WO2013132830A1 - 慣性力センサ - Google Patents
慣性力センサ Download PDFInfo
- Publication number
- WO2013132830A1 WO2013132830A1 PCT/JP2013/001349 JP2013001349W WO2013132830A1 WO 2013132830 A1 WO2013132830 A1 WO 2013132830A1 JP 2013001349 W JP2013001349 W JP 2013001349W WO 2013132830 A1 WO2013132830 A1 WO 2013132830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inertial force
- force sensor
- insulating layer
- interlayer insulating
- detection unit
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 411
- 239000011229 interlayer Substances 0.000 claims abstract description 144
- 238000001514 detection method Methods 0.000 claims description 263
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 21
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910004541 SiN Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 24
- 239000002585 base Substances 0.000 description 53
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- 230000001133 acceleration Effects 0.000 description 19
- 239000010936 titanium Substances 0.000 description 18
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 12
- 239000004642 Polyimide Substances 0.000 description 11
- 229920001721 polyimide Polymers 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 238000005240 physical vapour deposition Methods 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- URQUNWYOBNUYJQ-UHFFFAOYSA-N diazonaphthoquinone Chemical compound C1=CC=C2C(=O)C(=[N]=[N])C=CC2=C1 URQUNWYOBNUYJQ-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000005350 fused silica glass Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000003504 photosensitizing agent Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- KGWYICAEPBCRBL-UHFFFAOYSA-N 1h-indene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)C=CC2=C1 KGWYICAEPBCRBL-UHFFFAOYSA-N 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- -1 LiTaO 3 Inorganic materials 0.000 description 2
- 229910003087 TiOx Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000224 chemical solution deposition Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
- G01P15/0922—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5607—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
- G01C19/5628—Manufacturing; Trimming; Mounting; Housings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
- G01C19/5733—Structural details or topology
- G01C19/574—Structural details or topology the devices having two sensing masses in anti-phase motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
- G01C19/5769—Manufacturing; Mounting; Housings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/097—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/097—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
- G01P15/10—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by vibratory strings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/704—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
- H10N30/706—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
- H10N30/708—Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8536—Alkaline earth metal based oxides, e.g. barium titanates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
- H10N30/8554—Lead-zirconium titanate [PZT] based
Definitions
- FIG. 14B is a plan view showing the manufacturing process of the inertial force sensor according to Embodiment 1.
- FIG. 14C is a plan view showing the manufacturing process of the inertial force sensor according to Embodiment 1.
- FIG. 14D is a plan view showing the manufacturing process of the inertial force sensor according to Embodiment 1.
- FIG. 14E is a plan view showing the manufacturing process of the inertial force sensor according to Embodiment 1.
- FIG. 14F is a plan view showing the manufacturing process of the inertial force sensor according to Embodiment 1.
- FIG. 15 is a plan view of still another inertial force sensor according to the first embodiment.
- FIG. 16A is a plan view of still another inertial force sensor according to Embodiment 1.
- FIG. 16B is a plan view of still another inertial force sensor according to Embodiment 1.
- FIG. 17 is a plan view of the inertial force sensor according to the second embodiment.
- FIG. 18A is a plan view of the inertial force sensor according to Embodiment 3.
- 18B is a cross-sectional view of the inertial force sensor taken along line 18B-18B shown in FIG. 18A.
- FIG. 19 is a cross-sectional view of the inertial force sensor taken along line 19-19 shown in FIG. 18A.
- 20 is a cross-sectional view of the inertial force sensor at line 20-20 shown in FIG. 18A.
- FIG. 21A is a diagram illustrating a manufacturing process of the inertial force sensor according to Embodiment 3.
- FIG. 21A is a diagram illustrating a manufacturing process of the inertial force sensor according to Embodiment 3.
- FIG. 21A is a diagram illustrating a manufacturing process of the inertial force sensor according to Embodi
- FIG. 4 is a characteristic diagram showing the temperature characteristic PT1 of the inertial force sensor 201, and also shows the temperature characteristic PT2 of the conventional inertial force sensor 101.
- the horizontal axis indicates the ambient temperature around the inertial force sensor
- the vertical axis indicates the amount of fluctuation of the zero point output that is the output of the stationary inertial force sensor when the inertial force (angular velocity) is not applied. .
- FIG. 8A is a cross-sectional view of still another inertial force sensor 201c in the first embodiment.
- Inertial force sensor 201 c further includes a metal layer 231 (ground layer) provided in interlayer insulating layer 218.
- the interlayer insulating layer 218 includes an interlayer insulating layer 218 a disposed on the upper surface of the detection unit 213 and an interlayer insulating layer 218 b disposed on the upper surface of the metal layer 231.
- the metal layer 231 is disposed on the upper surface of the interlayer insulating layer 218a.
- the drive wiring 216 and the detection wiring 217 are arranged on the upper surface of the interlayer insulating layer 218b.
- the metal layer 231 is connected to a reference potential such as a ground potential through a wiring.
