WO2010047049A1 - 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 - Google Patents
圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 Download PDFInfo
- Publication number
- WO2010047049A1 WO2010047049A1 PCT/JP2009/005121 JP2009005121W WO2010047049A1 WO 2010047049 A1 WO2010047049 A1 WO 2010047049A1 JP 2009005121 W JP2009005121 W JP 2009005121W WO 2010047049 A1 WO2010047049 A1 WO 2010047049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- piezoelectric
- tio
- electrode
- thin film
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 144
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 230000005611 electricity Effects 0.000 title abstract 2
- 239000010408 film Substances 0.000 claims abstract description 332
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 184
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 181
- 229910052788 barium Inorganic materials 0.000 claims abstract description 127
- 229910052751 metal Inorganic materials 0.000 claims abstract description 71
- 239000002184 metal Substances 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims description 121
- 238000010248 power generation Methods 0.000 claims description 52
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 50
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 19
- 239000000395 magnesium oxide Substances 0.000 claims description 19
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 19
- 238000004544 sputter deposition Methods 0.000 claims description 13
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 238000000691 measurement method Methods 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 21
- 230000001747 exhibiting effect Effects 0.000 abstract description 4
- 229910010252 TiO3 Inorganic materials 0.000 abstract 2
- 239000011734 sodium Substances 0.000 description 189
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 178
- 239000010410 layer Substances 0.000 description 154
- 230000000052 comparative effect Effects 0.000 description 45
- 239000013078 crystal Substances 0.000 description 27
- 239000010936 titanium Substances 0.000 description 25
- 238000002441 X-ray diffraction Methods 0.000 description 15
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 12
- 239000010931 gold Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000005530 etching Methods 0.000 description 9
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000012790 adhesive layer Substances 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910004121 SrRuO Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910002115 bismuth titanate Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000877463 Lanio Species 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- ZUJVZHIDQJPCHU-UHFFFAOYSA-N [Ba].[Bi] Chemical compound [Ba].[Bi] ZUJVZHIDQJPCHU-UHFFFAOYSA-N 0.000 description 1
- PILOURHZNVHRME-UHFFFAOYSA-N [Na].[Ba] Chemical compound [Na].[Ba] PILOURHZNVHRME-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/475—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5607—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/074—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
- H10N30/076—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- the present invention relates to a piezoelectric thin film and a manufacturing method thereof.
- the present invention also relates to an angular velocity sensor including a piezoelectric thin film, a method of measuring an angular velocity using the sensor, a piezoelectric power generation element including the piezoelectric thin film, and a power generation method using the element.
- PZT Lead zirconate titanate
- Pb Pb (Zr X Ti 1-X ) O 3 , 0 ⁇ x ⁇ 1
- PZT exhibits pyroelectricity and piezoelectricity based on ferroelectricity, but exhibits high piezoelectric performance, and its mechanical quality factor Qm can be easily controlled by adjusting the composition or adding elements. Widely applied to ultrasonic motors, filter circuits, oscillators, etc.
- PZT contains a large amount of lead as a constituent element.
- the elution of lead from discarded devices may cause serious damage to ecosystems and the environment, and restrictions on the use of lead are being promoted internationally. Cannot handle. For this reason, a ferroelectric material containing no lead is required.
- perovskite complex oxide [(Bi 0.5 ) composed of bismuth (Bi), sodium (Na), barium (Ba) and titanium (Ti). Na 0.5 ) 1-Y Ba Y ] TiO 3 .
- Japanese Patent Publication No. 4-60073 and T. Takenaka et al., Japanese Journal of Applied Physics, Vol. 30, No. 9B, (1991), pp. 2236-2239 See Japanese Patent Publication No. 4-60073 and T. Takenaka et al., Japanese Journal of Applied Physics, Vol. 30, No. 9B, (1991), pp. 2236-2239).
- JP-A-2007-266346 (especially paragraphs 0034, 0052 to 0054) and N. Scarisoreanu et al., Applied Surface Science, Vol.252, (2006), pp. 4553-4557 are oriented in a specific direction ( Bi, Na, Ba) Preparation of TiO 3 film has been attempted.
- Bi, Na, Ba polarization axes of the (Bi, Na, Ba) TiO 3 film according to the orientation
- 2007-266346 discloses that a (100) LaNiO 3 (LNO) film or SrRuO 3 (SRO) film having a surface orientation (100) is formed on an electrode, and (Bi, Na, Ba) TiO 3 is further formed thereon. It is described that the film can be oriented to (100) by forming the film. Scarisoreanu et al. Described (100) by forming a (Bi, Na, Ba) TiO 3 film on an MgO substrate oriented in the plane orientation (100) using pulsed laser deposition (PLD). It is described that a slightly oriented film is formed.
- LNO LaNiO 3
- SRO SrRuO 3
- Japanese Patent Laid-Open No. 10-182291 discloses a Bi 4 Ti 3 O 12 ferroelectric film by using a substrate on which a buffer layer is formed. It is described that the orientation of the film can be controlled (particularly paragraph 0020).
- the buffer layer of this publication preferably contains all or part of the elements constituting the ferroelectric film formed thereon.
- An object of the present invention is to provide a piezoelectric thin film including a lead-free ferroelectric material that does not contain lead and exhibiting a piezoelectric performance at the same level as PZT and a method for manufacturing the same.
- the present invention provides an angular velocity sensor and a piezoelectric power generation element including a ferroelectric material exhibiting the same level of piezoelectric performance as PZT while being lead-free, and a method for measuring an angular speed using the angular speed sensor and the piezoelectric power generation element are used.
- the purpose is to provide a power generation method.
- the inventors have introduced a (Bi, Na) TiO 3 film as an interface layer on a metal electrode film having a plane orientation (100), and (Bi, Na, Ba) TiO 3 as a piezoelectric layer on the film. It was found that by introducing a film, a (Bi, Na, Ba) TiO 3 film having high crystallinity and (001) orientation and high piezoelectric performance can be obtained.
- the piezoelectric thin film of the present invention includes a metal electrode film having a (100) plane orientation, a (Bi, Na) TiO 3 film, and a (Bi, Na, Ba) TiO 3 having a (001) plane orientation.
- the film has a stacked structure in which the films are stacked in this order.
- the method for producing a piezoelectric thin film of the present invention includes a step of forming a (Bi, Na) TiO 3 film on a surface of a metal electrode film having a (100) plane orientation by a sputtering method, and the (Bi, Na) on TiO 3 film, by sputtering, having a plane orientation of (001) (Bi, Na, Ba) to form a TiO 3 film, the said metal electrode film (Bi, Na) TiO 3 film and the ( A step of obtaining a piezoelectric thin film having a laminated structure in which Bi, Na, Ba) TiO 3 films are laminated in this order.
- the angular velocity sensor of the present invention includes a substrate having a vibration part, and a piezoelectric thin film bonded to the vibration part.
- the piezoelectric thin film includes a piezoelectric layer, first and second electrodes that sandwich the piezoelectric layer, and an interface layer that is sandwiched between the first electrode and the piezoelectric layer.
- the first electrode is made of a metal electrode film having a (100) plane orientation
- the interface layer is made of a (Bi, Na) TiO 3 film
- the piezoelectric layer has a (001) plane orientation. It consists of a (Bi, Na, Ba) TiO 3 film.
- One electrode selected from the first and second electrodes includes a drive electrode that applies a drive voltage for oscillating the vibration unit to the piezoelectric layer, and an angular velocity applied to the vibration unit that is oscillating. And an electrode group including a sense electrode for measuring the deformation that occurs.
- the angular velocity measuring method is an angular velocity measuring method using an angular velocity sensor, and the angular velocity sensor includes a substrate having a vibrating portion and a piezoelectric thin film bonded to the vibrating portion.
- the piezoelectric thin film includes a piezoelectric layer, first and second electrodes that sandwich the piezoelectric layer, and an interface layer that is sandwiched between the first electrode and the piezoelectric layer.
- the first electrode is made of a metal electrode film having a (100) plane orientation
- the interface layer is made of a (Bi, Na) TiO 3 film
- the piezoelectric layer has a (001) plane orientation. It consists of a (Bi, Na, Ba) TiO 3 film.
- One electrode selected from the first and second electrodes is constituted by an electrode group including a drive electrode and a sense electrode.
- a driving voltage is applied to the piezoelectric layer via the other electrode selected from the first and second electrodes and the driving electrode, thereby oscillating the vibrating part;
- Obtaining a value of the added angular velocity by measuring the deformation generated in the vibrating portion due to the angular velocity applied to the vibrating portion during oscillation through the other electrode and the sense electrode. .
- the piezoelectric power generating element of the present invention includes a substrate having a vibration part and a piezoelectric thin film bonded to the vibration part.
- the piezoelectric thin film includes a piezoelectric layer, first and second electrodes that sandwich the piezoelectric layer, and an interface layer that is sandwiched between the first electrode and the piezoelectric layer.
- the first electrode is made of a metal electrode film having a (100) plane orientation
- the interface layer is made of a (Bi, Na) TiO 3 film
- the piezoelectric layer has a (001) plane orientation. It consists of a (Bi, Na, Ba) TiO 3 film.
- the piezoelectric power generation element includes a substrate having a vibration part and a piezoelectric thin film bonded to the vibration part.
- the piezoelectric thin film includes a piezoelectric layer, first and second electrodes that sandwich the piezoelectric layer, and an interface layer that is sandwiched between the first electrode and the piezoelectric layer.
- the first electrode is made of a metal electrode film having a (100) plane orientation
- the interface layer is made of a (Bi, Na) TiO 3 film
- the piezoelectric layer has a (001) plane orientation. It consists of a (Bi, Na, Ba) TiO 3 film.
