.
  • helical coils are used for the power transmission coil Lp and the power reception coil Ls.
  • a resonance capacitor Cr is provided on the power transmission device side, and a resonance capacitor Crs is provided on the power reception device side. Therefore, a resonance circuit is constituted by the inductance L (Lp) of the power transmission coil Lp by the helical coil on the power transmission device side and the resonance capacitor Cr.
  • the resonance circuit resonates with the inductance L (Ls) of the power reception coil by the helical coil on the power reception device side.
  • a resonance circuit is constituted by the capacitor Crs.
  • the two helical coils have substantially the same winding axis (substantially coaxial), so that a magnetic resonance coupling circuit is formed between the helical coils. Other configurations are the same as those shown in the first embodiment.
  • FIG. 24 is an example of a power transmission coil and a power reception coil used in the power transmission system of the twenty-first embodiment.
  • meander line coils are used for the power transmission coil Lp and the power reception coil Ls, respectively. And each is centrally fed. Therefore, the power transmission coil Lp has an equivalent inductance L (Lp) and an equivalent capacitance C (Lp), and constitutes a resonance circuit.
  • the power receiving coil Ls has an inductance L (Ls) and a capacitance C (Ls), and constitutes a resonance circuit.
  • the two coils mainly form electric field resonance coupling. Therefore, power transmission can be performed mainly by electric field resonance coupling using the power transmission coil Lp and the power reception coil Ls.
  • both ends of the meander line coil may be connected to a circuit so that the inductance of the meander line coil is mainly used. That is, the power transmission system may be configured by connecting the power transmission coil Lp and the power reception coil Ls in the same manner as in the example shown in FIG.
  • the circuit configuration is as shown in FIG.
  • the switching frequency slightly higher than the resonance frequency at which the reactance of the electromagnetic resonance coupling circuit including the load connected to the power receiving circuit is 0
  • the impedance of the electromagnetic resonance coupling circuit including the load is inductive. It becomes reactance.
  • the phase of the current (ir) flowing into the electromagnetic resonance coupling circuit is delayed from the fundamental wave of the voltage (vds1) of the switch element.
  • a reverse diode in parallel with the switch element (Q1) conducts to realize the ZVS operation.
  • FIG. 25 is a diagram showing the frequency characteristics of the impedance of the electromagnetic resonance coupling circuit including the load.
  • the resonance frequency fo of the resonance circuit on the power transmission device side and the power reception device side is 30.78 MHz.
  • dx the distance between the power transmission coil and the power reception coil
  • dx 0.5 m
  • the degree of coupling between the two resonance circuits is high, so that the resonance frequency is split and two resonance states (bimodal) ).
  • this frequency band is used.
  • the impedance of the electromagnetic resonance coupling circuit including the load is inductive reactance in a frequency region higher than the lower frequency fr1 of the two resonance frequencies and lower than the natural resonance frequency fr. Use bandwidth.
  • the distance dx 0.6 m or more, since the impedance of the electromagnetic resonance coupling circuit including the load becomes inductive reactance in a frequency region higher than the frequency fr, this frequency band is used.
  • FIG. 26 is a voltage-current waveform diagram of each part of the power transmission system of this embodiment.
  • the circuit configuration is that shown in FIG. 1 in the first embodiment.
  • movement in each state in a switching period is shown below.
  • the resonance current is rectified by the synchronous rectification switch element Q2, the rectified and smoothed current is supplied to the load, and electric power is transmitted.
  • switch element Q1 is turned off, state 2 is entered.
  • the voltage vds approaches 0V immediately before the switch element Q1 is turned on, and the current id1 starts to flow from 0A at the turn-on timing. Since the switching element Q1 performs the ZVS operation, switching loss and switching noise can be greatly reduced. Further, since the diode Dds1 of the switch circuit S1 is not conducted, conduction loss is also reduced.

Abstract

 送電コイル(Lp)に直列に接続された共振キャパシタ(Cr)を含む送電装置側共振回路と、受電コイル(Ls)に直列に接続された共振キャパシタ(Crs)を含む受電装置側共振回路とを共鳴させることによりそれぞれが共振し、そのことにより送電コイル(Lp)と受電コイル(Ls)との間で磁界共鳴結合と電界共鳴結合を利用して電力伝送を行う。共振現象を利用することで有効電力のみを送電装置側から受電装置側へ伝送し、反射した無効電力は送電装置側と受電装置側のそれぞれの共振回路において共振エネルギーとして保存される。