- the pair of vertical beam portions 203 extend parallel to the Y axis, and are suspended from the base portion 202 by connecting both ends to the base portion 202. Thereby, the vertical beam part 203 can bend in the direction of a Z-axis. Further, the pair of vertical beam portions 203 are symmetric with respect to an axis passing through the center of the inertial force sensor 201 and parallel to the Y axis. Thereby, with respect to the angular velocity given to the inertial force sensor 201, the bending which arises in each of a pair of vertical beam part 203 becomes substantially the same.
- the beam portion 205, the weight 210, and the arms 206 to 209 are formed using a non-piezoelectric material such as diamond, fused quartz, alumina, stainless steel, polymer, or GaAs.
- a non-piezoelectric material such as diamond, fused quartz, alumina, stainless steel, polymer, or GaAs.
- silicon for the beam portion 205, the weight 210, and the arms 206 to 209, it is possible to form a very small inertial force sensor 201 by using a fine processing technique, and an integrated circuit constituting the circuit. It can also be formed integrally with (IC).
- each detection portion when detecting the displacement of the flexible portion 251 in the direction parallel to the XY plane, each detection portion is perpendicular to the direction in which the flexible portion 251 (arm 206, beam portion 205) extends.
- the flexible portion 251 arm 206, beam portion 205
- the detection units 212, 213, and 214 are provided on the flexible portion 251 (arm 206, beam portion 205) as compared with the case where the drive wiring and each detection unit are provided in parallel on the same plane.
- the sensitivity of the inertial force sensor 201 can be increased.
- the area ratio of the drive unit 211 and the detection units 212, 213, and 214 on the flexible unit 251 (arm 206, beam unit 205) can be improved, a small inertia force sensor 201 can be obtained.
- the wiring is arranged above the detection unit 212 via the interlayer insulating layer 218, the strength of the drive unit 211 and the detection unit 212 can be increased, and the reliability of the inertial force sensor 201 can be improved.
- FIG. 12A is a schematic plan view of the inertial force sensor 201 showing an operation of detecting an angular velocity 222 around the Z axis.
- a drive signal is given from the drive circuit to the drive unit 211
- a drive vibration 223 is generated in the weight 210 in the XY plane.
- an inertial force (Coriolis force) is generated in the Y-axis direction
- a detection vibration 224 is generated in the weight 210.
- the detection signal output from the detection unit 212 by the detection vibration 224 has the same frequency as the drive vibration 223 and an amplitude depending on the angular velocity 222. Therefore, the magnitude of the angular velocity 222 can be detected by measuring the magnitude of the detection signal.
- the capacitance of the electrode is large in the wiring structure of the inertial force sensor 101, the noise level of the inertial force sensor 101 increases and the power consumption of the circuit unit connected to the inertial force sensor 101 increases.
- FIG. 15 is a plan view of still another inertial force sensor 201j according to the first embodiment.
- the same reference numerals are assigned to the same portions as those of the inertial force sensor 201 shown in FIGS.
- the flexible portion 251 has a beam portion 205 and four arms 206 to 209.
- the inertial force sensor 201j shown in FIG. 15 has two arms 206 and 207 and a base portion 202 that connects the arms 206 and 207.
- wirings drawn from the lower electrode layer of each drive unit and the lower electrode layer of each detection unit are omitted.
- FIG. 16A is a plan view of still another inertial force sensor 201k in the first embodiment.
- the same reference numerals are given to the same portions as those of the inertial force sensor 201 shown in FIGS.
- Inertial force sensor 201k shown in FIG. 16A further includes an arm 280 extending from base 202, and has a total of three arms.
- Each of the driving unit 305 and the detection unit 306 includes a lower electrode layer provided on the upper surface of the flexible unit 251, a piezoelectric layer provided on the upper surface of the lower electrode layer, and an upper electrode layer provided on the upper surface of the piezoelectric layer.
- the portions provided on the upper surfaces of the interlayer insulating layer 218 driving unit 211 and the detection units 212 to 214 are connected to each other. At least one of the upper surface portions of the drive unit 211 and the detection units 212 to 214 of the interlayer insulating layer 218 may be separated from each other without being connected to other portions, and has the same effect.
- the inertial force sensor 401 includes a base 402, a flexible part 409 connected to the base 402, a drive part 411 that excites the flexible part 409, and a detection provided in the flexible part 409.
- the detection units 412 and 413 detect the displacement of the flexible portion 409.
- the connection electrodes 415a and 415b are electrically connected to the detection units 412 and 413, respectively.
- the connection electrode 415a includes a piezoelectric layer and an electrode layer disposed on the upper surface of the piezoelectric layer.
- the connection electrode 415b includes a piezoelectric layer, an insulating layer covering at least a part of the piezoelectric layer, and an electrode layer disposed on the upper surface of the insulating layer.
- the flexible portion 409 is connected to the base portion 402, and is provided with a drive portion 411 and detection portions 412, 413.