- the power generation method includes a step of obtaining electric power through the first and second electrodes by applying vibration to the vibration unit.
- a ferroelectric material non-lead (Bi, Na, Ba) provided with a piezoelectric layer made of a TiO 3, crystalline (Bi, Na, Ba) TiO 3 in the layer and A piezoelectric thin film having high (001) orientation and high piezoelectric performance at the same level as PZT can be obtained.
- an angular velocity sensor and a piezoelectric power generation element including a ferroelectric material exhibiting a high piezoelectric performance at the same level as PZT while being lead-free, and an angular velocity measurement method and a power generation method using these.
- Such an angular velocity sensor and a piezoelectric power generation element are excellent in angular velocity sensor sensitivity and power generation characteristics, respectively.
- An angular velocity measurement method and a power generation method using them are excellent in angular velocity measurement sensitivity and power generation efficiency, respectively.
- FIG. 1 is a cross-sectional view schematically showing an example of the piezoelectric thin film of the present invention.
- FIG. 2 is a perspective view schematically showing an example of the angular velocity sensor of the present invention.
- 3 is a cross-sectional view showing a cross section A of the angular velocity sensor shown in FIG.
- FIG. 4 is a perspective view schematically showing an example of the piezoelectric power generation element of the present invention.
- 5 is a cross-sectional view showing a cross section B of the piezoelectric power generation element shown in FIG.
- FIG. 6 is a diagram showing X-ray diffraction profiles of piezoelectric thin films produced as examples and comparative examples 1 to 7.
- FIG. 1 is a cross-sectional view schematically showing an example of the piezoelectric thin film of the present invention.
- FIG. 2 is a perspective view schematically showing an example of the angular velocity sensor of the present invention.
- 3 is a cross-sectional view showing a cross section A
- FIG. 7 is a diagram showing a PE hysteresis curve of a piezoelectric thin film manufactured as an example.
- FIG. 8 is a cross-sectional view schematically showing the structure of a piezoelectric thin film manufactured as Comparative Example 1.
- FIG. 9 is a cross-sectional view schematically showing the structure of a piezoelectric thin film produced as Comparative Examples 2-7.
- the piezoelectric thin film 1 shown in FIG. 1 includes a metal electrode film 12 having a (100) plane orientation, a (Bi, Na) TiO 3 film 13, and a (001) plane orientation (Bi, Na, Ba).
- a TiO 3 film 14 and a laminated structure 15 are laminated in this order.
- the laminated structure 15 is formed on the substrate 11.
- a (Bi, Na) TiO 3 film 13 is disposed so as to be in contact with the metal electrode film 12 having a (100) plane orientation, and (Bi, Na, Ba) TiO 3 is in contact with the film 13.
- the piezoelectric thin film 1 does not contain lead, but exhibits high piezoelectric performance at the same level as PZT.
- the fact that the metal electrode film 12 has a (100) plane orientation means that the (Bi, Na) TiO 3 film 13 formed on the metal electrode film 12 so as to be in contact with the electrode film 12 has high crystallinity and (001 ) Necessary for forming the (Bi, Na, Ba) TiO 3 film 14 having orientation.
- the material of the metal electrode film 12 is not particularly limited as long as the surface orientation of the surface of the electrode film 12 is (100).
- the metal electrode film 12 composed of two or more of these materials may be used.
- the metal electrode film 12 preferably has low electrical resistance and heat resistance. From this viewpoint, a metal electrode film made of platinum (Pt) is preferable.
- the metal electrode film 12 having a (100) plane orientation can be formed, for example, by selecting a base substrate in accordance with the metal electrode film 12 to be obtained and epitaxially growing the metal electrode film 12 on the surface of the substrate.
- Various thin film formation techniques such as sputtering can be applied to the epitaxial growth of the metal electrode film 12, and the thin film formation conditions may be the conditions under which the epitaxial growth of the metal electrode film 12 proceeds.
- the epitaxial growth of the metal electrode film 12 is mainly affected by the lattice constant and the thermal expansion coefficient of the base substrate.
- the base substrate is preferably a substrate having a NaCl-type crystal structure whose surface orientation is (001), such as a magnesium oxide (MgO) substrate.
- the base substrate is an oxide substrate having a perovskite structure such as SrTiO 3 , LaAlO 3 , or NdGaO 3 ; an oxide substrate having a corundum structure such as Al 2 O 3 ; an oxide having a spinel structure such as MgAl 2 O 4.
- An oxide substrate having a rutile structure such as TiO 2 ; an oxide substrate having a cubic crystal structure such as (La, Sr) (Al, Ta) O 3 , yttria stabilized zirconia (YSZ); There may be.
- the base substrate is a silicon (Si) substrate; a glass substrate; a ceramic substrate such as alumina; a metal substrate such as stainless steel; an oxide thin film having a surface orientation of (001) and a NaCl-type crystal structure. May be laminated and integrated.
- the metal electrode film 12 may be formed on the surface of the oxide thin film.
- the oxide thin film is, for example, an MgO thin film, a nickel oxide (NiO) thin film, or a cobalt oxide (CoO) thin film.
- the base substrate used for forming the metal electrode film 12 may be used as the substrate 11 as it is.
- the piezoelectric thin film of the present invention does not have to have a substrate.
- the base substrate used for forming the metal electrode film 12 is placed at an arbitrary time, for example, on the metal electrode film 12. After the (Bi, Na) TiO 3 film 13 and the (Bi, Na, Ba) TiO 3 film 14 are formed, they may be removed by a technique such as etching.
- a laminate of the metal electrode film 12, the (Bi, Na) TiO 3 film 13 and the (Bi, Na, Ba) TiO 3 film 14 from which the base substrate has been removed is disposed on another substrate 11, and the substrate 11 is mounted.
- the piezoelectric thin film 1 may be used.
- this laminated body is disposed on the substrate 11 so that the metal electrode film 12 is in contact with the substrate 11, the piezoelectric thin film 1 having the structure shown in FIG.
- the laminated body may be disposed on the substrate 11 so that the (Bi, Na, Ba) TiO 3 film 14 is in contact with the substrate 11.
- the (Bi, Na) TiO 3 film 13 with respect to the substrate 11 is arranged.
- the positional relationship between the (Bi, Na, Ba) TiO 3 film 14 is opposite to that of the piezoelectric thin film 1 shown in FIG.
- the substrate 11 is, for example, an MgO substrate.
- the piezoelectric thin film of the present invention may further include the substrate 11, and the laminated structure 15 may be formed on the substrate 11.
- the substrate 11 is, for example, an MgO substrate.
- the (Bi, Na) TiO 3 film 13 is a film made of (Bi, Na) TiO 3.
- the metal electrode film 12 and the (Bi, Na, Ba) TiO 3 film 14 are used. And an interface layer disposed so as to be in contact with both.
- the (Bi, Na) TiO 3 film 13 is a film necessary for forming the (Bi, Na, Ba) TiO 3 film 14 having high crystallinity and (001) orientation.
- the composition of the interface layer on which the highly crystalline and highly oriented piezoelectric layers are formed cannot be simply predicted from the lattice constants or the compositional similarity of both layers. That is, simply providing an interface layer having a lattice constant or composition similar to that of a piezoelectric layer does not provide a piezoelectric layer with high crystallinity and high orientation.
- a multicomponent composite oxide such as (Bi, Na, Ba) TiO 3 , a highly crystalline film and a highly oriented film are formed depending on the vapor pressure difference of each element (excluding oxygen) constituting the oxide. This is because it is generally difficult.
- the thickness of the (Bi, Na) TiO 3 film 13 is not particularly limited. A thickness of several lattice units (about 2 nm) or more is sufficient to obtain a (Bi, Na, Ba) TiO 3 film 14 having high crystallinity and (001) orientation.
- the (Bi, Na) TiO 3 film 13 has a perovskite crystal structure represented by the formula ABO 3 .
- Site A and site B in the perovskite structure have bivalent and tetravalent average valences depending on the arrangement of single or plural elements.
- site A is Bi and Na
- site B is Ti.
- the (Bi, Na) TiO 3 film 13 may contain a small amount of impurities. Impurities are typically Li and K that replace Na at site A and Zr that replaces Ti at site B. Impurities are, for example, Mn, Fe, Nb, and Ta. Depending on these types, the crystallinity of the (Bi, Na) TiO 3 film 13 is improved.
- the formation method of the (Bi, Na) TiO 3 film 13 is not particularly limited, and a known thin film formation method, for example, a sputtering method, a pulse laser deposition method (PLD method), a chemical vapor deposition method (CVD method), or a sol-gel method.
- the aerosol deposition method (AD method) can be applied.
- the (Bi, Na) TiO 3 film 13 is formed on the surface of the metal electrode film 12 having the (100) plane orientation by sputtering.
- the (Bi, Na) TiO 3 film 13 is epitaxially grown on the metal electrode film 12 having a (100) plane orientation, and its surface has a (001) plane orientation.
- the (Bi, Na, Ba) TiO 3 film 14 is a film made of (Bi, Na, Ba) TiO 3 , and its surface has a (001) plane orientation.
- the thickness of the (Bi, Na, Ba) TiO 3 film 14 is not particularly limited and is, for example, 0.5 to 10 ⁇ m. Even if the (Bi, Na, Ba) TiO 3 film 14 which is a piezoelectric layer is thin like this, since the film exhibits high piezoelectric performance, the piezoelectric thin film of the present invention can sufficiently withstand practical use.
- the (Bi, Na, Ba) TiO 3 film 14 has a perovskite crystal structure represented by the formula ABO 3 .