Description

電力伝送システム
 本発明は、電力送電装置と電力受電装置とで構成される電力伝送システムに関するものである。
 近年、電子機器の小型軽量化および低消費電力化、さらには電池容量の増大化に伴い、電池駆動の電子機器が増加している。また、近距離では機器間のデータ通信を無線で行う利用形態も増えている。これらの事情に伴って電力についても非接触での伝送技術が要求されている。
 従来の非接触型の充電システムは、例えば特許文献1に示されるように、充電台等に一次側コイルを備える送電装置と、二次コイルおよび充電電池を備えた携帯電子機器とで構成されていて、ユーザは携帯電子機器を送電装置に載置する。これにより、送電装置の一次側コイルと携帯電子機器の二次側コイルとが電磁誘導結合(磁界結合)して充電装置側へ電力が供給され、二次電池が充電される。
特開2008-206327号公報
 しかしながら、特許文献1の電力伝送システムにおいては、送電コイルと受電コイルとは電磁誘導を利用した絶縁トランスとして作用し、磁気結合を利用した変圧器として利用しているに過ぎない。電磁誘導を利用したトランスでは、1次巻線に流れる電流により発生した磁束を2次巻線に鎖交させて電流を流し、電気から磁気、そして電気へと効率よく変換することが重要となっている。一般に、1次巻線に流れる電流により発生した磁束のうち、2次巻線と鎖交する磁束の割合は(磁気)結合度と呼ばれ、電磁誘導を利用したトランスでは、電力変換効率を高めるためには磁気結合度を如何に高めるかが重要となっている。しかしながら、磁気飽和を防止するため、または物理的な制約により、トランスの磁気結合度を大きくすることが困難な場合も多く、結果的に高い電力変換効率が得られないという結果となっている。
 また、一般に電力伝送システムでは、インピーダンスマッチングを行なって電力を伝送するため、制御においては動作周波数を変化させる。一方、電子機器では機器ごとに使用できる周波数帯域が決められている。そのため、EMC(電磁両立性)や伝送エネルギーの制御性などを考えると固定周波数で動作することが好ましい。
 本発明は、装置を大型化することなく電力伝送時の電力変換効率を高めた電力伝送システムを提供することを目的としている。
 本発明の電力伝送システムは次のように構成される。
(1)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
 前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されずに反射したエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(2)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
 前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスで磁界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されずに反射したエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(3)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、送電装置側共振キャパシタとともに送電装置側共振回路を構成する送電装置側共振インダクタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
 前記受電装置は、受電装置側共振キャパシタとともに受電装置側共振回路を構成する受電装置側共振インダクタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互キャパシタンスで電界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されずに反射したエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(4)前記受電装置は、前記受電装置側整流回路の出力情報を検出して前記送電装置側に前記出力情報を伝送する情報送信回路を備え、
 前記送電装置は、前記出力情報を受信する出力情報受信回路と、前記出力情報に応じて前記送電装置側交流電流発生回路を制御して伝送電力を制御する伝送電力制御回路とを備えることが好ましい。
(5)例えば、前記情報送信回路は、無線通信で前記出力情報を送信する回路であり、
 前記出力情報受信回路は無線通信で前記出力情報を受信する回路である。
(6)また例えば、前記情報送信回路は、電気信号を光信号に変換して前記出力情報を送信する回路であり、
 前記出力情報受信回路は光信号を電気信号に変換して前記出力情報を受信する回路である。
(7)例えば、前記送電装置側交流電流発生回路は、スイッチ回路をオン/オフするスイッチング周波数を変化させる周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御するように構成してもよい。
(8)また例えば、前記送電装置側交流電流発生回路は、スイッチ回路を固定のスイッチング周波数でオン/オフして、時比率を制御するPWM(Pulse Width Modulation)により共鳴電流の波形を理想的な正弦波に対して歪ませることで伝送電力を制御するように構成してもよい。
(9)前記受電装置側整流回路はスイッチ素子を備えた同期整流回路であることが好ましい。
(10)前記受電装置は、前記同期整流回路の動作周波数(スイッチング周波数)を制御する動作周波数制御回路を備え、前記動作周波数によって受電電力を制御するように構成することが好ましい。
(11)前記受電装置は、該受電装置側の回路を制御する制御回路を備え、該制御回路は、前記受電装置が受電した電力によって動作するように構成することが好ましい。
(12)前記受電装置側整流回路の出力部から電力が伝送されるとき、前記受電装置側整流回路は前記送電装置側交流電流発生回路として作用するとともに、前記送電装置側交流電流発生回路は前記受電装置側整流回路として作用し、そのことで双方向に電力伝送が可能であることが好ましい。
(13)前記送電コイルまたは前記受電コイルに対して並列に共振キャパシタを備えていることが好ましい。
(14)前記共振キャパシタは前記送電コイルと前記受電コイルとの間に形成される電界共鳴による等価的なキャパシタンスとなる浮遊容量で構成されていることが好ましい。
(15)前記共振キャパシタは前記送電コイルと前記受電コイルとの間に形成される等価的な相互キャパシタンスで構成されていることが好ましい。
(16)例えば、前記送電コイルおよび前記受電コイルは空心のインダクタである。
(17)前記相互インダクタンスは、前記送電コイルと前記受電コイルとの間に形成される磁界共鳴結合により生じる等価的な励磁インダクタンスであることが好ましい。
(18)前記送電コイルもしくは前記受電コイルのインダクタンス成分のうち、共鳴結合に関与しない漏れインダクタンスを前記送電装置側共振回路または前記受電装置側共振回路を構成するインダクタとして用いることが好ましい。
(19)前記送電装置側交流電流発生回路は、前記送電コイルと前記スイッチ回路をそれぞれ複数備え、前記送電コイルと前記スイッチ回路がそれぞれ電気的に接続されて構成され、前記複数のスイッチ回路が周期的に順次にスイッチング動作を行うことが好ましい。
(20)前記送電装置側交流電流発生回路は、前記スイッチ回路を複数備えており、前記送電コイルに前記複数のスイッチ回路が電気的に接続されて構成され、前記複数のスイッチ回路が周期的に順次にスイッチング動作を行うことが好ましい。
 本発明によれば、送電装置側と受電装置側の双方にLC共振回路を備え、2つのLC共振回路を共鳴させて、送電コイルと受電コイルとの間で磁界または電界または双方の共鳴結合を利用して電力伝送を行うことができる。また、共振現象を利用することで有効電力のみを送電装置側から受電装置側へ伝送し、電力伝送されずに反射した無効電力は送電装置側と受電装置側のそれぞれのLC共振回路において循環して共振エネルギーとして保存されるため電力損失を非常に小さくすることができる。
図1は第1の実施形態の電力伝送システム111の回路図である。 図2は、図1に示した電力伝送システム111の各部の電圧電流波形図である。 図3(A)は、図1に示した電磁界共鳴結合回路90と共振キャパシタCr、Crsで構成される電磁界共鳴結合回路を含めた複共振回路の回路図である。図3(B)はその等価回路図である。 図4は第2の実施形態の電力伝送システム112の回路図である。 図5は第3の実施形態の電力伝送システム113の回路図である。 図6は第4の実施形態の電力伝送システム114の回路図である。 図7は第5の実施形態の電力伝送システム115の回路図である。 図8は第6の実施形態の電力伝送システム116の回路図である。 図9は第7の実施形態の電力伝送システム117の回路図である。 図10は第8の実施形態の電力伝送システム118の回路図である。 図11は第9の実施形態の電力伝送システム119の回路図である。 図12は第10の実施形態の電力伝送システム120の回路図である。 図13は第11の実施形態の電力伝送システム121の回路図である。 図14は第12の実施形態の電力伝送システム122の回路図である。 図15は第13の実施形態の電力伝送システム123の回路図である。 図16は第13の実施形態の別の構成例である電力伝送システム123Aの回路図である。 図17は第14の実施形態の電力伝送システム124の回路図である。 図18は第15の実施形態の電力伝送システム125の回路図である。 図19は第16の実施形態の電力伝送システム126の回路図である。 図20は第17の実施形態の電力伝送システム127の回路図である。 図21は第18の実施形態の電力伝送システム128の回路図である。 図22は第19の実施形態の電力伝送システム129の回路図である。 図23は第20の実施形態の電力伝送システム130の回路図である。 図24は第21の実施形態の電力伝送システムで用いられる送電コイルおよび受電コイルの例である。 図25は第22の実施形態の電力伝送システムにおいて、負荷を含めた電磁界共鳴結合回路のインピーダンスの周波数特性を示す図である。 図26は、第22の実施形態の電力伝送システムの各部の電圧電流波形図である。
《第1の実施形態》
 図1は第1の実施形態の電力伝送システム111の回路図である。
 電力伝送システム111は電力送電装置PSUと電力受電装置PRUとで構成されている。
 この電力伝送システム111は、電力送電装置PSUの入力部に入力電源Viを備え、電力受電装置PRUの負荷Roへ安定した直流のエネルギーを供給するシステムである。