- a drive signal is given to the drive unit 411 from the drive circuit, at least a part of the flexible portion 409 vibrates.
- an angular velocity is applied to the inertial force sensor 401 in this state, the flexible portion 409 bends (displaces) due to the Coriolis force resulting from the angular velocity, and electric charges corresponding to the deflection are generated in the detection portions 412 and 413.
- the angular velocity can be detected by inputting the current due to the charges generated in the detection units 412 and 413 to the detection circuit via the wiring and the connection electrodes 415a and 415b.
- the flexible portion 409 includes a vertical beam portion 403 suspended from the base portion 402, a horizontal beam portion 404 connected to the vertical beam portion 403, and arms 405 to 408 connected to the horizontal beam portion 404. .
- the drive unit 411 is provided on the arm 405.
- the vertical beam portions 403 and 404 constitute a beam portion 451.
- the detection unit 412 is provided on the arm 405, and the detection unit 413 is provided on the cross beam portion 404.
- the inertial force sensor 401 in the third embodiment includes the two detection units 412, 413, the present invention is not limited to this. That is, the inertial force sensor 401 may further include a detection unit 414.
- the detection unit 414 is provided in the vertical beam unit 403. The angular velocity can be detected by taking out the deflection of the vertical beam portion 403 caused by the angular velocity around the X-axis as a current due to the electric charge generated in the detection unit 414.
- the flexible portion 409 of the inertial force sensor 401 in the third embodiment includes four arms 405 to 408, the present invention is not limited to this. That is, the flexible portion 409 may have the arms 405 and 406 and may not have the arms 407 and 408.
- the driving unit 411 and the detection units 412, 413 each have a lower electrode layer, a piezoelectric layer, and an upper electrode layer.
- the lower electrode layer 420 and the upper electrode layer 422 are, for example, a single metal made of at least one of copper, silver, gold, titanium, tungsten, platinum, chromium, molybdenum, an alloy containing these as a main component, or a laminate of these metals. It consists of made.
- an electrode layer having high conductivity and excellent stability in a high-temperature oxidizing atmosphere can be obtained by forming with platinum (Pt) containing Ti or TiOx.
- Other layers such as an alignment control layer made of titanate (PbTiO 3 ) may be formed on the upper surface of the lower electrode layer 420.
- the thickness of the lower electrode layer 420 is 100 nm to 500 nm.
- the piezoelectric layer 421 is made of a piezoelectric material such as zinc oxide, lithium tantalate, lithium niobate, or potassium niobate.
- a piezoelectric material such as zinc oxide, lithium tantalate, lithium niobate, or potassium niobate.
- the piezoelectric layer 421 with lead zirconate titanate (Pb (Zr, Ti) O 3 )
- the inertial force sensor 401 with good piezoelectric characteristics can be realized.
- another layer such as an adhesion layer made of titanium (Ti) may be formed on the upper surface of the piezoelectric layer 421.
- the thickness of the piezoelectric layer 421 is 1000 nm to 4000 nm.
- the base portion 402, the flexible portion 409, and the weight 410 may be formed using a piezoelectric material such as quartz, LiTaO 3, or LiNbO 3 .
- a piezoelectric material such as quartz, LiTaO 3, or LiNbO 3 .
- an electrode layer composed of a single metal composed of at least one of copper, silver, gold, titanium, tungsten, platinum, chromium, molybdenum, an alloy containing these as a main component, or a structure in which these metals are laminated.
- the drive unit 411 and the detection units 412, 413 can be configured by providing them on the base 402, the flexible unit 409, and the weight 410 made of these piezoelectric materials.
- the flexible unit 251 may be provided with a monitor unit that detects vibration of the flexible unit 251.
- the insulating layer 423 is not provided on the upper surface of the piezoelectric layer 421, and the upper electrode layer 422 is provided on the upper surface of the piezoelectric layer 421.
- the insulating layer 423 is provided on the upper surface of the piezoelectric layer 421, and the upper electrode layer 422 is provided on the upper surface of the insulating layer 423.
- the capacitances of the detection unit 412 and the detection unit 413 can be made substantially the same, so that the difference in noise level between the detection axes can be reduced.
- the capacitance generated in the connection electrode 415b is reduced by the insulating layer 423, so that the noise level can be reduced. This point will be described in detail.
- Capacitance C 1 of the connecting electrode 415a is the dielectric constant epsilon r1 of the piezoelectric layer 421, the thickness of the piezoelectric layer d P ( ⁇ m), the area S 1 ( ⁇ m 2) of the upper electrode layer 422, the dielectric constant epsilon 0 (F / M) is represented by the following formula 1.
- C 1 ⁇ r1 ⁇ ⁇ 0 ⁇ S 1 / d P (Formula 1)
- Capacitance C 2 of the connection electrode 415b is a combined capacitance obtained by combining the capacitance C 2B region R2 where there is capacity C 2A the insulating layer 423 in the region R1 has no insulating layer 423.