- Site A and site B in the perovskite structure have bivalent and tetravalent average valences depending on the arrangement of single or plural elements.
- site A is Bi, Na and Ba
- site B is Ti.
- the (Bi, Na, Ba) TiO 3 film 14 may contain a small amount of impurities. Impurities are typically Li and K that replace Na at site A and Sr and Ca that replace Ba. Moreover, it is Zr which substitutes Ti in the site B. Further, the impurities are, for example, Mn, Fe, Nb, and Ta. Depending on these types, the crystallinity of the (Bi, Na, Ba) TiO 3 film 14 is improved and the piezoelectric performance is improved.
- a method for forming the (Bi, Na, Ba) TiO 3 film 14 is not particularly limited, and a known thin film forming method, for example, a sputtering method, a PLD method, a CVD method, a sol-gel method, or an AD method can be applied.
- the (Bi, Na) Ba 3 TiO 3 film 14 is formed on the surface of the (Bi, Na) TiO 3 film 13 by sputtering.
- the (Bi, Na, Ba) TiO 3 film 14 is epitaxially grown on the (Bi, Na) TiO 3 film 13 and has a (001) plane orientation.
- the piezoelectric thin film of the present invention has an optional layer other than the substrate 11, the metal electrode film 12, the (Bi, Na) TiO 3 film 13 and the (Bi, Na, Ba) TiO 3 film 14 as necessary. It may be.
- a piezoelectric thin film can be formed, for example, by further adding a step of forming the arbitrary layer in the manufacturing method of the present invention.
- the arbitrary layer is, for example, an electrode (second electrode) that sandwiches the (Bi, Na) TiO 3 film 13 and the (Bi, Na, Ba) TiO 3 film 14 together with the metal electrode film 12.
- the electrode only needs to have conductivity, and may not be made of metal, for example.
- a (Bi, Na) TiO 3 film 13 is formed on the surface of the metal electrode film 12 having a (100) plane orientation by a sputtering method, and formed (Bi, Na).
- a (Bi, Na, Ba) TiO 3 film 14 having a (001) plane orientation is formed on the surface of the TiO 3 film 13 by sputtering, and the metal electrode film 12 and the (Bi, Na) TiO 3 film 13 are formed.
- the piezoelectric thin film 1 having the laminated structure 15 with the (Bi, Na, Ba) TiO 3 film 14 is obtained. In this way, the piezoelectric thin film 1 that exhibits the same high piezoelectric performance as PZT while containing no lead can be obtained.
- the (Bi, Na) TiO 3 film 13 may be formed on the surface of the metal electrode film 12 formed on the base substrate.
- the piezoelectric thin film 1 further including the substrate 11 and having the laminated structure 15 formed on the substrate 11 is obtained.
- a piezoelectric thin film in which a substrate is further provided and the laminated structure 15 is formed on the substrate may be formed by newly arranging the substrate after removing the base substrate. The newly disposed substrate may be disposed so as to be in contact with the metal electrode film 12 in the laminated structure 15 or may be disposed so as to be in contact with the (Bi, Na, Ba) TiO 3 film 14.
- Preferred base substrates and substrates are as described above.
- the (Bi, Na) TiO 3 film 13 and the (Bi, Na, Ba) TiO 3 film 14 to be formed are as described above.
- the method for manufacturing a piezoelectric thin film of the present invention may have an optional step other than the steps described above.
- the process is, for example, the sandwiching (Bi, Na, Ba) on TiO 3 film 14, together with the metal electrode film 12 (Bi, Na) TiO 3 film 13 and (Bi, Na, Ba) TiO 3 film 14 This is a step of forming two electrodes.
- FIGS. 3 is a cross-section A of the angular velocity sensor 21 shown in FIG.
- the angular velocity sensor 21 shown in FIGS. 2 and 3 is a so-called tuning fork-type angular velocity sensor, and is preferably used regardless of the application, such as a vehicle navigation device and a camera shake correction sensor for a digital still camera.
- the angular velocity sensor 21 shown in FIGS. 2 and 3 includes a substrate 100 having a vibration part 100b and a piezoelectric thin film 108 bonded to the vibration part 100b.
- the substrate 100 includes a fixed portion 100a and a pair of vibrating portions 100b extending from the fixed portion 100a in a predetermined direction.
- the direction in which the vibration unit 100b extends is the direction in which the rotation center axis L of the angular velocity detected by the angular velocity sensor 21 extends, in the example shown in FIG. 2, the Y direction.
- the fixed portion 100a and the pair of vibrating portions 100b have a tuning fork shape corresponding to the arm when viewed from the thickness direction of the substrate 100 (Z direction in FIG. 2), and the vibrating portion 100b is in the width direction. They extend parallel to each other in a state of being aligned in the (X direction in FIG. 2).
- the material of the substrate 100 is not particularly limited, and is, for example, silicon, glass, ceramics, or metal.
- the thickness of the substrate 100 may be 0.1 to 0.7 mm as long as the function as the angular velocity sensor 21 can be exhibited.
- the thickness of the fixed part 100a and the vibrating part 100b may be different.
- the piezoelectric thin film 108 is bonded to the vibration part 100 b by the adhesive layer 101.
- the piezoelectric thin film 108 includes a piezoelectric layer 103, a first electrode 105 and a second electrode 102, and an interface layer 104.
- the piezoelectric layer 103 is sandwiched between the first electrode 105 and the second electrode 102.
- the interface layer 104 is disposed between the first electrode 105 and the piezoelectric layer 103 so as to be in contact with both.
- the first electrode 105 is a metal electrode film having a (100) plane orientation
- the interface layer 104 is a (Bi, Na) TiO 3 film
- the piezoelectric layer 103 is a (Bi, Na, Ba) TiO 3 film. It is a membrane.
- the first electrode 105, the interface layer 104, and the piezoelectric layer 103 in the piezoelectric thin film 108 correspond to the above-described piezoelectric thin film 1 of the present invention.
- the piezoelectric thin film 108 has a structure in which a second electrode 102 is further added to the piezoelectric thin film 1.
- the first electrode 105 is used to measure the drive electrode 106 that applies a drive voltage for oscillating the vibration unit 100b to the piezoelectric layer 103 and the deformation generated in the vibration unit 100b due to the angular velocity applied to the vibration unit 100b that is oscillating.
- the sense electrode 107 is comprised of an electrode group. In other words, the first electrode 105 is patterned into an electrode group including the drive electrode 106 and the sense electrode 107.
- the patterning pattern of the first electrode 105 is not particularly limited as long as functions as a drive electrode and a sense electrode can be obtained.
- the oscillation direction of the vibration part 100b is usually the width direction (X direction in FIG. 2). In the example shown in FIGS. A pair is provided along the length direction 100b (Y direction in FIG. 2).
- only one drive electrode 106 may be disposed at one end in the width direction of the vibration unit 100b.
- the sense electrode 107 is provided so as to be able to measure the deformation generated in the vibration part 100b due to the angular velocity, and in the example shown in FIGS. It is provided along.
- a plurality of sense electrodes 107 may be provided on the vibration part 100b.
- the deformation of the vibration part 100b measured by the sense electrode 107 is usually a deflection in the thickness direction (Z direction in FIG. 2).
- one electrode selected from the first electrode and the second electrode may be constituted by an electrode group including a drive electrode and a sense electrode.
- the first electrode 105 may be the same as the metal electrode film 12 described above in the description of the piezoelectric thin film of the present invention.
- the first electrode 105 is, for example, a Pt electrode film.
- the second electrode 102 is not particularly limited as long as it has conductivity, and is, for example, a copper (Cu) electrode (electrode film).
- the Cu electrode is preferable because it has excellent adhesion to the piezoelectric layer 103.
- the second electrode is a Pt electrode (film) or a gold (Au) electrode (film) having an adhesion layer made of a conductive material having excellent adhesion to the piezoelectric layer 103, such as titanium (Ti), on the surface. Also good.
- Connection terminals 102a, 106a, and 107a are formed at the end of the second electrode 102, the end of the drive electrode 106, and the end of the sense electrode 107, respectively.
- the shape and position of each connection terminal are not particularly limited, and in the example shown in FIG.
- the material of the adhesive layer 101 is not particularly limited as long as the vibrating portion 100b of the substrate 100 and the piezoelectric thin film 108 can be stably bonded.
- an acrylic resin adhesive for example, an acrylic resin adhesive, an epoxy resin adhesive, a silicone adhesive , A polyimide-based adhesive.
- each layer in the angular velocity sensor of the present invention is as follows: the adhesive layer 101 is 0.2 to 1 ⁇ m, the second electrode 102 is 0.1 to 0.5 ⁇ m, the piezoelectric layer 103 is 0.5 to 5 ⁇ m, and the interface layer 104 is 0.05 to 0.5 ⁇ m, and the first electrode 105 is 0.1 to 0.5 ⁇ m.
- the piezoelectric layer 103, the interface layer 104, and the first electrode 105 are stacked in this order when viewed from the substrate 100 having the vibration part 100b.
- the order in which these layers are stacked may be reversed, that is, the first electrode, the interface layer, and the piezoelectric layer may be stacked in this order when viewed from the substrate having the vibrating portion.
- the piezoelectric thin film 108 is bonded to both the vibrating part 100b and the fixed part 100a of the substrate 100.
- the bonding state of the piezoelectric thin film 108 is not particularly limited as long as the piezoelectric thin film 108 can oscillate the vibration part 100b and the deformation generated in the vibration part 100b can be measured by the piezoelectric thin film 108.
- the piezoelectric thin film 108 may be bonded only to the vibration part 100b.