 送電装置PSUは、送電コイルLp、送電コイルLpとともに送電装置側共振回路を構成する送電装置側共振キャパシタCr,Cpと、送電コイルLpに接続されて、スイッチ素子Q1、ダイオードDds1およびキャパシタCds1の並列接続回路で構成されたスイッチ回路S1、ならびに入力される直流電圧から、送電コイルLpに流す交流電流に対して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタLfを備え、送電コイルLpに流す交流電流を発生させる送電装置側交流電流発生回路(Lf,S1,Cr,Cp,Lp)を備えている。インダクタLfのインダクタンス値は、送電コイルLpのインダクタンス値よりも十分に大きく、スイッチング周波数において高インピーダンスとなるものであり、流れる電流の変動は十分に小さい。
 受電装置PRUは、受電コイルLs、受電コイルLsとともに受電装置側共振回路を構成する受電装置側共振キャパシタCrs,Csと、受電コイルLsに接続されて、該受電コイルLsに生じる交流電流を整流する、インダクタLfs、スイッチ回路S2およびキャパシタCoで構成される受電装置側整流回路(Lfs,S2,Co)とを備えている。スイッチ回路S2はスイッチ素子Q2、ダイオードおよびキャパシタの並列接続回路で構成されている。
 また、送電装置PSUにはスイッチ素子Q1を制御するスイッチング制御回路10が設けられている。受電装置PRUにはスイッチ素子Q2を制御するスイッチング制御回路20および伝送制御回路50が設けられている。伝送制御回路50は、スイッチ素子Q1に対するスイッチング制御信号(同期信号)をスイッチング制御回路10から受信し、また電力受電装置PRUの受電電力を制御するためにスイッチング制御回路10へ与える制御信号を発生する。
 スイッチング制御回路10と伝送制御回路50とは信号伝達手段30により電気的に絶縁状態で伝送される。
 送電コイルLp、受電コイルLsおよび共振キャパシタCp,Csは電磁界共鳴結合回路90を構成している。この電磁界共鳴結合回路90および共振キャパシタCr,Crsにより複共振回路40が構成されている。
 この電力伝送システム111の特徴的な構成および作用は次のとおりである。
(1)送電コイルLpおよび受電コイルLsを用いた電力伝送システムである。
(2)送電コイルLpおよび受電コイルLsの電流は互いに共鳴し、共鳴結合を形成して電力伝送する。
(3)送電コイルLpと受電コイルLsとの間で電磁界共鳴結合を形成する。
(4)送電コイルLpと受電コイルLsとの間で磁界共鳴結合を形成する。
(5)送電コイルLpと受電コイルLsとの間で電界共鳴現象を形成する。
(6)送電コイルLpと受電コイルLsを含めた複共振回路が有する共鳴周波数に対して、スイッチング周波数を高く設定してスイッチング動作をさせることにより、スイッチ素子においてZVS(ゼロ電圧スイッチング)動作を行うことが可能である。
(7)スイッチング周波数fsとLC複共振回路(Lr-Cr、Lrs-Crs)とが共鳴して共振することにより電力伝送を行う。送受電回路の共振回路における共鳴現象により電力伝送する。
(8)出力を検出して、送電装置側に帰還回路を用いて情報を伝達し、送電装置側交流電流発生回路を制御して伝送電力を調整する。
(9)帰還回路に無線通信機器を用いて出力情報を送電装置側に伝達する。
(10)帰還回路に光電素子を用いて出力情報を送電装置側に伝達する。
(11)スイッチング周波数を変化させて周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御する。
(12)スイッチ素子のオン時比率を制御するPWM(Pulse Width Modulation)制御により伝送電力を制御する。
(13)受電装置側の同期整流回路により整流損失を低減する。
(14)受電装置側の同期整流回路の動作を制御する。
(15)受電装置側は、受電した電力により制御回路を動作させることができる。
(16)双方向の電力伝送が可能である。
(17)後に示すように、順方向と逆方向とでスイッチング周波数を切り替えることができ、順方向または逆方向のそれぞれにおいて、適切なスイッチング周波数を選択して送電電力を制御し、誤った方向に送電する誤動作を防止することができる。
(18)送電コイルまたは受電コイルのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを送電装置側共振回路または受電装置側共振回路を構成するインダクタとして用いる。
(19)送電コイルLpまたは受電コイルLsに並列に備えたキャパシタは、送電コイルLpと受電コイルLsとの間に形成される相互キャパシタンスと整合させることができる。
(20)相互キャパシタンスは、送電コイルと受電コイルとの間に形成される電界共鳴結合による等価的なキャパシタンスとなる浮遊容量を用いることができる。
(21)共振キャパシタCp,Csには、送電コイルまたは受電コイルの巻線の両端に形成される電界共鳴により形成される等価的な浮遊容量を用いることができる。
(22)送電コイルと受電コイルが形成する磁路にフェライトなどの磁性体を用いて電磁界共鳴結合を形成して、効率よく電力送電を行うことができる。
(23)相互インダクタンスは、送電コイルと受電コイルとの間に形成される磁気共鳴結合による等価的なインダクタンスとなる励磁インダクタンスを用いることができる。
 図1に示した電力伝送システム111の動作は次のとおりである。
 スイッチ素子Q1が、スイッチング制御回路10の制御によりオンオフすることにより送電装置側交流電流発生回路は送電コイルLpに交流電流を流す。一方、スイッチ素子Q2がスイッチング制御回路20の制御によりオンオフすることにより、受電コイルLsに電圧を誘起して流れる電流を直流に整流する。スイッチング制御回路20は、スイッチング制御回路10から伝送制御回路50を介してスイッチ素子Q1に対するスイッチング制御信号(同期信号)を受信し、スイッチ素子Q2の同期整流制御を行う。図1に示す第1の実施形態の電力伝送システム111では、スイッチ素子Q1、Q2にMOSFETなどの、寄生の出力容量や寄生ダイオードを有するスイッチ素子を用い、この寄生出力容量や寄生ダイオードを利用してスイッチ回路S1、S2を構成している。
 伝送制御回路50は、負荷Roへの出力(電圧、電流、または電力)を検出し、信号伝達手段30を介して送電装置PSU側にフィードバック情報を伝達する。
 図1において太い破線で囲んだ部分は電磁界共鳴結合回路90、細い破線で囲んだ部分は複共振回路40を構成している。図1に示すパラメータMlは磁界共鳴結合の相互係数、すなわち相互インダクタンスの存在を示したものであり、Mcは電界共鳴結合の相互係数、すなわち相互キャパシタンスの存在を示したものである。相互インダクタンスMlと相互キャパシタンスMcとの合成により電磁界共鳴結合としての相互係数Mは構成される。この電磁界共鳴結合回路90を含めた複共振回路40は、送電装置側と受電装置側の2つのLC共振回路で共鳴動作する。
 送電装置PSUの共振キャパシタCrと、これに直列接続される等価的な共振インダクタ(Lr:このLrについては後に等価回路で説明する。)とによって送電装置側共振回路が構成される。同様に、受電装置PRUの共振キャパシタCrsと、これに直列接続される等価的なインダクタンス(Lrs:このLrsについても後に等価回路で説明する。)とによって受電装置側共振回路が構成される。この送電装置側の共振回路と受電装置側の共振回路とが共鳴することによりそれぞれが共振し、送電コイルLpと受電コイルLsとの間で相互インダクタンスによる磁界と相互キャパシタンスによる電界の2つの共鳴結合により電力伝送が行われる。
 なお、キャパシタCp、Csは電磁界共鳴結合での電力伝送を促進する。すなわち、キャパシタCp、Cs、そして後に等価回路で示す相互キャパシタンス(Cm)とでπ型の電界共鳴結合による電力伝送回路を構成して電力を伝送する。この相互キャパシタンスCmは、共振キャパシタCr、Crsとも電界共鳴結合による電力伝送回路を構成している。
 共振キャパシタCr、Crsは共に直流電圧を保持したり、直流電流を遮断したりするためのキャパシタを兼ねている。送電装置PSU側ではスイッチ素子Q1のオン期間に共振キャパシタCrを充電し、スイッチ素子Q1のオフ期間に共振キャパシタCrを放電する。一方、受電装置PRU側では、スイッチ素子Q2がオンして受電コイルLsに発生する電圧に共振キャパシタCrsの電圧を加えて共振キャパシタCrsを放電しながら負荷Roにエネルギーを供給し、受電コイルLsに発生する電圧によりインダクタLfsを介して共振キャパシタCrsを充電して静電エネルギーを蓄える。つまり、スイッチ素子Q2もしくはQ1それぞれの導通期間に発生する受電コイルLsの電圧を加算して負荷Roにエネルギーを出力する。
 スイッチ素子Q1のスイッチング周波数fsで送電装置側と受電装置側の2つの共振回路は共鳴する。電磁界共鳴結合回路90を含めた送電装置側と受電装置側の2つの共振回路から複共振回路40は構成される。複共振回路40は、複共振回路40の合成インピーダンスのリアクタンスが0付近となり、合成インピーダンスの大きさが最も小さくなる共鳴周波数frを有しており、スイッチング周波数fsと共鳴周波数frとが近づいて共振することにより、それぞれ2つの共振回路に流れる電流は大きくなり、出力電力は増加する。すなわち、電磁界共鳴結合回路を含めた送電装置側共振回路と受電装置側共振回路とを合成した全体の複共振回路40が有する共鳴周波数frよりも高いスイッチング周波数fsでスイッチ素子をオンオフ動作させ、スイッチング周波数fsが共鳴周波数frに近づいて共振することにより、複共振回路に流入する電流は大きくなり、出力電力は増加する。
 したがって、送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界共鳴結合回路90が構成されて、送電装置側共振回路と受電装置側共振回路とが共鳴して、送電装置から受電装置へ電力が伝送される。一方、送電装置から送電されずに反射したエネルギー(無効電力)は送電装置側共振回路に共振エネルギーとして保存される。また、受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギー(無効電力)も受電装置側共振回路に共振エネルギーとして保存される。このように入射電力に対して透過電力とならない反射電力をエネルギー損失とすることなく、共振エネルギーとして保存することができる。
 図2は、図1に示した電力伝送システム111の各部の電圧電流波形図である。図1、図2を参照して、スイッチング周期における各状態での動作を以下に示す。
[1]状態1 時刻t1~t2