- the capacitance C 2B region R2 where there is an insulating layer 423, as differences in thickness of the insulating layer 423 and the piezoelectric layer 421 has a somewhat approximated capacitance values formed by the insulating layer 423. Therefore, the capacitance C 2B can be expressed by the following Expression 3 by the relative dielectric constant ⁇ r2 of the insulating layer 423 and the area S 2B ( ⁇ m 2 ) of the electrode layer in the region R2.
- the capacitance C 2 of the connection electrode 415b may be smaller than the capacitance C 1 of the connecting electrode 415a.
- the phase shift shifter in the detection circuit becomes unnecessary, and the inertial force sensor 401 can be reduced in size. Furthermore, when adjusting the capacities of the detection units 412 to 414, the capacities of the other detection units can be adjusted to match the detection unit having the smallest capacity, so that the difference in the capacities of the detection units 412 to 414 is offset. The capacity of the detection units 412 to 414 can be reduced. Noise generated when amplifying signals from the detection units 412 to 414 is mainly noise generated in the amplifier, and increases in proportion to the electrode capacitance. Inertial force sensor 401 in the third embodiment can reduce this noise generated when signals from detection units 412 to 414 are amplified, and the noise level of inertial force sensor 401 can be reduced.
- the signal level of the detection unit disposed on a member that is not easily distorted is lowered. Therefore, in the conventional inertial force sensor 101, in order to make the signal level of each detection unit a certain level or more, the area of the detection unit arranged on a member that is difficult to cause distortion is increased, and the amount of charge obtained by the piezoelectric effect is increased. Configure to increase.
- the polyamic acid dissolves in an organic solvent and does not dissolve in an organic solvent when it becomes a polyimide, it is applied in a solution state in which an organic solvent containing a photosensitizer is bonded to the polyamic acid before pattern formation.
- the insulating layer 423 (polyimide) pattern can be formed at a desired position by drying (pre-baking) the solution and forming a desired pattern by an exposure / development process and then performing a heat treatment called a curing process. it can.
- FIG. 22 is a top view of inertial force sensor 501 in the fourth embodiment.
- Inertial force sensor 501 is an acceleration sensor that detects acceleration.
- an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined.
- the base 502, the central support beam portion 509, the beam portions 503a and 503b, and the weight 504 are formed using a non-piezoelectric material such as diamond, fused quartz, alumina, stainless steel, polymer, or GaAs.
- a non-piezoelectric material such as diamond, fused quartz, alumina, stainless steel, polymer, or GaAs.