- the angular velocity sensor of the present invention may have a plurality of vibration units 100b (the examples shown in FIGS. 2 and 3 have a pair of vibration units 100b constituting a tuning fork arm). In this case, angular velocities with respect to a plurality of rotation center axes can be measured, and a biaxial or triaxial angular velocity sensor is obtained.
- the first electrode, the interface layer, and the piezoelectric layer are laminated in this order, and any layer or any member can be arbitrarily selected as long as the angular velocity can be measured by the sensor. You may have in place.
- the angular velocity sensor of the present invention can be manufactured, for example, as follows by applying the piezoelectric thin film manufacturing method of the present invention described above.
- a (Bi, Na, Ba) TiO 3 film and a second electrode are formed in this order.
- the base substrate is, for example, an MgO substrate.
- the metal electrode film is, for example, a Pt electrode film.
- a known thin film forming method can be applied to the formation of each layer. For example, each layer is formed by a sputtering method.
- the formed laminate is bonded to the substrate of the angular velocity sensor through the adhesive layer.
- the substrate is, for example, a Si substrate.
- the bonding may be performed so that the exposed layer on the opposite side of the base substrate in the stacked body (the second electrode in the formed stacked body) and the substrate are bonded.
- the base substrate is removed by a technique such as etching.
- the etching is, for example, wet etching using phosphoric acid, and this etching may be performed by heating to about 60 ° C.
- the first electrode exposed by removing the base substrate is patterned by fine processing to form a drive electrode and a sense electrode.
- the interface layer, the piezoelectric layer, and the second electrode are patterned by the same fine processing, and the vibrating portion is formed on the substrate.
- a known micromachining technique for a thin film, such as etching can be applied. In this way, the angular velocity sensor of the present invention can be manufactured.
- the angular velocity measuring method of the present invention oscillates the vibrating portion of the substrate by applying a driving voltage to the piezoelectric layer; the vibrating portion is driven by the angular velocity applied to the oscillating vibrating portion.
- the value of the added angular velocity is obtained by measuring the deformation that occurred in the method;
- the drive voltage is applied to the piezoelectric layer between the drive electrode and the electrode (the other electrode) that is not patterned as the drive electrode and the sense electrode among the first electrode and the second electrode. May be applied.
- the deformation generated in the vibrating part oscillating due to the angular velocity may be measured via the other electrode and the sense electrode.
- a drive voltage having a frequency that resonates with the natural vibration of the vibration part 100 b may be applied to the piezoelectric layer 103 via the second electrode 102 and the drive electrode 106.
- the piezoelectric layer 103 is deformed according to the waveform of the applied drive voltage, and the vibration unit 100b joined to the layer oscillates.
- the drive voltage can be applied, for example, by changing the potential of the drive electrode 106 while grounding the second electrode 102.
- the angular velocity sensor 21 has a pair of vibrating portions 100b that constitute the arm of a tuning fork.
- the positive and negative are mutually opposite to the drive electrode 106 provided in each of the pair of vibrating portions 100b. Apply reverse voltage.
- the pair of vibration parts 100b oscillate in modes that vibrate in opposite directions (modes that vibrate symmetrically with respect to the rotation center axis L shown in FIG. 2).
- the vibration part 100b oscillates in the width direction (X direction).
- the angular velocity can be measured by oscillating only one of the pair of vibrating parts 100b. However, for accurate measurement, both vibrating parts are vibrated in opposite directions. It is preferable to oscillate.
- each vibrating portion 100b bends in the thickness direction (Z direction) by Coriolis force.
- the pair of vibrating parts 100b oscillate in a mode in which they vibrate in opposite directions
- the vibrating parts 100b bend in the opposite directions by the same amount of change.
- the piezoelectric layer 103 bonded to the vibration part 100b also bends, and the Coriolis force generated according to the bending of the piezoelectric layer 103 between the second electrode 102 and the sense electrode 107, ie, the generated Coriolis force.
- a corresponding potential difference occurs.
- v is the speed in the oscillation direction of the vibrating part 100b during oscillation
- m is the mass of the vibrating part 100b.
- the angular velocity ⁇ can be calculated from the Coriolis force Fc.
- FIGS. 4 An example of the piezoelectric power generation element of the present invention is shown in FIGS. 4 is a cross section B of the piezoelectric power generating element 22 shown in FIG.
- the piezoelectric power generation element 22 is an element that converts mechanical vibration given from the outside into electric energy, and is a self-supporting power generator that generates power from various vibrations such as power vibration and running vibration of vehicles and machines, and vibration generated during walking. It is suitably used for a power supply device.
- 4 and 5 includes a substrate 200 having a vibration part 200b and a piezoelectric thin film 208 bonded to the vibration part 200b.
- the substrate 200 has a fixed portion 200a and a vibrating portion 200b made of a beam extending from the fixed portion 200a in a predetermined direction.
- the fixed part 200a and the vibrating part 200b do not necessarily have to be made of the same material, and the fixed parts 200a and 200b made of different materials may be joined.
- the material of the substrate 200 is not particularly limited, and is, for example, silicon, glass, ceramics, or metal.
- the thickness of the substrate 200 is not limited as long as the function as the piezoelectric power generation element 22 can be exhibited, and is, for example, 0.1 to 0.7 mm.
- the thicknesses of the fixed portion 200a and the vibrating portion 200b may be different, and the thickness of the vibrating portion 200b can be adjusted so that efficient power generation can be performed by changing the resonance frequency of the vibrating portion 200b.
- the weight load 206 for adjusting the resonance frequency of the vibration part 200b is joined to the vibration part 200b.
- the weight load 206 is, for example, a vapor deposition thin film of Ni.
- the material, shape, and mass of the weight load 206 and the position where the weight load 206 is joined in the vibration part 200b may be adjusted according to the resonance frequency of the vibration part 200b to be obtained.
- the weight load is not necessarily required in the piezoelectric power generation element of the present invention, and the weight load can be omitted if adjustment of the resonance frequency of the vibration part 200b is unnecessary.
- the piezoelectric thin film 208 is bonded to the vibration part 200b by the adhesive layer 201.
- the piezoelectric thin film 208 includes a piezoelectric layer 203, a first electrode 205 and a second electrode 202, and an interface layer 204.
- the piezoelectric layer 203 is sandwiched between the first electrode 205 and the second electrode 202.
- the interface layer 204 is disposed between the first electrode 205 and the piezoelectric layer 203 so as to be in contact with both.
- the first electrode 205 in the piezoelectric thin film 208 is a metal electrode film having a (100) plane orientation
- the interface layer 204 is a (Bi, Na) TiO 3 film
- the piezoelectric layer 203 is (Bi, Na). , Ba) TiO 3 film.
- the first electrode 205, the interface layer 204, and the piezoelectric layer 203 in the piezoelectric thin film 208 correspond to the above-described piezoelectric thin film 1 of the present invention.
- the piezoelectric thin film 208 has a structure in which a second electrode 202 is further added to the piezoelectric thin film 1.
- the first electrode 205 may be the same as the metal electrode film 12 described above in the description of the piezoelectric thin film of the present invention.
- the first electrode 205 is, for example, a Pt electrode film.
- the second electrode 202 is not particularly limited as long as it has conductivity, and is, for example, a Cu electrode (electrode film).
- a Cu electrode (electrode film) is preferable because of excellent adhesion to the piezoelectric layer 203.
- the second electrode may be a Pt electrode (film) or an Au electrode (film) having an adhesion layer made of a conductive material having excellent adhesion to the piezoelectric layer 203 such as Ti on the surface.
- a part of the second electrode 202 located on the fixed portion 200a is exposed and serves as a connection terminal 202a.
- the material of the adhesive layer 201 is not particularly limited as long as the vibration part 200b of the substrate 200 and the piezoelectric thin film 208 can be stably bonded.
- an acrylic resin adhesive for example, an acrylic resin adhesive, an epoxy resin adhesive, a silicone adhesive , A polyimide-based adhesive.
- each layer in the piezoelectric power generating element of the present invention is as follows: the adhesive layer 201 is 0.2 to 1 ⁇ m, the second electrode 202 is 0.1 to 0.5 ⁇ m, the piezoelectric layer 203 is 0.5 to 5 ⁇ m, and the interface The layer 204 is 0.05 to 0.5 ⁇ m, and the first electrode 205 is 0.1 to 0.5 ⁇ m.
- the piezoelectric layer 103, the interface layer 104, and the first electrode 105 are laminated in this order when viewed from the substrate 200 having the vibration part 200b.
- the order in which these layers are stacked may be reversed, that is, the first electrode, the interface layer, and the piezoelectric layer may be stacked in this order as viewed from the substrate having the vibrating portion.
- the piezoelectric thin film 208 is bonded to both the vibrating part 200b and the fixed part 200a of the substrate 200.
- the piezoelectric thin film 208 may be bonded only to the vibration part 200b.
- the piezoelectric power generation element of the present invention may have a plurality of vibration parts 200b. In this case, the amount of power to be generated can be increased. In addition, by changing the resonance frequency of each of the plurality of vibration parts, it is possible to cope with mechanical vibration composed of a wide frequency component.
- the first electrode, the interface layer, and the piezoelectric layer are laminated in this order.
- an arbitrary layer or an arbitrary member is attached to an arbitrary layer. You may have in place.
- the piezoelectric power generation element of the present invention can be manufactured, for example, as follows by applying the above-described method for manufacturing a piezoelectric thin film of the present invention.
- a (Bi, Na, Ba) TiO 3 film and a second electrode are formed in this order.
- the base substrate is, for example, an MgO substrate.