 送電装置側では、スイッチ素子Q1に流れる電流id1は負電流となり、スイッチ素子Q1およびスイッチ素子Q1の両端のダイオードDds1が導通する。送電コイルLpと共振キャパシタCr、および受電コイルLsと共振キャパシタCrsには共振電流が流れる。
 受電装置側では、共振電流が同期整流スイッチ素子Q2により整流され、整流平滑された電流が負荷に供給され、電力が伝送される。
 スイッチ素子Q1に流れる電流id1が正電流となると状態2となる。
[2]状態2 時刻t2~t3
 スイッチ素子Q1に流れる電流id1は正電流となり、ダイオードDds1が非導通となって、スイッチ素子Q1のみに電流が流れる。送電コイルLpと共振キャパシタCr、および受電コイルLsと共振キャパシタCrsには共振電流が流れる。
 受電装置側では、共振電流が同期整流スイッチ素子Q2により整流され、整流平滑された電流が負荷に供給され、電力が伝送される。
 スイッチ素子Q1がターンオフすると状態3となる。
[3]状態3 時刻t3~t4
 スイッチ素子Q1の両端のキャパシタCdsは共振をはじめ、まずは充電されて、ピーク電圧を越えると放電する。電圧vds1が0Vになると状態4となる。
[4]状態4 時刻t4~t1
 電流id1は負電流となり、ダイオードDds1が導通する。この期間においてスイッチ素子Q1をターンオンすることでZVS動作が行われる。送電コイルLpと共振キャパシタCr、および受電コイルLsと共振キャパシタCrsには共振電流が流れる。
 受電装置側では、共振電流が同期整流スイッチ素子Q2により整流され、整流平滑された電流が負荷に供給され、電力が伝送される。
 スイッチ素子Q1がターンオンすると状態1となる。
 以降、状態1~4を周期的に繰り返す。
 図3(A)は、図1に示した電磁界共鳴結合回路90と共振キャパシタCr、Crsで構成される等価的な電磁界共鳴結合を含めた複共振回路40の回路図である。図3(B)はその等価回路図である。ここで、相互インダクタンスLmは、送電コイルLpと受電コイルLsとの磁界共鳴結合により電力を伝送する等価的なインダクタとして示され、相互キャパシタンスCmは、送電コイルLpと受電コイルLsとの電界共鳴結合により電力を伝送する等価的なキャパシタとして示される。
 共鳴現象により、電磁界共鳴結合回路への入力電流iac in (t)は、共振電流の振幅をIacとして、近似的に次式で表すことができる。
 iacin (t) =Iacsin(ωst)
 但し、ωs=2π/Ts
 端子1-1’間には正弦波電流iac in (t)が与えられる。端子1-1’間には各周波数成分を含む電流が流入しようとするが、電磁界共鳴結合回路によってインピーダンスが大きくなる高次の周波数成分の電流波形はカットされ、共鳴動作を行なうことで、主にスイッチング周波数成分の共鳴電流波形のみが流れ、効率良く電力を伝送することができる。
 第1の実施形態によれば次のような効果を奏する。
(1)離れた場所に直接的に給電する電力伝送システムを構成することができ、複数の電力変換機構を削減して非常に簡素に構成でき、電力伝送システム装置の高効率化、小型軽量化を図ることができる。
(2)送受電回路のそれぞれの共振回路において起こる共鳴現象により電力伝送を行うことで、電磁誘導による電力伝送よりも高効率、長距離の電力伝送が可能となる。
(3)送電コイルと受電コイルとの間で形成される磁界共鳴結合だけでなく電界共鳴結合をも利用して電力伝送を行うことで、磁界共鳴結合だけの場合より効率良く電力を伝送することができる。
(4)送電コイルと受電コイルとの間に形成される電磁界共鳴結合により形成される等価的な相互キャパシタンスと相互インダクタンスに共鳴電流を流すことで互いに共鳴して電力伝送を行うことができる。
(5)送電コイルと受電コイルとの間に形成される磁界共鳴結合により形成される等価的な相互インダクタンスに共鳴電流を流すことで互いに共鳴して電力伝送を行うことができる。
(6)送電コイルと受電コイルとの間に形成される電界共鳴結合により形成される等価的な相互キャパシタンスに共鳴電流を流すことで互いに共鳴して電力伝送を行うことができる。
(7)送電コイルと受電コイルのインダクタンス成分のうち、共鳴結合に関与しない漏れインダクタンスを送電装置側共振回路または受電装置側共振回路を構成する等価的なインダクタとして用いることができる。そのため、共振インダクタの部品が不要になり、電力伝送システム装置の小型軽量化を図ることができる。
(8)送電コイルLpと受電コイルLsは、それぞれ電界共鳴により等価的なキャパシタを形成し、共振キャパシタとして利用することができる。そのため、キャパシタンスの部品が不要になり小型軽量化を図ることができる。
(9)送電コイルLpと受電コイルLsを含めた複共振回路が有する共鳴周波数に対して、スイッチング周波数を高く設定してスイッチング動作をさせることにより、スイッチ素子においてZVS(ゼロ電圧スイッチング)動作を行い、スイッチング損失を低減することができる。
(10)出力を検出して、送電装置側に帰還回路を用いて情報を伝達し、送電装置側交流電流発生回路を制御して伝送電力を調整することができ適切に電子機器を動作させることができる。
(11)帰還回路に無線通信機器を用いて出力情報を送電装置側に伝達することで、電気的に絶縁して送電装置側で出力電力を調整することができる。
(12)帰還回路に光電素子を用いて出力情報を送電装置側に伝達することで、電気的に絶縁して送電装置側で出力電力を調整することができる。
(13)共鳴結合回路を含めた複共振回路の合成インピーダンスが周波数によって変化することを利用して、スイッチング周波数を変化させて出力電力を制御する周波数制御PFM(Pulse Frequency Modulation)により共鳴電流の振幅を変化させて伝送電力を制御することができ、電子機器の要求に応じた電力を供給して適切に動作をさせることができる。
(14)また、スイッチング周波数を固定して、スイッチ素子のオン時比率を制御して電力を制御するPWM(Pulse Width Modulation)制御により、共鳴電流の波形を理想的な正弦波に対して歪ませることで伝送電力を制御することもでき、電子機器の要求に応じた電力を供給して適切に動作させることができる。また、固定のスイッチング周波数を用いることにより利用周波数帯域を限定することができ、EMC対策も容易となる。また出力を制御する制御性も改善できる。
(15)受電装置側のオン抵抗の小さなスイッチング素子を用いた同期整流回路により、順方向電圧降下の大きいダイオードを用いた場合と比較して整流損失を低減できる。
(16)受電装置側の同期整流回路の動作を制御することができ、受電装置側の同期整流回路の動作周波数を制御することで、送電装置側ではない受電装置側での伝送電力の調整が可能となる。
(17)受電装置側は、受電した電力により制御回路を動作させることができる。受電装置側に電源を備える必要がなく、装置の小型軽量化を図ることができる。
(18)双方向の電力伝送が可能となることで、受電装置側から送電装置側へ電力を伝送したり、受電装置側を中継点として、受電した電力をさらに別のところへ送電したりできる。中継システムとしても利用可能で、本装置を複数用意して中継することで長距離の電力伝送が可能となる。
(19)順方向や逆方向など電力を伝送したい方向ごとにスイッチング周波数を切り替えることができ、指向性や認証を行い、適切に電力を伝送することができる。スイッチング周波数ごとに特定の場所を設定しておき、目的にあった場所への電力伝送が可能となる。そのため、スイッチング周波数を切り替えることにより、電力伝送の混線を防ぎ、目的とする離れた場所に電力を伝送することができる。
(20)送電コイルまたは受電コイルに並列に備えたキャパシタは、送電コイルと受電コイルとの間に形成される相互キャパシタンスと整合させ、適切な共鳴周波数を設定して電力を伝送できる。
(21)送電コイルまたは受電コイルに並列に備えたキャパシタは、送電コイルと受電コイルとの間に形成される相互キャパシタンスとによって整合をとることで、効率の良い電界共鳴結合回路を形成することができる。磁界共鳴結合だけの場合より効率よく電力伝送ができる。
(22)送電コイルと受電コイルを空心とすることでコイルの鉄損がなくなり、高い周波数でも効率よくワイヤレスで電力送電を行うことができる。
(23)送電コイルと受電コイルとの間に形成される磁界共鳴結合により形成される相互インダクタンスを用いることで部品が不要になり、電力伝送システム装置の小型軽量化を図ることができる。
 なお、図1に示した例では、スイッチング制御回路20が伝送制御回路50から同期信号を受け取るようにしたが、受電コイルLsの誘起電圧を検出してこれに同期してスイッチ素子Q2を駆動してもよい。
《第2の実施形態》
 図4は第2の実施形態の電力伝送システムの回路図である。
 図4は電力伝送システム112の回路図である。図1に示した電力伝送システム111と異なり、送電コイルLpと受電コイルLsとの磁界共鳴結合に関与する等価的なインダクタンスである相互インダクタンスLmp、Lmsおよび磁界共鳴結合に関与しない等価的なインダクタンスである漏れインダクタンスLr、Lrsを明示している。また、相互キャパシタンスCm1、Cm2および電界共鳴結合に関与しない等価的なキャパシタンスである漏れキャパシタンスCpp、Cssも明示している。これらのインダクタンスLmp、Lms、Lr、LrsおよびキャパシタンスCm1、Cm2、Cpp、Cssは、送電コイルLpと受電コイルLsの等価インダクタ、または共振キャパシタCpと共振キャパシタCsの等価容量で構成される。もしくは、単体の電子部品で構成されていてもよいし、等価インダクタンスおよび等価キャパシタンスと合成されたものであってもよい。
 また、図1に示した電力伝送システム111と異なり、インダクタLfsに代えてスイッチ素子Q4が設けられている。受電装置側のスイッチ素子Q3,Q4は受電装置側に設けられたスイッチング制御回路によってデッドタイムを挟んで交互にスイッチングされることにより、同期整流される。
 この電力伝送システム112は次のような効果を奏する。