- silicon for the above-described components, it is possible to form a very small inertial force sensor 501 by using a microfabrication technique, and to form it integrally with an integrated circuit (IC) constituting the circuit. It is also possible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Gyroscopes (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
図1は実施の形態1における慣性力センサ201の平面図である。慣性力センサ201は角速度を検出する慣性力センサである。図1において、互いに直交するX軸、Y軸、Z軸を定義する。さらに、X軸とY軸とを含むXY平面を定義する。慣性力センサ201は、基部202と、基部202に接続された梁部205と、梁部205に一端が支持されたアーム206、207、208、209と、アーム206、207、208、209それぞれに接続された錘210と、アーム206、207、208、209上の錘210側にそれぞれ設けられた駆動部211と、アーム206の梁部205(基部202)側に設けられた検出部212と、梁部205上に設けられた検出部213と、梁部205上に設けられた検出部214と、駆動部211や検出部212、213、214のそれぞれと電気的に接続される接続用電極215とを備えている。駆動部211はアーム206、207、208、209それぞれをXY平面と平行な方向に駆動し振動させる。検出部212は、慣性力センサ201に印加されたZ軸周りの角速度により発生する慣性力を検出する。検出部213は、慣性力センサ201に印加されたY軸周りの角速度により発生する慣性力を検出する。検出部214は、慣性力センサ201に印加されたX軸周りの角速度により発生する慣性力を検出する。慣性力センサ201は、駆動部211や検出部212、213、214の少なくとも一部を覆う層間絶縁層と、駆動部211や検出部212、213、214それぞれから引き出された配線とをさらに備える。それらの配線は層間絶縁層上に設けられている。接続用電極215はそれらの配線を介して駆動部211や検出部212、213、214のそれぞれと電気的に接続される。梁部205とアーム206~209は撓むことができる可撓部251を構成する。
図17は、実施の形態2における慣性力センサ301の上面図である。慣性力センサ301は加速度を検出する慣性力センサである。図17において、互いに直交するX軸、Y軸、Z軸を定義する。さらに、X軸とY軸とを含むXY平面を定義する。慣性力センサ301は、基部302と、錘304と、中央支持梁部309、および梁部303と、を備えている。中央支持梁部309は基部302と錘304とを連結する。中央支持梁部309と梁部303は撓んで変形できる可撓部351を構成する。梁部303の上面には、駆動部305と検出部306と層間絶縁層218と接続用電極308とが設けられている。層間絶縁層218は駆動部305と検出部306の上面に設けられている。層間絶縁層218の上面には、駆動部305及び検出部306を接続用電極308と電気的に接続する配線307が設けられている。
図18Aは実施の形態3における慣性力センサ401の平面図である。図18Bは図18Aに示す慣性力センサ401の線18B-18Bにおける断面図である。図19は図18Aに示す慣性力センサ401の線19-19における断面図である。図20は図18Aに示す慣性力センサ401の線20-20における断面図である。実施の形態3における慣性力センサ401は角速度を検出する角速度センサである。
C1=εr1×ε0×S1/dP …(式1)
接続用電極415bの容量C2は、絶縁層423がない領域R1の容量C2Aと絶縁層423がある領域R2の容量C2Bとを合成して得られた合成容量となる。
C2A=εr1×ε0×S2A/dP …(式2)
絶縁層423の比誘電率は圧電層421の比誘電率εr1に比較して無視できるほど小さい。したがって、絶縁層423がある領域R2の容量C2Bは、絶縁層423と圧電層421の膜厚の違いが多少あったとしても、絶縁層423で形成される容量値に近似できる。従って、容量C2Bは、絶縁層423の比誘電率εr2、領域R2の電極層の面積S2B(μm2)により、以下の式3で表すことができる。
C2B≒εr2×ε0×S2B/dP …(式3)
接続用電極415a、415bの面積が同じ(S1=S2A+S2B)である場合、接続用電極415aの容量C1と接続用電極415bの容量C2の差ΔCは、以下の式4で表される。
ΔC=C1-C2
=C1-(C2A+C2B)
=(εr1×ε0×S1/dP)-(εr1×ε0×S2A/dP+εr2×ε0×S2B/dP)
=(εr1-εr2)×ε0×S2B/dP …(式4)
以上のように、絶縁層423を電極層420、422間に介在させることにより、接続用電極415bの容量C2は接続用電極415aの容量C1に比較して小さくすることができる。また、絶縁層423を設ける領域R2の面積S2Bを適宜調整することで容量の差ΔCは任意に調整することが可能である。検出部412~414の容量は互いに異なる場合が多い。具体的には、検出部412~414が設けてられている位置での可撓部409の剛性がそれらの部分の形状に応じて異なる、すなわち、慣性力を受けた場合に生じる撓み(変位)が可撓部409の位置によって異なる。検出部412~414の感度を互いに等しくする、すなわち、同じ大きさの慣性力に対して発生する電荷量を検出部412~414で等しくするためには、検出部412~414を配する位置における可撓部409の剛性に応じて、検出部412~414の面積等の大きさを調整する必要がある。検出部412~414の大きさが異なることにより検出部412~414の容量が異なる。なお、検出部412~414で感度および容量が異なると、検出部412~414で検出される信号に位相ずれが生じ、検出回路におけるジッタノイズの増大を招く。あるいは、検波より前段の回路処理部において、前述の検出信号の位相ずれを是正する位相シフタを設ける必要が生じて回路の大型化を招く。実施の形態3における慣性力センサ401においては、検出部412~414の感度を等しくしたまま、接続用電極415aの容量C1と接続用電極415bの容量C2との差ΔCを任意に調整することが可能であるので、検出部412~414の容量の差を相殺することができる。結果、検出信号間の位相ずれに起因するジッタノイズの発生を抑制でき、慣性力センサ401のノイズレベルを低減することができる。あるいは、検出回路における移相シフタが不要となり、慣性力センサ401の小型化が達成できる。また更には、検出部412~414の容量を調整するにあたり、容量の最も小さな検出部に合わせるようにその他の検出部の容量を調整できるので、検出部412~414の容量の差を相殺しつつ、検出部412~414の容量を低減することができる。検出部412~414からの信号を増幅する際に生じるノイズは、主に増幅器で生じるノイズであり、電極容量に比例して大きくなる。実施の形態3における慣性力センサ401では、検出部412~414からの信号を増幅する際に生じるこのノイズを低減することができ、慣性力センサ401のノイズレベルを低減することができる。