- the metal electrode film is, for example, a Pt electrode film.
- a known thin film forming method can be applied to the formation of each layer. For example, each layer is formed by a sputtering method.
- the formed laminate is bonded to the substrate of the piezoelectric power generation element via the adhesive layer.
- the substrate is, for example, a Si substrate.
- the bonding may be performed so that the exposed layer on the opposite side of the base substrate in the stacked body (the second electrode in the formed stacked body) and the substrate are bonded.
- the base substrate is removed by a technique such as etching.
- the etching is, for example, wet etching using phosphoric acid, and this etching may be performed by heating to about 60 ° C.
- the first electrode, the interface layer, the piezoelectric layer, and the second electrode exposed by removing the base substrate are patterned by fine processing to form, for example, the connection terminal 202a. Further, the substrate 200 is patterned by a method such as dry etching to form the fixing portions 200a and 200b. If adjustment of the resonance frequency of the vibration part 200b is necessary, the weight load 206 may be joined to the vibration part 200b. For microfabrication, a known micromachining technique for a thin film, such as etching, can be applied. A known method can be applied to join the weight load 206 to the vibration part 200b. In this way, the piezoelectric power generation element of the present invention can be manufactured.
- the power generation method using the piezoelectric power generation element of the present invention is a method of obtaining electric power through the first electrode and the second electrode by applying vibration to the element in the piezoelectric power generation element of the present invention described above. .
- the vibration part 200b When mechanical vibration is applied to the piezoelectric power generation element 22 from the outside, the vibration part 200b starts to vibrate up and down with respect to the fixed part 200a. As a result, an electromotive force is generated in the piezoelectric layer 203 due to the piezoelectric effect, and a potential difference is generated between the first electrode 205 and the second electrode 202 that sandwich the piezoelectric layer 203. The higher the piezoelectric performance of the piezoelectric layer 203, the greater the potential difference generated between the first and second electrodes, and the power generation characteristics of the element 22 are improved. In particular, when the resonance frequency of the vibration part 200b is close to the frequency of mechanical vibration applied to the element from the outside, the amplitude of the vibration part 200b is increased to improve power generation characteristics. It is preferable to adjust so that the resonance frequency is close to the frequency of mechanical vibration applied to the element from the outside.
- Example In the example, a piezoelectric thin film having the structure shown in FIG. 1 was produced. The production procedure is shown below.
- a 250-nm-thick Pt electrode film was formed by RF magnetron sputtering on the surface of an MgO single crystal substrate having a surface orientation of (100).
- the Pt electrode film was formed using metal Pt as a target under an argon (Ar) gas atmosphere under film forming conditions with an RF output of 15 W and a substrate temperature of 400 ° C.
- a 200 nm-thick (Bi 0.5 Na 0.5 ) TiO 3 film was formed as an interface layer on the surface of the formed Pt electrode film by RF magnetron sputtering.
- the film formation was performed under the conditions of an RF output of 170 W and a substrate temperature of 650 ° C.
- RF magnetron sputtering is used to form a piezoelectric layer of [(Bi 0.5 Na 0.5 ) TiO 3 ] 0.93- [BaTiO 3 ] 0.07 as a piezoelectric layer.
- a film was formed, and a piezoelectric thin film in which an MgO substrate, a Pt electrode film, a (Bi, Na) TiO 3 film and a (Bi, Na, Ba) TiO 3 film were laminated in this order was obtained.
- the [(Bi 0.5 Na 0.5 ) TiO 3 ] 0.93- [BaTiO 3 ] 0.07 film ((Bi, Na, Ba) TiO 3 film) formed was evaluated for crystal structure by X-ray diffraction.
- the result is shown in FIG.
- X-ray diffraction measurement was performed by injecting X-rays from the film side in a state where the film was disposed on the interface layer, the Pt electrode film, and the MgO substrate.
- the X-ray diffraction measurement method is the same in the following comparative examples.
- the half-value width of the reflection peak derived from the (Bi, Na, Ba) TiO 3 film in the obtained X-ray diffraction profile was measured by rocking curve measurement (the diffraction angle 2 ⁇ was fixed to the diffraction angle of the target reflection peak). And the half-width was as small as 0.20 ° and the crystallinity of (Bi, Na, Ba) TiO 3 in the film was extremely high. It was done.
- the method for measuring the half-value width of the reflection peak is the same in the following comparative examples.
- an Au electrode film having a film thickness of 100 ⁇ m is formed by vapor deposition on the surface of the formed (Bi, Na, Ba) TiO 3 film, and a Pt electrode film included in the piezoelectric thin film and a newly formed Au electrode film Were used to evaluate the ferroelectric properties and piezoelectric performance of the fabricated piezoelectric thin films.
- FIG. 7 shows a PE hysteresis curve of the fabricated piezoelectric thin film. As shown in FIG. 7, it was confirmed that a good ferroelectric characteristic was exhibited as the applied voltage to the piezoelectric layer through the Pt electrode film and the Au electrode film increased.
- the piezoelectric performance of the piezoelectric thin film is determined by measuring the displacement of the cantilever when a potential difference is applied between the Pt electrode film and the Au electrode film by cutting the produced piezoelectric thin film into a cantilever shape with a 2 mm width including the Au electrode film Evaluation was performed by measuring with a laser displacement meter and converting the measured displacement into a piezoelectric constant d 31 .
- d 31 of the produced piezoelectric thin film was ⁇ 146 pC / N.
- the evaluation method of the piezoelectric constant d 31 is the same in the following comparative examples.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the half width of the reflection peak in the (001) direction was 0.86 °, which was much larger than 0.20 ° in the example. This means that the crystallinity of the (Bi, Na, Ba) TiO 3 film in Comparative Example 1 is inferior to the crystallinity of the (Bi, Na, Ba) TiO 3 film in the example.
- an Au electrode film having a film thickness of 100 ⁇ m is formed by vapor deposition on the surface of the formed (Bi, Na, Ba) TiO 3 film, and a Pt electrode film included in the piezoelectric thin film and a newly formed Au electrode film.
- the leakage current in the piezoelectric thin film is very large, making it difficult to measure the PE hysteresis curve.
- the estimated piezoelectric constant d 31 was about ⁇ 44 pC / N.
- Comparative Examples 2 to 7 are the MgO substrate 11, the Pt electrode film 12, the interface layer 41, and the piezoelectric layer as shown in FIG. 9 in the same manner as the example except that the composition of the interface layer was changed ( A piezoelectric thin film 43 in which Bi, Na, Ba) TiO 3 films 42 were laminated in this order was produced.
- TiO 2 titanium oxide
- Ba (Bi, Na, Ba) TiO 3 film
- a piezoelectric thin film was produced in the same manner as in the example.
- the film formation was performed at a temperature of 650 ° C.
- the thickness of the TiO 2 film was 200 nm.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the reflection peak intensity derived from the (Bi, Na, Ba) TiO 3 film oriented in the plane orientation (001) is almost zero, and the other in the (Bi, Na, Ba) TiO 3 film. No reflection peak due to the crystalline phase was observed.
- the crystal state of the (Bi, Na, Ba) TiO 3 film of Comparative Example 2 is considered to be a random orientation state.
- a bismuth titanate (Bi 4 Ti 3 O 12 ) film is formed on the surface of the Pt electrode film as an interface layer, and (Bi, Na, Ba) TiO 2 is formed as a piezoelectric layer on the surface of the Bi 4 Ti 3 O 12 film.
- a piezoelectric thin film was produced in the same manner as in the example except that three films were formed.
- the film forming conditions were as follows: RF output 170 W, substrate temperature 650 ° C.
- the film thickness of the Bi 4 Ti 3 O 12 film was 200 nm.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the reflection peak intensity derived from the (Bi, Na, Ba) TiO 3 film oriented in the plane orientation (001) is very weak as 111 cps, and the other in the (Bi, Na, Ba) TiO 3 film. No reflection peak due to the crystalline phase was observed.
- the crystal state of the (Bi, Na, Ba) TiO 3 film of Comparative Example 3 is considered to be a random orientation state.
- a sodium titanate (Na 2 TiO 3 ) film is formed as an interface layer on the surface of the Pt electrode film, and a (Bi, Na, Ba) TiO 3 film is formed as a piezoelectric layer on the surface of the Na 2 TiO 3 film.
- a piezoelectric thin film was produced in the same manner as in the example except that.
- the deposition was performed under the conditions of an output of 170 W and a substrate temperature of 650 ° C.
- the film thickness of the Na 2 TiO 3 film was 200 nm.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the reflection peak intensity derived from the (Bi, Na, Ba) TiO 3 film oriented in the plane orientation (001) was very weak at 253 cps.
- reflection peaks due to other crystal phases in the (Bi, Na, Ba) TiO 3 film were also observed, but the intensity was very weak.
- the crystal state of the (Bi, Na, Ba) TiO 3 film of Comparative Example 4 is considered to be a random orientation state.
- a barium titanate (BaTiO 3 ) film is formed on the surface of the Pt electrode film as an interface layer, and a (Bi, Na, Ba) TiO 3 film is formed as a piezoelectric layer on the surface of the BaTiO 3 film.
- a piezoelectric thin film was produced in the same manner as in the example.
- the film thickness of the BaTiO 3 film was 200 nm.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the reflection peak intensity derived from the (Bi, Na, Ba) TiO 3 film oriented in the (001) direction is 3,261 cps, and the other in the (Bi, Na, Ba) TiO 3 film. No reflection peak due to the crystalline phase was observed.
- the crystal state of the (Bi, Na, Ba) TiO 3 film of Comparative Example 5 is considered to be in a substantially random orientation state.