(a)送電コイルLpと受電コイルLsとの間に形成される磁界共鳴結合による等価的なインダクタンスとなる相互インダクタンスLmp、Lmsを用いることで、相互インダクタの部品が不要または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(b)送電コイルLpもしくは受電コイルLsのインダクタンス成分のうち、共鳴結合に関与しない漏れインダクタンスを送電装置側共振回路または受電装置側共振回路を構成する共振インダクタとして用いることで共振インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(c)送電装置側の共振キャパシタCpと受電装置側の共振キャパシタCsとの間に形成される電界共鳴結合による等価的なキャパシタンスとなる相互キャパシタンスCm1、Cm2を用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(d)送電装置側の共振キャパシタCpもしくは受電装置側の共振キャパシタCsのキャパシタンス成分のうち、共鳴結合に関与しない漏れキャパシタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振キャパシタとして用いることで共振キャパシタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(e)スイッチ素子Q3,Q4による同期整流回路により、半周期ごとに電圧が加算され、等価的に2倍の電圧が生成される。
《第3の実施形態》
 図5は電力伝送システム113の回路図である。第1の実施形態で図1に示した電力伝送システム111と異なり、送電装置側の共振キャパシタCpと受電装置側の共振キャパシタCsとの電界共鳴結合に関与する等価的なキャパシタンスである相互キャパシタンスCm1、Cm2、および電界共鳴結合に関与しない等価的なキャパシタンスである漏れキャパシタンスCpp、Cssを備える。磁界共鳴結合に関与する等価的なインダクタンスである相互インダクタンスを備えていない。すなわち、電界と磁界の共鳴結合である電磁界共鳴結合回路(図1の電磁界共鳴結合回路90)ではなく、電界のみの共鳴結合である電界共鳴結合回路92を形成する。
 この電力伝送システム113では電界共鳴結合回路92を形成するため、電磁界共鳴結合回路を形成する場合に比べ部品数が少なく、簡素な回路で構成することができ、次のような効果を奏する。
(a)送電装置側の共振キャパシタCpと受電装置側の共振キャパシタCsとの間に形成される電界共鳴結合による等価的なキャパシタンスとなる相互キャパシタンスCm1、Cm2を用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(b)送電装置側の共振キャパシタCpもしくは受電装置側の共振キャパシタCsのキャパシタンス成分のうち、共鳴結合に関与しない漏れキャパシタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振キャパシタとして用いることで共振キャパシタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
《第4の実施形態》
 図6は第4の実施形態の電力伝送システム114の回路図である。この例では第1の実施形態の電力伝送システム111と異なり、受電装置側に同期整流素子であるスイッチ素子Q2に代えて、整流ダイオードD1を備えている。すなわちダイオードD1で受電装置側整流回路を構成している。
 この電力伝送システム114では、電力受電装置PRUを簡素に構成できる。また、整流ダイオードD1は順方向だけに電流を流し、第1の実施形態の電力伝送システム111と比較して、受電装置側整流回路には負電流は流れない。このため、出力側から回生される電流はなくなり、受電装置側共振回路を循環する電流が減少して導通損を低減できる。
《第5の実施形態》
 図7は第5の実施形態の電力伝送システム115の回路図である。第1の実施形態で図1に示した電力伝送システムと異なるのは、受電装置PRU側の構成である。第5の実施形態では、受電コイルLs1、Ls2、ダイオードD3、D4、キャパシタCoによってセンタータップ整流回路が構成されている。送電装置PSUの構成は第1の実施形態で示したものと同様である。
 この第5の実施形態では、受電装置PRU側では受電コイルLs1、Ls2に生じる浮遊容量または単体のキャパシタにより共振キャパシタCrsa,Crsb(図1におけるCsに相当するキャパシタ)を構成している。
 この電力伝送システム115は2つの受電コイルLs1,Ls2と2つの整流ダイオードD3,D4を用いることで、受電装置側での損失を分散することができ、電力損失が少なくできる。また、ブリッジ整流と比較して整流素子の数が少ない。また、受電装置側に並列共振回路が構成されているので、直列共振回路構成とする場合に比較して電圧利得を大きくできる。
《第6の実施形態》
 図8は第6の実施形態の電力伝送システム116の回路図である。第5の実施形態で図7に示した電力伝送システムと異なり、この例では、受電装置PRU側に共振キャパシタCrsを備えている。このように受電装置側に直列共振回路を構成することにより、並列共振回路を構成した場合に比較して電流利得を大きくできる。
《第7の実施形態》
 図9は第7の実施形態の電力伝送システム117の回路図である。第1の実施形態で図1に示した電力伝送システムと異なるのは、受電装置PRU側の構成である。第7の実施形態では、受電コイルLsに、ダイオードD3,D4,D7,D8、キャパシタCoによってブリッジ整流回路が接続されている。送電装置PSUの構成は第1の実施形態で示したものと同様である。
 受電装置PRU側では受電コイルLsに生じる浮遊容量または単体のキャパシタにより共振キャパシタCrs(図1におけるCsに相当するキャパシタ)を構成している。
 この第7の実施形態の電力伝送システム117では、第6の実施形態で図8に示した電流伝送システムに比べて整流素子の耐圧を低減することができる。また、受電装置側に並列共振回路が構成されているので、直列共振回路構成とする場合に比較して電圧利得を大きくできる。
《第8の実施形態》
 図10は第8の実施形態の電力伝送システム118の回路図である。第7の実施形態で図9に示した電力伝送システムとは共振キャパシタCrsの位置が異なる。このため、このキャパシタCrsによって所定の共振周波数で電磁界共鳴動作をさせることができる。
 この第8の実施形態の電力伝送システム118では、このように受電装置側に直列共振回路を構成することにより、並列共振回路を構成した場合に比較して電流利得を大きくすることができる。
《第9の実施形態》
 図11は第9の実施形態の電力伝送システム119の回路図である。この例では受電装置PRU側に4つのスイッチ素子Qs1,Qs2,Qs3,Qs4によるブリッジ整流構成の整流回路が設けられている。
 この第9の実施形態によれば、第1~第8の実施形態に比べて、受電装置PRU側のスイッチ素子Qs1、Qs2、Qs3、Qs4に印加される電圧がそれぞれ半分となるため、スイッチ素子での損失を低減できる。
 この電力伝送システム119では、第8の実施形態で示した電力伝送システムに比べて同期整流回路により整流損失を低減できる。また、ブリッジ構成により整流スイッチ素子の耐圧を低減することができる。また、スイッチ素子による整流回路であるので、双方向の電力伝送が可能である。さらに、共振キャパシタCrsを用いて所定の共振周波数で電磁共鳴動作をすることが可能となる。
《第10の実施形態》
 図12は第10の実施形態の電力伝送システム120の回路図である。この例では受電装置PRU側に2つのダイオードD1,D2による整流回路を設けている。
 第10の実施形態によれば、第9の実施形態に比べて受電装置PRU側の構成を簡素にできる。また、整流回路が受動回路であるので、整流回路を駆動制御する回路が不要となる。
《第11の実施形態》
 図13は第11の実施形態の電力伝送システム121の回路図である。
 この例では入力電源Viの電圧を分圧するキャパシタCr1、Cr2、および出力電圧Voを分圧するキャパシタCrs1、Crs2を備えている。すなわち、第1の実施形態で示した電力伝送システムにおける共振キャパシタCrをCr1、Cr2に分割し、共振キャパシタCrsをCrs1、Crs2に分割したものである。ここでは、送電コイルLpおよび受電コイルLsの漏れインダクタンスを共振インダクタLr、Lrsとして明示している。その他は第1の実施形態で図1に示したものと同様である。
 第11の実施形態では、共振キャパシタに流れる電流が2つのキャパシタに分割されるので、キャパシタによる損失が分散され全体の損失が低減され、発熱が分散される。また、複数の共振キャパシタを用いることで任意に共振周波数を設定でき、共鳴動作が容易になる。
 なお、キャパシタCr1、Cr2およびキャパシタCrs1、Crs2は、直流電圧を保持したり、直流電流を遮断したりする作用と直列共振用キャパシタとしての作用の両方の役割を果たす。
《第12の実施形態》
 図14は第12の実施形態の電力伝送システム122の回路図である。この例では、受電装置側のキャパシタCrsに発生する電圧を負荷に供給するようにして電力伝送を行う。図10等に示した例のように、受電装置側のキャパシタに流れる電流を負荷に供給するようにして電力伝送を行う構成に比べて、負荷に供給する電圧が高い場合に、同じ給電電力において効率よく電力伝送を行うことが可能となる。
《第13の実施形態》
 図15は第13の実施形態の電力伝送システム123の回路図である。この例では、送電装置側に2つのFETQ1,Q2を含むプッシュプル回路を構成している。これにより、1つのFETを用いてプッシュプル構成にした場合に比べて、大きな電力を給電することが可能となる。また、2つのFETQ1,Q2が交互にスイッチング動作を行うことにより等価的に2倍の周波数の電磁界共鳴結合回路を形成することができる。
 図16は、第13の実施形態とは別の構成例である電力伝送システム123Aの回路図である。この例では、送電装置側に複数のFETQ1、Q2、Q3、Q4を含む構成としている。これにより、4つのFETを同じスイッチング周波数、同じ時比率で順次にスイッチング動作をさせることにより、1石の場合と比較して大きな電力を給電することが可能となる。また、1石のスイッチング周波数に対して等価的に4倍の周波数の電磁界共鳴結合回路を形成することができる。すなわちn石のFETを用いることで等価的にn倍の高周波の電磁界共鳴結合回路を形成することができる。高周波化にともないコイルを小さくしたり、小さい容量のキャパシタンスを用いたりでき、電力伝送システムの小型化を図ることができる。
《第14の実施形態》
 図17は第14の実施形態の電力伝送システム124の回路図である。この例は、電磁界共鳴結合を形成する磁路にフェライトなどの磁性体を用いた例である。
 図17に示した電力伝送システム124では、磁性体を用いることで磁気結合の度合いが大きくなり、電力伝送効率を高くすることができる。また、空間に放出される電磁波(磁束と電束)をフェライトにより抑制することができる。
《第15の実施形態》
 図18は第15の実施形態の電力伝送システム125の回路図である。この例は、電磁界共鳴結合を形成する磁路にフェライトなどの磁性体を用いた例である。この例でも磁性体を用いることで磁気結合の度合いが大きくなり、電力伝送効率を高くすることができる。また、空間に放出される電磁波(磁束と電束)をフェライトにより抑制することができる。