図22は実施の形態4における慣性力センサ501の上面図である。慣性力センサ501は加速度を検出する加速度センサである。図22において、互いに直交するX軸、Y軸、Z軸を定義する。
202 基部
205 梁部
211 駆動部
212,213,214 検出部
215 接続用電極(第1の接続用電極、第2の接続用電極)
216 配線
217 配線
218 層間絶縁層(第1の層間絶縁層、第2の層間絶縁層、第3の層間絶縁層)
218a 層間絶縁層(第1の層間絶縁層)
218b 層間絶縁層(第2の層間絶縁層)
220 圧電層
227 上部電極層
228 下部電極層
231 金属層
251 可撓部
401 慣性力センサ
402 基部
409 可撓部
411 駆動部
412,413,414 検出部
415a 接続用電極
415b 接続用電極
420 下部電極層
421 圧電層
422 上部電極層
423 絶縁層
Claims (26)
- 基部と、
前記基部に設けられた第1の接続用電極と、
前記基部に支持された可撓部と、
前記可撓部の上面に設けられ、前記可撓部を励振する駆動部と、
前記可撓部の前記上面に設けられ、前記可撓部の変位を検知する第1の検出部と、
前記駆動部と前記第1の検出部とのうちの一方の上面に配された第1の層間絶縁層と、
前記第1の層間絶縁層の上面を経由して、前記駆動部と前記第1の検出部とのうちの他方を前記第1の接続用電極に電気的に接続する第1の配線と、
を備えた慣性力センサ。 - 前記駆動部と前記第1の検出部とのうちの前記一方は、前記可撓部に沿って前記駆動部と前記第1の検出部とのうちの前記他方と前記基部との間に位置する、請求項1に記載の慣性力センサ。
- 前記可撓部の前記上面に設けられ、前記可撓部の変位を検知する第2の検出部と、
前記第2の検出部の上面に配された第2の層間絶縁層と、
をさらに備え、
前記第1の配線は前記第2の層間絶縁層の上面を経由して前記第1の検出部と前記駆動部とのうちの前記他方を前記第1の接続用電極に電気的に接続する、請求項1に記載の慣性力センサ。 - 前記基部に設けられた第2の接続用電極と、
前記第2の層間絶縁層の前記上面を経由して、前記第1の検出部と前記駆動部とのうちの前記一方を前記第2の接続用電極に電気的に接続する第2の配線と、
をさらに備えた、請求項3に記載の慣性力センサ。 - 前記可撓部の前記上面に設けられ、前記可撓部の変位を検知する第3の検出部と、
前記第3の検出部の上面に配された第3の層間絶縁層と、
前記基部に設けられた第3の接続用電極と、
前記第3の層間絶縁層の前記上面を経由して、前記第2の検出部を前記第3の接続用電極に電気的に接続する第3の配線と、
をさらに備えた、請求項4に記載の慣性力センサ。 - 前記第1の配線は前記第1の層間絶縁層の前記上面と前記第2の層間絶縁層の前記上面と前記第3の層間絶縁層の前記上面とを経由して前記第1の検出部と前記駆動部とのうちの前記他方を前記第1の接続用電極に電気的に接続し、
前記第2の配線は前記第2の層間絶縁層の前記上面と前記第3の層間絶縁層の前記上面とを経由して前記第1の検出部と前記駆動部とのうちの前記一方を前記第2の接続用電極に電気的に接続する、請求項5に記載の慣性力センサ。 - 前記第1の層間絶縁層と前記第2の層間絶縁層と前記第3の層間絶縁層とは繋がっている、請求項5または6に記載の慣性力センサ。
- 前記第1の接続用電極と前記第2の接続用電極の少なくとも一方は、
第1の圧電層と、
前記第1の圧電層の一部を覆う絶縁層と、
前記絶縁層上に配された電極層と、
を有する、請求項4に記載の慣性力センサ。 - 前記第1の検出部と前記第2の検出部とは互いに大きさが異なる、請求項8に記載の慣性力センサ。
- 前記第1の検出部と前記第2の検出部のそれぞれは、
第2の圧電層と、
前記第2の圧電層上に配された電極層と、
を有する、請求項8に記載の慣性力センサ。 - 前記可撓部に設けられ、前記可撓部の変位を検出する第3の検出部と、
前記基部に設けられ、前記第3の検出部と電気的に接続された第3の接続用電極と、
をさらに備えた、請求項8に記載の慣性力センサ。 - 前記可撓部は、
梁部と、
前記梁部に接続されたアームと、
を有する、請求項8に記載の慣性力センサ。 - 前記基部に設けられた第2の接続用電極と、
前記第1の配線の上面に配された第3の層間絶縁層と、
前記第3の層間絶縁層の前記上面を経由して、前記第1の検出部と前記駆動部とのうちの前記一方を前記第2の接続用電極に電気的に接続する第2の配線と、
をさらに備えた、請求項3に記載の慣性力センサ。 - 前記第3の層間絶縁層内に設けられた金属層をさらに備えた、請求項13に記載の慣性力センサ。
- 前記金属層は基準電位に接続される、請求項14に記載の慣性力センサ。
- 前記第1の層間絶縁層には、前記第1の検出部と前記駆動部とのうちの前記一方を前記第1の層間絶縁層から露出させる孔が設けられている、請求項1に記載の慣性力センサ。
- 前記第2の層間絶縁層は前記第1の層間絶縁層に繋がっている、請求項3から16のうちのいずれか一項に記載の慣性力センサ。
- 前記駆動部と前記第1の検出部のそれぞれは、
前記可撓部の前記上面に設けられた下部電極と、
前記下部電極の上面に設けられた圧電層と、
前記圧電層の上面に設けられた上部電極と、
を有する、請求項1に記載の慣性力センサ。 - 前記圧電層の側面は前記第1の層間絶縁層に覆われている、請求項18に記載の慣性力センサ。
- 前記可撓部に接続された錘をさらに備えた、請求項1に記載の慣性力センサ。
- 前記錘上には前記第1の層間絶縁層が延びていない、請求項20に記載の慣性力センサ。
- 前記第1の層間絶縁層はAl2O3よりなる層を含む、請求項1に記載の慣性力センサ。
- 前記第1の層間絶縁層はALD法を用いて形成されている、請求項1に記載の慣性力センサ。
- 前記第1の層間絶縁層は、SiN、SiON、SiO2のいずれかからなる層を含む、請求項1に記載の慣性力センサ。
- 前記第1の層間絶縁層内に設けられた金属層をさらに備えた、請求項1に記載の慣性力センサ。
- 前記金属層は基準電位に接続される、請求項25に記載の慣性力センサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380012802.8A CN104185773A (zh) | 2012-03-09 | 2013-03-05 | 惯性力传感器 |
JP2014503480A JP6111434B2 (ja) | 2012-03-09 | 2013-03-05 | 慣性力センサ |
EP13757487.7A EP2824422B1 (en) | 2012-03-09 | 2013-03-05 | Inertial force sensor |
US14/383,960 US20150135833A1 (en) | 2012-03-09 | 2013-03-05 | Inertial force sensor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-052655 | 2012-03-09 | ||