- a bismuth barium titanate (Bi 4 Ti 3 O 12 —BaTiO 3 ) film is formed on the surface of the Pt electrode film, and on the surface of this Bi 4 Ti 3 O 12 —BaTiO 3 film, a piezoelectric layer ( A piezoelectric thin film was produced in the same manner as in the example except that the Bi, Na, Ba) TiO 3 film was formed.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- a barium sodium titanate (Na 2 TiO 3 —BaTiO 3 ) film is formed on the surface of the Pt electrode film, and on the surface of this Na 2 TiO 3 —BaTiO 3 film, (Bi, Na, Ba)
- a piezoelectric thin film was produced in the same manner as in Example except that a TiO 3 film was formed.
- the Na 2 TiO 3 —BaTiO 3 film is formed by using RF magnetron sputtering with Na 2 TiO 3 —BaTiO 3 synthesized from sodium titanate (Na 2 TiO 3 ) and barium titanate (BaTiO 3 ) as targets.
- the film thickness of the Na 2 TiO 3 —BaTiO 3 film was 200 nm.
- FIG. 6 shows the result of the crystal structure evaluation by X-ray diffraction performed on the formed (Bi, Na, Ba) TiO 3 film.
- the reflection peak intensity derived from the (Bi, Na, Ba) TiO 3 film oriented in the plane orientation (001) is 5,600 cps, and in the (Bi, Na, Ba) TiO 3 film. No reflection peak due to other crystal phases was observed.
- the crystal state of the (Bi, Na, Ba) TiO 3 film of Comparative Example 7 is considered to be in a substantially random orientation state.
- the piezoelectric layer composed of the (Bi, Na, Ba) TiO 3 film strongly oriented in the plane orientation (001). Formed.
- the interface layer other than the (Bi, Na) TiO 3 film is used as in Comparative Examples 2 to 7, the (Bi, Na, Ba) is used rather than the case where the interface layer is not provided as in Comparative Example 1.
- the crystallinity and orientation of the TiO 3 film decreased. That is, it was confirmed that the crystallinity and orientation of the piezoelectric layer could not necessarily be improved by providing an interface layer containing a part of the metal element constituting the piezoelectric layer.
- the piezoelectric constant d 31 was as large as ⁇ 146 pC / N, and although it was a piezoelectric layer containing no lead, high piezoelectric performance equivalent to PZT could be realized. It is reported that the piezoelectric constant d 31 of PZT is approximately ⁇ 100 pC / N ( ⁇ 100 pm / V) (“Eiji Fujii et al., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54). , No.12 (2007) pp.2431-2438 ").
- Japanese Unexamined Patent Application Publication No. 2007-266346 discloses a piezoelectric layer made of a (Bi, Na, Ba) TiO 3 film.
- a buffer layer made of an oxide between the ferroelectric thin film and the substrate.
- it is preferable that all or part of the elements constituting the ferroelectric thin film formed thereon is included. From this description, it can be seen that an oxide of one or more metals selected from Bi, Na, Ba and Ti is preferable as the buffer layer for forming the (Bi, Na, Ba) TiO 3 film. .
- one kind of metal oxide (Comparative Example 2: TiO 2 ) has a crystal orientation of the obtained (Bi, Na, Ba) TiO 3 film. Sex is almost zero. Even with two kinds of metal oxides (Comparative Examples 3 to 5), the crystal orientation of the obtained (Bi, Na, Ba) TiO 3 film is low. Even in the case of oxides of three kinds of metals, when the metal is a combination of Bi, Ba and Ti (Comparative Example 6) and a combination of Na, Ba and Ti (Comparative Example 7), (Bi, The crystal orientation of the Na, Ba) TiO 3 film is low.
- the piezoelectric thin film of the present invention has very high crystallinity and (001) orientation in the (Bi, Na, Ba) TiO 3 piezoelectric layer formed on the (Bi, Na) TiO 3 interface layer, and high strength. Demonstrate dielectric properties and piezoelectric performance.
- the piezoelectric thin film of the present invention is useful as a material that replaces the conventional lead-based oxide ferroelectric, and can be suitably used in fields where conventional piezoelectric thin films have been used, such as pyroelectric sensors and piezoelectric devices. .
- One example is the angular velocity sensor of the present invention and the piezoelectric power generation element of the present invention.
- the angular velocity sensor of the present invention does not include a lead-containing ferroelectric material such as PZT, the angular velocity sensor has high sensor sensitivity. Excellent.
- the piezoelectric power generation element of the present invention has excellent power generation characteristics even though it does not contain a lead-containing ferroelectric material such as PZT, and the power generation method of the present invention using this piezoelectric power generation element includes: Excellent power generation efficiency.
- Such an angular velocity sensor and piezoelectric power generation element, and an angular velocity measurement method and a power generation method can be widely applied to various fields and applications.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Remote Sensing (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Gyroscopes (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明の圧電体薄膜の一例を図1に示す。図1に示す圧電体薄膜1は、(100)の面方位を有する金属電極膜12と、(Bi,Na)TiO3膜13と、(001)の面方位を有する(Bi,Na,Ba)TiO3膜14とがこの順に積層された積層構造15を有する。積層構造15は、基板11上に形成されている。積層構造15では、(100)の面方位を有する金属電極膜12に接するように(Bi,Na)TiO3膜13が配置され、当該膜13に接するように(Bi,Na,Ba)TiO3膜14が配置されるが、このような(Bi,Na,Ba)TiO3膜14の結晶性および(001)配向性は非常に高い。これにより圧電体薄膜1は、鉛を含有しないながらも、PZTと同レベルの高い圧電性能を示す。
本発明の角速度センサの一例を図2、3に示す。図3は、図2に示す角速度センサ21の断面Aである。図2、3に示す角速度センサ21は、いわゆる音叉型角速度センサであり、車両用ナビゲーション装置、デジタルスチルカメラの手ぶれ補正センサなど、用途を問わず、好適に使用される。
本発明の角速度の測定方法は、上述した本発明の角速度センサにおいて、駆動電圧を圧電体層に印加することにより、基板の振動部を発振させ;発振中の振動部に加わった角速度によって振動部に生じた変形を測定することで加わった角速度の値を得る;方法である。圧電体層への駆動電圧の印加は、第1の電極および第2の電極のうち、駆動電極およびセンス電極にパターン化されていない電極(他方の電極)と、駆動電極との間に駆動電圧を印加して行えばよい。角速度によって発振中の振動部に生じた変形は、上記他方の電極とセンス電極とを介して測定すればよい。
Fc=2mvω
本発明の圧電発電素子の一例を図4、5に示す。図4は、図3に示す圧電発電素子22の断面Bである。圧電発電素子22は、外部から与えられた機械的振動を電気エネルギーに変換する素子であり、車両および機械の動力振動および走行振動ならびに歩行時に生じる振動など、種々の振動から発電を行う自立的な電源装置に好適に使用される。
本発明の圧電発電素子を用いた発電方法は、上述した本発明の圧電発電素子において、当該素子に振動を与えることにより、第1の電極および第2の電極を介して電力を得る方法である。
実施例では、図1に示す構造を有する圧電体薄膜を作製した。作製手順を以下に示す。
界面層である(Bi,Na)TiO3膜を形成しなかった以外は、実施例と同様にして、図8に示すようなMgO基板11、Pt電極膜12および圧電体層である(Bi,Na,Ba)TiO3膜31がこの順に積層された圧電体薄膜32を作製した。
比較例2~7では、界面層の組成を変化させた以外は、実施例と同様にして、図9に示すようなMgO基板11、Pt電極膜12、界面層41および圧電体層である(Bi,Na,Ba)TiO3膜42がこの順に積層された圧電体薄膜43を作製した。
界面層として酸化チタン(TiO2)膜をPt電極膜の表面に形成するとともに、このTiO2膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。TiO2膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとしてTiO2を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。TiO2膜の膜厚は200nmとした。
界面層としてチタン酸ビスマス(Bi4Ti3O12)膜をPt電極膜の表面に形成するとともに、このBi4Ti3O12膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。Bi4Ti3O12膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとしてBi4Ti3O12を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。Bi4Ti3O12膜の膜厚は200nmとした。
界面層としてチタン酸ナトリウム(Na2TiO3)膜をPt電極膜の表面に形成するとともに、このNa2TiO3膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。Na2TiO3膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとしてNa2TiO3を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。Na2TiO3膜の膜厚は200nmとした。
界面層としてチタン酸バリウム(BaTiO3)膜をPt電極膜の表面に形成するとともに、このBaTiO3膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。BaTiO3膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとしてBaTiO3を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。BaTiO3膜の膜厚は200nmとした。
界面層としてチタン酸ビスマスバリウム(Bi4Ti3O12-BaTiO3)膜をPt電極膜の表面に形成するとともに、このBi4Ti3O12-BaTiO3膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。Bi4Ti3O12-BaTiO3膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとして、チタン酸ビスマス(Bi4Ti3O12)とチタン酸バリウム(BaTiO3)とから合成したBi4Ti3O12-BaTiO3を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。Bi4Ti3O12-BaTiO3膜の膜厚は200nmとした。