《第16の実施形態》
 図19は第16の実施形態の電力伝送システム126の回路図である。この例では、送電装置PSUに二つの共振キャパシタCr1,Cr2、受電装置PRUに二つの共振キャパシタCrs1,Crs2がそれぞれ設けられている。また、受電装置PRU側に4つのスイッチ素子Qs1、Qs2、Qs3、Qs4によるブリッジ整流構成の整流回路が設けられている。
 この電力伝送システム126では、送電装置PSUの送電コイルLpおよび受電装置PRUの受電コイルLsをそれぞれフェライトなどの磁芯を有するコイルとしている。そのため、磁性体を用いることで磁気結合の度合いが大きくなり、電力伝送効率を高めることができる。また、空間に放出される電磁波(磁束と電束)をフェライトにより抑制することができる。
 《第17の実施形態》
 図20は第17の実施形態の電力伝送システム127の回路図である。
 この電力伝送システム127は、双方向電力伝送可能な複数の送受電装置PSU/PRU1、PSU/PRU2、PSU/PRU3、PSU/PRU4を備えたシステムである。
 第1の電力送受電装置PSU/PRU1が送電装置として作用するとき、それに対応して電磁界共鳴結合を形成する第2の送受電装置PSU/PRU2は受電装置として作用する。したがって、第1の送受電装置PSU/PRU1から第2の送受電装置PSU/PRU2へ電力が伝送される。ここで、第2の送受電装置PSU/PRU2の負荷Roには充電電池およびその充電回路を備える。
 第3の送受電装置PSU/PRU3は第2の送受電装置PSU/PRU2に対応していて、第2の送受電装置PSU/PRU2が送電装置として作用するとき、第3の送受電装置PSU/PRU3は受電装置として作用する。このとき、第2の送受電装置PSU/PRU2は前記充電電池が電源として用いられる。そして第3の送受電装置PSU/PRU3の負荷Ro2は充電電池およびその充電回路を備える。
 第4の送受電装置PSU/PRU4は第3の送受電装置PSU/PRU3に対応していて、第3の送受電装置PSU/PRU3が送電装置として作用するとき、第4の送受電装置PSU/PRU4は受電装置として作用する。このとき、第3の送受電装置PSU/PRU3は前記充電電池が電源として用いられる。そして第4の送受電装置PSU/PRU4の負荷Ro3は充電電池およびその充電回路である。
 このようにして、複数の電力送受電装置を備えることにより、途中の電力送受電装置が電力を中継して遠方まで電力を伝送することが可能となる。
 なお、複数の受電装置側の共振回路の共振周波数を異ならせておき、送電装置側は、送電先に応じたスイッチング周波数でスイッチング動作するように構成すれば、複数の受電装置に対して所定の受電装置に選択的に電力を伝送できる。
 また、電力送受電装置の電力伝送方向に応じてスイッチング周波数を切り替えることにより、スイッチング周波数ごとに目的にあった方向(場所)への電力伝送が可能となる。すなわち、スイッチング周波数を切り替えるなどの制御を行うことにより、適切な電子機器を選択したりや適切な方向や場所へ電力を送電して、電力伝送の混線を防ぐことができる。
《第18の実施形態》
 図21は第18の実施形態の電力伝送システム128の回路図である。この例では、送電コイルLpと受電コイルLs4との間に複数の共振器を設置している。図21において、受電コイル(インダクタ)Ls1およびキャパシタCs1で第1の中継用LC共振回路が構成されていて、受電コイル(インダクタ)Ls2およびキャパシタCs2で第2の中継用LC共振回路が構成されていて、受電コイル(インダクタ)Ls3およびキャパシタCs3で第3の中継用LC共振回路が構成されている。
 このように複数の共振器を設置することで、複数の共振器を含めて電磁界共鳴結合を形成し、共振器を所定の間隔で設置することにより、より離れた場所への電力供給が可能となる。また、高い電力伝送効率で離れた距離の給電が可能となる。
《第19の実施形態》
 図22は第19の実施形態の電力伝送システム129の回路図である。この例は、送電コイルLpと受電コイルLsにヘリカルコイルを用い、それぞれ中央給電している。そのため、送電装置側のヘリカルコイルは等価的インダクタンスL(Lp)および等価的キャパシタンスC(Lp)を有し、共振回路を構成している。同様に、受電装置側のヘリカルコイルはインダクタンスL(Ls)およびキャパシタンスC(Ls)を有し、共振回路を構成している。そして、この二つのヘリカルコイルは巻回軸がほぼ揃っている(ほぼ同軸)であることにより、ヘリカルコイル間に電磁界共鳴結合回路が形成される。その他の構成は第1の実施形態で示したものと同じである。
 このようにして、中央給電したヘリカルコイルを用いて、主に電磁界共鳴結合により電力伝送を行うことができる。
《第20の実施形態》
 図23は第20の実施形態の電力伝送システム130の回路図である。この例は、送電コイルLpと受電コイルLsにヘリカルコイルを用いている。また送電装置側に共振キャパシタCr、受電装置側に共振キャパシタCrsがそれぞれ設けられている。そのため、送電装置側のヘリカルコイルによる送電コイルLpのインダクタンスL(Lp)と共振キャパシタCrとで共振回路が構成され、同様に、受電装置側のヘリカルコイルによる受電コイルのインダクタンスL(Ls)と共振キャパシタCrsとで共振回路が構成されている。そして、この二つのヘリカルコイルは巻回軸がほぼ揃っている(ほぼ同軸)であることにより、ヘリカルコイル間に磁界共鳴結合回路が形成される。その他の構成は第1の実施形態で示したものと同じである。
 このようにして、ヘリカルコイルを用いて主に磁界共鳴結合により電力伝送を行うことができる。
《第21の実施形態》
 図24は第21の実施形態の電力伝送システムで用いられる送電コイルおよび受電コイルの例である。この例では、送電コイルLpと受電コイルLsにそれぞれメアンダラインコイルを用いている。そして、それぞれ中央給電される。そのため、送電コイルLpは等価的インダクタンスL(Lp)および等価的キャパシタンスC(Lp)を有し、共振回路を構成している。同様に、受電コイルLsはインダクタンスL(Ls)およびキャパシタンスC(Ls)を有し、共振回路を構成している。そして、この二つのコイルは主に電界共鳴結合を形成している。したがって、この送電コイルLpおよび受電コイルLsを用いて、主に電界共鳴結合により電力伝送を行うことができる。
 なお、メアンダラインコイルの両端を回路に接続して、メアンダラインコイルの主にインダクタンスを用いるようにしてもよい。すなわち、送電コイルLpと受電コイルLsを図23に示した例と同様に接続して電力伝送システムを構成してもよい。
《第22の実施形態》
 第22の実施形態では、送電装置側および受電装置側の共振回路の共振周波数とスイッチング周波数との関係について示す。
 回路構成は例えば図1に示したとおりである。受電回路に接続される負荷を含めた電磁界共鳴結合回路のリアクタンスが0となる共振周波数よりもスイッチング周波数を僅かに高く設定することで、負荷を含めた電磁界共鳴結合回路のインピーダンスは誘導性リアクタンスとなる。電磁界共鳴結合回路に流入する電流(ir)は、スイッチ素子の電圧(vds1)の基本波より位相が遅れる。スイッチ素子(Q1)がターンオンする直前でスイッチ素子(Q1)に並列の逆方向ダイオードが導通して、ZVS動作を実現する。
 図25は負荷を含めた電磁界共鳴結合回路のインピーダンスの周波数特性を示す図である。この例では、送電装置側および受電装置側の共振回路の共振周波数foは30.78MHzである。この図25において、送電コイルと受電コイルとの間隔をdxで表すと、dx=0.5mのとき、二つの共振回路の結合度が高いので、共振周波数はスプリットし、2共振状態(双峰性)となっている。例えば、この二つの共振周波数のうち高い方の周波数fr2より高い周波数領域で、負荷を含めた電磁界共鳴結合回路のインピーダンスが誘導性リアクタンスとなるので、この周波数帯域を用いる。また、例えば、この二つの共振周波数のうち低い方の周波数fr1より高く固有共振周波数frよりも低い周波数領域で、負荷を含めた電磁界共鳴結合回路のインピーダンスは誘導性リアクタンスとなるので、この周波数帯域を用いる。距離dx=0.6m以上の場合は、周波数frより高い周波数領域で、負荷を含めた電磁界共鳴結合回路のインピーダンスが誘導性リアクタンスとなるので、この周波数帯域を用いる。
 図26は、この実施形態の電力伝送システムの各部の電圧電流波形図である。回路構成は第1の実施形態で図1に示したものである。この図26を参照して、スイッチング周期における各状態での動作を以下に示す。
[1]状態1 時刻t1~t2
 送電装置側では、スイッチ素子Q1は導通し、流れる電流id1は0Aから流れ始めて正電流となる。送電コイルLpと共振キャパシタCr、および受電コイルLsと共振キャパシタCrsには共振電流が流れる。
 受電装置側では、共振電流が同期整流スイッチ素子Q2により整流され、整流平滑された電流が負荷に供給され、電力が伝送される。スイッチ素子Q1がターンオフすると状態2となる。
[2]状態2 時刻t2~t3
 スイッチ素子Q1の両端のキャパシタCds1は共振をはじめ、まずは充電されて、ピーク電圧を越えると放電する。電圧vds1は次第に0Vに漸近し、スイッチ素子Q1がターンオンすると状態2は終わる。
 以降、状態1、2を周期的に繰り返す。
 このように、図2に示した例とは異なり、スイッチ素子Q1のターンオンの直前で電圧vdsが0Vに漸近し、ターンオンのタイミングで電流id1が0Aから流れ始める。スイッチ素子Q1がZVS動作をすることにより、スイッチング損失とスイッチングノイズを大幅に低減できる。また、スイッチ回路S1のダイオードDds1が導通しないため、導通損失も低減される。
Cm…相互キャパシタンス
Cm1…相互キャパシタンス
Co…平滑キャパシタ
Cp…送電装置側共振キャパシタ
Cpp…漏れキャパシタンス
Cr…共振キャパシタ
Cr1,Cr2…共振キャパシタ
Crs…共振キャパシタ
Crs1,Crs2…共振キャパシタ
Crsa,Crsb…共振キャパシタ
Cs…共振キャパシタ
Css…漏れキャパシタンス
D1,D2,D3,D4…整流ダイオード
Lf,Lfs…インダクタ
Lm…相互インダクタンス
Lmp…相互インダクタンス
Lp…送電コイル
Lr…共振インダクタ
Ls…受電コイル
Ls1,Ls2,Ls3,Ls4…受電コイル
PRU…電力受電装置
PSU…電力送電装置
Q1~Q4…スイッチ素子
Qs1…スイッチ素子
Ro,Ro2,Ro3…負荷
S1,S2…スイッチ回路
10,20…スイッチング制御回路
30…信号伝達手段
40…複共振回路
50…伝送制御回路
90…電磁界共鳴結合回路
92…電界共鳴結合回路
111~130…電力伝送システム