JP2012052655 | 2012-03-09 | ||
JP2012-241566 | 2012-11-01 | ||
JP2012-241565 | 2012-11-01 | ||
JP2012241566 | 2012-11-01 | ||
JP2012241565 | 2012-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013132830A1 true WO2013132830A1 (ja) | 2013-09-12 |
Family
ID=49116325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001349 WO2013132830A1 (ja) | 2012-03-09 | 2013-03-05 | 慣性力センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150135833A1 (ja) |
EP (1) | EP2824422B1 (ja) |
JP (1) | JP6111434B2 (ja) |
CN (1) | CN104185773A (ja) |
WO (1) | WO2013132830A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016001160A (ja) * | 2014-06-12 | 2016-01-07 | 株式会社デンソー | 振動型角速度センサ |
JP2018013408A (ja) * | 2016-07-21 | 2018-01-25 | ソニー株式会社 | ジャイロセンサ及び電子機器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10845380B2 (en) * | 2015-12-17 | 2020-11-24 | Intel Corporation | Microelectronic devices for isolating drive and sense signals of sensing devices |
CN110308307B (zh) * | 2019-05-30 | 2021-08-10 | 北京控制工程研究所 | 一种静电力平衡式石英挠性加速度计的电极参数设计方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004069435A (ja) * | 2002-08-05 | 2004-03-04 | Denso Corp | 容量式半導体センサ |
JP2007240540A (ja) * | 2001-11-27 | 2007-09-20 | Matsushita Electric Ind Co Ltd | 薄膜微小機械式共振子ジャイロ |
JP2008026018A (ja) * | 2006-07-18 | 2008-02-07 | Nec Tokin Corp | 圧電単結晶振動子および圧電振動ジャイロ |
JP2010147285A (ja) * | 2008-12-19 | 2010-07-01 | Yamaha Corp | Mems、振動ジャイロスコープおよびmemsの製造方法 |
JP2010192585A (ja) * | 2009-02-17 | 2010-09-02 | Nec Tokin Corp | 圧電素子 |
WO2011093077A1 (ja) | 2010-01-29 | 2011-08-04 | パナソニック株式会社 | 角速度センサ |
JP2011259120A (ja) * | 2010-06-08 | 2011-12-22 | Seiko Epson Corp | 振動片、周波数調整方法、振動子、振動デバイス、および電子機器 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4124867B2 (ja) * | 1998-07-14 | 2008-07-23 | 松下電器産業株式会社 | 変換装置 |
US6301965B1 (en) * | 1999-12-14 | 2001-10-16 | Sandia Corporation | Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state |
JP4292668B2 (ja) * | 2000-01-31 | 2009-07-08 | 富士ゼロックス株式会社 | 発光サイリスタアレイ |
JP2005249645A (ja) * | 2004-03-05 | 2005-09-15 | Matsushita Electric Ind Co Ltd | 角速度センサおよびその製造方法 |
US20060087199A1 (en) * | 2004-10-22 | 2006-04-27 | Larson John D Iii | Piezoelectric isolating transformer |
JP5070813B2 (ja) * | 2006-11-17 | 2012-11-14 | パナソニック株式会社 | 電子部品およびその製造方法 |
WO2008129865A1 (ja) * | 2007-04-13 | 2008-10-30 | Panasonic Corporation | 慣性力センサ |
US7628071B2 (en) * | 2007-06-20 | 2009-12-08 | Headway Techologies, Inc. | Sensing unit and method of making same |
CN101809408A (zh) * | 2007-09-25 | 2010-08-18 | 罗姆股份有限公司 | 角速度检测装置和角速度检测装置的制造方法 |
WO2010047049A1 (ja) * | 2008-10-24 | 2010-04-29 | パナソニック株式会社 | 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US20100155883A1 (en) * | 2008-10-31 | 2010-06-24 | Trustees Of Boston University | Integrated mems and ic systems and related methods |
JP2010127763A (ja) * | 2008-11-27 | 2010-06-10 | Hitachi Ltd | 半導体力学量検出センサ及びそれを用いた制御装置 |
CN101769784B (zh) * | 2008-12-27 | 2012-06-20 | 鸿富锦精密工业(深圳)有限公司 | 感测器组合 |
JP5423572B2 (ja) * | 2010-05-07 | 2014-02-19 | セイコーエプソン株式会社 | 配線基板、圧電発振器、ジャイロセンサー、配線基板の製造方法 |