界面層としてチタン酸バリウムナトリウム(Na2TiO3-BaTiO3)膜をPt電極膜の表面に形成するとともに、このNa2TiO3-BaTiO3膜の表面に、圧電体層として(Bi,Na,Ba)TiO3膜を形成した以外は、実施例と同様にして、圧電体薄膜を作製した。Na2TiO3-BaTiO3膜の形成は、RFマグネトロンスパッタリングにより、ターゲットとして、チタン酸ナトリウム(Na2TiO3)とチタン酸バリウム(BaTiO3)とから合成したNa2TiO3-BaTiO3を用い、Arと酸素との混合ガス(流量比にしてAr:O2=50:50)雰囲気下にて、RF出力170W、基板温度650℃の成膜条件で行った。Na2TiO3-BaTiO3膜の膜厚は200nmとした。
Claims (16)
- (100)の面方位を有する金属電極膜と、(Bi,Na)TiO3膜と、(001)の面方位を有する(Bi,Na,Ba)TiO3膜とが、この順に積層された積層構造を有する圧電体薄膜。
- 前記金属電極膜が白金(Pt)からなる請求項1に記載の圧電体薄膜。
- 基板をさらに備え、
前記金属電極膜が前記基板上に形成されている請求項1に記載の圧電体薄膜。 - 前記基板が、酸化マグネシウム(MgO)からなる請求項3に記載の圧電体薄膜。
- (100)の面方位を有する金属電極膜の表面に、スパッタリング法により、(Bi,Na)TiO3膜を形成する工程、および
前記(Bi,Na)TiO3膜上に、スパッタリング法により、(001)の面方位を有する(Bi,Na,Ba)TiO3膜を形成して、前記金属電極膜と、前記(Bi,Na)TiO3膜と、前記(Bi,Na,Ba)TiO3膜とが、この順に積層された積層構造を有する圧電体薄膜を得る工程、
を包含する、圧電体薄膜の製造方法。 - 前記金属電極膜が白金(Pt)からなる請求項5に記載の圧電体薄膜の製造方法。
- 前記金属電極膜が基板上に形成されている請求項5に記載の圧電体薄膜の製造方法。
- 前記基板が、酸化マグネシウム(MgO)からなる請求項7に記載の圧電体薄膜の製造方法。
- 振動部を有する基板と、前記振動部に接合された圧電体薄膜とを備え、
前記圧電体薄膜は、圧電体層と、前記圧電体層を挟持する第1および第2の電極と、前記第1の電極と前記圧電体層との間に挟まれた界面層と、を備え、
前記第1の電極は、(100)の面方位を有する金属電極膜からなり、
前記界面層は(Bi,Na)TiO3膜からなり、
前記圧電体層は、(001)の面方位を有する(Bi,Na,Ba)TiO3膜からなり、
前記第1および第2の電極から選ばれる一方の電極が、前記振動部を発振させる駆動電圧を前記圧電体層に印加する駆動電極と、発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を測定するためのセンス電極とを含む電極群により構成されている角速度センサ。 - 前記金属電極膜が白金(Pt)からなる請求項9に記載の角速度センサ。
- 角速度センサによる角速度の測定方法であって、
前記角速度センサは、振動部を有する基板と、前記振動部に接合された圧電体薄膜とを備え、
前記圧電体薄膜は、圧電体層と、前記圧電体層を挟持する第1および第2の電極と、前記第1の電極と前記圧電体層との間に挟まれた界面層と、を備え、
前記第1の電極は、(100)の面方位を有する金属電極膜からなり、
前記界面層は(Bi,Na)TiO3膜からなり、
前記圧電体層は、(001)の面方位を有する(Bi,Na,Ba)TiO3膜からなり、
前記第1および第2の電極から選ばれる一方の電極が、駆動電極とセンス電極とを含む電極群により構成されており、
前記測定方法は、
駆動電圧を、前記第1および第2の電極から選ばれる他方の電極と前記駆動電極とを介して前記圧電体層に印加することにより、前記振動部を発振させる工程、および
発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を、前記他方の電極と前記センス電極とを介して測定することで前記加わった角速度の値を得る工程、
を包含する、角速度センサによる角速度の測定方法。 - 前記金属電極膜が白金(Pt)からなる請求項11に記載の角速度センサによる角速度の測定方法。
- 振動部を有する基板と、前記振動部に接合された圧電体薄膜とを備え、
前記圧電体薄膜は、圧電体層と、前記圧電体層を挟持する第1および第2の電極と、前記第1の電極と前記圧電体層との間に挟まれた界面層と、を備え、
前記第1の電極は、(100)の面方位を有する金属電極膜からなり、
前記界面層は(Bi,Na)TiO3膜からなり、
前記圧電体層は、(001)の面方位を有する(Bi,Na,Ba)TiO3膜からなる圧電発電素子。 - 前記金属電極膜が白金(Pt)からなる請求項13に記載の圧電発電素子。
- 圧電発電素子を用いた発電方法であって、
前記圧電発電素子は、振動部を有する基板と、前記振動部に接合された圧電体薄膜とを備え、
前記圧電体薄膜は、圧電体層と、前記圧電体層を挟持する第1および第2の電極と、前記第1の電極と前記圧電体層との間に挟まれた界面層と、を備え、
前記第1の電極は、(100)の面方位を有する金属電極膜からなり、
前記界面層は(Bi,Na)TiO3膜からなり、
前記圧電体層は、(001)の面方位を有する(Bi,Na,Ba)TiO3膜からなり、
前記発電方法は、
前記振動部に振動を与えることにより、前記第1および第2の電極を介して電力を得る工程を包含する、圧電発電素子を用いた発電方法。 - 前記金属電極膜が白金(Pt)からなる請求項15に記載の圧電発電素子を用いた発電方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980110747XA CN101981718B (zh) | 2008-10-24 | 2009-10-02 | 压电薄膜及其制造方法、角速度传感器和角速度的测定方法、压电发电元件和发电方法 |
JP2009548541A JP4455678B1 (ja) | 2008-10-24 | 2009-10-02 | 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US12/755,180 US7870787B2 (en) | 2008-10-24 | 2010-04-06 | Piezoelectric thin film and method of manufacturing the same, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US12/963,223 US8176781B2 (en) | 2008-10-24 | 2010-12-08 | Multilayer piezoelectric thin film and method of manufacturing the same, angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008273795 | 2008-10-24 | ||
JP2008-273795 | 2008-10-24 | ||
JP2008-288432 | 2008-11-11 | ||
JP2008-288431 | 2008-11-11 | ||
JP2008288432 | 2008-11-11 | ||
JP2008288431 | 2008-11-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/755,180 Continuation US7870787B2 (en) | 2008-10-24 | 2010-04-06 | Piezoelectric thin film and method of manufacturing the same, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047049A1 true WO2010047049A1 (ja) | 2010-04-29 |
Family
ID=42119105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005121 WO2010047049A1 (ja) | 2008-10-24 | 2009-10-02 | 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7870787B2 (ja) |
JP (1) | JP4455678B1 (ja) |
CN (1) | CN101981718B (ja) |
WO (1) | WO2010047049A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011158491A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2011158492A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2011158490A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2012001942A1 (ja) * | 2010-06-30 | 2012-01-05 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2012026107A1 (ja) * | 2010-08-27 | 2012-03-01 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2012104945A1 (ja) * | 2011-02-03 | 2012-08-09 | パナソニック株式会社 | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2012140811A1 (ja) * | 2011-04-14 | 2012-10-18 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 |
US9000655B2 (en) | 2012-02-03 | 2015-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US8998390B2 (en) | 2012-03-06 | 2015-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US9082978B2 (en) | 2012-08-03 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film and method of manufacturing the piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US9082977B1 (en) | 2014-02-26 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film and usage thereof |
US9482688B2 (en) | 2014-02-26 | 2016-11-01 | Panasonic Intellectual Property Management Co., Ltd. | NBT-BT crystal piezoelectric film and piezoelectric stacking structure comprising the same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8441361B2 (en) | 2010-02-13 | 2013-05-14 | Mcallister Technologies, Llc | Methods and apparatuses for detection of properties of fluid conveyance systems |
US8312759B2 (en) * | 2009-02-17 | 2012-11-20 | Mcalister Technologies, Llc | Methods, devices, and systems for detecting properties of target samples |
US20110001394A1 (en) * | 2009-07-02 | 2011-01-06 | Eta Sa | Piezoelectric thin-film tuning fork resonator |
CN102473838B (zh) * | 2010-04-15 | 2014-10-01 | 松下电器产业株式会社 | 压电体薄膜、喷墨头、使用喷墨头形成图像的方法、角速度传感器、使用角速度传感器测定角速度的方法、压电发电元件以及使用压电发电元件的发电方法 |
WO2012026055A1 (ja) * | 2010-08-23 | 2012-03-01 | パナソニック株式会社 | アクチュエータ、及びアクチュエータを駆動する方法 |
CN102174697B (zh) * | 2011-03-04 | 2013-06-12 | 电子科技大学 | 一种在金属镍基片上生长氧化物铁电薄膜的方法 |
EP2824422B1 (en) * | 2012-03-09 | 2019-07-24 | Panasonic Intellectual Property Management Co., Ltd. | Inertial force sensor |
CN103378286B (zh) * | 2012-04-19 | 2017-12-01 | 新科实业有限公司 | 薄膜压电元件及其制造方法、磁头折片组合及磁盘驱动器 |
US8324783B1 (en) | 2012-04-24 | 2012-12-04 | UltraSolar Technology, Inc. | Non-decaying electric power generation from pyroelectric materials |
CN104823030A (zh) * | 2012-11-26 | 2015-08-05 | 松下知识产权经营株式会社 | 红外线检测装置 |
GB2532106B (en) | 2014-11-04 | 2017-06-28 | Xaar Technology Ltd | A piezoelectric thin film element |
CN104734563B (zh) * | 2015-04-02 | 2017-01-25 | 厦门大学 | 一种柔性无铅钛酸钡压电发电机及其制备方法 |
CN111592351B (zh) * | 2020-05-21 | 2021-08-06 | 中南大学 | 一种热释电材料的应用 |
CN117084003A (zh) * | 2021-03-30 | 2023-11-17 | 富士胶片株式会社 | 压电元件及压电元件的制造方法 |
CN115215652B (zh) * | 2022-07-08 | 2023-06-16 | 中国科学院深圳先进技术研究院 | 一种陶瓷薄膜前驱体及其制备方法和介电储能电容器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10139552A (ja) * | 1996-08-30 | 1998-05-26 | Toyota Central Res & Dev Lab Inc | 結晶配向セラミックス及びその製造方法 |
JPH11180769A (ja) * | 1997-12-19 | 1999-07-06 | Nissan Motor Co Ltd | 圧電セラミックス材料およびその製造方法 |
JP2007266346A (ja) * | 2006-03-29 | 2007-10-11 | Seiko Epson Corp | 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法 |
JP4060073B2 (ja) * | 2001-12-20 | 2008-03-12 | 株式会社日立製作所 | 内燃機関の制御装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85100513B (zh) | 1985-04-01 | 1987-08-19 | 中国科学院上海硅酸盐研究所 | 钛酸铋钠钡系超声用压电陶瓷材料 |
JPH0460073A (ja) * | 1990-06-28 | 1992-02-26 | Tokai Rika Co Ltd | 光学式鍵山検出器 |
DE69710976T2 (de) | 1996-08-30 | 2002-08-22 | Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute | Keramik mit Kristallorientierung und Verfahren zu ihrer Herstellung |