Claims (20)

  1.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
     前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されずに反射したエネルギーは無効電力として前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは無効電力として前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  2.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
     前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスで磁界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されずに反射したエネルギーは無効電力として前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは無効電力として前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  3.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、送電装置側共振キャパシタとともに送電装置側共振回路を構成する送電装置側共振インダクタと、前記送電コイルに電気的に接続されて、スイッチ素子、ダイオードおよびキャパシタの並列接続回路で構成されたスイッチ回路、ならびに入力される直流電圧から、前記送電コイルに流す交流電流に比較して相対的に直流電流とみなせる電流源を生成できる大きさのインダクタンス値をもつインダクタを備え、前記送電コイルに流す交流電流を発生する送電装置側交流電流発生回路と、を備え、
     前記受電装置は、受電装置側共振キャパシタとともに受電装置側共振回路を構成する受電装置側共振インダクタと、前記受電コイルに接続されて、該受電コイルに生じる交流電流を整流する受電装置側整流回路と、を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互キャパシタンスで電界共鳴結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されずに反射したエネルギーは無効電力として前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されずに反射したエネルギーは無効電力として前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  4.  前記受電装置は、前記受電装置側整流回路の出力情報を検出して前記送電装置側に前記出力情報を伝送する情報送信回路を備え、
     前記送電装置は、前記出力情報を受信する出力情報受信回路と、前記出力情報に応じて前記送電装置側交流電流発生回路を制御して伝送電力を制御する伝送電力制御回路とを備えた、請求項1~3のいずれかに記載の電力伝送システム。
  5.  前記情報送信回路は、無線通信で前記出力情報を送信する回路であり、
     前記出力情報受信回路は無線通信で前記出力情報を受信する回路である、請求項4に記載の電力伝送システム。
  6.  前記情報送信回路は、電気信号を光信号に変換して前記出力情報を送信する回路であり、
     前記出力情報受信回路は光信号を電気信号に変換して前記出力情報を受信する回路である、請求項4に記載の電力伝送システム。
  7.  前記送電装置側交流電流発生回路は、スイッチ回路をオン/オフするスイッチング周波数を変化させる周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御する、請求項1~6のいずれかに記載の電力伝送システム。
  8.  前記送電装置側交流電流発生回路は、スイッチ回路を固定のスイッチング周波数でオン/オフして、時比率を制御するPWM(Pulse Width Modulation)により伝送電力を制御する、請求項1~6のいずれかに記載の電力伝送システム。
  9.  前記受電装置側整流回路はスイッチ素子を備えた同期整流回路である、請求項1~6のいずれかに記載の電力伝送システム。
  10.  前記受電装置は、前記同期整流回路の動作周波数を制御する動作周波数制御回路を備え、前記動作周波数によって受電電力を制御する、請求項9に記載の電力伝送システム。
  11.  前記受電装置は、該受電装置側の回路を制御する制御回路を備え、該制御回路は、前記受電装置が受電した電力によって動作する、請求項1~10のいずれかに記載の電力伝送システム。
  12.  前記受電装置側整流回路の出力部から電力が伝送されるとき、前記受電装置側整流回路は前記送電装置側交流電流発生回路として作用するとともに、前記送電装置側交流電流発生回路は前記受電装置側整流回路として作用し、双方向に電力伝送が可能な、請求項1~11のいずれかに記載の電力伝送システム。
  13.  前記送電コイルまたは前記受電コイルに対して並列に共振キャパシタを備えた、請求項1~12のいずれかに記載の電力伝送システム。
  14.  前記共振キャパシタは前記送電コイルと前記受電コイルとの間に形成される電界共鳴による等価的なキャパシタンスとなる浮遊容量で構成されている、請求項13に記載の電力伝送システム。
  15.  前記共振キャパシタは前記送電コイルと前記受電コイルとの間に形成される等価的な相互キャパシタンスで構成されている、請求項13または14に記載の電力伝送システム。
  16.  前記送電コイルおよび前記受電コイルは空心のインダクタである、請求項1~15のいずれかに記載の電力伝送システム。
  17.  前記相互インダクタンスは、前記送電コイルと前記受電コイルとの間に形成される磁界共鳴結合により生じる等価的な励磁インダクタンスである、請求項1~16のいずれかに記載の電力伝送システム。
  18.  前記送電コイルもしくは前記受電コイルのインダクタンス成分のうち、共鳴結合に関与しない漏れインダクタンスを前記送電装置側共振回路または前記受電装置側共振回路を構成するインダクタとして用いた、請求項1~17のいずれかに記載の電力伝送システム。
  19.  前記送電装置側交流電流発生回路は、前記送電コイルと前記スイッチ回路をそれぞれ複数備え、前記送電コイルと前記スイッチ回路がそれぞれ電気的に接続されて構成され、前記複数のスイッチ回路が周期的に順次にスイッチング動作を行う、請求項1~18のいずれかに記載の電力伝送システム。
  20.  前記送電装置側交流電流発生回路は、前記スイッチ回路を複数備えており、前記送電コイルに前記複数のスイッチ回路が電気的に接続されて構成され、前記複数のスイッチ回路が周期的に順次にスイッチング動作を行う、請求項1~19のいずれかに記載の電力伝送システム。
PCT/JP2013/054255 2012-03-06 2013-02-21 電力伝送システム WO2013133028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13758558.4A EP2824799B1 (en) 2012-03-06 2013-02-21 Power transmission system
CN201380012330.6A CN104247206B (zh) 2012-03-06 2013-02-21 电力传输系统
KR1020147024951A KR101685371B1 (ko) 2012-03-06 2013-02-21 전력 전송 시스템
JP2014503755A JP5787027B2 (ja) 2012-03-06 2013-02-21 電力伝送システム
US14/472,136 US9478992B2 (en) 2012-03-06 2014-08-28 Power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012049829 2012-03-06
JP2012-049829 2012-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/472,136 Continuation US9478992B2 (en) 2012-03-06 2014-08-28 Power transmission system