-
2013
- 2013-03-05 CN CN201380012802.8A patent/CN104185773A/zh active Pending
- 2013-03-05 WO PCT/JP2013/001349 patent/WO2013132830A1/ja active Application Filing
- 2013-03-05 US US14/383,960 patent/US20150135833A1/en not_active Abandoned
- 2013-03-05 JP JP2014503480A patent/JP6111434B2/ja not_active Expired - Fee Related
- 2013-03-05 EP EP13757487.7A patent/EP2824422B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007240540A (ja) * | 2001-11-27 | 2007-09-20 | Matsushita Electric Ind Co Ltd | 薄膜微小機械式共振子ジャイロ |
JP2004069435A (ja) * | 2002-08-05 | 2004-03-04 | Denso Corp | 容量式半導体センサ |
JP2008026018A (ja) * | 2006-07-18 | 2008-02-07 | Nec Tokin Corp | 圧電単結晶振動子および圧電振動ジャイロ |
JP2010147285A (ja) * | 2008-12-19 | 2010-07-01 | Yamaha Corp | Mems、振動ジャイロスコープおよびmemsの製造方法 |
JP2010192585A (ja) * | 2009-02-17 | 2010-09-02 | Nec Tokin Corp | 圧電素子 |
WO2011093077A1 (ja) | 2010-01-29 | 2011-08-04 | パナソニック株式会社 | 角速度センサ |
JP2011259120A (ja) * | 2010-06-08 | 2011-12-22 | Seiko Epson Corp | 振動片、周波数調整方法、振動子、振動デバイス、および電子機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2824422A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016001160A (ja) * | 2014-06-12 | 2016-01-07 | 株式会社デンソー | 振動型角速度センサ |
JP2018013408A (ja) * | 2016-07-21 | 2018-01-25 | ソニー株式会社 | ジャイロセンサ及び電子機器 |
WO2018016191A1 (ja) * | 2016-07-21 | 2018-01-25 | ソニー株式会社 | ジャイロセンサ及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
EP2824422A4 (en) | 2015-03-04 |
US20150135833A1 (en) | 2015-05-21 |
JPWO2013132830A1 (ja) | 2015-07-30 |
JP6111434B2 (ja) | 2017-04-12 |
EP2824422B1 (en) | 2019-07-24 |
EP2824422A1 (en) | 2015-01-14 |
CN104185773A (zh) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5682267B2 (ja) | 角速度センサ | |
US8236577B1 (en) | Foundry compatible process for manufacturing a magneto meter using lorentz force for integrated systems | |
US8402666B1 (en) | Magneto meter using lorentz force for integrated systems | |
US8833163B2 (en) | Angular velocity sensor | |
JP6572892B2 (ja) | ジャイロセンサおよび電子機器 | |
JP6111434B2 (ja) | 慣性力センサ | |
US20100064806A1 (en) | Angular velocity sensor element, angular velocity sensor, and electronic apparatus | |
JP3212804B2 (ja) | 角速度センサおよび角速度検出装置 | |
US8978469B2 (en) | Piezoelectric thin film structure and angular velocity detection apparatus | |
WO2010041422A1 (ja) | 角速度センサ素子およびこれを用いた角速度センサと角速度センサユニット及びその信号検出方法 | |
US9726492B2 (en) | Angular velocity detection element | |
US10072930B2 (en) | Angular velocity sensor | |
JP3262082B2 (ja) | 振動式角速度検出器 | |
JP2008233029A (ja) | 加速度センサおよび電子機器 | |
JPH10318758A (ja) | 圧電マイクロ角速度センサおよびその製造方法 | |
JP5421651B2 (ja) | 3軸角速度検出振動子、3軸角速度検出装置および3軸角速度検出システム | |
JP4362739B2 (ja) | 振動型角速度センサ | |
JP2010008128A (ja) | Mems | |
JP2017203692A (ja) | 物理量センサーの製造方法および振動素子の周波数調整方法 | |
WO2017204057A1 (ja) | ジャイロセンサ及び電子機器 | |
JP2012093154A (ja) | 3軸検出角速度センサ | |
JP2014173871A (ja) | 圧電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757487 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014503480 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14383960 Country of ref document: US Ref document number: 2013757487 Country of ref document: EP |