JPH10182291A (ja) | 1996-12-20 | 1998-07-07 | Sharp Corp | 強誘電体薄膜の製造方法、強誘電体薄膜被覆基板及びキャパシタ |
US20020036282A1 (en) * | 1998-10-19 | 2002-03-28 | Yet-Ming Chiang | Electromechanical actuators |
US6312816B1 (en) * | 1998-02-20 | 2001-11-06 | Advanced Technology Materials, Inc. | A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators |
JP3379479B2 (ja) * | 1998-07-01 | 2003-02-24 | セイコーエプソン株式会社 | 機能性薄膜、圧電体素子、インクジェット式記録ヘッド、プリンタ、圧電体素子の製造方法およびインクジェット式記録ヘッドの製造方法、 |
US6523943B1 (en) * | 1999-11-01 | 2003-02-25 | Kansai Research Institute, Inc. | Piezoelectric element, process for producing the piezoelectric element, and head for ink-jet printer using the piezoelectric element |
JP3844972B2 (ja) | 2001-03-09 | 2006-11-15 | 株式会社東芝 | 圧電単結晶および圧電振動子 |
JP4182329B2 (ja) * | 2001-09-28 | 2008-11-19 | セイコーエプソン株式会社 | 圧電体薄膜素子およびその製造方法、ならびにこれを用いた液体吐出ヘッド及び液体吐出装置 |
US7083270B2 (en) * | 2002-06-20 | 2006-08-01 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus |
JP4192794B2 (ja) * | 2004-01-26 | 2008-12-10 | セイコーエプソン株式会社 | 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、及び電子機器 |
JP2005249645A (ja) * | 2004-03-05 | 2005-09-15 | Matsushita Electric Ind Co Ltd | 角速度センサおよびその製造方法 |
JP4224709B2 (ja) * | 2004-05-17 | 2009-02-18 | セイコーエプソン株式会社 | 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、および電子機器 |
JP2006086368A (ja) | 2004-09-16 | 2006-03-30 | Seiko Epson Corp | 圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振子、および電子機器 |
WO2007055133A1 (ja) * | 2005-11-08 | 2007-05-18 | Matsushita Electric Industrial Co., Ltd. | 角速度センサおよびその製造方法 |
CN100575302C (zh) * | 2007-10-18 | 2009-12-30 | 桂林电子科技大学 | 一种三元系钛酸铋钠基无铅压电陶瓷 |
JP5507097B2 (ja) * | 2008-03-12 | 2014-05-28 | 富士フイルム株式会社 | ペロブスカイト型酸化物とその製造方法、圧電体、圧電素子、液体吐出装置 |
JP2009239208A (ja) * | 2008-03-28 | 2009-10-15 | Fujifilm Corp | 圧電アクチュエータの製造方法及び液体吐出ヘッド |
-
2009
- 2009-10-02 CN CN200980110747XA patent/CN101981718B/zh not_active Expired - Fee Related
- 2009-10-02 WO PCT/JP2009/005121 patent/WO2010047049A1/ja active Application Filing
- 2009-10-02 JP JP2009548541A patent/JP4455678B1/ja not_active Expired - Fee Related
-
2010
- 2010-04-06 US US12/755,180 patent/US7870787B2/en not_active Expired - Fee Related
- 2010-12-08 US US12/963,223 patent/US8176781B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10139552A (ja) * | 1996-08-30 | 1998-05-26 | Toyota Central Res & Dev Lab Inc | 結晶配向セラミックス及びその製造方法 |
JPH11180769A (ja) * | 1997-12-19 | 1999-07-06 | Nissan Motor Co Ltd | 圧電セラミックス材料およびその製造方法 |
JP4060073B2 (ja) * | 2001-12-20 | 2008-03-12 | 株式会社日立製作所 | 内燃機関の制御装置 |
JP2007266346A (ja) * | 2006-03-29 | 2007-10-11 | Seiko Epson Corp | 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法 |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8390179B2 (en) | 2010-06-16 | 2013-03-05 | Panasonic Corporation | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
WO2011158490A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US8393719B2 (en) | 2010-06-16 | 2013-03-12 | Panasonic Corporation | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
WO2011158491A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US8944570B2 (en) | 2010-06-16 | 2015-02-03 | Panasonic Corporation | Piezoelectric film and ink jet head and angular velocity sensor using the same |
JP4894983B2 (ja) * | 2010-06-16 | 2012-03-14 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2011158492A1 (ja) * | 2010-06-16 | 2011-12-22 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
CN102640315A (zh) * | 2010-06-16 | 2012-08-15 | 松下电器产业株式会社 | 压电体膜、喷墨头、使用喷墨头形成图像的方法、角速度传感器、使用角速度传感器测定角速度的方法、压电发电元件以及使用压电发电元件的发电方法 |
US8511799B2 (en) | 2010-06-16 | 2013-08-20 | Panasonic Corporation | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
JP5077505B2 (ja) * | 2010-06-16 | 2012-11-21 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
JP5077504B2 (ja) * | 2010-06-16 | 2012-11-21 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US8931342B2 (en) | 2010-06-30 | 2015-01-13 | Panasonic Corporation | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
WO2012001942A1 (ja) * | 2010-06-30 | 2012-01-05 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
JP5077506B2 (ja) * | 2010-06-30 | 2012-11-21 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US8511162B2 (en) | 2010-06-30 | 2013-08-20 | Panasonic Corporation | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
JP5146625B2 (ja) * | 2010-08-27 | 2013-02-20 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
WO2012026107A1 (ja) * | 2010-08-27 | 2012-03-01 | パナソニック株式会社 | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US8727506B2 (en) | 2010-08-27 | 2014-05-20 | Panasonic Corporation | Ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the peizoelectric generating element |
WO2012104945A1 (ja) * | 2011-02-03 | 2012-08-09 | パナソニック株式会社 | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
JP5196087B2 (ja) * | 2011-02-03 | 2013-05-15 | パナソニック株式会社 | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 |
US9184371B2 (en) | 2011-02-03 | 2015-11-10 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element |
CN103329297A (zh) * | 2011-02-03 | 2013-09-25 | 松下电器产业株式会社 | 压电体薄膜及其制造方法、喷墨头、利用喷墨头形成图像的方法、角速度传感器、利用角速度传感器测定角速度的方法、压电发电元件以及利用压电发电元件的发电方法 |
US8591009B2 (en) | 2011-04-14 | 2013-11-26 | Panasonic Corporation | Piezoelectric film, ink jet head, angular velocity sensor and piezoelectric generating element |
JP5126457B1 (ja) * | 2011-04-14 | 2013-01-23 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 |
WO2012140811A1 (ja) * | 2011-04-14 | 2012-10-18 | パナソニック株式会社 | 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 |
US9000655B2 (en) | 2012-02-03 | 2015-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US8998390B2 (en) | 2012-03-06 | 2015-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US9082978B2 (en) | 2012-08-03 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film and method of manufacturing the piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
US9082977B1 (en) | 2014-02-26 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Piezoelectric film and usage thereof |
US9482688B2 (en) | 2014-02-26 | 2016-11-01 | Panasonic Intellectual Property Management Co., Ltd. | NBT-BT crystal piezoelectric film and piezoelectric stacking structure comprising the same |
Also Published As
Publication number | Publication date |
---|---|
US20110072900A1 (en) | 2011-03-31 |
US8176781B2 (en) | 2012-05-15 |
JP4455678B1 (ja) | 2010-04-21 |
CN101981718B (zh) | 2013-06-05 |
CN101981718A (zh) | 2011-02-23 |
JPWO2010047049A1 (ja) | 2012-03-22 |
US20100194245A1 (en) | 2010-08-05 |
US7870787B2 (en) | 2011-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4455678B1 (ja) | 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
JP4524000B1 (ja) | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
JP4835813B1 (ja) | 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
JP4588807B1 (ja) | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
JP4691614B1 (ja) | 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
JP5196087B2 (ja) | 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
US8393719B2 (en) | Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element | |
US8511799B2 (en) | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element | |
JP5077506B2 (ja) | インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 | |
US8390179B2 (en) | Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980110747.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009548541 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09821749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09821749 Country of ref document: EP Kind code of ref document: A1 |