Publications (1)

Publication Number Publication Date
WO2013133028A1 true WO2013133028A1 (ja) 2013-09-12

Family

ID=49116511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054255 WO2013133028A1 (ja) 2012-03-06 2013-02-21 電力伝送システム

Country Status (6)

Country Link
US (1) US9478992B2 (ja)
EP (1) EP2824799B1 (ja)
JP (1) JP5787027B2 (ja)
KR (1) KR101685371B1 (ja)
CN (1) CN104247206B (ja)
WO (1) WO2013133028A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063915A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
WO2015063920A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置
WO2015063916A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
WO2015063919A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
WO2015063921A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置
WO2015066818A1 (en) * 2013-11-08 2015-05-14 The Governors Of The University Of Alberta Electrical energy transfer
JP2015515850A (ja) * 2012-04-02 2015-05-28 スピネッラ イゴール 容量性結合を用いた電力伝達方法および装置
JP2015517295A (ja) * 2012-04-19 2015-06-18 サムスン エレクトロニクス カンパニー リミテッド 無線エネルギー送信装置及び方法、無線エネルギー受信装置
WO2015104779A1 (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の始動方法
JP2015532585A (ja) * 2012-10-23 2015-11-09 サムスン エレクトロニクス カンパニー リミテッド 無線エネルギー送信方法及びその装置並びにそのシステム
JP2016187260A (ja) * 2015-03-27 2016-10-27 古河電気工業株式会社 ワイヤレス給電装置
JP2016220355A (ja) * 2015-05-18 2016-12-22 一般財団法人電力中央研究所 非接触電力伝送回路及び非接触電力伝送装置
JPWO2017195581A1 (ja) * 2016-05-09 2018-05-24 有限会社アール・シー・エス 給電装置、受電装置、および非接触給電システム
US10566840B2 (en) 2014-11-17 2020-02-18 Murata Manufacturing Co., Ltd. Wireless power feeding system
US10782716B2 (en) 2018-04-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Switching control apparatus
WO2020188907A1 (ja) * 2019-03-18 2020-09-24 株式会社村田製作所 ワイヤレス給電システムの受電装置
JP2020191758A (ja) * 2019-05-23 2020-11-26 キヤノン株式会社 制御システム
WO2024009682A1 (ja) * 2022-07-07 2024-01-11 株式会社デンソー 送電装置、プログラム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322867A1 (en) * 2012-09-07 2016-11-03 Nagesh POLU Wireless electric/magnetic field power transfer system, transmitter and receiver
JP2014166084A (ja) * 2013-02-27 2014-09-08 Hitachi Ltd 給電装置、受電装置、電気自動車、充電システム及び充電方法
JP6032366B2 (ja) * 2013-07-01 2016-11-24 株式会社村田製作所 ワイヤレス電力伝送システム
CN106716778A (zh) * 2014-06-26 2017-05-24 索雷斯能源公司 无线电场电力传输系统、其发射器与接收器以及无线传送电力的方法
CN104037956B (zh) * 2014-06-27 2016-06-08 南京矽力杰半导体技术有限公司 谐振型非接触供电装置和电能接收端
EP3189581A4 (en) 2014-09-05 2018-03-28 Solace Power Inc. Wireless electric field power transfer system, method, transmitter and receiver therefor
KR101983173B1 (ko) * 2014-09-11 2019-09-10 주식회사 위츠 비접촉 방식 전력 수전 장치 및 비접촉 방식 배터리 장치
GB2535976C (en) * 2015-02-02 2017-03-29 Drayson Tech (Europe) Ltd Inverter for inductive power transfer
KR101699218B1 (ko) * 2015-03-16 2017-01-24 주식회사 다산네트웍스 전력 전송 기능을 구비한 무선 애드혹 네트워크 시스템
WO2017023796A1 (en) * 2015-07-31 2017-02-09 Cameron International Corporation Systems and methods for inductively coupled power transfer and bidirectional communication
CN107912077A (zh) * 2015-08-03 2018-04-13 三菱电机工程技术株式会社 电力传输装置及天线
DE102016114941A1 (de) * 2016-08-11 2018-02-15 Technische Hochschule Ingolstadt System und Verfahren zur induktiven Energieübertragung
JP6350699B1 (ja) * 2017-03-02 2018-07-04 オムロン株式会社 非接触給電装置
KR101997971B1 (ko) * 2017-08-07 2019-07-08 재단법인 다차원 스마트 아이티 융합시스템 연구단 에너지 수집을 이용한 공명 방식의 무선 전력 수신 장치
KR102410569B1 (ko) * 2017-08-21 2022-06-20 오씨아이 주식회사 진공 센서 및 이를 포함하는 진공 단열재
CN109038841B (zh) * 2018-08-22 2020-06-02 中车青岛四方机车车辆股份有限公司 一种电场式和感应式结合的无线电能传输系统
US11139690B2 (en) * 2018-09-21 2021-10-05 Solace Power Inc. Wireless power transfer system and method thereof
TWI694655B (zh) * 2019-03-11 2020-05-21 茂達電子股份有限公司 頻移鍵控訊號解調系統及方法
JP7401251B2 (ja) 2019-10-10 2023-12-19 キヤノン株式会社 送電装置および無線電力伝送システム
EP4096081A1 (en) * 2021-05-26 2022-11-30 Koninklijke Philips N.V. Wireless power transfer
KR102591380B1 (ko) * 2022-02-11 2023-10-19 한국과학기술원 무선 전력 및 데이터 송수신 장치
US20230268770A1 (en) * 2022-02-18 2023-08-24 Iontra Inc Systems and methods for wireless battery charging using circuit modeling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285436A (ja) * 1990-08-31 1992-10-09 Siemens Ag ターゲットコイルの駆動回路および方法
WO2006022365A1 (ja) * 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. 非接触電力伝送装置
JP2006230032A (ja) * 2005-02-15 2006-08-31 Noboru Daiho 電力伝送装置、電力伝送方法
JP2008206327A (ja) 2007-02-21 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2009065726A (ja) * 2007-09-04 2009-03-26 Fujifilm Corp レクテナ装置
JP2009539343A (ja) * 2006-05-30 2009-11-12 オークランド ユニサービシズ リミテッド 誘導給電システム・ピックアップ回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224559A (ja) 1982-06-21 1983-12-26 Toshiba Corp スイツチング回路
JP3821156B2 (ja) 1995-05-10 2006-09-13 松下電器産業株式会社 電源装置
JP3247328B2 (ja) * 1997-12-09 2002-01-15 浩 坂本 非接触電力伝達装置
JP2006074897A (ja) 2004-09-01 2006-03-16 Sony Corp スイッチング電源回路
JP2006203032A (ja) 2005-01-21 2006-08-03 Victor Co Of Japan Ltd 素子の製造方法
JP2006296054A (ja) 2005-04-08 2006-10-26 Sony Corp スイッチング電源回路
JP2006304391A (ja) 2005-04-15 2006-11-02 Sony Corp スイッチング電源回路
JP2006311742A (ja) * 2005-04-28 2006-11-09 Sony Corp スイッチング電源回路
CN201163726Y (zh) * 2008-01-04 2008-12-10 上海海事大学 非接触电能传输设备
US8947041B2 (en) * 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
WO2010079768A1 (ja) * 2009-01-08 2010-07-15 Necトーキン株式会社 電力送信装置及び非接触電力伝送システム
JP2010226890A (ja) 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd 非接触電力伝送装置
KR101136532B1 (ko) * 2009-09-15 2012-04-17 주식회사 삼보컴퓨터 무접점 충전 장치, 무접점 충전 배터리 장치 및 이를 포함하는 무접점 충전 시스템
JP2011083078A (ja) * 2009-10-05 2011-04-21 Sony Corp 送電装置、受電装置、および電力伝送システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285436A (ja) * 1990-08-31 1992-10-09 Siemens Ag ターゲットコイルの駆動回路および方法
WO2006022365A1 (ja) * 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. 非接触電力伝送装置
JP2006230032A (ja) * 2005-02-15 2006-08-31 Noboru Daiho 電力伝送装置、電力伝送方法
JP2009539343A (ja) * 2006-05-30 2009-11-12 オークランド ユニサービシズ リミテッド 誘導給電システム・ピックアップ回路
JP2008206327A (ja) 2007-02-21 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2009065726A (ja) * 2007-09-04 2009-03-26 Fujifilm Corp レクテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2824799A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515850A (ja) * 2012-04-02 2015-05-28 スピネッラ イゴール 容量性結合を用いた電力伝達方法および装置
JP2015517295A (ja) * 2012-04-19 2015-06-18 サムスン エレクトロニクス カンパニー リミテッド 無線エネルギー送信装置及び方法、無線エネルギー受信装置
KR101844409B1 (ko) * 2012-10-23 2018-04-03 삼성전자주식회사 무선 에너지 전송 장치 및 방법, 무선 에너지 전송 시스템
JP2015532585A (ja) * 2012-10-23 2015-11-09 サムスン エレクトロニクス カンパニー リミテッド 無線エネルギー送信方法及びその装置並びにそのシステム
JP5832672B2 (ja) * 2013-10-31 2015-12-16 三菱電機エンジニアリング株式会社 共振型高周波電源装置
CN106165284A (zh) * 2013-10-31 2016-11-23 三菱电机工程技术株式会社 谐振型高频电源装置及谐振型高频电源装置用开关电路
WO2015063921A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置
WO2015063919A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
CN105684292B (zh) * 2013-10-31 2018-07-17 三菱电机工程技术株式会社 谐振型高频电源装置
JP5791833B1 (ja) * 2013-10-31 2015-10-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
JP5791834B1 (ja) * 2013-10-31 2015-10-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
WO2015063916A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
CN106165284B (zh) * 2013-10-31 2018-11-23 三菱电机工程技术株式会社 谐振型高频电源装置及谐振型高频电源装置用开关电路
CN105684292A (zh) * 2013-10-31 2016-06-15 三菱电机工程技术株式会社 谐振型高频电源装置
WO2015063920A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置
US9882435B2 (en) 2013-10-31 2018-01-30 Mitsubishi Electric Engineering Company, Limited Resonant type high frequency power supply device and switching circuit for resonant type high frequency power supply device
WO2015063915A1 (ja) * 2013-10-31 2015-05-07 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
JP6091643B2 (ja) * 2013-10-31 2017-03-08 三菱電機エンジニアリング株式会社 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
JPWO2015063920A1 (ja) * 2013-10-31 2017-03-09 三菱電機エンジニアリング株式会社 共振型高周波電源装置
US9882509B2 (en) 2013-10-31 2018-01-30 Mitsubishi Electric Engineering Company, Limited Resonant type high frequency power supply device and switching circuit for resonant type high frequency power supply device
US9871416B2 (en) 2013-10-31 2018-01-16 Mitsubishi Electric Engineering Company, Limited Resonant type high frequency power supply device
WO2015066818A1 (en) * 2013-11-08 2015-05-14 The Governors Of The University Of Alberta Electrical energy transfer
JPWO2015104779A1 (ja) * 2014-01-07 2017-03-23 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の始動方法
WO2015104779A1 (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の始動方法
US10566840B2 (en) 2014-11-17 2020-02-18 Murata Manufacturing Co., Ltd. Wireless power feeding system
JP2016187260A (ja) * 2015-03-27 2016-10-27 古河電気工業株式会社 ワイヤレス給電装置
JP2016220355A (ja) * 2015-05-18 2016-12-22 一般財団法人電力中央研究所 非接触電力伝送回路及び非接触電力伝送装置
JPWO2017195581A1 (ja) * 2016-05-09 2018-05-24 有限会社アール・シー・エス 給電装置、受電装置、および非接触給電システム
US10782716B2 (en) 2018-04-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Switching control apparatus
WO2020188907A1 (ja) * 2019-03-18 2020-09-24 株式会社村田製作所 ワイヤレス給電システムの受電装置
JPWO2020188907A1 (ja) * 2019-03-18 2021-11-25 株式会社村田製作所 ワイヤレス給電システムの受電装置
JP7272420B2 (ja) 2019-03-18 2023-05-12 株式会社村田製作所 ワイヤレス給電システムの受電装置
JP2020191758A (ja) * 2019-05-23 2020-11-26 キヤノン株式会社 制御システム
JP7414405B2 (ja) 2019-05-23 2024-01-16 キヤノン株式会社 制御システムおよび制御方法
WO2024009682A1 (ja) * 2022-07-07 2024-01-11 株式会社デンソー 送電装置、プログラム

Also Published As

Publication number Publication date
EP2824799B1 (en) 2022-01-05
EP2824799A1 (en) 2015-01-14
KR20140126368A (ko) 2014-10-30
EP2824799A4 (en) 2015-12-09
KR101685371B1 (ko) 2016-12-12
CN104247206B (zh) 2017-03-01
CN104247206A (zh) 2014-12-24
US20140368056A1 (en) 2014-12-18
US9478992B2 (en) 2016-10-25
JPWO2013133028A1 (ja) 2015-07-30
JP5787027B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5787027B2 (ja) 電力伝送システム
JP6601538B2 (ja) ワイヤレス給電装置
JP5494838B2 (ja) 電力伝送システム
JP6115626B2 (ja) ワイヤレス給電装置
JP6202222B2 (ja) ワイヤレス給電システム
US9048741B2 (en) Switching power supply device
JP5321758B2 (ja) スイッチング電源装置
US9130467B2 (en) Switching power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013758558

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014503755

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147024951

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE